
Event Driven

Languages

for Novice Programmers

Peter Shackleton
Department of Information Systems

Faculty of Business
Victoria University of Technology

1998

A thesis submitted in fulfilment of the requirements for the degree of
Master of Business by Research (Business Computing) from

Victoria University of Technology

iTS

STA THESIS
005.1071194 SHA
30001005349180
Shackleton, Peter
Event driven languages for
novice programmers

Declaration

I certify that this thesis contains no material that has been submitted for the award of

any other degree or diploma in any institute, college or university, and that it contains

no material previously published or written by another person, except where due

reference is made in the rest of the thesis.

Peter Shackleton

,t fi^kmr
Date

Acknowledgements

Much of the work of this thesis could not have been done without the support and

encouragement of a number of people.

Firstly, I would like to thank my supervisor Nick Billington for his support, guidance and,

above all, his patience throughout the writing process. I would also like to thank m y secondary

supervisor Angela Scollary for the many hours she spent editing m y work on her long trips to

Wagga and for her invaluable advice.

My sincere thanks go to the many students and lecturers who gave freely of their time and who

contributed so much rich data for this study.

To my colleagues in the Department of Information Systems at Victoria University I am also

indebted.

Finally, I would like to thank my wife Kathy who has sacrificed far more than me during this

long process and who has provided m e with so much support and encouragement.

Summary

Most mature scientific disciplines have a sound and widely accepted foundation of basic concepts.

This is not yet the case for the discipline of Information Systems. It is acknowledged that the

majority of students will work in organisational settings where they will specify, develop, build,

implement or manage information systems. Although there is consensus on the need for

information systems education, the structure and content of courses of this type in each of

Victoria's eight universities varies considerably. Computer programming, in different formats, is a

part of each of these courses although the content and scope varies between universities.

This thesis investigates the use of event driven languages by novice programmers in information

system courses. To establish the context for the study an extended literature analysis examines

h o w novice programmers acquire programming skills. The current use of programming languages

and program design methodologies in introductory programming subjects is also examined. The

initial research for the thesis involves an investigation of the use of event driven languages at three

Australian universities. Extended interviews identify the reasons why the event driven paradigm

was adopted or rejected in these universities, and the advantages and disadvantages of its use in an

introductory subject at one university. Changes to the method of teaching, and the aims and

objectives of the introductory subject, together with the impact on the student learning from the

use of object-based, visual programming environments is discussed.

A seven step program design methodology is developed for the teaching of event-driven languages

to novice programmers. Using a case study approach, qualitative data is gathered on the use of the

design methodology by students at an Australian university. Evaluation of the methodology

indicates that students are heavily reliant upon the screen layout but are confused about events and

the placement of code. It is found that students often fail to establish a clear mental model that

depicts the operation of event driven systems. Reasons for this confusion and the strategies that

can be developed to help novices gain a better understanding of event driven systems is discussed.

Event Driven Languages for Novice Programmers Pagei

Table of Contents

Chapter 1 - The Problem and its Significance

1.1 Introduction 1

1.2 The Research Questions 2

1.3 Information Systems as a Discipline 3

1.4 Information Systems Curricula in Australian Universities 6

1.5 Programming in Information Systems Curricula 7

1.5.1 Aims of Introductory Programming Subjects 9

1.5.2 Other Programming Paradigms 13

1.6 Significance of a Study in this Area 15

1.7 Summary 17

Chapter 2 - Cognitive Skills and Program Design 18

2.1 Problem Solving and Design 18

2.2 Programmer Behaviour 22

2.2.1 Cognitive Science 22

2.2.2 Cognitive Style and Cognitive Ability 24

2.3 General Cognitive Models 26

2.3.1 Syntactic/Semantic Model 26

2.3.2 Production System Model (Coding/Comprehension Model) 30

2.3.3 Schemas and Rules of Discourse 33

2.4 Programming Tasks 35

2.4.1 Design/Requirements 36

2.4.2 Coding 37

2.4.3 Comprehension 38

2.4.4 Debugging 39

2.4.5 Documentation 40

2.4.6 Programming Tasks Revisited 40

2.5 Programming Environments and Program Design 43

2.5.1 Program Environments 43

2.5.2 Program Design 44

2.6 Summary 47

Event Driven Languages for Novice Programmers Page ii

Chapter 3 Event Driven Programming and Curriculum Design 48

3.1 The Changing Information Systems Curriculum 48

3.1.1 Programming in Information Systems Curriculum 52

3.2 A Framework for the Learning Process 54

3.2.1 Introduction 54

3.2.2 Learning Outcomes 58

3.3 Object-Oriented and Visual Programming Environments 62

3.3.1 Visual Programming Environments 62

3.3.2 Object-Oriented Programming 64

3.4 Object-based Languages in Introductory Programming Subjects 68

3.4.1 Reasons for Introducing Object-based Programming 68

3.4.2 Evaluation of Object-based Languages in Introductory Programming Subjects 70

3.4.3 Program Design 71

3.5 Summary 74

Chapter 4 Research Rationale and Methodology 76

4.1 Qualitative and Quantitative Research Methods 76

4.1.1 Qualitative Research Methods 76

4.1.2 Case Studies 78

4.2 Interpretivism 79

4.2.1 Case Study and Interpretivism 81

4.2.2 Interpretivism, Case Studies and Theory Development 81

4.3 Research Design 82

4.3.1 Exploratory Phase 83

4.3.2 Case Study 85

4.3.3 Limitations of Methods 88

4.3.4 Ethical Issues 89

4.4 Data Analysis 89

4.4.1 Qualitative Analysis 89

4.4.2 Analytic Strategy 90

4.4.3 Data Analysis for this Research 91

Event Driven Languages for Novice Programmers Page iii

Chapter 5 Developing a Methodology for Event-Driven Programming 93

5.1 Introduction 93

5.2 Overview of Courses and Subject Changes 93

5.3 Factors Influencing the Choice of Language 94

5.3.1 Student Interest and Gender Issues 94

5.3.2 Technology Change, Employer Perception and the Need to Update Courses 96

5.3.3 Aims and Objectives of the Introductory Subject 97

5.4 Changes to the Content, Teaching Approach and Design Methodology 98

5.4.1 Teaching Approach 98

5.4.2 Problems for Lecturing Staff 100

5.4.3 Skills Development 101

5.4.4 Program Design Methodology 102

5.4.5 Summary 103

5.5 The Need for a Design Methodology for Event-Driven Programming 104

5.6 A Program Design Methodology for Event-Driven Systems 104

5.6.1 Program Methodolgy and Cognitive Style 105

5.6.2 Problem Statement and Defining Diagram 105

5.6.3 The Screen Layout 108

5.6.4 The Event/Response List 109

5.6.5 Test Data Ill

5.6.6 Program Variable Table Ill

5.6.7 A Detailed Pseudocode Algorithm 113

5.7 Summary 119

Chapter 6 Analysis of a Program Design Methodology 120

6.1 Mental Models 121

6.2 The Problem Statement 124

6.3 Defining Diagram 129

6.3.1 Introduction 129

6.3.2 Identification of inputs and outputs 130

6.4 Screen Layout 135

6.4.1 Development of the Screen Layout 137

6.4.2 Editing the Screen Layout 142

6.4.3 Relationship to Other Steps in the Design Methodology 145

Event Driven Languages for Novice Programmers Page iv

6.5 Event Response List 148

6.5.1 Overview 148

6.5.2 Event Boundaries 150

6.5.3 Event Context 155

6.5.4 Event Status 157

6.5.5 Response Detail 159

6.5.6 Placement of Code 160

6.6 Test Data 162

6.6.1 Development of Test Data 162

6.6.2 Testing Strategies 165

6.7 Program Variable Table 166

6.8 Algorithm 172

6.8.1 Pseudocode 172

6.9 Visual Basic Code 180

6.10 Problem Solving Strategies „. 183

6.10.1 Problem Solving Strategies 184

6.10.2 Strategies Used in Solving a Programming Problem 185

6.11 Summary 187

Chapter 7 Conclusion 191

7.1 Findings 191

7.1.1 Language Trends in Introductory Programming Subjects 191

7.1.2 Findings from the Use of the Design Methodology 193

7.2 Recommendations for Further Research 194

7.2.1 Revised program design methodology 194

7.2.2 Recommendations for further research 195

Bibliography 197

Appendix 1 - Student Interview Sample program 208

Appendix 2 - Background of Interviewed Students 209

Appendix 3 - Student Consent Form 211

Event Driven Languages for Novice Programmers Page v

List of Figures

Figure 1.1: Scope of the Computing Studies and Information Science Disciplines 4

Figure 1.2: Information Technology - Principal Subject Clusters 5

Figure 1.3: Programming in a Computer Science Course 11

Figure 1.4: Programming in Information Systems Courses 12

Figure 2.1: Goal of Cognitive Approach 24

Figure 2.2: Syntactic/Semantic Model 27

Figure 2.3: Long-Term Memory Components -Semantic Versus Syntactic Knowledge 29

Figure 2.4: Types of Programming Knowledge 30

Figure 2.5: Generalisability Of The Brooks Model 32

Figure 2.6: Program Complexity 42

Figure 3.1: Overlap Between Analyst-Programrning Tasks 5 3

Figure 3.2: Mental Model Formation Process 57

Figure 3.3: Sequential Classification of Programming Knowledge 5 8

Figure 3.4: Programming Tasks and Underlying Knowledge Bases 59

Figure 3.5: Programming Knowledge Combinations 60

Figure 3.6: Didactic Approaches 61

Figure 3.7: Level Setting For Textual Command and Visual Factors 63

Figure 3.8: A Matrix Comparing Object-Oriented Products Based on Abstraction And Distribution 65

Figure 4.1: Structure of Research Design 83

Figure 7. 1: Scope of Information Systems Courses In Teaching Programming 192

List of Tables

Table 2.1: Environments for Programming and Software Design 43

Table 2.2: Representation of Data and Activities for Procedural Programs 45

Table 4.1: Summary of Students Interviewed 86

Table 5.1: Types of Events 110

Event Driven Languages for Novice Programmers Page vi

Glossary of Acronyms

A C M Association of Computer Machinery (United States of America)

A C S Australian Computer Society

C A E College of Advanced Education

CS Computer Science

D E E T Department of Employment, Education and Training

IS Information Systems

IT Information Technology

T A F E Technical and Further Education

V C E Victorian Certificate of Education

V U T Victoria University of Technology

Event Driven Languages for Novice Programmers P a S e v n

Chapter 1 - The Problem and its Significance

1.1 Introduction

Australia was one of the first countries to establish courses in Business Computing, later to be

known as Information Systems, when the Commonwealth Government required computing

professionals for its growing administrative needs in the 1960's. Originally established in

Colleges of Advanced Education (CAE), they eventually spread to all Victorian universities. As

would be expected, the curriculum content of these courses has varied over the years in

response to the changes in technology and the growing needs of business for information

systems graduates. Programming, in some form and in varying degrees, has been an integral

part of Information Systems courses throughout the years. Initially, procedural languages using

structured programming techniques were the only choice of language but, in recent times,

universities and colleges have been able to consider other languages from the object oriented

and event-driven platform for their introductory programming subjects.

A change to a new programming paradigm, however, often necessitates changes beyond the

subject content. Structured programming techniques is the popular design method for

procedural languages such as Pascal, while object techniques can be adopted for object-

oriented languages such as Smalltalk. Event-driven programming languages, although

extremely popular in business, have not been used extensively as the platform in introductory

programming subjects in information systems courses. Moreover, there is no recognised

program design methodology for event-driven systems amongst systems developers and

programmers nor is there a methodology for the teaching of these types of languages.

This study will, firstly, review the existing literature and, secondly, research the experiences of

lecturers and students using event-driven programming languages in introductory programming

subjects in Information Systems courses. It will examine the experiences of a number of

lecturers from Australian universities where event-driven programming has been adopted. It

will then explore the experiences of students who used a new program design methodology to

develop event-driven programs.

Chapter 2 is the first of two chapters comprising an extended review of the literature. It

investigates a range of programming tasks in the procedural paradigm and the current

understanding of h o w novice programmers learn to program. Models of programmer behaviour

Chapter 1 The Problem and its Significance Page 1

and issues related to cognitive science, skills and processes are discussed. N e w visual

programming environments and alternative programming paradigms are investigated, and

changes to the programming tasks, program design and programming skills are discussed.

Chapter 3 reviews the literature on the area of teaching with object-oriented and event-driven

programming, A framework for teaching and learning to program is established. The impact of

object-based languages on teaching programming in introductory subjects in information

systems courses is investigated. The small amount of literature available on event-driven

programming in programming subjects is reviewed.

Chapter 4 explains the research rationale and methodology used in undertaking the study. The

case study for the investigation of a new program design methodology is detailed. Each of the

data collection methods is explained and the limitations of the methodology noted.

Chapter 5 outlines the findings from interviews with experts from universities who have

adopted the event-driven paradigm into introductory programming subjects. Benefits and

problems of the language are investigated in the light of the programming skills discussed in

the literature. A clear need for a program design methodology is established and data from a

pilot study is investigated. The chapter concludes by outlining a new program design

methodology.

Chapter 6 analyses the results from the use of the program design methodology in an

undergraduate and postgraduate introductory programming subject.

Finally, chapter 7 of the thesis reflects on the whole study by highlighting relevant issues that

have arisen and pointing to future areas of research.

1.2 The Research Questions

In investigating the use of event-driven languages in introductory programming subjects a

number of questions are considered in this thesis:

1. H o w do students in introductory programming subjects learn to

program?

2. What changes need to be made to introductory programming subjects to

accommodate event-driven programming platforms?

3. Can a program design methodology be effective for the learning of

event-driven programming?

Chapter 1 The Problem and its Significance Page 2

1.3 Information Systems as a Discipline

Over a period of 40 years, the Information Systems discipline has become an essential part of

business and government organisations in Australia. As it has become more sophisticated the

Information Systems discipline has moved from processing data to providing an information

infrastructure with applications aligned to an organisational strategy (Longenecker, Feinstein et

al., 1995: 4).

Although it would not be possible to obtain universal agreement on any one definition,

information systems is generally associated with a broad group of subjects and methodologies

in the information technology discipline. Figure 1.1, extracted from the Australian Computer

Society (ACS) submission to Department of Employment, Education and Training (1992: 13),

attempts to describe the boundaries of disciplines within computing.

Chapter 1 The Problem and its Significance Page 3

Engineering Computer Systems

Engineering (CSE)

Computer Science

(CS)

Information Systems

(IS)

Commerce

Business Admin.

Financial &

pst & mgt

Sypting

Production

management

Institution of Engineers (Australia)

[IE(Aust)]

Australian Computer Society [ACS]

Australian Society of Certified Practicing

Accountants [ASCPA]

Figure 1.1: Scope of the Computing Studies and Information Science Disciplines

NB: The topic areas are indicative only and are not exhaustive. The orientation dimension, comprising basic

research, applied research, product development and application areas (such as commerce, industry, government,
libraries, land information and health) is orthogonal to this disciplinary dimension. Software Engineering is included
as a subject area rather than a discipline.

Source: DEET et al, 1992: Figure 2.2

It is immediately apparent that there is considerable overlap between the various curriculum

areas and the interests of the three professional bodies. Despite this overlap, there are important

differences in the nature of the work performed, the types of systems developed and managed,

and the application of the technology (Longenecker, Feinstein et al., 1995: 9). Information

Systems is a discipline which is oriented towards business or commerce, that is, it involves

matching information systems requirements to an organisation's objectives. Software

engineering incorporates the principles of large-scale software systems, whereas the context for

information systems is usually in smaller organisations. As a consequence, Information

Systems courses are

Chapter 1 The Problem and its Significance Page 4

'designed to prepare or develop further the abilities of students to analyse
information needs, functions, operations, procedures, physical systems and
technical problems of an organisation to establish the feasibility of, and
develop procedures for, automatically processing data by use of computers and
communications networks' (DEET, 1992:16).

Computer science, on the other hand, concentrates on algorithmic processes and system

software, while computer systems engineering involves the design and development of

computer and communication components and equipment, and computer-based systems.

Figure 1.2 further highlights the differences between the three areas of computer science

engineering, computer science and information systems. The movement along the horizontal

axis ('hard' to 'soft') represents a spectrum from hardware oriented to more human

involvement in the development of applications. Given the growth in recent years of computer

use and, in particular end-user computing, it is understandable how information systems has

changed during that period of time.

Fundamental

Applied

omputer Science

Information Systems

Comp Sys Eng

"Hard" "Soft"

Figure 1.2: Information Technology - Principal Subject Clusters

Source: D E E T et al, 1992: Figure 2.1

Information systems covers two broad areas: the acquisition, deployment, and management of

information resources and services, and secondly, the development and augmentation of

infrastructure and systems for information use in organisation processes (Longenecker,

Feinstein et al., 1995: 9). The information systems function involves the deployment,

implementation and management of information resources and services (such as computer

hardware and communications), data and organisation-wide systems. This function includes the

Chapter 1 The Problem and its Significance Page 5

responsibility to monitor new information technology (IT) and to assist in incorporating IT into

the organisation's strategy, planning and practices. The systems development component of

information systems involves the systematic application of techniques and methodologies to

construct systems used for a range of organisational tasks such as data acquisition and storage,

communication, data analysis and decision support. Issues of innovation, human-machine

systems and user interfaces are often relevant when creating information systems.

The nature and context of information system functions, however, has changed over the years

as information technology has been moved into most functional areas of organisations. Today,

the function of information systems is often one of supporting innovation, planning and

coordinating resources and systems, rather than one where a specialist or specialists are doing

all the work in isolation. Moreover, systems development concentrates heavily on individual

and departmental application development in addition to the traditional role of supporting

systems. This has required Information Systems curricula to train both specialists and to

provide students from other disciplines with a knowledge of information systems functions and

systems development.

Information systems will be used to denote all operations and procedures involved in the

design and implementation of an information processing system. The term implies the

integration of computer based components and manual operations to enable data to be

collected, organised, saved, managed and retrieved as useful information (DEET, 1992: 16).

Similarly, Information Systems will be used to denote a field of academic study in which

curricula are designed primarily to educate people in the efficient and effective application of

computer hardware, software and systems to the solution of business and organisational

problems (Tatnall, 1993: 4).

1.4 Information Systems Curricula in Australian Universities

In response to business demand for graduates with an Information Systems qualification,

Information Systems courses have gradually been introduced into Australian universities over

the years. In Victoria as in other states, some of the newer universities, such as the Royal

Melbourne Institute of Technology and the Victoria University of Technology offered

Information Systems courses when they were Colleges of Advanced Education. Some

established universities, such as Monash University adopted these courses when they

amalgamated with smaller CAE's. Victoria's oldest university, the University of Melbourne,

Chapter 1 The Problem and its Significance Page 6

was the last to establish an undergraduate program in Information Systems1. Today, each

Australian university offers a range of computing courses including Information Systems.

There has been significant growth, particularly in recent years, in the number of specialised

undergraduate courses that lead to a formal qualification in information technology. These

courses account for almost 7 0 % of the number of undergraduate courses in the information

technology field D E E T (1992). At the same time, however, there has developed a greater

flexibility in existing undergraduate programs, permitting new combinations of study leading to

an increase in non-computing courses, that is, those with a computing content of at least 3 0 %

within a non-computing field of study. In 1991, 3 6 % of information technology students were

enrolled in courses of this type. These statistics reflect the extent to which Information Systems

has permeated many other disciplines and the demand for graduates with some Information

Systems expertise.

It is not surprising then that a large number of new computing professionals in Australia are

qualifying through Information Systems courses. The most recent statistics from D E E T (1992:

43) indicate that 2200 students are enrolled in computing courses at Australian universities that

contain enough subject material to qualify graduates for Level 1 membership of the Australian

Computer Society2. At least 8 0 % of these students are enrolled in Information Systems courses

(Tatnall, 1993: 4). Today, there is an increasing demand for graduates from Information

Systems courses rather than computer science and engineering courses (DEET, 1992: 126).

Computer programming is viewed as a necessary skill for information technology

professionals. In 1990, D E E T released a report into the education and training needs of

computing professionals in Australia (DEET, 1990). The report identified 15 groups of tasks

undertaken by professionals and para-professionals within the computing profession. Their

survey of each computing occupation indicated that only one group, System Trainers, were not

involved in computer programming as part of their everyday work. Moreover, another study by

D E E T (1992) on the relevance of course content to employer needs for entry level information

technology graduates indicated that a knowledge of programming, particularly procedural and

object oriented programming, was highly desirable (1992: 108).

The University of Melbourne has conducted IS courses through the Department of Librarianship and Information

Systems (originally as part of the old Melbourne C A E) for a number of years. A Bachelor of IS was offered by

the Department of Information Systems in the Faculty of Science for the first time in 1996.

For A C S Level 1 accreditation, a degree or diploma from a University or C A E must contain at least a 3 0 %

information technology component. These guidelines are currently under review.

Chapter 1 The Problem and its Significance Page 7

1.5 Programming in Information Systems Curricula

Computer programming, in some form or another is identified by the A C S as an important

component of Information Systems education at the tertiary level. At Level 1, students must

have a working knowledge of a programming language. Depending on how one defines

computer programming, it is also part of the Level 2 and 3 requirements for A C S professional

recognition.

There is, however, increasing debate on what constitutes a programming language. Prior to the

development of powerful application programs, it was possible to identify computer

programming as a skill where programmers carefully composed programs from symbolic

expressions in arcane and esoteric programming languages that prescribed the tasks that we

wanted our processes to perform (Abelson, Sussman et al., 1985: 1). Twenty years ago,

according to Cooke (1990), the terms computer user and programmer were synonymous. In

those times the owner of a computer almost certainly wrote programs. The developments in

hardware and the increased sophistication of compilers, to mention just two factors, have made

languages less procedural and, in recent years, more visual, enabling the end user to develop

programs through individual applications (DEET, 1990: 209).

Today, with the widespread use of application languages, 'computer user and programmer are

again synonymous but this time, software developers are consciously trying to make languages

more powerful and easier to use' (Cooke, 1990: 211). Languages for application users are as

friendly as possible and the 'computer's resources ease you into the language and guide you

through it'(Cooke, 1990: 211). Languages for professional programmers, on the other hand, are

geared towards 'someone who needs to get the most power and flexibility out of an application,

... and tend toward the complex and difficult'(Cooke, 1990: 211). Nevertheless, a computer

program is still a set of rules that outlines an abstract being comprising computational process

which operate on abstract things called data. In the world of the abstract, novice and

professional programmers must learn to understand and to anticipate the consequences of sets

of instructions, its impact on the data and the computational process, as well as on other

elements such as hardware devices (Abelson, Sussman et al., 1985: 1).

Glinert (1990) emphasises that a person is required to work at two distinct but highly inter­

related levels when programming: at an abstract and at a concrete level. The abstract

component determines a domain, such as data, along with sets of operations and constraints on

the elements of that domain, while the concrete component provides a representation for the

abstract language (ie. as strings of ASCII characters or other program syntax). If a programmer

Chapter 1 The Problem and its Significance Page 8

was coding in a low-level language then the distinction between the abstract and concrete

components of a language may not be as evident as it would if a high-level language was being

used. A similar analogy could be used between text-based languages and visual programming

languages (which manipulate objects). This implies that a programmer may require a different

set of skills depending upon the type of language being used and, in particular, the level of

abstraction above the machine-level code. In programming subjects that use visual

programming environments with object-based languages a different set of skills may need to be

taught from those where traditional procedural languages are used.

According to Cooke (1990: 214) 'perhaps the most important development in applications

languages is the recognition that they are languages. If they are designed and implemented as

languages rather than as automated key presses, you can expect them to become much better.'

It is now possible to expand the range of programming languages to include not only the

traditional languages from the procedural and object-oriented paradigms, but applications

languages such as macros in spreadsheets and coding tools in windows-based applications.

1.5.1 Aims of Introductory Programming Subjects

The aims of introductory programming subjects in Information Systems courses in different

institutions are as wide and varied as the discipline itself. The aims of these subjects often vary

according to the specific requirements of the overall course, the level at which the subject is

taught and the need to cater for external demands. Accordingly, an introductory programming

subject is often taught to satisfy one or more requirements: to train in a specific language, to

teach broad programming concepts or methodologies, or to develop or enhance problem

solving skills.

Where the subject focuses on training, programming is taught to develop skills in the syntax of

the particular language. The major emphasis in a subject of this type is on the syntax of a

computer language. Subjects aiming to teach programming concepts, on the other hand, would

emphasise a particular process such as structured programming methods with language syntax

used to implement a solution. Alternatively, the focus of a programming subject may be to

formalise a student's problem solving skills. Using a procedural language such as Pascal or C,

which are the most popular languages in IT courses (Reid, 1994), for training purposes,

emphasis would be placed on the syntax of the language such as program architecture,

declaration of variables and the use of functions. Subjects concentrating on programming

concepts would place greater emphasis on structured programming concepts and the use of

general procedures rather than on the syntax of the language. Lastly, where the emphasis was

on the development of problem solving skills, the language would be secondary to the

Chapter 1 The Problem and its Significance Page 9

processes that the person used to develop a solution to a problem. The language, in this case,

would be used to implement a solution.

1.5.1.1 Problem Solving Skills

Irrespective of the primary aim of an introductory programming language, learning to program

and to develop an algorithm is, in itself, a form of problem solving development. According to

Linn (1985)

'Structured programming concepts require a programmer to explicitly use
some potentially powerful problem-solving skills. A programmer must
manipulate data using only a small set of primitive instructions; they must
decompose a large problem into a series of smaller manageable tasks; and
finally they should test the programmed solution and make changes to the
code'(p. 14).

When solving problems, Denenberg (1990) describes how many students have difficulty

determining when or how to use an experimental approach versus a method of simple deductive

reasoning. Many science and applied science courses develop the a posteriori or empirical

approach (effect to cause) while mathematics courses develop the a priori or deductive (cause

to effect) approach. H e concludes that computer programming can be used as a vehicle to teach

reasoning and problem solving skills and states

'there usually exist no courses to integrate the two methods or to develop the
intuition of when it is appropriate to utilise one or the other, or both, in
attacking a problem. Computer programming combines the methods of a priori
and a posteriori reasoning and as such, can provide the necessary integrative
vehicle' (p260).

In response to industry demand, many Information Systems courses concentrate on developing

or improving students' problem solving skills (DEET, 1992). Programming subjects are part of

this process. This contrasts with programming subjects in computer science courses where the

focus is on teaching specific programming skills through the systematic study of algorithmic

processes (Longenecker, Feinstein et al., 1995: 10). Indeed, this emphasis on computer

knowledge to the exclusion of other factors has been a source of major criticism of computer

science courses from both academics and business (DEET, 1992: 186).

In the past, students coming to computer science courses have had a background in

mathematics and/or science3. It has been argued that mathematics is not only a language but

involves problem-solving techniques (DeGrace and Hulet Stahl, 1990: 13), although there is

considerable research to challenge DeGrace's view (Pea and Kurland, 1983; Kurland, Clement

3 With the decline in the numbers of V C E students, many of the entry restrictions have been removed

from Computer Science courses

Chapter 1 The Problem and its Significance Page 10

et al., 1986; Van Papstein and Frese, 1988; Linn and Songer, 1991; Turkle and Papert, 1992).

This alternate view suggests that computer science students use their general cognitive skills in

a programming subject to develop specific cognitive skills and processes in the programming

domain (see Figure 1.3: Programming in a Computer Science Course).

Mathematics & Science Skills

General Cognitive Skills

\

Computer Programming I

\

Cognitive Skills & Processes
in Programming

Figure 1.3: Programming in a Computer Science Course

Students bring general cognitive skills, developed in mathematics and science subjects to the computer
programming subject through which they develop specific cognitive skills and processes in computer
programming.

Traditionally, an information systems course has not attracted large numbers of students with

mathematics or science backgrounds (Craig, 1996). Turkle (1992) found that many students

w h o enter these types of courses posses a different set of problem solving skills and strategies

from students with a mathematics background. Programming subjects in an Information

Systems course, it is claimed, play an important role in developing a student's general

cognitive skills (see Figure 1.4: Programming in Information Systems Courses).

Chapter 1 The Problem and its Significance Page 11

Skills in Particular

T
Computer Programming jj
SHRmNSHHHBHIMHHHBHHHPh-

General Cognitive Skills

Figure 1.4: Programming in Information Systems Courses

The programming subject aims to develop general cognitive skills as well as specific cognitive skills and
processes in the programming domain.

1.5.1.2 Program Design

Traditionally, procedural languages have been used in introductory programming subjects and,

almost by default, the design methodology has been structured programming. Procedural

programs are constructed from statements that are precisely ordered and structured

programming design not only acts as a method to ensure code is readable and maintainable but

as a process for the development of a program solution. The main arguments expressed in

favour of structured programming as a program design methodology are that it reduces the

intellectual load when handling size-induced complexity, facilitates the maintenance and

proving of design correctness, yields substantial improvements in program understandability

and increased programmer productivity (Ratcliff and Siddiqi, 1985).

To obtain a solution to a procedural programming problem, a student is taught to adopt a

classic or 'algorithmic' view of programming. Attention is focused on 'the smallest unit of a

program (ie. the statement), on the sequential arrangement and performance of those

statements, and on the required precision with which these are created and sequenced'

(Yourdon and Constantine, 1979: 31). Moreover, Yourdon (1979) argues that this view of

programming necessitates a strict order of teaching programming to novices which

Domains

Cognitive Skills & Processes
in Programming

Chapter 1 The Problem and its Significance Page 12

concentrates on finding a computational solution and on a detailed statement-by-statement

translation of the algorithm. H e states:

'Some function or task is given; an algorithm or "method of computation " is
selected, discovered, or created; this algorithm is translated into a language
which the computer will accept' (Yourdon and Constantine, 1979: 31).

There has been, however, a steady movement away from the use of procedural languages in

both industry and in introductory programming subjects. The steady movement away from text-

based systems by both programmers and end-users has resulted in substantial productivity

improvements in software development,

'...this is because the computer's ability to represent in a visual manner
normally abstract and ephemeral aspects of the computing process such as
recursion, concurrency, and the evolution of data structures through time, can
have a remarkable and positive impact on both the productivity of
programmers and their degree of satisfaction with the working environment'
(Chang, 1990: 145).

In recent years, tertiary institutions have adopted different programming paradigms into their

programming subjects, in particular, object-oriented, object-based or event-driven languages.

Moreover, most of these languages work within a visual programming environment. Although

program design methodologies exist for object-oriented languages, the newer windows-based

and event-driven languages do not have any recognised design methodology.

In the past, structured programming was the automatic selection for procedural languages and

the institution only had 'to determine just the applications domain, which could consist of

scientific number crunching or commercial data processing, and the language level' (Glinert,

1990: 1). N o w , for the first time, many tertiary institutions that are adopting different

programming paradigms are being forced to develop their own program design methodologies.

1.5.2 Other Programming Paradigms

Some Information Systems courses have introduced object-oriented methodologies in design

and implementation subjects, in specialist programming subjects and of late, in first year

programming subjects using a variety of languages from Smalltalk to C++. Where pure object-

oriented languages are used in introductory programming subjects, the complex interface of the

editor and interactive debugger has deterred many students from effective use of the language

(Smith and Kelly, 1994). As Tatnall & Davey (1995) report, attempts to introduced object-

oriented programming into other subject areas have not been wholly successful:

'Although students eventually come to grips with the concepts of encapsulation,
inheritance and polymorphism, the ideas of reusable code and a closer
correspondence with reality often do not happen any more than with loosely
coupled programming libraries in any other language' (Tatnall and Davey,
1995).

Chapter 1 The Problem and its Significance Page 13

This phenomenon also seems to be mirrored in general practice and Jon Udell (1994) reports

that

"The traditional OOP vision was, at best, vague on the subject of reuse:
Objects would appear as by-products of software development, a market would
emerge, and programmers would become producers and consumers of objects.
There were two major roadblocks. Most OOP language systems , including
C + + , lack the means to package and distribute objects effectively in binary
form. More subtly, the skills and disciplines needed to build components are
often quite different from those needed to use them' (Udell, 1994: 46).

Instead, event-driven programming languages have been advocated as an alternative to support

applications development subjects. Students work within an object environment but without

producing their own objects. Event-driven languages such as Microsoft Visual Basic and

Borland Delphi, introduce aspects of the object-oriented paradigm but are not classified in the

strictest sense as pure object-oriented languages. Applications are developed from objects

which are driven or triggered by an event. The program code behind each event is procedurally

based. For the application to function as intended by the programmer, communication between

objects via messages is required. A n object only responds to an event that has code placed

behind it (Smith and Kelly, 1994).

Although the name may give the impression that these languages are visual programming

languages, they are 'textual languages which use a graphical interface builder to make

programming decent interfaces easier on the programmer. The user interface portion of the

language is visual, the rest is not'4. The objects refer not to visual data but to traditional data

types such as arrays, and to application-oriented data types such as forms, lists, text and

databases. In an ideal world, it would be advantageous to have a visual programming language

that could combine and manipulate these objects using visual aids. In reality, the user or

developer must revert to some traditional procedural constructs to alter or combine these

objects to develop an application.

The move to languages which have a visual component changes the processes people use to

develop programs. W h e n using a text based language inexperienced programmers or end users

use the syntax of the language to prompt for higher level concepts or semantic knowledge.

With experience, this semantic knowledge is gradually separated from the syntax of a particular

language and can be transferred to other languages. B y contrast visual programming enables

4 This description was taken from

http://www.cis.ohio-state.edu/hypertext/fraq^ugusemet/comp/lang/visuay_visual-lang%3afaq.html

Chapter 1 The Problem and its Significance Page 14

http://www.cis.ohio-state.edu/hypertext/fraq%5eugusemet/comp/lang/visuay_visual-lang%3afaq.html

the object to be selected and the operation to be performed immediately; there is no need for

decomposition into multiple commands - '..each command produces a comprehensible action

in the problem domain that is immediately visible' (Shneiderman, 1983: 326).

In the light of the increase in adoption of these new programming paradigms in tertiary

programming subjects, it is important to examine the skills that are taught and the program

design approach that is used. Currently, most ideas on what is important are based on the

concepts of procedural programming, and this thesis addresses the changes of approach

necessary when a procedural paradigm is replaced with an event-driven programming

language. Moreover, a program design methodology for event-driven systems is developed,

trialed and evaluated for application to introductory programming subjects.

1.6 Significance of a Study in this Area

A characteristic of information technology is rapid change. Today, information processing is

more integrated into business operations rather than existing as a separate service function.

Information systems is a growing discipline within Australian universities while demand for

computer science declines along with the other more traditional science disciplines. Few other

curriculum areas have developed so rapidly and there is a need to continually update curricula

and program requirements. Computer programming has, for many years, been a part of

Information Systems curricula in one form or another. Whether at an introductory level or in

electives, students design, construct and test computer programs. Like information technology,

the role of computer programming is changing in business as users obtain tools to develop and

customise applications, and as a consequence it is likely that the demand for trained

professional programmers will decline in the future.

'As the field of programming has matured over the years, attention has shifted
from the program to the programmer - from the logical and computational
structure of algorithms to the cognitive structures of the people who produce
them. Innovations such as interactive programming environments, object-
oriented programming, and visual programming have not been driven by
considerations of algorithm efficiency or formal program verification, but by
the ongoing drive to increase the programmer' effectiveness in understanding,
generating, and modifying code' (Winograd, 1995: 65).

It is clear that a study of the changing role of computer programming in information systems

curricula is an important one.

Qualitative research methods will be used for this study; more specifically, a case study

approach as part of interpretative inquiry. Tesch (1990: 67) classifies this type of qualitative

research under the heading of the comprehension of the meaning of text/action. Qualitative

Chapter 1 The Problem and its Significance Page 15

research methods are more appropriate for a study of this type where there is a need to place

'emphasis on the human as instrument' (Tesch, 1990: 44). Moreover, in justifying qualitative

research Lincoln and Guba (1985) state:

'Humans are the major form of data collection device'. As instruments, they
'can be developed and continuously redefined'... In fact, 'there is no reason to
believe that humans cannot approach a level of trustworthiness similar to that
of ordinary standardised tests '(p. 195).

Computer science has been taught in Australian tertiary institutions since the early 1960's. In

the United States, attempts to formally outline a computer science curriculum began in 1965.

Yet an Information Systems curriculum was not proposed in the United States until the early

1970's, with the publication of the Association for Computing Machinery's Graduate

Professional Program in Information Systems. In Australia, the first Information Systems

conference to discuss common ground in courses was not held until 1989. Identifying the key

components of Information Systems curricula has not been as easy.

'Nailing down the fundamentals of this area has proved more difficult than
computer science as, being more concerned with the applications of computing,
the development of Information Systems curricula has reflected many changes
caused by the rapid development of information technology' (Tatnall, 1993:
12).

The increase in popularity of Visual Basic as a programming language is but one example of

this rapid change in technology.

There will continue to be major changes in the programming profession in the very near future.

'The occupation so far contained by the single job description - computer
programmer - is fast splitting into two divergent streams. One group comprises
user-programmers, people primarily employed or trained to do something else,
but expected to dabble in programming for application-centric tasks, using
increasingly user-friendly tools such as Visual Basic to do so. Another group
comprises traditional skilled and trained programmers. The job specs (sic) for
these people are beginning to converge on tool-centric tasks, the invention and
development of high performance, high quality, reusable software components'
(Goschnick, 1993: 20).

This study investigates the changing role of programming in Information Systems courses.

Traditionally, procedural languages have formed the backbone of programming subjects in

Information Systems courses. Structured programming was the traditional design methodology.

Now, as new programming paradigms are adopted by business and government organisations,

there is increased pressure on Information Systems courses to accommodate these new

paradigms. The use of object-oriented languages in introductory programming subjects is

relatively new and discussions on the merits or otherwise of these languages still appear in

journals and conference proceedings. While there is evidence to suggest that object-oriented

Chapter 1 The Problem and its Significance Page 16

methods are being adopted by business, tools for their use are still cumbersome. Instead,

businesses have adopted more practical languages such as object-based, event-driven

programming languages which have offered productivity benefits for both the traditional

programmer and the end-user. Although some may be quick to point out the lack of purity of

these languages as object-oriented they have become very popular and will need support from

the increasing number of Information Systems graduates. It is now estimated that there are 2

million corporate programmers using Visual Basic; this is second only to C O B O L and far

exceeds C + + (Van Kirk, 1995). As Information Systems courses adopt the event-driven

programming paradigm into their programming subjects, lecturers are being forced to

reconsider the skills they teach to students and to find a design methodology that can deliver

the essential features of event-driven systems development.

In justifying the need for research into the study of programmer behaviour Soloway et al (1986)

states

'Broadly speaking, the basic assumption of researchers who study
programmers is this: By understanding how and why programmers do a task,
we will be in a better position to make prescriptions that can aid programmers
in their task, eg if we can understand how a maintainer goes about
comprehending a program, we should be in a good position to recommend
changes in documentation standards that would enable the maintainer to more
effectively glean from the documentation the necessary information. Similarly,
recommendations for software tools and education should also follow '(p.vii).

1.7 Summary

Numerous studies have tried to laud one procedural programming language over another but, in

most cases, the skills and concepts and the methodology taught in the subject were the same.

Changes are occurring in programming environments and there are pressures placed on

Information Systems graduates to have a different set of skills and concepts. As event-driven

languages are now widely used in business, programming subjects in Information Systems

courses are embracing this programming platform, often without considering the approach and

methodology to be used.

This study investigates the use of event-driven programming languages in introductory

programming subjects in Information Systems and evaluates the effectiveness of a program

design methodology for learning event-driven programming.

Chapter 1 The Problem and its Significance Page 17

Chapter 2 - Cognitive Skills and Program Design

As the field of programming has matured over the years, attention has shifted from the program

to the programmer, that is 'from the logical and computational structure of algorithms to the

cognitive structures of the people who produce them' (Winograd, 1995: 66). Any discussion of

programming languages, processes and environments must examine our current understanding

of the cognitive processes and skills which gradually evolve as a novice learns to program. This

chapter reviews the literature on our current understanding of how novice programmers learn a

range of programming tasks in the procedural paradigm. In addition, models of programmer

behaviour and issues relating to cognitive science, skills and processes are discussed.

According to Dumas(1995), as programming tools and users become more sophisticated, large

productivity gains are only accomplished through changes in the programming environment

and in the ways programmers go about creating programs. The chapter concludes by

investigating new visual programming environments and alternative programming paradigms

and with a discussion of the changes to the programming tasks, program design and

programming skills.

Starting with the cognitive aspects of well-understood programming tools, 'we can get insights

into the demands for an environment that will support the ongoing development of computer

software in a rapidly changing industry' (Winograd, 1995: 66).

2.1 Problem Solving and Design

Despite all the progress that has been achieved in programming languages and environments

since the early days of computing:

'.. it is an undeniable fact that we remain unable to bridge the chasm that
continues to separate the way we, as human beings conceive of solutions to
problems from the way that we now must program these solutions for our
computers. True, our computing engines become more powerful from year to
year, and our knowledge of how to use them advances, too. But our
expectations and demands rise even faster. The net result is that today, more
than a quarter century since the dawn of programming, the central problem
facing computer science is still to find a means by which we will be able to
make these machines do what we really want them to. This is true whether the
term programming is interpreted in the narrow, conventional sense or in the
broader sense, as an endeavour that encompasses all aspects of human-
computer interaction' (Glinert, 1990: 146).

Chapter 2 Cognitive Skills and Program Design Page 18

Malhotra et al (1980) describe the act of solving a problem as a process which moves a person

from one state to another:

'A problem state is said to exist when a human, or other goal-oriented system,
has a goal but no immediate procedure that will guarantee attainment of the
goal. The goal may be a satisfaction to be achieved or a dissatisfaction to be
alleviated. Problem-solving occurs in moving from a problem state to a non-
problem state. In problem solving, then, a person begins in an initial state, uses
transformations that move him from one state to another, and ends in a final
state. Any of these states and transformations may be well-defined or ill-
defined' (p. 120).

Algorithm design, which 'typically occurs after the decomposition of a large system into

modules and before the more straightforward processes to be accomplished by programmers,...

involves transforming a declarative statement of what is to be done into a procedural

specification of how to do it' (Kant and Newell, 1984: 97). Using problem space theory, Kant

and Newell (1984) describe the process of designing an algorithm:

'A problem space contains partial knowledge about a problem and its solution
(the current state). The subject has a set of operators that can be applied to the
current state to produce a new state. The subject starts with an initial state
(..the problem) and tries to discover a state that contains a solution (.. an
algorithm). Behaviour in this space involves a search, since the subject usually
does not have enough knowledge to proceed directly to the final desired state,
especially if the problem is difficult. The subject does, of course, have some
(often substantial) search control knowledge that guides the selection of which
operators to apply. But in general the subject will try various paths and run out
false leads into dead ends, causing a return to earlier states that can be
remembered (or constructed), and eventually will proceed down more
appropriate paths. The current state grows throughout the problem solving, as
the subject gradually explores the space and acquires knowledge of its various
aspects, (p. 99)

Palumbo and Reed (1991: 343) define the set of knowledge, information, facts, and

relationships needed to solve a particular problem as the task environment. The mental

representation of this task environment is included in the problem space. Thus

'one needs both an accurate and complete task environment, providing that all
the information necessary to solve a particular problem is presented and then
is accurately encoded into working memory for a successful solution of a
problem' (Palumbo and Reed, 1991: 344).

Often, however, the only a priori structure imposed on the processes that a programmer must

follow is determined by the initial goal structure, that is, what the program should do:

"The problem in moving from the idea for a system to its final implementation
is in transforming a linearly derived sequence of desired components into a
hierarchical arrangement of functions or data transformations. Once the
requirements have been delineated, they must be organised so that the inherent
structure of the problem becomes visible' (Curtis, 1985: 209).

Chapter 2 Cognitive Skills and Program Design Page 19

Not all problems in the computing domain, however, are of the same type. Some problems may

not have a clearly defined starting point from which the programmer or software developer can

move. In other cases, the goal state may not be clearly defined, or there may exist a myriad of

solutions open to the programmer. These types of problems are typical in software design even

though the functional specifications may have outlined the broad aims of a system. As a

consequence, a programmer is often forced to use a combination of a priori (deductive - cause

to effect) and a posteriori (empirical - effect to cause) approaches (Denenberg, 1990).

Vitalari and Dickson (1983) outline the processes that an analyst must use to determine

information requirements and to synthesise a solution that meets the needs of the user.

Specifically, the focus is on the frequency, ordering, and association with
analyst performance of the clues, goals, strategies, heuristics, hypotheses,
information, and knowledge manifested in the thought process of the analyst'
(p.949)

In contrast, algorithm design problem-solving belongs to an area of human problem solving

which Reitman (1965) equates with 'ill-structured' problems. Many of the formal procedures,

which may be used to solve well-defined problems, cannot be used by the programmer to solve

design problems. 'Problem-solving behaviour in this domain characteristically cannot be

specified minutely as a set of moves, selected from a small and finite initial state in order to

derive a unique final or goal state' (Carroll, Thomas et al., 1985: 143). Moreover, 'a designer,

typically, does not know in advance what the goal state will be, although he (sic) usually has

criteria to evaluate potential goal states. Indeed, the designer often does not even have a

definition of the initial problem state' (Carroll, Thomas et al., 1985: 143).

In the process of solving a problem a programmer is faced with two distinct tasks;

comprehending the structure of the problem and constructing a solution structure.

'The solution structure is that which the problem solver must construct in order
to solve the problem. Solution structure consists, on the one hand, of the
process of solution, a sequence of steps or stages (eg., "incubation"), and on
the other hand, of the more statically structured final product of the solution
(ie., the "answer"). Problem structure may be decomposed into the inherent
structure of the problem (formal relations between entities and an algebra for
manipulating these relations) and the presentation of this inherent structure
(the problem scenario, the sequence in which relevant facts are revealed to the
problem solver, etc)' (Carroll, Thomas et al, 1980: 269).

An empirical study by Carroll et al (1980: 269) found that the structuring of requirements has

an impact on the problem solution; that is, greater structure in the original problem statement

leads to a reduction in the number of iterations through design cycles. Similarly, Palumbo and

Reed (1991) believe that

Chapter 2 Cognitive Skills and Program Design Page 20

'problem situations become more complex as the relationships between
elements in the problem space are more obscure, thus requiring more
operations to construct an adequate problem solution. Problems where all the
information is presented in the problem statement are, thus, much easier to
solve than those with missing or obscure information' (p. 344).

This method of teaching concentrates on finding a computational solution and on the detailed

statement-by-statement translation of the algorithm.

Over the years, tools have been developed to provide a structured approach to the analysis,

design and construction of complex computer systems. Structured analysis and structured

programming concepts have been used for procedural languages and various methodologies

have been proposed for object-oriented systems development. These tools have outlined a set of

procedures designed to assist humans solve complex problems. The need for these types of

tools has been long recognised. In his famous letter to the A C M , Dijkastra (1968) wrote

'our intellectual powers are rather geared to master static relations and that
our powers to visualise processes evolving in time are relatively poorly
developed. For that reason we should do (as wise programmers aware of our
limitations) our utmost to shorten the conceptual gap between the static
program and the dynamic process, to make the correspondence between the
program (spread out in text space) and the process (spread out in time) as
trivial as possible '(p. 147).

For procedural languages, Kraft (1977) argues that structured programming is a way of

thinking or 'attitude, one in which programs are written for people rather than machines'

(p.130). This point is shared by Ratcliff (1985 :78) who argues that, while structured

programming in such forms as step-wise refinement certainly embodies a framework for

disciplined design, it provides no specific means of determining the best decomposition from a

number of alternatives; 'whilst w e have the knife, w e do not know how to carve' (Ratcliff and

Siddiqi, 1985 :78). Moreover, Waters (1993) believes that there is often too much emphasis

placed on the final product rather than on the process of developing a program

'A good program (and by extension, a good system) is an articulate, lucid and
elegant statement of the function it is to perform. Like a good report, the
writing is simply the final recording of the information. Much work has
preceded it. The ideas are clear, the intent is clear and it is easy to
understand '(p. 47)

Although there are clear benefits from the use of a program design methodology, and they are

advocated in the use and teaching of procedural and object-oriented languages, there does not

exist any recognised program design methodology for event-driven systems.

Chapter 2 Cognitive Skills and Program Design Page 21

2.2 Programmer Behaviour

According to Armstrong (1989), computer programming is a simulation of human controlled

processing. It is easy to understand why such an analogy can be made as the processes that a

human follows when solving a problem which involve designing, planning, monitoring, testing

and evaluating, are similar to those used when programming a computer, that is, specifying an

outcome, designing a solution structure for reaching the outcome, and evaluating the efficiency

of a system in terms of the desired outcome. Thus, 'modelling the machine that models the

human provides a structure within which control processes can be understood and provides a

vocabulary which can be used to articulate them' (Armstrong, 1989: 71).

Cognitive research on programming, however, depends in part on the work by cognitive

psychologists in modelling mental processes. Conceptual models are an essential component of

cognitive science and they have been used to explain the cognitive processes in programming at

different stages. The models presented in this section are based on cognitive theories that are

continually being developed and modified. Although the models may vary, they have as their

core short and long term-memory. Short term memory is a limited capacity workspace that

processes information occupying the immediate attention of the individual. Long-term memory

is an unlimited store and holds the programmer's permanent knowledge. Surprisingly,

'cognitive theories of programming have not been elaborated to the extent that
they provide alternative explanations of programmer performance. In fact,
many of the theories are interesting applications of psychological principles to
programming, but they have not been sufficiently elaborated for consistent
practical application at a technical level' (Curtis, 1985: 7).

Some description of the rise in importance of cognitive science is pertinent as it provides a

background to the explanation of mental models.

2.2.1 Cognitive Science

Prior to the development of a mathematical theory of computability, researchers believed there

was a sharp distinction between the brain and the mind (Johnson-Laird, 1989); the brain was

the physical object and the mind some ghostly nonentity. Succeeding the invention of the

programmable digital computer, an analogy was made between the brain, which is controlled

by the mind, and the computer, which is controlled by a program. As there was nothing

particularly 'ghostly' about a program, cognitive science, the study of the mind, was born.

In time, cognitive scientists began to question the merits of Behaviourism (or Human Factors).

Behaviourists viewed psychology as a natural science, one in which the goal was to predict

behaviour in an attempt to control it. Behaviourists did not recognise the mind as a separate

Chapter 2 Cognitive Skills and Program Design Page 22

entity and believed that humans were incapable of conscious actions progressing through

mental stages. Any study of mental process would be fruitless as they believed that any

evaluation was possible using stimulus-response studies utilising strict empirical methods

emanating from the natural sciences (Johnson-Laird, 1989).

In contrast, cognitive scientists

'... study how people perceive, organise, process and remember information.
They also study how people later use this information in comprehending new
information or solving problems. Finally, they study how different cognitive
abilities are distributed across people (Curtis, 1985: 2)

According to Johnson-Laird (1989), cognitive scientists believe it is possible to study mental

processes as people process information or solve problems. In the computer, cognitive

scientists had a strong ally:

'The return to the study of the mind had a new metaphor in it's language - the
computer. In the past, the mind had been likened to a wax tablet, a hydraulic
system, and to a telephone exchange. Now, there was a new reaction to
Dualism: brain and mind are bound together as computer and program. Yet the
full power of the metaphor eluded people. It seemed to reside in the existence
of "machines that think". In fact, what the computer offered - or rather the
theory lying behind the computer - was a new conception of psychological
explanation. This conception is much more powerful than the earlier
mechanical analogies. Indeed, ... it is yet to be exhausted' (Johnson-Laird,
1989: 23).

The cognitive theories that have been developed attempt to illustrate how humans picture, store

and retrieve information from their short and long-term memory. In addition, they attempt to

explain how humans manipulate information to make decisions and solve problems, and how

they implement their responses. A cognitive approach to solving a problem or making a

decision assumes that human beings are adaptive and flexible in their actions, and constantly

interacting with the environment. Eberts (1987) describes this cognitive approach in terms of a

three cornered diagram including the actual product, a conceptual model and a mental model

(see Figure 2.1).

Chapter 2 Cognitive Skills and Program Design Page 23

Conceptual Model

Programming Code Mental Model

Figure 2.1: Goal of Cognitive Approach

Source: Adapted from Eberts (1987: 275)

In Figure 2.1, the conceptual model is a formal description of the computer hardware and

operating system that is accurate, consistent and complete. This may be a virtual machine

created by a high-level language. The mental model is the model that the programmer forms of

how the computer system is manipulated by a program; this mental model determines the

programmer's actions and behaviours. The programmers mental model may change over time

through interactions with the programming code in the various programming phases. This

process highlights the problems many inexperienced people have in developing computer

programming skills. In the initial stages, it is often difficult for novice programmers to develop

a mental model which accurately reflects the true conceptual model. As they develop clearer

mental models their knowledge of programming improves.

2.2.2 Cognitive Style and Cognitive Ability

Cognitive style (or processes) refers to the manner in which individuals process information,

that is, how they think (Foreman, 1990: 56). Over time individuals develop a preferred way of

thinking, solving problems and interacting with the immediate environment. In terms of

academic achievement, the various styles range on a continuum from field dependent to field

independent learners. According to Foreman (1990), field independent learners are inclined to

impose a structure on a problem if some logical pattern does not exist, whereas field dependent

learners accept the status quo. Importantly, field independent learners have a greater degree of

cognitive restructuring, a skill which enables them to interpret a problem and reformulate it

into a series of structured concepts. Bostrom (1988), however, concludes that

'although individual difference variables have consistently accounted for much
more of the variance in data than any experimental manipulation, hardly any
one of the cognitive style factors has by itself emerged as a consistent predictor
of effective decision-making performance' (p.230).

Chapter 2 Cognitive Skills and Program Design Page 24

Learning style is the only cognitive style variable that Bostrom et al (1988) believe could

influence the learning of software.

Cognitive ability, on the other hand, is used to describe individual differences in performance

(Foreman, 1990). Aptitude or intelligence is often used in reference to a persons cognitive

ability. Intelligence includes, amongst other factors, the ability to learn, to adapt to new

situations, and to solve problems but little is known about the mechanism that causes individual

differences in basic cognitive ability (Foreman, 1990). Moreover, 'an attempt to define basic

ability or aptitude is fraught with philosophical issues' (Bostrom, Olfman et al., 1988: 231).

Nevertheless, a person's cognitive ability is enhanced by the cognitive skills they possess or

come to possess, and the cognitive processes they use. Cattell (1987) divides cognitive ability

into two categories based on cognitive function; crystallised ability and fluid ability.

Crystallised ability is often used to describe the general ability of an individual whereas fluid

ability is a specific ability. Crystallised ability is accumulated from previous experiences and

involves applying that ability to new circumstances. Fluid ability is a skill that is needed to

modify certain performance requirements. For example, general mathematical ability is

acquired from previous experiences and, is thus a crystallised ability. O n the other hand, the

ability to follow instructions is an example of a fluid ability.

Computer programming demands a large range of cognitive skills and abilities in the process of

developing an algorithm to solve a problem. The c o m m o n method adopted by a programmer

towards algorithm design involves reformulating the problem into to a series of structured

processes matching the logic of the program (Turkle and Papert, 1992). Field independent

learners, it is claimed, have a greater propensity to tackle problems in this way (Foreman,

1990) as they have greater skills in cognitive restructuring than field dependent learners.

Programming a computer, however, calls on a large range of cognitive skills making it difficult

to match them to one particular cognitive style (Shneiderman and Mayer, 1979; Pea and

Kurland, 1983). A s w e will see later, research has shown that programmers do not necessarily

use a structured, top-down approach to algorithm design in procedural languages (Ratcliff and

Siddiqi, 1985; Turkle and Papert, 1992).

Moreover, some studies have suggested that there is a correlation between general

mathematical ability (a crystallised ability) and cognitive skills required to learn programming

(Koubek, Salvendy et al., 1989; Wilkes, 1991; Navrat, 1994).

'Caution must be used, however, when attempting to extrapolate these results
to expert programmers. The skills used to learn programming and those used
when actually performing the programming task are probably not identical'
(Koubek, Salvendy et al, 1989: 180).

Chapter 2 Cognitive Skills and Program Design Page 25

Often, learning to program is a new experience for most people and fluid ability (eg. reasoning,

spatial visualisation) may be equally, or even more important than general ability, particularly

for non-procedural languages (DeGrace and Hulet Stahl, 1990; Foreman, 1990). The

development of event-driven systems in visual programming environments is significantly

different from the development of a main-line controlled procedural program. It cannot be

assumed that the methods used to teach procedural programming to students or the previous

mathematical knowledge possessed by a student, are applicable in an introductory subject using

event-driven programming as the platform. Bostrom et al (1988) emphasises this point when he

states

'a host of mental-aptitude constructs have been examined in a learning
environment by numerous researchers. Only a handful have been shown to be
consistent predictors of learning or problem solving proficiency' (p.231).

2.2> General Cognitive Models

Any model of programmer behaviour must outline the cognitive processes and the stages of

knowledge acquisition that occur for novice and expert programmers. Moreover, it must outline

the basic tasks of programming in terms of the cognitive structures programmers possess or

come to possess, and the cognitive processes involved in using their knowledge or in gaining

new knowledge. It should be sufficiently general in nature to accommodate the fundamental

tasks of the different programming paradigms whether they be structured procedural

programming, object-oriented programming, event-driven programming, or some other

programming paradigm.

The general cognitive models presented here were formulated when procedural programming

languages, such as C O B O L and Pascal, were the predominant languages. Despite some changes

to accommodate new programming paradigms (such as Shneiderman (1983)) the basic models

have remained intact and revolve around long-term and short-term memory. A greater number

of novice and experienced programmers, however, are now programming computers at

different virtual levels using a larger range of languages and processes than was available in the

past. Some of these general cognitive models do not account for tasks which are now included

in the programmer's domain such as screen design. Moreover, with the increased power of

programming languages (particularly with event-driven languages) many of the traditional

tasks such as system design, interface design and algorithm design are closely linked

(Malhotra, Thomas etal., 1980; Cooke, 1990; Wilkes, 1991).

2.3.1 Syntactic/Semantic Model

One of the first models developed to explain programmer behaviour was the

Syntactic/Semantic model developed by Shneiderman and Mayer (1979). Their general

Chapter 2 Cognitive Skills and Program Design Page 26

cognitive model was developed to explain five subtasks of programmer behaviour:

composition, comprehension, debugging, modification and the acquisition of new programming

concepts, skills and knowledge. Shneiderman and Mayer used the research of Greeno (1973),

who outlined the components of memory used during problem solving, to develop a memory

model of programmer behaviour. The model has three interrelated memory systems:

Short-term memory - a relatively limited capacity store taking up to seven

'chunks' or items

an unlimited capacity store which contains the

programmer's permanent knowledge and;

which has a storage capacity between that of short-term

memory and long-term memory, and allows for the

interaction of information between short-term and long-

term memory. N e w structures may be developed in this

memory area.

Long-term memory

Working memory -

Input from
perception

\

Short-term
Memory

Working
Memory

2
Long-Term Memory

Semantic and Syntactic Knowledge

Figure 2.2: Syntactic/Semantic Model
Components of M e m o r y in Problem Solving

Source: Shneiderman & Mayer (1979: 221)

When a programmer is required to develop code to solve a particular problem, information

about the problem enters into short-term memory (see Figure 2.2). These perceptions of the

problem are passed on to working memory where they are combined with existing concepts

Chapter 2 Cognitive Skills and Program Design Page 27

stored in long-term memory. Any new information or concept is stored back into long-term

memory and action in the form of a solution is taken to solve the problem.

2.3.1.1 Types of Knowledge

Shneiderman and Mayer (Shneiderman and Mayer, 1979) distinguished between two forms of

knowledge stored in the long term memory of an experienced programmer. Semantic

knowledge is a complex multilevel body of knowledge that '..consists of general programming

concepts that are independent of specific programming languages' (p.222). This type of

knowledge takes the form of a hierarchical structure ranging from low-level notions, such as

what an assignment statement means, to higher level notions such as recursion, and sorting and

merging algorithms.

'Semantic knowledge is meaningfully acquired by reference to previous
knowledge, by example, or by analogy. There is a logical structure to semantic
knowledge that is independent of the specific syntax used to record it. Semantic
knowledge is further decomposed into computer and task-related domains.
Semantic knowledge has to do with the actions and objects in the computer
domain. The low-level actions might be assignment, iteration, conditional
execution, input, output, synchronisation , etc. Higher level actions are
algorithms for sweeping through an array, for sorting items, or for recursive
binary tree search. Computer objects include the low-level data types such as
booleans, integers, strings, real numbers, etc. Higher level objects include
arrays, records, stacks, or threaded trees' (Shneiderman and Mayer, 1979: 5).

The semantics of the task domain can be decomposed into objects and actions. Actions

and objects in the task domain are not necessarily related to a knowledge of computers

or programming. The task domain may be a business area such as stock control or

accounting, or some other discipline. In this case, a knowledge of the objects such as

customers, stock or debtors is required along with a knowledge of the actions such as

opening an account, or recording stock deliveries.

Novice programmers usually have a sound knowledge of the task but lack skills in the

area of programming. Conversely, experienced programmers are knowledgeable in

programming but may not be familiar with the task domain. The model implies that, as

a programmer's experience increases, so does the quality and quantity of semantic

knowledge (see Figure 2.3).

Chapter 2 Cognitive Skills and Program Design Page 28

A4 A ,.
A/i
Action Object

Task

AA
A ,.
AA
Action Object

Computer

m i
• a s i

0_|
Semantic Syntactic

Figure 2.3: Long-Term Memory Components -Semantic versus Syntactic

Knowledge

Source: Shneiderman and Mayer (1979: 6)

Syntactic knowledge, on the other hand, is more detailed, precise and arbitrary than

semantic knowledge. Syntactic knowledge, like semantic knowledge, is stored in long-

term memory and consists of detailed facts about a particular language. The model

suggests that it is easier to learn a new syntactic representation of an existing semantic

structure rather than learn a new semantic construct. Moreover, syntactic knowledge

'.. is arranged according to a particular programming language, with similar
languages overlapping, and is used to express semantic knowledge in a
programming language' (Koubek, Salvendy et al, 1989:173).

Bayman and Mayer (1988) divide semantic knowledge into two further sections,

conceptual (or domain specific) knowledge and strategic knowledge (or transfer

strategies). Conceptual knowledge refers to a person's understanding of programming

concepts and the impact of these concepts on a computer system. This knowledge area

includes the processing actions that can take place on a computer, the system's various

components and the data structures and objects that can be processed. As an example,

the Pascal statement Count: = Count + 1 has a number of actions:

copy the value in memory location Count to a register

Increment the register by one

Write the register to the Count memory location

Increment the Program Counter

Chapter 2 Cognitive Skills and Program Design Page 29

The person must understand the conceptual system and the actions of the program

statement on this system if he/she is to have a sound conceptual knowledge of

programming at that level. The statement indicates that he/she must identify between

locations such as memory, registers, input and output devices; the concepts of moving,

copying and incrementing, and the data structure (integer, floating point reals, and the

program counter).

Strategic knowledge, on the other hand, is the ability of the programmer to use

syntactic and conceptual knowledge to solve problems (Bayman and Mayer, 1988).

This type of knowledge is used to generate, interpret and debug programs.

Through their review of domain specific and strategic knowledge in academic

performance, Alexander and Judy (1988) further divide conceptual knowledge into

construct knowledge, a knowledge of the programming constructs, and algorithmic

knowledge, a knowledge of combinations of these constructs (Oliver, 1991). Figure 2.4

summarises the types of knowledge:

Programming Knowledge

Semantic Syntactic

Conceptual Strategic

Construct Algorithmic

Figure 2.4: Types of Programming Knowledge

2.3.2 Production System Model (Coding/Comprehension Model)

In an effort to explain the order in which code is written by a programmer and the

changes in the knowledge a programmer has about a program as writing progresses,

Brooks (1977) developed the Production System model. The model uses a similar

representation of memory to that outlined in the Syntactic/Semantic model.

Chapter 2 Cognitive Skills and Program Design Page 30

Brooks (1977) asserted that programmer behaviour can be divided into 3 distinct states

when programming a solution to a problem: understanding, method-finding and

coding. The heart of the model is the application of production rules in the coding

stage. As a programmer encounters a condition in the development of a solution, a

specific course of action is undertaken. In the first stage, the programmer repeatedly

scans resources such as program specifications and reports, or may ask questions to

determine the exact nature of the problem. This information is stored in short-term

memory which contains exact details on the nature of the problem as opposed to how it

should be undertaken.

The second stage in the cycle is method-finding. Brooks (1977) defines a method to be

a plan or outline of the program to be constructed and

'..consists of specifications of the way in which information from the real world
is to be represented in the program (data structures) and of the operations to
be performed on these representations to achieve the desired effect of the
program (algorithms)' (p. 740).

The methods are stored in a hierarchical format in long-term memory, with smaller

methods serving as components of larger methods. In addition, methods are

independent of specific programming languages although some methods may be '..

specific to groups of programming languages which share common data control

structures' (Brooks, 1977: 740).

The final stage involves coding the solution in an appropriate programming language.

The problem-solving behaviour of a programmer is controlled by a production system.

This production system is the heart of the model and comprises a series of production

rules. The programmer takes elements or parts of the methods formulated in the

previous stages, and determines the appropriate action, in the form of program code,

according to production rules. The selection of the appropriate rule is determined by

data stored in short-term memory and information about quantities and data structures

which is stored in a long-term memory structure which Brooks (1977) calls meanings.

The programmer can also use external memory or code which is the physical record of

what the programmer has already written. Figure 2.5 shows the overall structure of the

model.

Chapter 2 Cognitive Skills and Program Design Page 31

Short Term
Memory

1
•"

4
Production
System

MEANINGS

Figure 2.5: Generalisability of the Brooks Model

Source: Brooks (1977)

As the generation of code progresses, details in short-term memory may change or the

effects from previous coding may require changes to be made. In this case, a new set of

production rules may apply. The model suggests that, as a programmer's knowledge

increases through experience, so too must the number of production rules for the

myriad of conditions and combinations of conditions.

Brooks (1983) later extended his model to include the concept of beacons as a knowledge

structure used in the comprehension of computer programs. Program comprehension, he

argues, is important in many of the software development phases, such as code reviews,

debugging and testing as well as an obvious use in program maintenance. The theory purports

that:

7. The programming process is one of constructing mappings from a problem
domain, possibly through several intermediate domains, into the
programming domain.

2. Comprehending a program involves reconstructing part or all of these
mappings.

3. This reconstruction process is expectation driven by the creation,
conformation, and refinement of hypotheses' (Brooks, 1983: 544).

His theory of program comprehension is strongly top-down and hypothesis-driven '...in which

an initially vague and general hypothesis is refined and elaborated based on information

extracted from the program text and other documentation' (Brooks, 1983: 543). Central to his

theory is the process of verifying hypotheses.

"The programmer does not study a program line-by-line but rather forms a
series of increasingly specific hypotheses about program function. The highest-
level hypothesis concerns overall program function and may be derived from

Chapter 2 Cognitive Skills and Program Design Page 32

documentation or from more scanty sources, such as program name. This
overall hypothesis leads the programmer to expect to see certain objects and
operations in the program, and these expectations then form a second level of
more specific hypotheses about the program' (Wiedenbeck, 1991: 517).

The process of hypothesis verification occurs at the point where the top-down hypothesis

formation activity links up with the data of the program text (Wiedenbeck, 1991).

'Brooks believes that programmers verify hypotheses not by a minute study or
simulation of every line of the code, but by searching for beacons, which are
key features that typically indicate the presence of a particular structure or
operation' (Wiedenbeck, 1991: 518).

Brooks (1983) describes beacons as idiomatic or stereotypical elements which occur frequently

in program code. During program comprehension, an experienced programmer uses beacons to

identify key features of a program. Although Brooks described beacons in the context of top-

down program comprehension, they are also consistent with studies observing both top-down

and bottom-up strategies (Littman, Pinto et al., 1986). The programmer begins by

systematically assigning meaning to sections of program code. As more knowledge of program

functions is discovered it is added to the programmer's memory. 'At some stage in this process

the programmer has enough information to make top-down hypotheses about program function.

These hypotheses may then be verified by a search for beacons' (Wiedenbeck, 1991: 519).

2.3.3 Schemas and Rules of Discourse

Beacons are related to the concept of programming plans developed by Soloway et al (1984).

Van Merrienboer (1990) observes that 'learning computer programming means both learning

procedures to accomplish various goals and learning the information that is relevant to these

procedures' (Van Merrienboer and Paas, 1990: 274). One of the main distinctions between

experts and novice programmers can be made on the basis of a large store of organised

knowledge called schemata or programming plans (McNutt and Lo, 1991: 406).

Soloway et al (Soloway and Elliott, 1984) argue that the expert programmers have at least two

types of knowledge that novice programmers typically do not. Specifically,

Programming Plans:

Program fragments that represent stereotypical action sequences in

programming

Rules of Programming Discourse:

Rules that specify the conventions in programming, eg., naming a variable

so that it is compatible with its function.

Chapter 2 Cognitive Skills and Program Design Page 33

A program which may have a complex goal can be thought of as a complex plan incorporating

several simple plans. Kant (1985), however, argues that these programs have a kernel idea

which 'serves as a beacon in program comprehension because it is central to the goal of the

program and occurs in many variations of it' (Wiedenbeck, 1991: 519). Beacons, however,

often include the kernel idea and other surface features of the program which may denote the

program's function. 'This might in some cases include the control structure of the program

(such as the looping structure in a sort), procedure names, and variable names' (Wiedenbeck,

1991:519).

Soloway et al (1984) argue that

'programs are composed from programming plans that have been modified to
fit the needs of the specific problem. The composition of those plans are
governed by rules of programming discourse. Thus, a program can be correct
from the perspective of the problem, but be difficult to write and/or read
because it doesn't follow the rules of discourse, ie., the plans in the program
are composed in ways that violate some discourse rule(s)' (p. 595).

Letovsky (1986), extending on the work of Soloway (1984) developed a knowledge based

model using schema or programming plans. Their cognitive model views programmers as

knowledge based understanders and covers comprehension, coding and design. "The basic

structure of the model is a set of knowledge assimilation processes which construct a mental

model of the target program by combining information gathered through reading the code and

documentation with the knowledge from a knowledge base of programming expertise'

(Letovsky, 1986: 59).

The model provides for three components: a knowledge base, a mental model and the

assimilation process.

The Knowledge Base is postulated to contain:

Programming language semantics - a knowledge of the language,

Goals - a set of common computational goals such as sort and search,

Programming plans - determine the development of programming expertise by

transforming knowledge about mechanical processes in specific languages into

correct plans which are language independent,

Rules of Programming Discourse - rules that specify the conventions in

programming,

Domain Knowledge - knowledge of the application domain, and

Efficiency Knowledge - criteria to assess inefficiencies in code design.

Chapter 2 Cognitive Skills and Program Design Page 34

A programmer is said to use an Assimilation Process to develop a mental model of a

program. The assimilation process is the set of strategies that a programmer uses to

search his/her knowledge base and to combine this with the documentation to construct

a mental model of the final program (Letovsky, 1986). B y assembling individual

programming plans, a programmer develops a mental model representing an overall

program plan and goal description. More experienced programmers have a larger

knowledge base, a more extensive set of well defined plans, and a more refined set of

cognitive skills and strategies to use when developing program code. Novice

programmers have only a small set of plans that can be combined together to develop a

program and, as a consequence, they often work at a syntactic level rather than by

using programming plans. The resulting mental model of a program would include:

specifications - a complete description of the specification or goals of the

program,

implementation - a complete description of the individual components of the

program, and

annotation - an understanding of the role of each component and the

relationship between the components.

In their work on the Programmer's Apprentice, Rich & Waters (1988) attempted to develop

automated aids to program implementation, design, and requirements specification. They used

familiar combinations or cliches as beacons or plans but their work did not extend to program

comprehension.

2.4 Programming Tasks

Shneiderman (1979) divides the process of developing a program into a number of subtasks:

program requirements, program design, coding, comprehension, program testing, debugging

and documentation. Although there is no universal agreement on the precise tasks involved in

developing a program, Shneiderman's categorisation serves as a useful classification for the

review of literature in this area. It is interesting to note that,

'... although the sense of computer programming has not varied in nearly four
decades, the set of activities involved in doing programming has undergone
major qualitative transformations. In the early days of programming, for
example, the programmer had to know the details of the computer hardware in
order to write a program that worked; today this is no longer true. An
important consequence of this evolution of the set of activities that constitutes
programming is that the "cognitive demands" made by computer programming
needs specification at the level of programming subtasks, or component
activities' (Pea and Kurland, 1983: 5).

Chapter 2 Cognitive Skills and Program Design Page 35

2.4.1 Design/Requirements

In the case of design problems, the individual does not usually start from an initial state. In

addition, there may be constraints placed on the tools and methods used, but the processes

involved are usually limitless. 'In real-world design situations, the goals are, typically, fuzzy

and poorly articulated and cannot be mapped directly into properties of the design. Thus, the

exact configuration of the final state is not prescribed' (Malhotra, Thomas et al., 1980: 120).

Further:

'A part of the design process consists of formalising and redefining the design
goals into functional requirements that can be matched by properties of the
design. Even so, it is usually difficult to tell how well a design meets a
particular functional requirement. In addition, the functional requirements
often cover different dimensions and the trade-offs between them are rarely
well specified. The properties of a design arise from a combination of the
properties of the design elements that constitute it and design organisation that
specified their interaction. Design elements are available, indivisible units with
given properties. Design consist of some number of design elements interacting
with each other in design organisation' (Malhotra, Thomas et al, 1980:120).

Vitalari & Dickson (1983) outline a number of characteristics of the analysis and design phases

which make problem solving different from other aspects of computing. They are:

• Analysis problems have ill-defined boundaries, structure, and uncertainty
about the nature and make-up of the solution.

• The solutions are artificial, that is they are designed and hence a number of
different solutions exist for the same problem.

• Analysis problems are dynamic. The problem changes over time while they
are being solved, given the complex nature of the organisations and the
personnel involved

• Solutions to analysis problems require interdisciplinary knowledge and
skill.

• The analyst must continually adapt to different technologies and end user
demands

• The process of analysis, itself, is primarily cognitive in nature, requiring the
analyst to structure an abstract problem, process diverse information, and
develop a logical and internally consistent functional set of specification.
All the other skills such as interpersonal interaction and organisational skill
facilitate this cognitive process (p. 949).

In this area of computing, problem solving is the reasoning process that the analyst uses to

analyse an information requirements determination problem and to synthesise a solution that

meets the needs of the user and the organisation.

Specifically, the focus is on the frequency, ordering and association with
analyst performance of the clues, goals, strategies, heuristics, hypotheses,
information, and knowledge manifested in the thought process of the analyst'
(Vitalari and Dickson, 1983: 949).

Chapter 2 Cognitive Skills and Program Design Page 36

Winograd (1995) questions this 'outside-looking-in' perspective of software design where the

focus is on the mechanisms and programs are developed in an operational sense '... relating a

program to the operating systems, networks, programming interfaces and the like which will

surround its operation' (Winograd, 1995: 68). Instead he believes designers should take an

'inside-looking-out' perspective with a focus '... on people and their situations: h o w people

experience software; what they do with it; and the larger situation in which they encounter it'

(Winograd, 1995: 68).

A novice programmer is intimately involved in the process of systems design when he or she

are using an event-driven programming language such as Visual Basic. The tasks may range

from interface design, identification of events and responses through to table design and data

processing functions. At the interface development stage alone, the programmer is faced with

numerous options (screen layout, h o w to enter data and the type of process method. It is clear

that teaching students using event-driven languages compared to traditional procedural

languages involves significantly different strategies and that it may not be possible to separate

the once traditional programming tasks from other areas of systems development.

2.4.2 Coding

At the end of the design process the programmer may have developed a broad representation of

the program in Structured English, a Nassi-Schneiderman diagram, a flow chart, a State-

Transition diagram or some other design instrument. The coding process follows the design

phase and involves the 'translation from the most refined version of the program design into the

programming code'fPea and Kurland, 1983: 19). The end result of this process is a

programming language representation of the original design. Pennington (Pennington, 1982)

describes the coding process as:

'a plan element triggers a series of steps through which a piece of code is
generated and then the programmer "symbolically executes" that piece of code
in order to assign an effect to it. This effect is compared with the intended
effect of the plan element; any discrepancy causes more code to be generated
until the intended effect is achieved. Then the next plan element is retrieved
and the process continues. Throughout this process a representation of the
program is built up, strong information about the objects (variables, data
structures, etc), their meanings, and their properties.' (Pennington, 1982: 24)

The general cognitive models described by Shneiderman and Mayer (1979), Brooks (1977) and

Soloway et al (1984) describe the cognitive processes involved in coding a solution. Pea and

Kurland (1983), however, believe that three general classes of cognitive demands exist for

those successfully undertaking coding:

7. ability to engage in hypothetical symbolic execution of code
2. ability to learn the coding templates that define the syntactical

knowledge necessary for code generation; and

Chapter 2 Cognitive Skills and Program Design Page 37

3. ability to keep to the goal at hand, or program plan, unless deviations
from it are required to generate the code; in such an event the plan
would need to be revised, with consequences for the code then to be
generated' (p. 20).

2.4.3 Comprehension

The study of general cognitive models and internal representations of a program '... is not a

sufficient means for assessing program comprehension, since the external form of the program

and the task being performed influence the mental representation' (Gilmore and Green, 1984:

46). Aaronson (1976) has shown that the comprehension of a program is related to aspects of

the language, the specific programming task at hand and memory requirements.

On explaining the difference in levels of comprehension Gilmore & Green (1984) observe that

some research has suggested that

'... every programming language is translated into the same mental
representation, and that comprehension performance reflects the extent to
which the external program conforms to the internal "knowledge language".
Thus, if two programs in different languages specify identical algorithms, their
representation will be identical, but it may be harder work to create the
representation from one language' (Gilmore and Green, 1984: 33).

Pea et al (1983) identified four different views of the program comprehension process: top-

down, bottom-up, middle-out and transformational. Brooks (1983), in outlining his cognitive

model, argues that program comprehension is a top-down hypothesis-driven process in which

beacons in the source code are used to either verify or disprove the prevailing hypothesis about

the program's functionality. Brooks (1983), however, fails to discuss '... how beacons are

detected, or how differences in the comprehensibility of notations arise'(Gilmore and Green,

1984: 530). Shneiderman et al (1979) observe that expert programmers do recall more gist of a

program than does a novice but ' ... argue for a bottom-up construction of meaningful units of

program code, from operations to algorithms on up to the function of the program as a whole'

(Pea and Kurland, 1983: 20).

Pea et al (1983), quoting from Pennington (1982), provide an outline of a multiple pass model

developed by Attwood & Ramsay (1978) in which programmers utilise high-level and low-

level information about a program structure in order to understand a program.

'On the first pass, some level of the [program] macrostructure is integrated,
possibly as high as program function, possibly at some level of chunking.
Successive passes lead to integration of lower level propositions (working
down) and successive integrations of the macrostructure (working up).'
(Pennington, 1982: 27)

Chapter 2 Cognitive Skills and Program Design Page 38

In contrast, the transformational approach (Pea and Kurland, 1983), implies that program

comprehension is influenced by representations at three levels: deep plans (or the purpose),

surface plans (in program structure) and the definitions of data objects, properties and input-

output specifications for the program code

2.4.4 Debugging

Understanding the structural and functional components are essential ingredients in the task of

maintaining or enhancing a computer program. For the programmer to efficiently debug a

program, whether it be manually or using a debugging tool he or she must have

'...a clear understanding of the flow of execution in his program and of the
data being manipulated, in order to select effective breakpoints and relevant
variables to be examined or modified. Thus, the representation of the program
from which the programmer is working is a critical factor in the debugging
task, since it is from this point that knowledge of execution sequence and data
usage is drawn.' (Brooke and Duncan, 1980:1057)

Littman et al (1986) identify two strategies for program maintenance, the systematic and the as-

needed strategy. A programmer using the systematic strategy attempts to understand how the

program behaves before attempting to modify it. A programmer traces data flow and control

flow between components of the program such as subroutines. In contrast, a programmer using

the as-needed strategy '... attempts, as soon as possible, to localise parts of the program to

which changes can be made that will implement the modification' (Littman, Pinto et al., 1986:

81). In this case the programmer does not approach the maintenance task with a good

knowledge of a program's functionality, and it becomes necessary for a programmer to gather

additional information, often in an ad hoc manner, while the process of program modification is

being performed. Littman et al (1986) found that programmers who adopted an as-needed

strategy often failed to construct successful modifications and were 'unlikely to detect

interactions in the program that might affect or be affected by the modification' (p.81)

Building on the general cognitive model using programming plans and rules of discourse,

Gugerty and Olson (1986) found, not surprisingly, that experts with a greater knowledge of

programming concepts were less likely to produce programs containing errors or were more

successful at program maintenance than novice programmers

'... experts may know more particular strategies for focusing in on the bug, via
topographic search; or they may use the ones they know more effectively ...
[or] ... if experts are debugging in a familiar domain, they would be expected
to have a larger mental "library" of symptom-bug associations and thus do
better at symptomatic search' (Gugerty and Olson, 1986:14).

Chapter 2 Cognitive Skills and Program Design Page 39

Students have always been tempted to circumvent systematic program design methods and to

us as-needed strategies. Applications can be developed quickly using event-driven languages

and there may be a tendency for students to be even more tempted by using as-needed

strategies. Moreover, there is no recognised program design methodology for event-driven

languages and little or no documentation.

Program code can be placed behind events in different objects. This fragmentation may hinder

the testing and maintenance phases as there is no overall view of the system. O n the other hand,

as the code is often isolated behind events in objects, it may assist with the testing of different

components of the system.

2.4.5 Documentation

Documentation can provide information to other persons enabling them to obtain a detailed

understanding of the system. The structure, language and detail of the documentation will

depend upon the intended audience of the documentation. In large systems, design and function

specifications, operation manuals, source code listings, user manuals and on-line help are all

items of documentation that help different users of the system. As applications have become

more complex, responsibility for additional documentation such as design specifications and

the user manual have become the responsibility of technical writers.

Nevertheless, one component of a good program is how well it can be maintained, and

documentation of the source code and support material such as test data assists in that regard.

Documentation, both of the source code and of software operation assists with program

comprehension. Shneiderman (1982) found that well structured, high level comments in source

code can assist programmers with the comprehension of program functionality.

'Competent programmers deal more with problem domain related units than
with program domain related syntactic tokens. High level comments using
problem domain terminology have been shown to be more effective in aiding
comprehension than numerous low level comments using program domain

terminology '(p. 55).

An important component of systems development is documentation for testing, comprehension

and on-going maintenance of systems, yet no broad conventions have been established for

external programmer documentation of event-driven systems.

2.4.6 Programming Tasks Revisited

The process of developing a computerised system rarely involves moving from the initial

design phase through to the final implementation and documentation phases in a sequential

fashion (Carroll, Thomas et al., 1979). Moreover, coding is a process that requires the

Chapter 2 Cognitive Skills and Program Design Page 40

programmer to revisit the output from various subtasks for verification, correction or

modification. The program design phase, in particular, is closely linked to the task of program

code generation (Pea and Kurland, 1983: 19). Although it may be possible to arbitrarily divide

systems development into a series of subtasks, in reality the subtasks are interdependent. This

is particularly so in the case of event-driven languages.

Moreover, the increased use of programming in applications has merged many of the previous

clear and distinct programming tasks. The processes followed in different paradigms such as

object-oriented and event-driven programming, may have shifted the emphasis from one task to

another or changed the very processes themselves. It may not be possible to isolate a set of

tasks which can be broadly associated with computer programming in totality. Instead, the

purpose of a particular programming language or the role of the system that is produced may

dictate different tasks for different activities in different contexts. As an example, programming

in event-driven languages may require a different set of skills and strategies from those used in

structured programming, or from those using direct manipulation in iconic environments. As

Wilkes (1991) states:

'the development of modern workstations and programming environments has
made it possible for immense power to be put at the disposal of one person. If
that person is a programmer, he or she can handle every stage of a large
programming project - taking a broad view of the work as well as working on
details when necessary. The result is to make the modern programmer an
autonomous professional with full responsibility for the work done' (p.23)

Schurmann (1994) believes that the complexity of a program has been reduced through a

combination of program standards, program architecture and the implementation technology.

As languages have become more sophisticated 'the enforcement of constraints to limit

complexity progressively changes from being a set of programming rules (standards), to

favouring the architectural approach, to ultimately becoming part of the implementation

technology itself (Schurmann, 1994: 33). Figure 2.6 outlines this trend.

Chapter 2 Cognitive Skills and Program Design Page 41

•f
I
e
U

Time

Assembler
Basic Fortran Visual Basic Next?

Standards

Architecture

Implementation technology (programming languages)

Complexity level humans can deal with

Figure 2.6: Program Complexity

Source: Schurmann (1994: 33)

As an example, the definition and management of data is inherent to Visual Basic and does not

have to be provided by an architecture as it would with a procedural programming language.

O n the other hand, design issues are of great importance in Visual Basic, as it is the platform

upon which code is built.

According to Chang (1990) this changing relationship between standards, architecture and

implementation together with visual program environments, has changed what he refers to as

the programming cycle. H e believes that people don't conceive of solutions to problems in the

same way that they must n o w program those solutions. Despite this, little work has been done

to show h o w programmers go about developing solutions using event-driven languages in

visual programming environments.

Chapter 2 Cognitive Skills and Program Design Page 42

2.5 Programming Environments and Program Design

2.5.1 Program Environments

The development of programming environments where work is done in programming

languages within the context of an integrated set of software support tools, especially input and

output devices, has been an important step forward in software engineering.

'A good environment can embody and facilitate the principles and practices
that make programming more productive. It brings the programmer's activities
into focus along with the activity of the program being produced' (Winograd,
1995:68).

Chang (1990) believes that

'... issues related to graphics, alternative programming paradigms, and
artificial intelligence, on the software side, and to multiple I/O device, on the
hardware side, are but a few of those that need to be studied if such
environments are to become a reality. (Chang, 1990:147)

In a traditional programming environment, '...the objects of interest are programs, and the

programmer's tools are designed to operate on various representations of those programs'

(Winograd, 1995: 68). Winograd builds on these traditional programming environments to

develop a software design environment, one which

'... works with a broader array of representations, including different kinds of
conceptual models, mockups, scenarios, storyboards, and prototypes. The
design methods reach outside of the workstation to include the setting and the
thinking of the people who will use the software. The activities of a software
designer include the traditional activities of software engineering and
programming, such as specification writing, coding, and debugging, along with
user-focused design activities '(p. 68)

A comparison of the two environments is made in Table 2.1

Table 2.1: Evironments for Programming and Software Design

In expanding from programming environments to environments for
design, there are suggestive correspondences between current
techniques and what is needed for user-oriented software design

Programming Environments

• Interactive programming

• Specifications

• Reusable code

• Interactive debugging

Environments for
Software Design

• Responsive prototyping media

• User conceptual models

• Design languages

• Participatory design

Source: Winograd (1995: 68)

Chapter 2 Cognitive Skills and Program Design Page 43

According to Dumas et al (1995) the tools provided with an environment are often as important

as the language itself. Some of these tools such as interactive debuggers and coloured editors

can assist the programmer and make the programming task easier. For example,

'the success of Visual Basic has been largely attributed to its programming
tools, not the appeal of programming in the Basic language. Competition
among programming environments has evolved from a focus on functionality
alone, that is, offering more tools or more sophisticated tools, to competing on
useability as well as functionality. While programmers are clearly computer
literate, they, like any end users, want tools that provide both new capabilities
and ease of use' (Dumas and Parsons, 1995: 47).

These visual programming environments and support tools were not available in the early years

of teaching with procedural languages. It is yet to be seen what role these tools can play in

assisting novice programmers to understand programming concepts and their impact on the

teaching strategies of lecturers.

2.5.2 Program Design

According to Hanif (1996) one of the important steps in designing a solution to a given

programming problem is program design. 'Program design is often described as the

development of a solution algorithm, independent of language, which could be used for

translation into a specific programming language' (Robertson, 1993: vii). Procedural

application programs use a main controlling module which starts with the execution of the first

line of code and follows a pre-defined path till it reaches the last line of code. Initially, the

problem space may be large and ill-defined, however, program design is relatively straight

forward and simple to document (Pea and Kurland, 1983).

In teaching programming, present day practice places importance on the notions of top-down

design, procedural and data abstractions, and modular programming to assist with program

design (Navrat, 1994). 'Design is the process of gradual concretisation' (Navrat, 1994: 19).

Abstract concepts are implemented in terms of concrete concepts

'Frequently, this is accomplished in several steps, so abstract concepts are
implemented in terms of less abstract (ie., more concrete) ones, which are in
turn implemented in terms of even less abstract concepts etc.' (Navrat, 1994:
17)

According to Navrat (1994) an important concretisation of any concept is the way it is

represented. A programmer can use various design representation techniques which '... support

the concept of a parent-child relationship between controlling routine and sub-routines' (Hanif,

1996: 2). Martin et al (1984) outlined a comprehensive guide for the representation of data and

activities at various abstract levels for a procedural program (see Table 2.2).

Chapter 2 Cognitive Skills and Program Design Page 44

Table 2.2: Representation of Data and Activities for Procedural Programs

Entity-Relationship
Diagram

Data Structure Diagram

Jackson Diagram

Warnier-Orr Diagram

Data

Strategic

_^ Overview of

Corporate

Data

Detailed

-*• Logical

Data Model

•> Program-

level View

of Data

\ Program

*• Usage

Data

of

Activities

Strategic

Overview of

Corporate

Function

Logical

Relationship

Among

Processes

Overall

program

Structure

Detailed

Program

logic

f
Action Diagram
Data Navigation
Diagram
Flow Chart
Pseudocode
Nassi-Schneiderman
Chart
H O S Chart
Decision Tree and
Table

.Decomposition Diagram
Action Diagram
Warnier-Orr Diagram

Decomposition Diagram
Action Diagram
Warnier-Orr
Diagram
Dependency
Diagram
Data Flow Diagram
HJPO Diagram
H O S Chart
State-Transition Diagram

Action Diagram
Data Navigation
Diagram
Warnier-Orr Diagram
HIPO Diagram

Structure Chart
H O S Chart
Jackson Diagram

Diagrammatic representations of object-oriented environments have been developed by a

number of authors ((Coad and Yourdon, 1990; Booch, 1991; Rumbaugh, Balha et al., 1991;

Martin and Odell, 1992; Shaler and Mellor, 1992)) who have examined the analysis, design and

coding of object-oriented systems. A number of these writers have used various representation

techniques such as Class diagrams, Object diagrams, Module diagrams, Process diagrams and

State Transition diagrams. According to Yourdon (1994)

'one of the important characteristics of an OO project is that all the life-cycle

activities share common vocabulary, notation, and strategies - that is

everything revolves around objects. ... This is in stark contrast to the

development activities in projects using the older, conventional methodologies

Chapter 2 Cognitive Skills and Program Design Page 45

... where the programmers ignore all the modeling activities because it
unrelated to their programming language' (Yourdon, 1994: 32)

2.5.2.1 Program Design Tools for Event-driven Languages

Windows-based programming languages such as Visual Basic do not follow the procedural nor

the object-oriented program development paradigm,

'... instead, miniprocedures and other program fragments are attached to the
interface designed in the first step. For this reason, any attempt to design a
Visual Basic application using traditional programming representation
techniques is not applicable' (Hanif, 1996: 2).

According to Cornell (1993)

'trying to force Visual Basic into the framework of old programming languages
is ultimately self defeating - you can't take advantage of its power if you
continue to think within an old paradigm'. (Cornell, 1993:10)

Braithwaite (1996) believes that, while Visual Basic makes event-driven programming easy,

two major problems are evident from a program development focus:

/. Procedural code is deterministic whereas event-driven code is
asynchronous. Structure charts are hence unsuitable for designing event-
driven programs. They do not incorporate the concept of events to control
program flow. The sequential nature of structure charts is at odds with the
asynchronous nature of event-driven programming.

2. Program structure and flow are difficult to document due to the
asynchronous nature of the event-driven environment as well as the addition
of objects to a procedural language (p. 71)

Braithwaite (1996) extended his research and found

'that state-transition diagrams have been used as the basis for visual
programming languages, and it is possible to map Petri net constructs directly
to flow chart equivalents. Unfortunately, neither of these techniques promote
structure in transformational systems and hence the resultant designs may
leave much to be desired in terms of legibility and maintainability. Both the
program development focus and the user interface development focus present
problems and hence cannot be regarded as effective approaches in isolation'
(p.71).

Separate research by Hanif (1996) and Tesch et al (1996) found little agreement on the

processes that could be followed during the design of a Visual Basic program and an even less

agreement on the notation used to represent functional tasks.

Petre (1995), however, believes

'the success of a representation, graphical or textual, depends on whether it
makes accessible the particular information the user needs - and how well it

Chapter 2 Cognitive Skills and Program Design Page 46

copes with the different information requirements of the user's various tasks'
(p.34).

Visual Basic may benefit from what he describes as secondary notation, that is, the

combination of graphical and textual notation. For Visual Basic there may be no single

panacea. 'But if w e can identify the particular strengths of different sorts of representation, we

will be able to design appropriate solutions with a full repertoire of notational options' (Petre,

1995: 44).

2.6 Summary

This literature review has examined the skills and processes which make up the programming

discipline. It has reviewed the cognitive models used to explain how novices learn to program, and

it has established the need to re-examine these processes in the light of new programming

environments and languages.

Research spanning several decades has investigated the difficulties novices face in learning to

program. Over that period of time, several cognitive models have been developed that helps to

explain the processes novices use when grappling with the concepts of computer programming.

Moreover, these models have gone part of the way in assisting lecturers who are teaching

programming. Most of the literature, however, is from era when procedural languages dominated

introductory programming subjects. Top-down design and structured programming were the

established methods for teaching these types of languages.

Although these models provide some insight into the cognitive processes and skills of learning to

program, new environments, particularly visual programming environments, together with event-

driven languages have reduced the complexity of many programming tasks. These cocktails of

object-based languages within visual development environments have provided novice

programmers with powerful tools but with little knowledge of fundamental programming

concepts. Moreover, lecturers faced with teaching event-driven languages in introductory

programming subjects have no established design methodology nor any clear direction on the

mental models that are used by students to understand the operation of such languages. The next

chapter will review the literature that has reported on the teaching of these types of languages in

introductory programming subjects in information systems courses.

Chapter 2 Cognitive Skills and Program Design Page 47

Chapter 3 Event Driven Programming and
Curriculum Design

Academic programmes in Information Systems have undergone change throughout the years as

faculties have fought for acceptance of this emerging discipline area in tertiary institutions. In

recent years, business has found fault with computer-based programmes, particularly in the

field of computer science, as computing has '... become more integrated into many businesses

rather than a separate service function' (DEET, 1992: 126). Although the graduates from

information systems courses appear to be more attuned to the needs of business, the complex

interrelationships between information technology, human decision making, and the goals of

those who seek to build and use information systems for competitive strategy have caused

many researchers to view information systems from different perspectives (Seddon, 1991).

Complicating the picture further is the need for information systems professionals to have

formal technical training in order to be effective and to have a '... sound educational foundation

in their discipline so they can keep abreast of new technologies and be responsive to change'

(Richards and Sanford, 1992: 219). Programming continues to be an important part of tertiary

information systems curriculum but has undergone significant change as institutions seek

alternatives to C O B O L and Pascal. This in part, matches the steady decline in text-based

systems (for both end users and programmers) over recent years and the growth in 'off-the-

shelf software with the resultant devolution of information processing toward the end-user

(DEET, 1992). According to Cooke (1990):

"The irony is that the more powerful and flexible an application becomes, the
more options you have, and the more useful it becomes to be able to perform
diverse functions based on system state. If you have commands that can alter
system state, conditionals that choose alternate execution pathways, and a
method of storing these things, you have a programming language '(p.211).

This section of the literature review examines recent research on alternative approaches to the

teaching of programming in Information Systems and computer science courses at tertiary

institutions. Particular emphasis is given to the object-based and event-driven paradigms and

the role they play in enhancing the programming skills of information systems graduates.

3.1 The Changing Information Systems Curriculum

Information Systems have always been significant in the management and operation of

organisations. According to Longenecker (1994)

Chapter 3 Event-driven Programming and Curriculum Design Page 48

'Computer based IS are complex socio-technical entities that have taken on
critical roles on local, national and global organisations. IS provide support
for the goals of the organisation and its management - strategic, tactical and
operational - in a timely and cost effective manner. The applied nature of the
discipline suggests a critical link between education with the practicing
professional community '(p. 175).

Since its inception as a discipline in tertiary institutions several decades ago, Information

Systems curricula has undergone rapid change

'The reason for these changes are twofold: firstly the computing and
communication technology, upon which the discipline is based, has made
several quantum leaps during this period of time, and secondly the loci of
applications, to which the technology has been applied, is widening at a
tremendous pace. As a result, computing educators are still attempting to come
to grips with an appropriate curricular and research framework for IS' (Ang
andLo, 1991: 386).

Over this period the use of computers in organisations 'has evolved from machines which could

calculate and produce simple reports to distributed multiprocessors with powerful individual

work-stations for the end user' (Longenecker, Feinstein et al., 1994: 175)

Longenecker et al (1994) attempt to define information systems as an academic field by

constraining it to two broad areas,

/. acquisition, deployment, and management of information technology
resources and services (Information Systems functions) and

2. development and evolution of infrastructure and systems for information use
in organisations processes (systems development) (p. 8).

DEET (1992) uses information systems as a general term to denote all operations and

procedures involved in the design and implementation of an information processing system.

Keen(1987), however, argues that searching for an agreed definition of Information Systems is

futile:

"There is no way in which the diversity of topics already addressed by people
who see themselves as part of the Information Systems community can be
summarised in some grand general theory. If the field is broad, eclectic and
multi-disciplinary, coherence cannot be imposed by finding some common
ground or theory or method' (p.2).

According to Seddon (1991) the only common theme that is evident in any perspective of

Information Systems is that all are concerned with the successful exploitation of information

technology.

In a comparative study of information system curricula in the United States of America (U.S. A)

and foreign universities, Goslar and Deans (1993) found that both U.S.A. and foreign

universities tended to view their information systems programs as more managerial than

technical. They reported that there was higher emphasis in U.S.A. Information systems

Chapter 3 Event-driven Programming and Curriculum Design Page 49

curricula on programming and computer equipment although both groups viewed their courses

as significantly different from computer science courses (p. 12).

It is not surprising then, that courses in Information Systems in tertiary institutions place

varying degrees of emphasis on different aspects of information technology and business

concepts (DEET, 1992). Richards et al (1992) believe that the ultimate goal of any Information

Systems course is to prepare students for working towards beneficial technological change.

They believe that Information Systems courses have difficulty in adequately integrating

technical skills within an organisational and social context. Moreover, they consider that the

present approach to information systems education must be placed in a broader context which

can be traced back to the mid-nineteenth century when a debate raged on the relative merits of

practical and theoretical training for engineers. They state:

'The subsequent split between practical versus theoretical training has since
been a pedagogical paradox faced by many instructors. The argument stems
from the more inclusive notion of whether it is more appropriate to teach first
principles instead of focusing on the practical, more concrete heuristic
implementations which usually have attached to them a higher perceived
utility. This dichotomy has been discussed in other forums, such as the
tradeoffs between "deep" versus "shallow" knowledge and the importance of
distinguishing between the abstract and concrete. ... The difficulties involved in
imparting a solid foundation in theoretical knowledge to students is well
known, and this enigma becomes even more pronounced for students who do
not posses practical experience' (p. 219).

The Discipline Review of Computing Studies and Information Sciences Education Committee

(1992) chose to extrapolate the findings of the Quality of Education Review Committee

(Karmel, 1985) on primary and secondary education to the tertiary sector. The Quality of

Education Review Committee identified five general competences (ie. the ability to use

knowledge and skills effectively to achieve a purpose) which were adopted by the Discipline

Review Committee:

• Acquiring information and skills - skills, including the necessary technical
knowledge in the relevant subject areas, which are acquired by reading,
listening, recording, analysing and conducting experiments

• Conveying information (communication skills) - the competence of
communication of information, orally and in writing

• Applying logical processes - the skill of effective analytical reasoning is
fundamental for students to develop the competence of using technical
knowledge and skills in practical situations

• The execution of practical tasks through the marshalling of ideas, materials
and tools - this competence requires, inter ail, the ability to analyse
problems, to exercise judgements about adequacy of results and to
synthesise solutions, and is developed through the actual performance of
practical tasks; and

• The development of interpersonal skills - this competence requires effective
collaboration with others as a means of achieving particular purposes, and
may require tact, sensitivity, tolerance, determination and timing. It

Chapter 3 Event-driven Programming and Curriculum Design Page 50

requires A knowledge of people and how they interact, and is a competence
often insufficiently recognised within our universities. It can be developed
through group project work (p. 153).

The Discipline Review Committee (1992) added creative ability to the above list stating that,

although creative ability is not a general competence achievable by all students they believed

that a student's creative ability can be stimulated in educational programs by:

• 'subject areas that do not emphasise one fixed body of knowledge;

• stressing innovation through a process of subjecting Information
Technology to continual change highlighting "lateral thinking" in students

• stressing the importance of ongoing professional education and the need for
adaptable skills.

• highlighting the pervasiveness of Information Technology applications in
almost all areas of endeavour' (p. 155).

The IS '95 project was, in part, an attempt to draw together the different iterations of

information systems curricula in the U.S.A. and to identify common ground and intended

outcomes (Gorgone, Couger et al., 1994). Information systems curricula, however, have not

been without their critics who have viewed them as lacking in mathematical and technical

rigour. In criticising the earlier IS'90 model and advocating a computer science curriculum,

Fabbri & M a n n (1993) stated:

'It ignores the increasingly greater complex problem-solving skills demanded
of the contemporary information system developer. It is too superficial and
devoid of mathematical and technical content to prepare the graduate for the
challenge of developing large complex integrated systems and of capitalising
on rapid advances in technology' (p. 78).

Bonnici & Warkentin (1995), responding to Fabbri & Mann's criticism suggested that:

'effective problem solving requires a well-honed understanding of the problem
— and computer science graduates often lack a deep knowledge of traditional
business systems components. Without a strong foundation in the study of such
systems, it is impossible for an Information Systems professional to appreciate
the intricacies of the problem and the problem's environment. Indeed, because
today's Information Systems professionals often work closely with end users in
support of their computing needs or during prototyping activities, the breadth
provided by the DPMA curriculum ensures that the Information Systems
professional can successfully work with financial analysts, managerial
accountants, service operations managers, and a host of other decision makers
with real problems to solve' (Bonnici and Warkentin, 1995: 97).

Moreover, Bonnici & Warkentin believe courses in institutions 'which generate graduates

primarily with programming skills are going to be training "buggy-whip" manufacturers'

(p.96). They suggest

'... that instead, employers need graduates who can "bridge the gap" between
technology and the real world of business. In fact, a number of universities
with established schools of information technology have discovered that their
graduates frequently excel at algorithmic thinking, but lack the necessary

Chapter 3 Event-driven Programming and Curriculum Design Page 51

background and education to solve real business problems involving actual
business systems and processes' (p. 96)

3.1.1 Programming in Information Systems Curriculum

Fifteen years ago, according to Cooke (1990), the terms computer user and programmer were

synonymous. In those times the owner of a computer almost certainly wrote programs. Today,

with the widespread use of application languages, computer user and programmer are again

synonymous 'but this time, software developers are consciously trying to make languages more

powerful and easier to use' (p.211).

The Department of Employment, Education and Training's report on the Education and

Training Needs of Computing Professionals and Para-professionals in Australia found that two

streams of programming are likely to emerge in the future

'Lower level programming will be hardware specific, requiring detailed
technical skills and knowledge of multiple processing across a range of
repositories. In contrast, higher level programming will be close to the end
user, requiring detailed knowledge of business functions. The two streams will
be reflected in the development of tool kits, utilities and generic system models
on one hand and the configuration of these facilities into applications that meet
specific user requirements on the other hand' (p. 172).

Cooke (1990) divides the higher level languages into two further divisions, user and power-user

languages. Languages for users are as friendly as possible and the 'computer's resources ease

you into the language and guide you through it' (p.211). Language for power-users, on the

other hand, are geared towards 'someone who needs to get the most power and flexibility out of

an application,... and tend toward the complex and difficult' (p.211). An example of the former

may be a macro wizard in a word processor and an example of the later would be programming

in a database language or in Visual Basic. Moreover, Cooke (1990) states:

'Perhaps the most important development in applications languages is the
recognition that they are languages. If they are designed and implemented as
languages rather than as automated key presses, you can expect them to
become much better. What constitutes "better" depends on what you want to
do with the language. The split between user and power-user languages is
going to become more pronounced. This split is less a matter of the power-user
languages becoming more powerful (although they do with each new release of
the applications) than it is one of the user languages becoming better fitted to
their role. Innovations like iconic languages, object-oriented languages, and a
general concern for the needs of the average user are showing up more

strongly all the time' (p.214).

Duntemann (1993) observes that, despite their many iterations throughout the years, traditional

third generation languages have failed to incorporate relational database verbs into their syntax.

Instead,

Chapter 3 Event-driven Programming and Curriculum Design Page 52

'the major databases are extending themselves toward the traditional
programming languages by allowing users to write traditional structured code
"behind" the usual interactive features for maintaining tables and generating
queries and reports. The Big Blur between traditional languages and database
managers has begun, and if it's coming from the direction opposite that which I
expected' (Duntemann, 1993)

In a study seeking the views of academics on the present and future mixture of subjects within

an information systems curriculum, Ang & Lo (1991) found that:

'the ranking of "programming language" has dropped dramatically from 6th
at present to 18th in the future, while 4GL's and applications generators and
project management have moved up from 18th and 19th positions to a tied rank
of 8.5. This indicates a rather strong view shared by IS academics that 3rd
generation programming languages will gradually lose their role as the main
tools for software systems development, while 4GL and applications generators
will gain a more important role as systems development tools' (p. 396).

The study also showed an increasing importance for programming methodologies ranking this

the second most important topic in future information systems curricula.

The DEET (1990) report into the Education and Training Needs of Computing Professionals

and Para-professionals in Australia found that the current relationship between programming

and application design (as depicted in Figure 3.1) will change as language technologies become

more advanced so that application design and programming will overlap significantly.

Figure 3.1: Overlap between analyst-programming tasks

Source: D E E T (1990: 40)

They outline the impact on curricula by stating:

'these results clearly indicate that most areas of IT have a significant impact
on skill and knowledge requirements in application design, both now and in the
future. Both training providers and curriculum developers need to consider a
broad range of technologies when addressing these training needs. ... Clearly,
future programming curricula will need to cover emerging technologies in
these areas' (p. 196).

Chapter 3 Event-driven Programming and Curriculum Design Page 53

Richards (1992) believes that the trend in computing towards a microcomputer environment

with graphical user interfaces and non-procedural languages,'... points to the need to introduce

more of this type of education into the curriculum' (p.225). Moreover, Bonnici & Warkentin

(1995) state:

'... in today's computing environment, the knowledge of business-oriented
4GLs provides our students with more useful skills than ADA or Pascal This is
especially true when many of our graduates work in end user department
environments or at information centres or help desks. So rather than providing
our students with the theory of abstraction, modularization, encapsulation, or
reusability, which may not be as important as communication skills, the DPMA
model seeks to provide the students with a practical mix of computer and
business skills which will allow him or her to succeed at the required tasks
inherent in solving actual systems problems '(p. 97).

Fabbri & Mann (1993) are critical of the languages used in information systems model

curricula as they believe the languages do not '... prepare the graduate for the challenge of

developing large complex integrated systems and of capitalising on rapid advances in

technology' (p.78). Bostrom et al (1988), however, believe that languages such as database and

modelling languages, which can be used to model business problems, '... may in fact be more

difficult to learn because of their problem-solving component' (p.224). In a study of languages

taught to M B A students Bostrom et al found that many students had difficulty grasping the

concepts of 4 G L languages.

The widespread use of third generation procedural programming languages has often been a

barrier to application development or modification by end users. A n expert programmer has

been able to adapt schema and strategies across languages. O n the other hand, the

characteristics of these types of programming languages, has often inhibited the end user from

adequately describing a plan and strategy. If '... the programming language does not

cognitively fit with the non-professionals' problem-solving skills, then a barrier has been

erected to their use of computers'(Soloway, Bonar et al., 1983: 853). The use of a natural

language may not be sufficient as it does not necessarily match the preferred cognitive

strategies that an individual uses to solve a problem. The task for information system

academics is to identify '... the strategy that individuals spontaneously use when solving a

problem'(Soloway, Bonar et al., 1983: 853).

3.2 A Framework for the Learning Process

3.2.1 Introduction

Learning computer programming means both 'learning procedures to accomplish various goals

and learning the information that is relevant to these procedures' (Van Merrienboer and Paas,

Chapter 3 Event-driven Programming and Curriculum Design Page 54

1990: 274). Expert programmers are able to perform a range of procedures without noticeable

effort because '... they are able to respond in a highly reflective manner to abstract features of

problems' (Van Merrienboer and Paas, 1990: 274). The skills of an expert programmer,

however, include more than the automatic application of procedures. W h e n confronted with a

new programming problem for which no automatic procedures are available, expert

programmers call on the large amount of specific programming knowledge they possess that

can be used by more general problem solving methods to reach a solution. Thus:

'... besides the development of automatic procedures, the acquisition of highly
structured knowledge, or schemata, plays a significant role in learning a skill
like computer programming' (Van Merrienboer and Paas, 1990: 275).

The ability of an expert programmer to apply the knowledge and skills they possess or come to

possess does, in part, impact on the successful solution to a problem.

The sequence of steps that is used in a programming subject to instruct students and novice

programmers plays an important role in developing schemata and determining a person's

ability to solve problems (Linn and Songer, 1991). Turkle & Papert (1992) believe that the

earlier image of the computer represented it as a logical machine and computer programming

as a technical, mathematical activity that created barriers to many people. 'Both the popular

and technical culture have constructed computation as the ultimate embodiment of the abstract

and formal' (Turkle and Papert, 1992: 113). However when they observed programmers in

action they saw 'they use concrete and personal approaches to knowledge that are far from the

cultural stereotypes of formal mathematics' (p. 113). Their research

'... points to discrimination in the computer culture that is determined not by
rules that keep people out but by ways of thinking that make them reluctant to
join in. Moreover, the existence of diverse styles of expert programming
supports the idea that there can be different but equal voices even where the
formal has traditionally appeared as almost definitionally supreme: in
mathematics and science '(p. 116).

Instead they believe that:

"The conventional route into formal systems, through the manipulation of
abstract symbols, closes doors that the computer can open. The computer, with
its graphics, its sounds, its text and animation, can provide a port of entry for
people whose chief ways of relating to the world are through movement,
intuition, and visual representation '(p. 115).

A key objective of any programming course is to ensure that at the end of the subject, the

student understands the operations of a system well enough to be able to program and use it

(Bostrom, Olfrnan et al., 1988). This need not imply gaining a detailed knowledge of the

computer's architectural structure or the operating system it uses, but more knowledge of the

operation of a system at a notional machine level, that is

Chapter 3 Event-driven Programming and Curriculum Design Page 55

'... an idealized, conceptual computer whose properties are implied by the
constructs on the programming language employed. That is, the properties of
the notional machine are language, rather than hardware dependent' (Boulay
andO'Shea, 1981: 237).

Using the concept of a notional machine may be beneficial in developing the mental model of a

computer in a novice programmer. As Bostrom(1988) states

'Understanding of the system implies a complete and accurate mental model of
the system to be learned. The role of mental models is to facilitate an
understanding of how the system works. They aid the user in making inferences
about the system, reasoning about it, and guiding his/her actions. Although
there is general agreement in the literature on the importance of mental models
in human-computer interaction, opinion is divided on whether or not users
build mental models spontaneously' (p.228).

For a strategy of program instruction based on a notional machine to be effective, the notional

machine must conform to two important principles. The notional machine must employ simple

concepts (or simplicity), however the '... functional simplicity of a notional machine is not

enough on its own to guarantee learnability or ease of use since the majority of machine's

actions will usually be hidden, and will have to be inferred by the novice unless special steps

are taken'(Boulay and O'Shea, 1981: 238). Novices often lose track of what state a computer

has moved to during the implementation of an instruction. This is an important problem with

event-driven languages, which comprise a reactive system (ie. a passive form waiting for an

event to happen) which is transformed by events. It is easy to understand how a novice

programmer can lose track of the system state when programming in event-driven languages.

Bostrom et al (1988) outline a mental model formation process in which trainees or students are

provided with a conceptual (or notional model) that will help them build mental models (see

Figure 3.2).

Chapter 3 Event-driven Programming and Curriculum Design Page 56

Target System Trainee's Mental Model

Mapping via usage

Influences

Designs

Mapping via
analogy

A set of changing
knowledge states
internal to the

trainee

Trainee's Characteristics

A representation
of the system
external to the

trainee Mapping via training

Conceptual Model

Figure 3.2: Mental Model Formation Process

Source: Bostrom et al (1988: 239)

Object-based, event-driven languages are relatively new and they are not supported by

recognised conceptual models and tools that can help a student to understand how such a

system operates. Moreover, there appears to be no research which has examined the mental

models that a student develops to depict event-driven systems.

Although models have been devised to explain the learning process, it is doubtful that any one

model can account for the many approaches, conditions and skills of students in a programming

environment. Indeed, 'formal thinking, defined as synonymous with logical thinking, has been

given a privileged status which can be challenged only by developing a respectful

understanding of other styles, where logic is seen as a powerful instrument of thought but not

as the law of thought. In this view, logic is on tap not on top (Turkle and Papert, 1992: 117).

For some people

'... what is exciting about computers is working within a rule-driven system
that can be mastered in a top-down, divide-and-conquer way. This is the
"planner's" approach. ... This approach decrees that the right way to solve a
programming problem is to dissect it into separate parts and design a set of
modular solutions that will fit the parts into an intended whole. Some
programmers work this way because their teachers or employers insist that

Chapter 3 Event-driven Programming and Curriculum Design Page 57

they do. For others, it is a preferred approach; to them, it seems natural to
make apian, divide the task, use modules andsubprocedures' (p. 119).

Event-driven programming languages may allow students a range of alternatives for systems

development. As an example, Braithwaite (1996) identifies either a user interface development

or a program development focus. For a program design methodology to be successful, it must

assist a student in conceptualising an event-driven system.

3.2.2 Learning Outcomes

In recent years, the main focus of research on teaching and learning a computer programming

language has centred on the cognitive demands on students, the cognitive consequences of

teaching computer programming and the impact of instructional techniques (McNutt and Lo,

1991). Research by McNutt & Lo (1991), Ang & Lo (1991) and D E E T (1990; 1992) has

centred on extracting practical recommendations that impact upon existing practices. Although

there is little agreement on the key subtasks required in learning to program (Brooks, 1977;

Soloway and Elliott, 1984; Shneiderman, 1986; Vessy and Weber, 1986) there is broad

agreement on the underlying knowledge that accompanies these tasks. McNutt & Lo (1991)

define these as the Four S's Model comprising syntactic, semantic, schematic and strategic

knowledge.

The Gagne taxonomy of learning objectives in the cognitive domain comprises the following

sequence: facts, concepts, principles and finally problem solving. The sequence begins with the

emphasis placed on simple factual learning. Next, students identify concepts behind the

relationships between the facts, and this leads on to higher level problem solving skills. Sloan

and Linn (1988) identified a chain of cognitive accomplishments from novice to expert

programmer using the four types of underlying knowledge (see Figure 3.1).

Syntax - Semantics | • Templates I » Strategies h » Problem Solving
~ ' (Schema) I ' Skills

—

Figure 3.3: Sequential classification of programming knowledge

Source McNutt & Lo(1991: 408)

This sequential acquisition of programming knowledge implies that the novice programmer

initially uses the syntax to become familiar with the semantics of a programming language.

Chapter 3 Event-driven Programming and Curriculum Design Page 58

Semantic structures are used to develop language independent templates or schema which are

then used to develop a knowledge of different strategies and their appropriate uses. The

programmer finally develops a range of generaliseable problem solving skills.

Recent research (McNutt and Lo, 1991; DEET, 1992) has found that a syntax immersion

approach is used in introductory programming subjects in many tertiary Computer Science and

Information Systems courses. The Discipline Review Committee (DEET, 1992) noted that

'...the emphasis in computer science courses needs to be less on the teaching of computing

knowledge for its own sake, and more on the design, development and application of systems

in a practical context' (p. 186).

Building on the work of Sime et al (1973), McNutt & Lo (1991) advocated a different

approach. According to Sime et al (1973), two psychological processes appear to be used by

programmers when they perform design and coding tasks:

i) taxonomising - identifying the conditions that evoke particular actions; and

ii) sequencing - converting the taxa (or actions) into a linear sequence of program code.

According to Vessy et al (1986) these two tasks evoke different psychological processes.

"The first involves classifying and sorting elements according to their attitudes;
the second involves specifying the taxonomic criteria and associated actions
within the syntactic and semantic constraints of the programming language
used' (p.49).

It is possible to match the underlying knowledge requirements to these two tasks (see

Figure 3.4):

<Syntax Schematic ^ ^

Semantics Strateaies ^^

Figure 3.4: Programming Tasks and Underlying Knowledge Bases

Source: McNutt and Lo (1991: 409)

Chapter 3 Event-driven Programming and Curriculum Design Page 59

An experienced programmer usually possesses both sound sequencing and taxonomising

knowledge. Often, they have developed a large array of cognitive skills and processes which

enable them to examine problems and outline a solution in a number of programming

languages. Novice programmers, on the other hand, have neither of these qualities. They have a

sound knowledge of the syntax in one language, but have not had sufficient experience to

develop semantic, schematic or strategic knowledge. The knowledge combinations of each

group are outlined in Figure 3.5.

*" v^^ Taxonomising

Sequencing ^^-s^^^

Weak

Strong

Weak

Novice

Programmer

Programmer (a)

(Good Syntax Knowledge Poor

Problem Solving Skills

Strong

Programmer (b)

(Good Problem Solving Skills

Poor Knowledge of Syntax)

Experienced

Programmer

Figure 3.5: Programming Knowledge Combinations

Source: McNutt and Lo (1991: 408)

In between these two groups are other types of programmers. Category (a) programmers have a

sound knowledge of one particular language but have limited schema. They may be able to

identify common routines but only in a particular language and probably through syntax rather

than schema. Alternatively, category (b) programmers possess good problem solving skills but

have a poor knowledge of programming, that is, they are unable to transfer the taxonomic

criteria into a syntactic form. According to McNutt and Lo (1991), programmers can be ranked

in the following order of priority according to the combination of skills they possess:

Chapter 3 Event-driven Programming and Curriculum Design Page

Experienced Programmer (b) Programmer (a) Novice
Programmer (schema and * (sound syntax * Programmer

problem solving skills but
but poor syntax) limited schema)

In terms of desirability of outcome, Information Systems courses should aim at producing

students with good schema knowledge rather than syntax knowledge. In practice, however, a

syntax immersion approach is unlikely to produce this outcome as students are unlikely to

develop taxonomising skills without obtaining some long-term semantic and schematic

knowledge.

Using these sequencing and taxonomising tasks as the basis for instructional design, it is

possible to identify four didactic approaches to the teaching of programming (see Figure 3.6):

i] Syntax immersion ie sequencing skills predominate

Sequencing • Taxonomising

ii] Synthesis immersion ie taxonomising skills predominate

Taxonomising • Sequencing

Hi] Parallel approach ie sequencing & taxonomising skills taught in tandem

Taxonomising

Sequencing

Iv] Iterative approach ie a continuing change in emphasis

Taxonomising Sequencing

Figure 3.6: Didactic Approaches

Source: McNutt & Lo (1991: 409)

The last three approaches are viable alternatives to a syntax immersion approach and, although

no one has been identified as superior to the others, they emphasise the need for a broad-based

approach to programming instruction. Until recently,

'one of the most important skills in programming ie. taxonomising which relies
on schematic and strategic knowledge appears to have been neglected. A
change in emphasis in relation to the teaching of the component skills

Chapter 3 Event-driven Programming and Curriculum Design Page 6'

is

considered to be important in acquiring expertise is needed' (McNutt and Tn
1991:412). '

Moreover, with the introduction of new programming paradigms in programming subjects, it

appropriate to examine how these new languages impact on the teaching approaches compared

to the current practices used in teaching procedural languages.

3.3 Object-Oriented and Visual Programming Environments

3.3.1 Visual Programming Environments

The move to visual programming environments has resulted in a steady movement away from

text-based systems and provided substantial productivity gains particularly for programmers.

"This is because the computer's ability to represent in a visual manner
normally abstract and ephemeral aspects of the computing process such as
recursion, concurrency, and the evolution of data structures through time, can
have a remarkable and positive impact on both the productivity of
programmers and their degree of satisfaction with the working environment'
(Chang, 1990:145).

The move to graphic user interfaces from the traditional command/text based interfaces has

made it easier for users to use computers and to manipulate them. Yet the interface is not, by

itself, sufficiently powerful to enable the end-user to develop or modify applications to meet

their own needs. Some knowledge of how a computer achieves a task is essential for the

development of applications. Matsumura & Tayama (1990) researched the relationship between

visual factors, textual commands and the need for formal study in programming. They found

that there is an optimal level where a significant number of small applications could be

developed by an end user using a combination of text and visual components (which they refer

to as the 50 Step-Module). The more complicated the system, however, the greater the reliance

on text (ie. code) which can only be obtained via formal study in programming (see Figure 3.7)

Chapter 3 Event-driven Programming and Curriculum Design Page 62

N o formal study required

t

1
Need to study to a high degree
Figure 3.7: Level setting for textual command and visual factors

There is some optimal level for programming where the majority of programming can be undertaken by the end user

using visual programming components. Some text/commands remain which provide for a higher degree of control.

Source: Matsumura(1990)

Visual programming environments 'provide visual ways of working with a programming

language, whether the language is visual or textual' (Burnett and Mclntyre, 1995). In such an

environment, the user may revert to traditional procedural methods to alter objects or develop

methods in an application. Visual programming environments have become popular in the

development of Windows-based applications through languages such as Visual Basic and

Delphi. Most popular object-oriented and event-driven programming languages operate within

a visual programming environment. According to North (1994), visual programming

environments promote a division of labour between specialists who write custom controls and

Chapter 3 Event-driven Programming and Curriculum Design Page 63

those who build applications. Similarly, Beck (1994) divides the software development role

into two parts: the abstractor, usually an experienced programmer creating reusable segments

of code, and the elaborator, a person who combines and modifies these segments of code into

an application to fit the needs of a user. In visual programming environments, he describes

abstractors as component builders (for example, programmers who write DLLs or class

libraries in C or C++), and elaborators as solution builders (those who use high-level tools such

as Parts, Visual Basic, PowerBuilder, or an application framework in conjunction with low-

level D L L components to construct application-level solutions for end users).

Duntemann (1993) believes that 'the language wars are over. The war now, if there is to be one,

will be between visual development and traditional development' (p.3) H e expresses concern,

however, that the architecture and features of many visual programming environments impose

a restrictive design vision upon applications written within those languages. In visual

programming environments, he states, the highest-level design issues (and hence the shape of

the created application) are defined and controlled by the shape of the tool being used.

'Templates, multiple inheritance, operator overloading, and things like that
have an influence that permeates every corner of the eventual application.
These are the sorts of things expressed by the nature of the underlying kernel
within a visual language. I don't think they'll be easily changed. The design
vision of a visual language will become the design vision of the applications it
creates. The code that the programmer writes will almost invariably be local in
nature'(p.3).

Despite the restrictions on design, Beck (1994) believes that visual programming environments

have enabled developers to keep pace with the increased demand for applications. W h e n you

'introduce software reuse into the equation, however, it isn't one hapless
programmer trying to figure out an obscure piece of code - it's a hundred'
(p. 15). ... 'As programmers we have to remember that creating a working,
reliable application the fastest way possible is the goal of the game.
Programming as we know it is indeed the most intoxicating kind of fun ... but if
something better comes along, we're doing no one any favours by clinging to

the old ways' (p.4).

3.3.2 Object-Oriented Programming

The term object technology has been used widely and is very difficult to define because

'it involves a basic paradigm shift in computing and is involved in almost all
aspects of computing. There are OO operating systems, OO middleware
products, OO languages, OO methodologies, OO CASE tools, OO 4GL tools
and OO databases. People talk about using objects to develop basic definitions
of numbers and strings and they talk about encapsulating large COBOL
applications as objects. Clearly this technology encompasses a wide variety of

different techniques' (Harmon, 1995: 81).

Chapter 3 Event-driven Programming and Curriculum Design Page 64

Many products are described as object-oriented or object-based but there are large differences

in their level of functional abstraction and support for distribution development based on

C o m m o n Object Request Broker Architecture (C O R B A) (see Figure 3.8).

Domain
Classes and
Products
with Rules
and
Inferencing

a
o
'•§ Oriented

8

-g Object-
§ Based
« Products
a
s
to

•g 3 and 4 GL
s Products

Standalone
Applications

Distributed
Products that
support team
development and
C O R B A
distribution

Client/Server and Distribution

Figure 3.8: A matrix comparing object-oriented products based on abstraction and distribution

Source: Harmon (1995)

Yourdon (1994) defines a system built with object-oriented methods as one 'whose components

are encapsulated chunks of data and function, which can inherit attributes and behaviour from

other such components, and whose components communicate via messages with one another'

(p.2). Moreover, he believes that object-oriented techniques are the most important

development since the introduction of structured techniques during the 1970's and 1980's.

Chapter 3 Event-driven Programming and Curriculum Design Page 65

Object-oriented methodologies support the concepts of the object model, which consists of

classes, their properties and relationships, and messages between objects. A class is any

concept important to a problem, such as an employee or a bank account, and it localises in one

place everything that is known about that concept, including its relationships with other classes.

An object is an instance of a class.

The execution of an object-oriented program is based on the communication between objects

via messages. A message is a request for an object to perform one of its operations. In order to

do anything with an object's data, the program must send a message to that object. To process

data in an object one must define a method, which is a definition of an object's behaviour.

This message-based approach encourages the notion of encapsulation, whereby different parts

of a program are viewed as being relatively isolated from one another, resulting in a very

modular system (Giivenir, 1995; Kennedy, 1995). This high degree of modularity is the basis

for claims that 'object-oriented programming is a technique which has many benefits such as

easy construction of complex systems, availability of inherently reusable objects [and]

reduction in total life-cycle software cost' (Sudbury, 1995: 40).

Reuse of components is an attractive element of object-oriented programming but typically

prepackaged components only provide rudimentary functionality '... so building a complex

application still involves a great deal of new programming effort'(Pancake, 1995: 33).

According to Sudbury (1995) '.. some developers of object-oriented systems become so

infatuated with the idea of increased productivity through software reuse - which object

technology promises to deliver - that they lose sight of the primary goal of useability' (p. 18).

Moreover,

'Reusability does not come without a price tag. Typically, it is only after an OO
application is complete that the developers understand which objects might
have broader use. Those objects then must be restructured through a process
known as generalisation, that in turn may require revisiting several earlier
stages of object design '(Pancake, 1995: 33).

Navrat (1994) believes the ability of the object-oriented paradigm to support abstraction and

generality makes it more attractive than procedural languages as a teaching platform in

introductory subjects

'In procedural programming, only abstraction was originally supported, and
this only partially, viz. the procedural one by the language construct for
procedure declaration. ... Much of the apparent success of the object oriented
paradigm can in fact be explained by its support to both abstraction and
generality, surpassing the procedural paradigm by one entire dimension'

(p.21).

Chapter 3 Event-driven Programming and Curriculum Design Page

Sudbury (1995), however, believes that an abstract approach can cause problems for software

developers as well as for novice programmers.

'An application created from general purpose objects can be difficult to
maintain because it is harder for a maintenance programmer to see
immediately how the objects relate to the business problem. Therefore, it can
take the programmer longer to understand how to change the application. This
can cause an extremely serious maintenance problem and result in a mess of
the magnitude of the messes we sometimes inherit from previous generations of
software(p.l8).

Udell (1994) suggests that object technology has failed to deliver on the promise of reuse,

instead, off-the-shelf components that can be used to build real applications in a hurry have

emerged in event-driven programming language such as Visual Basic. According to Sudbury

(1995), there needs to be a balance between abstraction and generalisation, which fosters reuse

on the one hand, and a focus on making the system simple and comprehensible so that it is

reusable on the other hand.

'It might well be preferable to err in favour of the comprehensible. Software
that is eminently useable tends by default to become reusable. The
requirements of reusability and designing systems that are useable are not
mutually exclusive and need not even be at cross-purposes' (p. 18).

Programs designed using Visual Basic are described as event-driven programs as the program

responds to different events which are usually initiated by the user, although they can also be

initiated by the program itself. In Visual Basic, a person builds up screens by defining forms

containing Windows controls such as buttons, text boxes, scroll bars, labels, and other user-

interface objects. The programmer sets the properties of each object and generates code (called

methods) that execute in response to events. Typical events which a user might perform include

a movement of the mouse, a single or a double click of the left (or primary) mouse button, or a

keystroke (or a combination of keystrokes) from the keyboard.

Duntemann (1993) states that

'Visual Basic is a fully structured language, with procedures, functions, and
every control-flow structure present in Pascal. They even write it now using the
same standard indentation conventions that Pascal people have been using
since Year One. What's significant in Visual Basic has nothing to do with any
individual programming language at all: It has placed the bulk of the Windows
UI machinery behind a curtain, from which it emerges in its naked terror only
in dire need. The language behind Visual Basic's forms and controls could be

any language at all'(p. 5).

Similarly, Schurmann (1994) believes that an

'event-driven programming language has a more-solid structure and clearer
constraints than any procedural language. Much of the logic and structure that

Chapter 3 Event-driven Programming and Curriculum Design Page 67

traditional systems enforce via an architecture are intrinsic to the event-driven
approach and thus to the programming language itself (p. 33).

3.4 Object-based Languages in Introductory Programming Subjects

hi the U.S.A., the Computer Science model curriculum (Tucker, 1991) and the Information

Systems model curriculum, IS'95 (Longenecker, Feinstein et al., 1994), provide broad

guidelines on the content of subjects taught within their respective disciplines, however they do

not stipulate the language platform that colleges and universities should adopt. According to

Levy (1995) Pascal was the most popular language in first year programming subjects in

Computer Science (known as CS1) in the 1970's '... due to two pragmatic factors: the invention

of the personal computer, and the availability of Pascal compilers' (p. 21). In the 1980's

universities turned to other languages that provided students '... with an opportunity to learn to

use a tool that will help them address problem solving issues, prepare them for Computer

Science study, and offer them a taste of the Computer Science discipline' (Levy, 1995: 21).

Evans (1996), borrowing from Gersting (1994), noted that CS1 subjects in universities have

moved away from a depth first introduction to programming subject towards an emphasis on

problem solving, specifically, with an '... emphasis on introductory software engineering

mechanisms, procedural abstraction, and (some) data abstraction' (p. 13). A recent survey of

first year programming subjects in Computer Science (Reid, 1994) identified 139 colleges and

universities in the United States of America that were not using Pascal. Levy (1995) conducted

a follow up survey and found that most popular languages amongst this group of colleges and

universities was C, Scheme, A D A and C++. Event-driven programming languages such as

Visual Basic were not mentioned by name in the results of the survey.

In a more recent survey by Tesch et al (1996), 72 four year institutions were identified from the

Microsoft Developer Curriculum Project W e b site (http://biblio.isu.edu/ms/syllabi/vb.html) as

using Visual Basic. The subjects, however, '... were not strictly programming or Information

Systems program courses' (p.2), the most popular being beginning programming. Nevertheless,

object-oriented programming and event-driven programming are rapidly being adopted by

universities and institutions as part of their curriculum (Levy, 1995; Fienup, 1996; Rolling and

Rosenberg, 1996; Tesch, Tesch et al., 1996) and some evaluations of these courses have been

reported in journals and at conferences.

3.4.1 Reasons for Introducing Object-based Programming

Many universities and colleges appear to have introduced object-oriented or object-based

programming in a response to the changing demands from business for information systems

graduates, or in response to the perceived failings of a procedural language such as Pascal
Chapter 3 Event-driven Programming and Curriculum Design Page 68

http://biblio.isu.edu/ms/syllabi/vb.html

(Decker and Hirshfield, 1994; Smith and Kelly, 1994; Levy, 1995; Fienup, 1996; Tesch, Tesch

et al., 1996). At Purdue University, for example, the Computer Technology Department has

'always tried to pay attention fo the new trends in business information systems and provide an

education that will prepare graduates for the marketplace at the time of their graduation'

(Lisack, 1996: 1). Visual Basic was introduced at that university because

'one of the big causes of change has been the overwhelming acceptance of the
Windows environment, so that users have become accustomed to, and even
grown to expect, a graphical user interface. In addition, the object-oriented
paradigm has received widespread acceptance in various phases of the system
development process, and data bases are regularly used, both on the PC and
on mainframes' (p.l).

DeClue (1996) believes that universities should adopt an object-oriented platform for reasons

related more closely to the classroom, that is, for 'the intuitive, real-world problem solving

aspect of the paradigm, the simplicity and organisational nature of the paradigm, and the

problems caused by not switching to the object-oriented paradigm' (p.232). Osbourne &

Johnson (1993) state, 'from an educational standpoint, one of the most useful benefits is that

the model of the co-operating objects is intuitively close to human experience and expectation'

(p.101). Moreover, Decker & Hirshfield (1994) point out that the real world modelling nature

of the object-oriented paradigm raises the level of abstraction, thus enabling programmers to

call upon some of their own real world experiences. They sum up the feelings of many writers

who have sought alternatives to a procedural language:

'... all but our very best students appeared to us to lack what are currently
regarded as basic software engineering skills. Of those students who produce
working programs, relatively few wrote programs that could be described as
modular, readable, traceable, testable, or maintainable. Still fewer were
capable - even after our CS1 course - of analysing, specifying, designing, and
managing even modest-sized programs of their own. Rhetoric and current
programming texts notwithstanding, our students were not being trained as
problem solvers, and were not developing skills that we regarded as essential
to both their subsequent course work and to their careers. Our frustration with
this situation led us to question not only how we had been teaching our majors,
but also what we had been teaching them' (p.51).

Similarly, Rolling et al (1995) believe there are several strong arguments in support of an

object-oriented language in first year:

• 'Object-orientation encourages well structured programming, which is one
of the most important lessons we try to convey to first year students.

• Re-using existing code can be taught in addition to the development of new
code, leading to a more realistic perception of the tasks expected of a

programmer.
• The ability for students to make use of ready-made objects in their

applications opens a wide range of possibilities for real-world and

interesting examples and exercises.

Chapter 3 Event-driven Programming and Curriculum Design Page 69

• Important software development concepts, such as evolution and re-use can
be introduced and experienced through object-oriented techniques at an
early stage.

• Problems with the paradigm shift in moving between object-oriented and
non-object-oriented environments seem to be reduced' (p. 173)

3.4.2 Evaluation of Object-based Languages in Introductory Programming Subjects

Cross 8c Philips (1996) believe that the object-oriented paradigm is too abstract for students at

an introductory programming level and most of the features of an object-oriented programming

language would have to be omitted. Moreover, Wallingford (1996) found that most popular

object-oriented programming languages are not always appropriate for teaching purposes.

'These factors conspire to make learning problematic. Student attention is
focused on a discomfiting language syntax, which distracts them from the
already difficult task of learning a new problem-solving paradigm' (p.28).

In seeking a language suited to data abstraction Cross and Philips (1996) believe there is 'a

need for a methodology beyond procedural abstraction, but without encompassing the depth of

object-oriented programming, even though one may elect to use a subset of an object-oriented

language to implement it' (p.20).

In one of the few references where Visual Basic was employed as the platform for teaching

introduction to programming, Neal & Lorents (1995) found that students had difficulty

visualising the operation of a program due in part to the absence of design methodology. They

state:

A great difficulty arises in getting the student to visualise the entire program
structure and to understand what portion of the code is executed at what time.
An object hierarchy is used with lower level calls to sequential routines to
explain the structure. Students have little difficulty understanding the objects
and associated properties, events, and methods. However, understanding the
possible scenarios of execution under the event model was hit and miss' (p.
58).

At a conference forum on the experiences in teaching object-oriented design and programming

in introductory programming subjects, Chi (1996) reported that

'although many believe that object-oriented is more than procedure
orientation, there is still a gap between "objects " in programming languages
and objects in the real world. Real world objects are more concurrent and
dynamic. They are classified according to common properties as well as to
haves and have-nots. Program objects are much more restricted' (p. 406).

Biddle & Tempero (1996) found that students who learn the object-oriented paradigm quickly

become familiar with two broad theoretical principles: that object-oriented programming is a

natural way to design programs and that object-oriented programming provides good support

for reuse, but have difficulty designing programs in practice. Their research found that, in

Chapter 3 Event-driven Programming and Curriculum Design Page 70

particular, 'learners often have difficulty in understanding when to use the key object-oriented

programming technique of inheritance, and even more difficulty with multiple inheritance'

(p.217), one of the key components for software reuse.

Cross and Philips (1996) use the term Abstract-Oriented Language to describe languages which

work within an object environment (object-based languages) and provide, according to them,

the benefits of an object-oriented programming language although in a limited, static form.

'Abstract-Oriented Language reusability via generic packages is easier to understand, although

clearly less powerful, than O O L reuse through inheritance. ... there is a vast supply of relevant,

easy to understand abstractions which can be implemented in an Abstract-Oriented Language'

(p.21). Similarly, Lisack (1996) found that 'by working with the built-in components to set

properties at design-time or run-time, and using the methods already defined for those

components, (students) became comfortable with the concept of objects' (p.5).

Despite these differing views on the most appropriate language or the depth of study possible, a

number of authors (Smith and Kelly, 1994; DeClue, 1996; Rolling and Rosenberg, 1996;

Lisack, 1996) remarked on the positive motivational nature of the object-oriented platform.

This may be due in part, to the correlation between a person's problem-solving strategies in the

real world and those required in object-oriented development (Decker and Hirshfield, 1994).

DeClue (1996), however, believes the blend of object-oriented languages with a visual

environment is 'a singularly motivational feature of object-oriented languages' (p.235).

Moreover, Osbourne & Johnson (1993) reported that a 'windowing environment adds a certain

excitement and an increased measure of entertainment to the programming process' (p. 102). In

one of the few accounts of the use of Visual Basic at an Australian university, Smith & Kelly

(1994) found that students who were taught Visual Basic in elective units at the University of

Ballarat were highly motivated.

Students of both genders show strong enthusiasm to succeed. Tasks become
achievable and not an arduous, laborious exercise as is perceived in C
procedural programming classes. There is a desire to explore and enhance.
Almost without exception students teach themselves more than the core
concepts taught in lectures' (p.4).

3.4.3 Program Design

On the important issue of program design Wick (1995) is critical of object-based and object-

oriented platforms in the first programming subject.

Students are not motivated through the use of concepts before they are asked
to consider their implementation. This pitfall is not unique to using C + + or
object orientation, but is intensified by their use. ... The end result is that by the
time students are "ready " to study life cycle issues, they have become so deeply

Chapter 3 Event-driven Programming and Curriculum Design Page 71

convinced they are not needed that they lack the motivation for serious study'
(p.323).

In a contrasting view, Decker and Hirshfield (1994) believe that object-oriented programming

'... supports directly many of the software engineering concepts that are among the most

difficult to convey in procedural terms: code reuse, encapsulation, incremental development

and testing, and, of course, program design' (p.51).

According to Adams (1996) many colleges and universities that have adopted hybrid

languages, ie. those languages with a combination of imperative and object-oriented features,

have also been forced to address the issue of which software design methodology to employ.

Adams (1996) believes neither an Object-Oriented Design-Early approach, that is, one which

teaches object-oriented design from the outset, or an Object-Oriented Design-Late approach,

that is one where structured design is taught in the early subjects and a switch is made to

object-oriented design in latter subjects, are successful. Instead, Adams (1996) advocates an

object-centred design approach - 'an approach that focuses on objects (without inheritance) at

the outset, and expands gradually, culminating in object-oriented design' (p.79). In this

approach, lecturers

'deliberately constrain the problem-space at the outset in order to introduce
the students to object-oriented design using objects of the fundamental types
and the operations that can be applied to objects of those types. Doing so gives
our students experience successfully applying this software design to problems,
building confidence'(Adams, 1996: 79).

According to Wick (1995), the concept of software reusability is difficult for students to grasp

in introductory programming courses, as object-orientation is a large-scale organisational

strategy and cannot be taught within the time constraints. Instead, he advocates an approach

where much of the design process is performed by the lecturer while students experience the

powerful results of object-oriented design through the implementation of a system by only

programming the methods.

On evaluating the use of Smalltalk in introductory programming subjects, Bellin (1992) states

that 'Smalltalk is not just a language, but is really an environment. Deceptively simple syntax

and concepts can be lost in a sea of classes and browsers' (p.135). Similarly, Osbourne &

Johnson (1993) found that 'most students get hopelessly confused by the bewildering number

of classes and methods' (p.104). Guzdial (1995) found that students learning to program in an

object-oriented programming language such as Smalltalk tended to design programs with

relatively small sections of reusable code despite efforts to teach an object-oriented strategy

Chapter 3 Event-driven Programming and Curriculum Design Page 72

explicitly. H e believes students have a centralised mindset which causes them to write

programs that have:

• 'Centralised control: a single leader object makes all or most decisions

• Global or leader-centred communications: either all objects communicate
with all other objects, or all messages in the student's classes have the
leader object either as the receiver or sender' (p. 182)

Using work from Resnick (1992), Guzdial (1995) discovered that it is often easier for students

to initially develop procedural-like programs with a central controlling object in an object-

oriented language neglecting issues of code reuse. 'Centralised models are efficient, easy to

understand, and are often accurate depictions of a problem domain - in many situations, there is

central control and global or leader-centre communication' (p. 183). According to Guzdial

(1995), students tend to write decentralised programs when they truly understand the

components of the model, something which is often neglected by lecturers when teaching

object-oriented programming.

Some universities have moved to an object-oriented programming language enabling students

to learn about event-driven programming concepts without sacrificing structured programming

concepts and conventional program design (Lisack, 1996).

'The typical steps in program development (understanding the problem,
designing the logic, coding the problem, testing and debugging the problem,
and finalizing the documentation) were presented and emphasised throughout
the course. Structured programming concepts were presented and enforced as
much as practical. Modularization is a natural concept to introduce, because
the very nature of an event-driven programming environment forces the
programmer to break the program into modules coinciding with the events of
the program' (p.4).

Similarly, Decker & Hirshfield (1994) believe that an object-oriented platform provides a

framework within which conventional algorithm design (functional decomposition, stepwise

refinement, control structures) must still occur.

'One of the beauties (to us) of the OOP paradigm is that by merely describing
classes one imposes an organisation on a problem that not only clearly reflects
those aspects of the real world being modelled, but also serves as a first crack
at an algorithmic description of those same aspects. By associating functions
with classes, you have already taken a giant step, and for many students this is
the toughest step by far, toward breaking a problem down into more
manageable subproblems. At that point, much of what we have always taught
our students about algorithm development comes into play' (p. 5 3).

Fienup (1996) found that, not only was there a need to emphasise object-oriented design

instead of procedural (or top down) design with a switch to an object-oriented language in a

CS2 subject, but there was a need to expose students to software engineering concepts at an

earlier stage. He found that this change of emphasis brought with it the need to assign larger

Chapter 3 Event-driven Programming and Curriculum Design Page 73

programming projects at an earlier stage in the course so that students could practice object-

oriented design. In addition, Fienup (1996) believes there is a need to place greater emphasis on

testing and debugging strategies at an earlier stage in programming subjects, a view supported

by Lisack (1996) w h o found that students became 'more aware of the importance of program

testing because of the interactive nature of most assignments' (p.5). Similarly, Bellin (1992)

noted that 'testing and debugging become an integral part of the development process, not

something to be done "after coding'" (p.134).

Rolling & Rosenberg (1996) contends that the program development environment is possibly

more important than the object-oriented language but that many of these environments have

created difficulties for teaching object-oriented technology. 'Despite the large emphasis placed

on the choice of a particular object-oriented language, there seems to be little discussion of the

programming environment, which m a y well have more of an influence on the learning

experience than the choice of language' (p.84). Moreover, they believe that the graphical

visualisation techniques used to model program structure are lacking in an object-oriented

programming environment. 'The most advanced professional object-oriented development

environments, such as Visual C + + or Delphi, use graphical support only to build the user

interface of an application, but neglect the internal structure of the program itself (p.85).

Chi's (1996) final remarks summarise the dilemma facing many lecturers evaluating their

programming subjects - 'What kind of balance between object-oriented and procedure

orientation is appropriate during the first two years remains an interesting question' (p.406).

3.5 Summary

This section of the literature review has highlighted the importance of programming in the

information systems curriculum. It has reported on the use of event-driven and other object-

based programming languages in introductory programming subjects, and it has established the

importance of program design as part of these subjects.

The popularity of information systems courses has come about to a large extent, from the

increase in demand from business for graduates who can implement and support computer

information systems. Moreover, programming continues to be an important part of the tertiary

Information Systems curriculum. As the popularity of non-procedural programming paradigms

continues to increase in business, however, tertiary institutions have been forced to consider

adopting similar programming platforms into their information systems courses. This chapter

has reported on the experiences of those who have used event-driven languages in their

introductory subjects. W h e n a procedural language was used, there was general agreement of

Chapter 3 Event-driven Programming and Curriculum Design Page 74

the subject content and design methodology that should be used which had been refined

throughout the years. A switch from one programming paradigm to another, however, requires

lecturers to review the subject material and the mode of delivery. Structured programming,

long established as the programming method to use in the teaching of procedural languages, is

not appropriate for event-driven programming languages. There is no recognised program

design methodology for the development of event-driven systems and many lecturers are now

faced with the problem of how to teach the concepts of programming using this platform. What

is needed, therefore, is a program design methodology that can assist with the teaching of event

driven programming in introductory programming subjects. Such a methodology is proposed

and examined in practice as part of the following chapters.

Chapter 3 Event-driven Programming and Curriculum Design Page 75

Chapter 4 Research Rationale and Methodology

Information systems as a discipline m a y be viewed as incorporating multiple paradigms, as is

found in other emerging disciplines from the social sciences. It is not surprising then, that a

range of research methods have been used in the study of information systems. This chapter

begins by outlining the reasons for choosing a case study approach using interpretive methods.

Proceeding sections then outline the research design, details of the research setting and the

methods and tools used to undertake the research. The benefits and limitations of each of the

methods used in the study is discussed. The chapter concludes with a detailed description of the

techniques used for data analysis.

4.1 Qualitative and Quantitative Research Methods

Traditionally, quantitative methods have dominated Information Systems research. There is,

however, growing interest in the use of qualitative research methods brought about, in part, 'by

a general dissatisfaction with the type of research information provided by quantitative

techniques'(Benbasat, Goldstein et al., 1987: 369). Quantitative methods used in information

systems research are entrenched in logical positivism derived from the scientific tradition and

characterised by repeatability, reductionism and refutability. They are founded on a belief that

values can be separated from facts through the use of scientific methods (Galliers, 1991).

Understanding phenomena is thus primarily 'a problem of modeling and measurement, of

constructing an appropriate set of constructs and an accurate set of instruments to capture the

essence of the phenomenon' (Orlikowski and Bardoudi, 1991:9). Positivist researchers adopt an

epistemological view that assumes it is possible to explain and predict phenomena within the

social world by seeking regularities and causal relationships between various related elements.

This view assumes that knowledge is infallible and can be proven, and allows empirical

research methods to be adopted to test an hypothesis (Klein, Nissen et al., 1991 :1). Moreover,

Klein, Nissen et al. (1991) argue that researchers adopting this perspective believe that

scientific inquiry is 'value-free', enabling them to objectively predict outcomes but not partake

in subjective opinion.

4.1.1 Qualitative Research Methods

Qualitative methods, on the other hand, hold that reasoning, ideas and spontaneous individual

insights are the primary source of knowledge (Klein, Nissen et al., 1991 :5). Thus, in choosing

a research approach,

Chapter 4 Research Rationale and Methodology Page 76

the researcher is in fact choosing which aspects of a phenomenon he wishes to
focus on. The researcher constructs the form and nature of the phenomenon
through the world view he adopts to do the research. So the researcher's
assumptions and values are deeply embroiled in the phenomenon - even in the
very selection of a research approach'(Orlikowski andBardoudi, 1991:16).

Moreover, 'like natural science, qualitative social research is pluralistic. A variety of models

may be applied to the same object for different purposes' (Kirk and Miller, 1990: 12).

Most studies of computer systems based on quantitative methods produce either technical,

economic, or performance measures (Kaplan and Duchon, 1988 :573). In contrast, qualitative

research using interpretive methods:

'..assume that people create and associate their own subjective and
intersubjective meanings as they interact with the world around them.
Interpretive researchers thus attempt to understand phenomena through
accessing the meanings that participants assign to them. ... Interpretive studies
reject the possibility of an "objective" or "factual" account of events and
situations, seeking instead a relativistic, albeit shared, understanding of
phenomena. Generalising from the setting (usually only one or an handful of
field sites) to a population is not sought; rather, the intent is to understand the
deeper structure of a phenomenon, which it is believed can then be used to
inform other settings' (Orlikowski andBardoudi, 1991:5)

Renata Tesch (1990: 3) describes any data that are not quantitative, and so cannot be expressed

in numbers, as qualitative data. Qualitative methods collect data which are '..rich in description

of people, places and conversations, and not easily handled by statistical procedures. Research

questions are not framed by operational variables; rather they are formulated to investigate

topics in all their complexity, in context' (Bogdan and Biklen, 1992 : 2). Unlike quantitative

approaches to research in which there may be clearly laid down procedures to be followed,

there is no single agreed set of established procedures for conducting qualitative research. 'The

only agreement w e would find among qualitative researchers is that analysis is the process of

making sense of narrative data' (Tesch, 1990: 4).

Qualitative research places greater emphasis on the need to understand the why and how rather

than the what of a problem or how much. Researchers adopting these methods are more

concerned to understand individual perceptions of the world. They seek insight rather than

statistical analysis. Qualitative researchers doubt whether social facts exist and question

whether a scientific approach can be used when dealing with human beings (Bell, 1987).

In this thesis, it is argued that qualitative methods are more appropriate for a study of event-

driven programming environments in information systems courses than quantitative methods.

Moreover, it is argued, the methods that are most appropriate are those of the analysis of

Chapter 4 Research Rationale and Methodology Page 77

programs and documents, observation, and the collection of oral interviews from students and

people teaching and using visual, event-driven languages. These methods will be used in a case

study with a small sample size. Yin (1989 :20) states that

"The case study is preferred in examining contemporary events, but when the
relevant behaviours cannot be manipulated. Thus, the case study relies on
many of the same techniques as a history, but it adds two sources of evidence
not usually included in the historian's repertoire: direct observation and
systematic interviewing. ...the case study's unique strength is its ability to deal
with a full variety of evidence - documents, artifacts, interviews and
observations.

4.1.2 Case Studies

Tesch (1990: 59) describes a cognitive m a p of four major qualitative research types ranging

from the most structured to the least structured and holistic:

• the characteristics of language

• the discovery of regularities

• the comprehension of the meaning of text/action, and

• reflection.

She describes the comprehension of the meaning of text/action as research that seeks to discern

meaning. She divides this category into:

• the discerning of themes (of commonalities and uniqueness), and

• interpretation.

Three methods she suggests in the interpretation category are the hermeneutics, case study and

life history methods. Yin (1989: 23) defines a case study as

'an empirical inquiry that:

• investigates a contemporary phenomenon within its real-life context;
when

• the boundaries between phenomenon and context are not clearly
evident; and in which

• multiple sources of evidence are used'.

Tesch (1990) describes the characteristic mode of analysis of case studies as dialoguing with

the data as this typically calls for interpretation of one piece of data and what it means, rather

than dealing with regularities and patterns across many pieces of data of a similar kind. Case

studies make sense of the data they collect, and the result of the analysis is 'an instructive

portrait, the case study having been selected for its "typical" nature in the first place' (p.94).

According to Yin (1989) a case study approach relies on many of the same techniques as a

history, but it adds two sources of evidence not usually included in the historian's repertoire:

direct observation and systematic interviewing. Case study analysis can be undertaken using

Chapter 4 Research Rationale and Methodology Page 78

qualitative or quantitative methods, however, 'the case study's unique strength is its ability to

deal with a full variety of evidence - documents, artefacts, interviews and observations'(Yin,

1989: 20)

Yin (1989 :52) argues that the arguments in favour of a single experiment also justify a single-

case study. Mintzberg (1983 :107) takes a similar view

'What, for example, is wrong with samples of one? Why should researchers
have to apologise for them? Should Piaget apologise for studying his children,
a physicist for splitting only one atom?'

Using a small sample size can often yield more useful research results compared to results from

a large sample particularly when the researcher attempts to study a large sample within limited

time (Mintzberg, 1983 :108). Further, Mintzberg (1983 :113) states that

'we uncover all kinds of relationships in our "hard" data, but it is only through
the use of this "soft" data that we are able to "explain " them, and explanation
is, or (sic) course, the purpose of research'.

The case study in this thesis will be used in the explanatory phase of the research. The essential

part of any case study approach to qualitative analysis 'is for the researcher to seek connections

and explanations, not just to describe' (Tatnall, 1993: 19). Tesch (1990: 85) argues that

researchers in this field '...try to find out more than just what is, they also try to find out why it

is'. Tatnall (1993: 19) suggests that 'what is important is the seeking of explanations, and that

the analytical procedures used must be designed to facilitate such theorising'.

4.2 Interpretivism

Interpretivists view science as a

'... convention - related to societal norms, expectations, and values - engaged
in the search for understanding. Science uses whatever tools, techniques and
approaches which are considered appropriate for the particular subject matter
under study' (Klein, Nissen et al, 1991:2).

The world is not conceived of as a fixed body of objects, but rather as 'an emergent social

process - as an extension of human consciousness and subjective experience' (Burrell and

Morgan, 1979 :253). Walsham (1993: 5) states:

'Interpretive methods of research start from the position that our knowledge of
reality, including the domain of human action, is a social construction by
human actors and that this applies equally to researchers. Thus there is no
objective reality which can be discovered by researchers and replicated by
others, in contrast to the assumptions of positivist science. Our theories
concerning reality are ways of making sense of the world and shared meanings
are a form of intersubjectivity rather than objectivity. Interpretivism is thus an
epistemological position, concerned with approaches to the understanding of

Chapter 4 Research Rationale and Methodology Page 79

reality and asserting that all such knowledge is necessarily a social
construction and thus subjective'.

The interpretive philosophy is premised on the epistemological belief that 'social process is not

captured in hypothetical deductions, covariances, and degrees of freedom. Instead,

understanding social process involves getting inside the world of those generating it' (Rosen,

1991). The underlying premise, therefore of interpretivism is that 'individuals act towards

things on the basis of the meanings that things have for them, that meanings arise out of social

interaction, and that meanings are developed and modified through an interpretive process'

(Boland, 1979 :260).

Interpretive information systems research sees 'the pursuit of meaning and understanding as

subjective and knowledge as a social construction' (Walsham, 1993: 21). This view of social

constructionism does, of course, have an effect on research methodology. Tatnall (1993),

borrowing from Goodson and Mangan (1991) suggest that there are two closely related sets of

methodological implications.

'Firstly, ..that in order to adequately analyse an observed social process, the
meanings ascribed to that process by the participants must be taken into
account...[and]., that there are ethical imperatives, as human subjects of the
research must be recognised as "fully engaged participants in the process ",
and that their dignity and autonomy as individuals should be
respected'(Tatnall, 1993: 21).

Orlikowski (1991: 11) believes 'while the results of natural science do not impinge on and

change the nature of the phenomena studied, the results of social science do enter into the

discourse of everyday human reality, and clearly can and do transform the nature of these

phenomena'. Borrowing from Giddens (1987), Orlikowski (1991: 11) notes,

'in the social sciences, unlike in natural science, there is no way of keeping the
concepts, theories, and findings of the researchers "free from appropriation by
lay actors." Clearly, information systems research enters into the very
constitution of the phenomena it studies'. Indeed, a major goal of information
systems research is to have an impact on information systems practice; that is,
the findings of information systems research are intended to inform and
improve the development and use of information systems in organisations'.

Interpretive researchers argue that, on a number of levels - conceptual, methodological, and

substantive - all researchers are inherently implicated in the process of research. The researcher

'can never assume a value-neutral stance, and is always implicated in the phenomena being

studied' (Orlikowski and Bardoudi, 1991:15). Researchers' prior assumptions, beliefs, values,

and interests always intervene to shape investigations.

Chapter 4 Research Rationale and Methodology Page 80

4.2.1 Case Study and Interpretivism

In arguing for case research, Walsham (1993: 247) believes

'if one adopts such a theoretical stance on the nature of knowledge, in-depth
case studies are the only feasible method for empirical research'.

Moreover, the need for context-dependent research in information systems necessitates

interpretive research using case study methods (Kaplan and Duchon, 1988).

The need for case studies arises out of the desire to examine humans within their social

settings. 'The case study allows an investigation to retain the holistic and meaningful

characteristics of real-life events' (Yin, 1989: 14). Interpretive researchers avoid imposing

externally defined categories on phenomena in a case study. Instead, they attempt to derive

meaning by in-depth examination of and exposure to the phenomena of interest. Benbasat

(1987: 369) states

'there are three reasons why case study research is a viable information
systems research strategy. First, the researcher can study information systems
in a natural setting, learn about the state of the art, and generate theories from
practice. Second, the case method allows the researcher to answer "how " and
"why" questions, that is, to understand the nature and complexity of the
processes taking place. ... Third, a case approach is an appropriate way to
research an area in which few previous studies have been carried out. With the
rapid pace of change in the information systems field, many new topics emerge
each year for which valuable insights can be gained through the use of case
research'.

Kaplan (1988: 573) quoting Lyytinen (1987) makes a similar appeal for case studies on the

grounds that 'this research strategy seems to be the only means of obtaining sufficiently rich

data' and because the validity of such methods 'is better than that of empirical studies'.

4.2.2 Interpretivism, Case Studies and Theory Development

In the search for causal relations, positivist research focuses on the reliability and validity of

research procedures by adopting a 'predefined and circumscribed stance towards the

phenomenon being investigated' (Orlikowski and Bardoudi, 1991:12). Often, the simplification

and abstraction needed for good experimental design and the objective measurement of

phenomena, can remove enough features from the subject of study that only obvious results are

possible. Kaplan (1988: 572) notes that 'the stripping of context buys objectivity and testability

at the cost of a deeper understanding of what actually is occurring'. In the search for universal

laws, historical and contextual conditions, as possible triggers of events or influences on human

action, m a y be over-looked. 'Neglecting these influences may reveal an incomplete picture of

information systems phenomenon.' (Orlikowski and Bardoudi, 1991:12). Rowan (1973: 210)

Chapter 4 Research Rationale and Methodology Page 81

notes that 'research can only discover one-sided things if it insists on setting up one-sided

relationships...You only get answers to those questions you are asking'.

Yin (1989) argues that it is a 'fatal flaw' in doing case studies to conceive of statistical

generalisation as the method of generalising the results of the case.

"This is because cases are not "sampling units " and should not be chosen for
this reason. Rather, individual case studies are to be selected as a laboratory
investigator selects the topic of a new experiment.... Under these circumstances,
the method of generalisation is analytic generalisation, in which a previously
developed theory is used as a template with which to compare the empirical
results of the case study '(p.38).

He argues that case studies, like experiments, are not generalisable to populations or universes.

In these circumstances, the investigator's goal is to 'expand and generalise theories and not to

enumerate frequencies' (p.21), that is, to generalise analytically not from statistical evidence.

Moreover, Walsham(1993: 6) argues

'In the interpretive tradition, there are no correct and incorrect theories but
there are interesting and less interesting ways to view the world. A reader
might well ask "interesting to whom"? An author can only respond in the first
instance that the theories which he or she presents are interesting to
themselves and may be interesting to others. However, although the use by an
individual author of a particular theoretical approach derives no doubt from
his or her personal experience and insight, the testing of the value of these
insights to others can be carried out by exposing the approach through verbal
and written discourse to enable broader judgements of value to be made.
Theory can be compared, evaluated and improved by this form of public
testing; the result is not the generation of 'best' theory, but the creation of
intersubjectivity tested theoretical approaches, considered of value to a
broader group than a single individual'.

Qualitative methods are characterised by an attempt to avoid prior commitment to theoretical

constructs or to testable hypotheses formulated before gathering any data since the process of

interpretive research is dialectical not linear (Kaplan and Duchon, 1988; Myers, 1994).

Similarly, qualitative methods, by their very nature, use data to both pose and resolve research

questions (Kaplan and Duchon, 1988).

4.3 Research Design

The research is divided into two phases. The first is exploratory research and the second is

explanatory research using a case study. Figure 4.1 illustrates the relationship between the

different methods used to accomplish the research.

Chapter 4 Research Rationale and Methodology Page 82

Exploratory Explanatory

Case Study

Interviews

with

Experts

Pilot Study

Observations

Student

Interviews

Documentation

Interviews
with

Lecturers

Figure 4.1: Structure of Research Design

4.3.1 Exploratory Phase

Research which is exploratory aims to formulate more precise questions for future research.

Zikmund (1991: 32) believes exploratory research enables the researcher to obtain a better

understanding of the dimensions of the problem. Moreover, a pilot case study can help with

conceptual clarification, and refine data collection techniques and procedures (Yin, 1989 :80).

In this research, two methods were used in the initial phase; interviews with lecturers from

Australian institutions w h o had introduced or evaluated event-driven programming languages

as the platform for introductory programming subjects in Information Systems, and a pilot

study conducted on post-graduate students in an introductory programming subject at the

Victoria University of Technology.

4.3.1.1 Pilot Study

In 1995, with permission from the Programming Committee of the Department of Business

Computing at the Victoria University of Technology, Visual Basic was used for the first time as

the implementation programming language in the Introduction to Programming subject for

postgraduate students. In the pilot case study for this research, students were requested to

complete an information sheet at the beginning of the semester and a survey-type questionaire

Chapter 4 Research Rationale and Methodology Page 83

at the end of the semester. In the pilot study, most of the emphasis was placed on observational

data rather than on documentary material and interviews which, as expected, resulted in only a

small amount of data.

4.3.1.2 Interviews with Experts

The exploratory research began by interviewing program co-ordinators from three different

Australian universities who had investigated the possible use of an event-driven programming

language in their respective introductory programming subject. Moreover, each co-ordinator

had extensive experience in the teaching of programming in many institutions at various levels

and with curriculum development. Only one university finally decided to use the event-driven

paradigm. The pseudonym and background used for each expert is given below:

Lecturer D Lecturer D was well known for his work in computer education at many

tertiary institutions. H e has written books pioneering program design.

Originally from a C O B O L background, he introduced Visual Basic to first year

students in 1995 and n o w conducts professional development programs in

event-driven programming for members of the Australian Computer Society.

Lecturer B Lecturer B has extensive teaching experience and has widely researched the

issue of w o m e n in computing particularly in programming. Lecturer B,

evaluated Visual Basic as the platform for their introductory programming

subject before settling on VisualAge.

Lecturer R Lecturer R had been actively involved in the introduction of computers into

secondary education in Australia. H e had been a computer education consultant

for a state Department of Education. H e is now a senior lecturer in a business

computing department in an Australian university. H e is the author of many

books, several on Visual Basic.

Lecturer R, together with Lecturer T from V U T (who was interviewed later), had used

evaluation sheets to refine the content of the materials they used and the processes that they had

adopted to teach Visual Basic in respective second and third year subjects. Both lecturers

reported on the various approaches they had used in their subjects and on the attitudes of

students towards the use of event-driven programming languages based on results of these

evaluation sheets.

Chapter 4 Research Rationale and Methodology Page 84

4.3.2 Case Study

4.3.2.1 Research Context

The Victoria University of Technology was chosen for the case study for several reasons:

• It was one of only two universities in Victoria that had adopted an event-driven,

visual programming language as the introductory language in an Information

Systems course.

• Event-driven programming languages were being used in both undergraduate and

postgraduate information systems courses

• Event-driven programming languages were being used at a number of year levels in

the undergraduate course

The case study involved 80 students divided into five workshop groups over two semesters in

1996 for the introductory programming subject for undergraduates and post-graduates.

4.3.2.2 Research instruments

Four instruments were used in the case study for this research project:

• Documentation

• Interviews with lecturers

• Interviews with students

• Observations

4.3.2.3 Documentation

Personal documents that respondents used or wrote themselves played an important role in this

case study. The documents acquired from informants included computer program listings, pre­

program documentation (such as pseudocode and screen layouts), test plans and program

documentation.

The most important use of documentary information in case studies is to support and

supplement evidence from other sources (Yin, 1989 :86). Documentation helps to track the path

of a person as they progress through the steps to produce a computer program. The

documentation can provide clues as to how a person is thinking at some stage or how they view

the process of developing a program. At times, inferences can be made from documents. For

example, by observing the number and types of control buttons a person places on a screen

layout, this m a y raise new questions about that person's understanding of program control.

These inferences become clues worthy of further investigation .

Chapter 4 Research Rationale and Methodology Page 85

Similarly, documentary data obtained from lecturers and course co-ordinators often gave clues

to new directions or provided supporting evidence for information obtained from other sources.

4.3.2.4 Student Interviews

The interviews were firstly used to gather descriptive data, in the informants own words, which

provided insights into h o w they worked with event-driven languages and the program design

methodology. Secondly, the interviews were used to verify points gained from other data

collection methods.

A semi-structured style of interview questioning was used. Students were given a prepared

problem in the interview which they were asked to solve (see Appendix 1). Observations were

made while a student attempted to solve the problem and the documentation was retained.

Table 4.1 provides a summary of the characteristics and background of the students selected for

interviewing.

Table 4.1: S u m m a r y of Students Interviewed

Male

Female

Total

Bachelor of
Business

(Computing

)
Full-time

4
5
9

Graduate
Diploma of
Business

Computing

Part-time

2
2
4

Bachelor of
Business

(Accounting)

Part-time
1

1

Bachelor of
Arts/Business
Computing

Full-time

1
1

Total

Part-time

3
2
5

Full-time
4
6
10

Overall
7
8
15

Care was taken to select students with a range of experiences and from different courses.

Fifteen students were interviewed (seven male and eight female over two semesters. Appendix

2 outlines details of each student and their pseudonym.

4.3.2.5 Lecturer Interviews

Interviews were conducted with experienced lecturers who taught the program design

methodology to students in workshops at the Victoria University of Technology. Three

lecturers were interviewed and were given the pseudonyms Lecturer M , Lecturer O and

Lecturer T respectively.

A small tape recorder was used when interviewing students and lecturers and brief notes were

taken. A transcript of each interview was made and included interview notes where appropriate.

Each transcript of an interview was entered as a new word-processor document, which was

Chapter 4 Research Rationale and Methodology Page 86

printed and stored ready for future analysis. A copy of the interview was sent to each lecturer

for verification.

4.3.2.6 Observation

The observation of individuals and groups in natural settings was another method used to

obtain primary data. Students were observed in workshops and when they were attempting the

prepared problem in the interview.

At the end of the research there was a large amount of data; interview transcriptions,

documents and notes on observations from interviews and workshops.

4.3.2.7 Triangulation

A major strength of case study research using qualitative methods is the opportunity to use

many different sources of evidence (Yin, 1989). Indeed, the 'opportunity to use multiple

sources of evidence far exceeds that in other research strategies, such as experiments, surveys

and histories' (Yin, 1989 :96). Multiple methods can provide a richer, contextual basis for

interpreting and validating results (Kaplan and Duchon, 1988 :575). Similarly, 'the use of

multiple sources of evidence in case studies allows an investigator to address a broader range of

historical, attitudinal, and observable issues (Yin, 1989 :97). 'Mixing methods can also lead to

new insights and modes of analysis that are unlikely to occur if one method is used alone'

(Kaplan and Duchon, 1988 :582).

By using multiple sources of evidence in a case study the researcher can reduce the problem of

unreliable data and facilitate the development of converging lines of inquiry. Combining

different methods introduces both testability and context into the research.

'Collecting different kinds of data by different methods from different sources
provides a wider range of coverage that may result in a fuller picture of the
unit under study than would have been achieved otherwise. Moreover, using
multiple methods increases the robustness of results because findings can be
strengthened through triangulation - the cross-validation achieved when
different kinds and sources of data converge and are found congruent or when
an explanation is developed to account for all the data when they diverge'
(Kaplan and Duchon, 1988:575).

Triangulation is a process of checking inferences drawn from one set of data sources by

collecting data from other sources (Trauth and O'Connor, 1991 :134). Triangulation '...is a term

borrowed from land surveying, and means simply that you get a better view of things by

looking at them from more than one direction'(McNeill, 1990 :123). Moreover, the

'triangulation of data from different sources can alert researchers to potential analytical errors

and omissions (Kaplan and Duchon, 1988 :582).

Chapter 4 Research Rationale and Methodology Page 87

In undertaking this study, triangulation has been used, where at all possible, to verify findings

from respondents. In many cases, important issues raised by key respondents have been

verified by asking similar questions of others, and in other cases it has been possible to

triangulate these findings through interviews and observation of students in workshop settings.

In some cases, it has been possible to triangulate from accounts published in journal articles.

The reliability of data has been achieved by interviewing the key developers of visual, event-

driven subjects in Information Systems education in Australian universities, observing and

interviewing students in subjects, and collecting documentation.

4.3.3 Limitations of Methods

There are limitations to any method of research and some of the arguments against a case study

approach have been noted earlier. The following points, however, are noted with regard to a

case study approach and the instruments used for this research.

A criticism of a case study approach is that it is usually restricted to a single setting or

organisation and there is 'difficulty in acquiring similar data from a statistically meaningful

number of similar organisations' (Galliers, 1992: p.67). Although this view is often

championed by quantitative researchers advocating statistical generalisations, a researcher must

be aware that the case study itself does not ensure that the results have a more generalisable

applicability (Craig, 1996). A s Walsham(1993: 15) argues

from an interpretive position, the validity of an extrapolation from an
individual case or cases depends not on the representativeness of such cases in
a statistical sense, but on the plausibility and cogency of the logical reasoning
used in describing the results from the cases, and in drawing conclusions from
them'.

One of the major difficulties for a researcher who adopts a case study approach is that the

strategies and techniques for analysis are not well defined (Miles, 1983; Yin, 1989). As

Tesch(1990) points out, the early case study researchers left few details of their analysis

procedures. Although this enables a researcher to be flexible in seeking explanations, the

success of the case study is dependent upon the skills of the researcher. According to Myers

(1994), however, the question of the validity of case study data is a hermeneutical one: does the

interpretation and explanation of the case study make sense? A s Kirk and Miller (1990: 21)

state,

'In the case of qualitative observations, the issue of validity is not a matter of
methodological hair splitting about the fifth decimal point, but a question of
whether the researcher sees what he or she thinks he or she sees'.

Chapter 4 Research Rationale and Methodology Page 88

A recognised problem when conducting interviews is interviewer effect, that is, the interviewer

affecting the nature of the data he or she is trying to measure. A rigid interview structure may

go part way to alleviate the problem but at the cost of obtaining appropriate data. As Tatnall

(1993: 46) notes: '... all that the interviewer can do is be aware of this difficulty and take as

much care as possible not to lead the subject into making particular responses'.

Direct observation has many advantages over other forms of data collection. Observations

enable the researcher to:

• collect original data when it occurs

• obtain information that participants m a y ignore

• obtain information that participants believe is not relevant

• observe events in their entirety and in context with other activities

The process of observing participants, however, requires the researcher to be present and this

may cause the individual to alter his or her actions for that period of time. Moreover,

observations are limited to learning about present activities, not past or future ones, and should

not seek the opinions, preferences, intentions or attitudes of an individual.

4.3.4 Ethical Issues

This research was undertaken within the boundaries established in Victoria University of

Technology's Code of Conduct of Research (1993). Moreover, the research was conducted with

the approval of the Programming Committee of the Department of Business Computing. All

students in the introductory programming subject were informed of the research at the

beginning of each semester. Potential interviewees were approached and given an explanation

of the nature of the research. If they consented to be interviewed they were handed a letter

explaining the nature of the research and asked for written consent (Appendix 3). Before the

interview commenced interviewee's permission was sought to tape the interview. Photocopies

of documents were only obtained from students who gave permission. Pseudonyms are used for

students to protect their identity.

4.4 Data Analysis

4.4.1 Qualitative Analysis

Qualitative data analysis is a complex process. 'Qualitative data tend to overload the researcher

badly at almost every point... and ... there is no easy way to record qualitative data other than

through running notes' (Miles, 1983 :118). However, raw notes ordinarily mean little or

Chapter 4 Research Rationale and Methodology Page 89

nothing to anyone other than the researcher and need to be segmented and organised into

categories.

Tesch(1990: 113), along lines derived from Bogdan and Taylor (1975) defines data analysis as

'a process which entails an effort to formally identify themes and to construct
hypotheses (ideas) as they are suggested by data and an attempt to demonstrate
support for those themes and hypotheses'(Tesch, 1990 .113).

Moreover, qualitative analysis is not the last phase in the research process but is done in almost

constant interaction with data collection. Tesch (1990) suggests, in fact, that analysis begins as

soon as a first set of data is gathered, resulting in a process where the collection of data and its

analysis drive each other along. The analysis ends only after new data no longer generate new

insights, that is, the process 'exhausts' the data. Moreover, 'manipulating qualitative data

during analysis is seen as an "eclectic" activity, there is no one "right" way' (Tesch, 1990

:114).

While qualitative research may not set a standard format for the presentation of results, the

analysis of data must, however, preserve the concrete details of case study data and present

them in a coherent manner. The question of reliability of case study data does not depend on

the replicability of data but 'on a process of data reduction and analysis that results in

something that can be generally recognised as representing (or perhaps re-presenting) the data'

(Tatnall, 1993 :18). Tesch (1990: 304) argues a similar position:

'... successful qualitative data reduction, while removing us from the freshness
of the original, presents us instead with an image that we can grasp as the
"essence", where we otherwise would have been flooded with detail and left
hardly a perception of the phenomenon at all'.

4.4.2 Analytic Strategy

Yin (1989) advocates a general analytic strategy detailing priorities on what to analyse and

why. The role of a general analytic strategy is 'to assist the researcher to choose among

different techniques and to complete the analytic phase of the research successfully' (Yin,

1989: 106). One of the two general strategies he outlines is developing a case description, that

is, developing a descriptive framework for organising the case study. Without one of these

strategies a case study analysis will proceed with difficulty or even place the case study in

jeopardy (Yin, 1989 :109).

Tesch (1990 :98) too, advocates a systematic and comprehensive analytic process although not

as rigid as Yin's approach. She outlines one general strategy, interpretive/descriptive, which,

together with theory-building, are sub-groups of interpretational analysis. 'All types of

Chapter 4 Research Rationale and Methodology Page 90

interpretational analysis are descriptive ... and ... contribute to theory' (Tesch, 1990 :98). The

purpose of interpretive/descriptive analysis is the identification of patterns or discerning

meaning.

Mintzberg (1983), in what he defines as inductive research, identifies two essential steps in the

analysis of qualitative data. The first is 'detective' work, that is, the tracking down of patterns

and consistencies. The second step is the creative leap in relevant directions. Tesch (1990)

describes the first step as data organisation, that is, the 'detailed examination' or 'the

identification of themes', and the last step as data interpretation, that is, the 'determination of

its essential features' or ' understanding' or 'construction of propositional statements'. Yin

(1989 113), in discussing the analysis of case study data refers to this process as 'explanation

building' - the gradual building of an explanation, usually in narrative form, through a process

of refining a set of ideas.

All qualitative data analysis processes, however, operate on a conceptual and a concrete level

simultaneously (Tesch, 1990 :99). Although all steps in the analytic process require intellectual

involvement, manual tasks must be performed as data are segmented and organised into

categories. This must be performed in some concrete way.

4.4.3 Data Analysis for this Research

In this study, a process of sorting or coding was used which Tesch (1990) defines as de-

contextualizing and re-contextualizing. In the process of reading the data documents, smaller

parts in the data documents - items, incidents, or meaning units were identified. Tesch defines

this as 'a segment of text that is comprehensible by itself and contains one idea, episode, or

piece of information'(p. 116).

It was decided not to use text analysis software in handling the data from interviews and

observations. Instead, a manual method of sorting and coding the printed documents of

summary data was used. The analysis began by carefully reading through the documents to

identify features and patterns in the data. In many cases, this was a slow process and involved

several passes of the documents. Items in documents were then tagged for further processing.

Using the cut-and-paste function of the word processor, relevant text segments were transferred

to a new document. The tagged text was then assembled from this document into topics or

categories. In some cases, it was necessary to contact the interviewee again for clarification of a

particular point, or to ask an additional question. At the end of the process, there were a number

of topic areas with supporting evidence from observations and interviews.

Chapter 4 Research Rationale and Methodology Page 91

The next chapter presents the findings of the exploratory section of the research and outlines a

program design methodology for teaching event-driven programming. Chapter 6 outlines the

results from the case study where a program design was used by students in an introductory

programming subject.

Chapter 4 Research Rationale and Methodology Page 92

Chapter 5 Developing a Methodology for
Event-Driven Programming

5.1 Introduction

This chapter will firstly present the analysis of the interviews with experts from three

Australian tertiary institutions. The experts describe the outcomes from decisions to either

adopt or reject an event-driven language in their respective introductory programming subject.

One university adopted an event-driven language, one university retained a procedural

language, and the third moved to an object oriented language.

The analysis of data from the experts identifies a number of key factors influencing the choice

of language for first year programming subjects. Moreover, the changes to the content and

teaching approach, and the need for a program design methodology is outlined. The chapter

concludes by outlining a program design methodology for the teaching of event-driven

languages to novice programmers.

5.2 Overview of Courses and Subject Characteristics

The data was gathered from experts at three tertiary institutions. In each institution, a single

introductory programming subject is taught as part of their 24 unit degree, usually over three

years of full time study. T w o institutions offer degrees from within their respective Business

faculty, while the third offers a degree from the School of Information Technology and

Mathematical Sciences. In each of the degrees, emphasis is placed upon aspects of information

systems and systems development, with subjects including systems analysis, systems design

and database systems proceeding the introductory programming unit. Lecturer D outlines the

overall aims of their subject and, in this case, justification for using Visual Basic:

reinforce all the other things we teach them in information systems - I mean a
straight up the middle of wicket system subject. You might talk about user
friendliness and screen interaction the sort of human computer interaction stuff. If
you do that in terms of theory, you know in terms of week three of your systems
analysis and design, they will sit there and nod their head and say yeah yeah yeah
but it don't mean all that much to them. But if you get them on a PC and they
actually have to put together a user interface and see how awful it is if it has 17
colours, you cannot read it properly etc. and all of that comes home much better to
them if they are doing it than if you give them Chairman Mao's 47 rules on
designing screens and it was something you cannot do with the COBOL's and the
Pascals of the world because they have such dreadful character-based screen
interaction. So one of the aims is to get them thinking about what computing
systems do by getting them to write some software to make them do it and Visual
Basic is such an easy way for them to write software (Lecturer D).

Chapter 5 Developing a Methodology for Event Driven Programming Page 93

Two of the institutions are highly reliant upon students from other departments to supplement

numbers in their introductory programming subject and in other proceeding subjects. There is a

resultant impact on the breadth of skills amongst students within the introductory programming

subject:

We had a range of students in our first year programming courses, the pure
computer science people and people who came from business, applied science,
education, humanities who are doing the unit as an elective. So we had to step
down to the middle of the path if we were going to use one language or we might
have to stream two groups (Lecturer B).

At these institutions, attracting and retaining students from other areas of their university is an

important factor in the decisions about the language used in the programming subject.

5.3 Factors Influencing the Choice of Language

The literature analysis examined some of the deciding factors in the choice of an event-driven

language for an introductory programming subject. It is relevant to briefly explore some of the

factors that influenced the tertiary institutions analysed in this research before examining the

impact of an event driven language on the subject aims, content and delivery. This section

outlines three factors which are significant in the choice of the language: student and gender

issues, technological change, employer perception and the need to update courses, and changes

to the aims and objectives of the introductory subject.

5.3.1 Student Interest and Gender Issues

As mentioned above, the introductory programming unit at two of the institutions is viable only

if students from other departments enrol in the subject. One of the experts was quite candid

about the need to make the subject attractive to students:

So what we have to do is to make the computing bit interesting and sexy and
attractive and keep them in there otherwise they leave. What has happened in the
past I guess with the old COBOL and C syllabus, the die-hards have stuck in there
but really a lot of them were pretty marginal and at best we would have had 30
students by the time we got through to the second year(Lecturer D).

It is, however, important to note that this was only one of the reasons for changing to an event-

driven language at this university. Most importantly Lecturer D was concerned that, without

students completing both programming units they would gain the impression that the course

was not a genuine information systems degree:

However for the kids who come in to do the Bachelor of Business Computing we
get them to do that in the first year with a view of hooking them into the MIS major
so they get some real computing to do in the first year otherwise they think we
came along to be computing students and really there is only one mandatory

computing unit in the first year (Lecturer D)

Chapter 5 Developing a Methodology for Event Driven Programming PaSe

It would be unrealistic to believe that the change to an event-driven language in itself could

change student's perception of programming. Nevertheless, all of the experts held the view that

if students believe that the language is modern and more relevant then they are more likely to

enjoy the programming experience. This in turn, they believe, leads to better outcomes and

helps attract and retain students in a course. Lecturers at one university found:

In terms of how it has worked out it has been a fantastic success. I think, partially
perhaps to Visual Basic itself but partially I think just to get the students away
from studying languages like COBOL. I haven't anything against COBOL, C,
Pascal where kids look at a subject that is badged programming 101.1 cannot do
that, you have to be a rocket scientist to be a programmer and they all go off and
do other things. ...you can put together applications that are like the applications
that they use, so they have a bit of colour and menus and buttons to push and
mouses to click - all the sort of things they see on normal software (Lecturer D)

In a later interview with Lecturer M from Victoria University, he compared the attitudes of

students who used Visual Basic in the introductory programming subject to students who used

Pascal:

The biggest difference is that students like it more. They seem more excited about
doing it. I had very few students grad dips or whatever who produced anything
that they were really excited about in Pascal, whereas I think some of the ones,
particularly doing the grad dip last semester, thought it was terrific and they could
produce all sorts of stuff and whatever. So I think there is a motivating thing about
it. I don't think it is more difficult than Pascal, I think once they get the hang of it
and understand how the thing works that they get much more out of it (Lecturer
M).

The largest university of the three examined, does not appear to have as many problems

attracting students to their course as do the two smaller universities. They retained PICK Basic

as the platform for their introductory subject although they moved away from it in second and

third year subjects

Research by Craig (1997) found that female students are more likely to leave Information

Systems courses than male students. It was therefore encouraging to note the interests of female

students was an important issue for some experts. Lecturer B noted a considerable change in

the attitude of female students:

They see something they have developed very quickly, they see it happen and that
is quite exciting - it is motivational, a sense of achievement and it was really one
of the nice things that came out in the first semester last year was, instead of the
females saying, 'I cannot cope, I don't understand this, it is all Chinese', to, 'Hey,
this is easy.' It was a lovely change to observe and so there was a sense of
achievement and one of the other reasons we swapped to Visual Age and Smalltalk
was that we felt that all the students would come in on an equal level ...So here we
had, for the first time, people on an equal level and the females and the weaker
students able to achieve something very quickly very early on (Lecturer B).

Chapter 5 Developing a Methodology for Event Driven Programming Page 95

Moreover, Lecturer B believes that a visual programming environment is a vital component for

motivating students:

It is the capacity to see a screen in the application functioning that I think allows
the students to build confidence with using the product and using computers,
because some have not used computers and so, from that point of view, the screen
work is quite important in the visual approach (Lecturer B).

Lecturer M observed that the enthusiasm for programming had changed amongst most students

and especially female students:

The girls seem more interested in it than use to be. I know in the systems
implementation, a lot of the girls said to me this is terrific, now I had work
experience last year and I spent all my time doing RPG or the other and I come
back and this is terrific. Because they had some programming skills because they
had been out there doing that and they did not have to worry about the
programming part of it, they could just see the presentation part of it was so much
better. So I think it will motivate the students to do more programming. Pascal
wasn 't very exciting because you could never get it really look very good. It took
you 50 lines of code to draw a box on the screen (Lecturer M).

Lecturer D assessed the impact of the move to an event-driven language on student attitudes in

the following way:

It has been good, they really do like it, and we have attracted a number of students
from computing and maths who have come over do this. We have attracted
students to this course with more than any other single thing that I can think of
(Lecturer D).

5.3.2 Technological Change, Employer Perception and the Need to Update Courses

The literature analysis highlighted the importance some institutions, particularly in the U.S.A.,

place upon adapting quickly to business needs. One of the universities in this study retained

PICK Basic for their introductory programming subject believing it made their course more

commercially attractive:

The department has a strong commitment to producing graduates who have
mainstream commercial products under their belt. The students are going into
industry, industry ready and because our research has shown there is no Pascal
industry, we do not teach it. So we teach structured programming concepts but we
do it with commercially real systems like Oracle and Visual Basic and Pick Basic.
We were a niche marketer in the old days for PICK but now students could not get
our degree without sound Oracle knowledge and sound Visual Basic knowledge
and one other language and those are all chosen from the top dozen or so
languages or environments in the computer based industry (Lecturer R).

Lecturer B recognised the need to introduce an object-oriented type approach for similar

reasons. Moreover, Lecturer D indicated that students do not see a subject with a procedural

program as relevant in an Information Systems course and describes languages of this type as

backroomish:

Chapter 5 Developing a Methodology for Event Driven Programming P a g e

When you are teaching them programming with the Pascals, the C and the
COBOL's of the world, whilst you might tell them that it is good for their soul
they sort of cannot see it because they write Pascal or COBOL with a bit of screen
interaction, but they know that is not screen interaction like anybody really does
and most of the work that you tend to do with them. They think, anyway, that it a
bit boring and a bit backroomish and they cannot see any sort of relevance to
other of the sort of software (Lecturer D).

5.3.3 Aims and Objectives of Introductory Subject

As outlined above, two of the universities moved away from using a procedural language in

their respective introductory programming subject without, they believed, compromising the

original aims of the subject, and partially in recognition of making the subject more palatable

for students and more commercially attractive. Lecturer D highlights this point in the following

statement comparing programming in information systems curriculum to computer science:

It depends upon what you think is the programming task and to me the
programming task is putting the do it instructions on whatever tool you have got.
Now if the only tool you have got is a text file which is going to then be compiled
by the compiler it seems if you followed their logic you might going back and
saying well even that's not far enough old fellow. I mean how does the few lines of
code that says hello world get converted back into binary strings and so on. I think
all of us need to make use of contemporary tools without building them.. If you
were producing kids who were going to work for Microsoft and build the next
generation of Visual Basic then I might be on there side. These kids need to be
builders of these things not just users so they better know how you build your own
VBXS and your own forms. It is not what I believe is what Information systems
course are in the business of doing. For me the kids are going to go out there, they
are going to have these tools, then lets just roll up our sleeves and use the tools.

It was interesting, therefore, to compare these views with those of Lecturer R. In a passionate

response in support of procedural languages he stated:

It seems to me that you can learn algorithmic solutions or algorithmic
representation of solutions, you can learn that without a third generation
procedural language but why bother. And those languages are powerful teaching
tools because they give students immediate reinforcement as to whether their
algorithm is sound and I think it is just foolish to ignore one third of our discipline
or to try to teach it other than by using what is a very powerful tool. Now if you
think of procedural programming in a 3rd gen language as something where the
syntax is important or some part that is not common to multiple languages or is
unique to that language then I think that is equally stupid. But people will to the
end of time gain control over their environment by learning how to convert
problem solutions into an algorithmic form. It doesn 't matter whether that solution
is executed by a machine or a set of workers following a set of instructions it is
still a powerful problem solving technique. Now the rest of it the aggregation type
ideas of encapsulation in object-oriented, higher level statements and whatever, if
you want to you can work at that level, that does not matter as long as you are still
exposing students to algorithmic representations of problem solutions because if
you ignore that you are ignoring a great big range of ways of looking at the world.

If you ask me is 3GL programming important the answer is no. But it is a heck of a
way, a really effective proven way of teaching algorithmic solutions.

Chapter 5 Developing a Methodology for Event Driven Programming Page 97

5.4 Changes to the Content, Teaching Approach and Design Methodology

This section reports on the impact of the adoption of an event-driven language on the content

and delivery of the subject material. Moreover, it details the program design methodology used

or, as will be seen, the ad hoc approach used in the development of event-driven systems

amongst novice programmers. Although all of the experts expressed a desire for the

introductory programming units to teach fundamental programming skills, they recognised that

a move to the use an object-oriented or event-driven language would result in changes. Experts

from two universities were comfortable with changes in the teaching approach and the

movement to a visual programming environment, while the third university believed that event-

driven languages were unable to adequately reinforce a professional approach to application

development. Lecturer R stated:

The advantage is that you can show everything, and the disadvantage is that they
show everything. You can show everything so that they can see all the elements of
modern tools but the problem is that they are all there, all at once. And if you try
to show that you can go from start to 100 mph in 2 seconds with this thing then
you are losing sight of what you are suppose to be teaching which is
professionalism. You have to have a strategy and the strategy is professionalism in
application development.

In contrast to this view, Lecturer D did not feel it necessary to retain a procedural language:

I don't really have any problems with that. I am always a little wary, a bit like the
Irish situation, are you a Protestant or a Catholic, you cannot be both you have to
be one or the other, I would prefer not to enforce that. If we can get some benefit
out of Visual Basic or Delphi or those sorts of languages which are somewhat
object oriented, I don't see that you then have to say Ah, well then you cannot use
your procedural methods to do that, in the long run people will develop software
the easiest way that they can see. People are not going to give up all of their
procedural programming habits because someone's says they are now working in
C + + and now you have to be object oriented, so forget about everything the
Jesuits taught you back at school when you were doing procedural programming
they don't apply any more.

5.4.1 Teaching Approach

Many of the lecturers discovered, unexpectedly, that the move to an event-driven language

often shifted the emphasis of their introductory programming subject. Lecturer R hinted to this

point when discussing the use of Visual Basic in second and third year subjects:

In some cases it has replaced other languages. In some cases it is just allowing
people to demonstrate something that they would not otherwise be able to
demonstrate. In some cases it has replaced theory with theory and practice. It has
made the subjects richer. As an example in an analysis and design subject, in the
old days we had them separated, in design you could probably talk about screen
design or connectivity now they do it. It has enriched the delivery.

Lecturer D compared the teaching of the introductory programming subject when COBOL was

the platform to the current use of Visual Basic:

Chapter 5 Developing a Methodology for Event Driven Programming Page 98

It was a bit of a learning experience not so much learning the language but
interesting how differently, if at all you would teach programming using Visual
Basic to the way I have been teaching it for 30 years using COBOL. Because if we
stick to COBOL what you would typically do there you would teach them not only
the syntax of the language but you would also spend a lot of time teaching them
programming techniques.... What I did with Visual Basic was to go the other way
round and I adopted very much a hands on approach, to say, Now put in a form,
good, now put on two labels right now put in three text boxes right now put in a
command button right now behind this put a bit of code that does that and it was
all done intellectually like that and I guess in retrospect it sort of ended up to be
product based rather than programming based.

He also observed that this approach emphasised systems development rather than just

programming concepts:

You can still use it to teach them all they need to know about programming. So as
a programmer's programming language you can still do all of that. But what you
can do more, is that you can teach them a lot more about systems and how systems
work or aspects of information systems and the learning is more palatable because
you can get instant feedback. I mean you sit down and you write a COBOL
program or a Pascal program probably for a week before it really does anything
that you can really see, whereas with these sorts of language and you can sit the
kids down in a two hour tutorial and they can take home a disk with a little
miniature application on it - it may not do anything more that ask somebody for
their name or address but it is all there and it has all of the components that they
see with real live software have (Lecturer D).

Although Lecturer R described this change as the dynamics of the system:

The dynamism, they have to understand the dynamics of the system in a way they
did not have to before, screen design is an issue or interface design is an issue that
didn 't arise before.

He is, unlike Lecturer D, concerned that this shift away from programming design methods

may be detrimental:

There a lot of applications around that people pay big money to put in place and
are mission critical that don't have one single error trapping routine in them. You
wouldn 't do that if you were doing old style programming, you just wouldn 't do it.
There are programs put in place where there are no back up procedures. You just
shouldn 't be doing that sort of thing - it is just unprofessional.

It is possible to get a screen that works quickly that is what does it. So customers,
as will always be the case, you deliver the product, the motor car, it looks as if it is
finished, the fact that you didn't put the brakes on doesn't worry them in the first
instance only when they try to come to an intersection

Interestingly, Lecturer D modified their subject when it was taught the following year in an

effort to place more of an emphasis on programming concepts:

With Visual Basic it was almost like we were doing exactly the other way round,
look folks the real important thing is the product bugger the programming we will
learn that by osmosis but the real important thing is the product and my current
thinking is that that was wrong. So what we have done this year is to re organise

Chapter 5 Developing a Methodology for Event Driven Programming Page 99

the way we are teaching it. So I am running a two hour lecture just in an ordinary
lecture theatre and then 2 hours worth of tutorials in the labs.

Moreover, Lecturer B observed how aspects of software application engineering were

accentuated more so than had previously been the case when C was used:

We hoped to cover more than we did, and when you look at C, the things you cover
are file input or output or standard input output and you are getting into pointers
where as we talked about pointers but never actually used pointers as such. So in
terms of content it is obviously different so makes it difficult to compare how far
you get because in Cyou don't have to cover things like objects and events and
whatever. But in Cyou never get to do anything like User interfaces, help systems
etc. Where you lose in one area you gain in another. And you can probably start
developing the concept of software application design or engineering rather than
the procedural syntax which is what you tend to concentrate on there. There are
some aspects of software engineering coming into the unit which were never
covered in a procedural language.

5.4.2 Problems for Lecturing Staff

Lecturer R noted that inexperienced lecturers are often unaware of the pitfalls of teaching an

event-driven language for the first time and the need for a different approach to teaching

concepts:

It is probably inevitable that Visual Basic will be displacing other things and I
would say that the staff who are doing that are not ready for it because they have
not written something commercially in Visual Basic. And til you try to write
something of a decent size and have the pressure that it has to work with people
other than you running it, you don't realise just what sorts of traps you can get
into. And the difference, the things that you were not taught in your initial degree,
we are coming, we always do in computing, across that problem again, that we
were trained in ordinary linear environments and this is a long way from ordinary
and it is a long way away from linear (Lecturer R)

This view was supported by Lecturer D who describes the impact of the move from the notion

of a procedural main-line loop to events in event-driven systems:

That has been the single biggest leap I think Before I did that I guess it hadn 't
impressed itself upon me all that much but I remember reading a remark that
somebody wrote, I don't know a year or two ago, and this guy was saying that he
was in a Visual Basic type environment and he said the trouble with getting our
old COBOL programmers into the new environment is that they are always
looking for the main line loop and I sort of read it but the penny didn 't drop until I
got into this myself Do until while end of file which is what drives all our COBOL
programs but that doesn 't happen any more.

Moreover, Lecturer D discovered the problems that other inexperienced lecturers faced

teaching Visual Basic for the first time:

It came home to one of my lecturers here who had been tutoring for me in the
Systems Implementation A unit and I drew up an exam paper and she said to me,
'You haven't got any exercises in there for them to do that involve loops'. And I
said, 'Yes, you 're right.' She said, 'You should do that, that's something they need

Chapter 5 Developing a Methodology for Event Driven Programming Page 100

to think about.' OK, what will we put on and she started coming up with all the
things that we would have put in a COBOL program. But I said that wouldn't
happen would it. And she said, 'Oh no it wouldn't.' And what about. 'That would
happen either, no. Yeah, you're right.' And there is almost nothing that you use
loops for is there.

Lecturer B also found that their extensive knowledge of procedural languages sometimes

hindered their transition to an object-oriented language although the students do not find the

concepts difficult:

We have also found in lectures, and particularly for Paul who is overseas at the
moment, we have a tendency because we are procedurally based, our
backgrounds, to try to instil a problem into the lectures when really there is not
one. And we spend 20 minutes trying to go around in circles explaining a problem
when it isn 't in there in the first place. The students have understood it 20 minutes
ago lets get going.

5.4.3 Skills Development

When asked if students use a different set of skills when programming an event-driven systems,

Lecturer R stated No, there are just more that is all. There are new additional ones. Lecturer R

stated:

In the past it was sort of menu and where are we going to put the status bar, now it
is more complicated. Where in the heck are we going to place the logic, and where
is the display going to be and all that sort of stuff has become more important...
and the connectivity sort of arises out of that, doesn 't it. We have got a database
that can do things for us automatically and we '11 call up those aspects of the
database that we want to call at a given time or will we write a bit of logic
ourselves so that connectivity thing is new that has to be thought about. Where
does choosing the appropriate.... In a 3GL your instruction set is really extremely
limited whereas one of these environments we are talking about there doesn't seem
to be any limit at all for the instruction set.

Lecturer B noted that in object-based languages there is a lot of the refinement going on as the

developmental work is coming on. Moreover,

There is an element that perhaps the division between the analysis and design and
the implementation is being broken down with the object-oriented stuff whereas
with procedural languages it was very clearly defined. Whereas that is now
starting to merge together.

This point is supported by Lecturer T from VUT who found that students in Systems

Implementation, a final year subject, need to experiment as they developed an event-driven

system:

If you don't quite understand what you are trying to do ... you can have a sort of
over view of what the basic aim of the thing but it is pretty hard to have that top
down approach unless you know everything that is possible and knowing what is
possible is a bit of a problem with something like Visual Basic because they almost
need a sort of play stage to see what works and what doesn 7 work and step back
from it and say well... for instance if a combo box is going to be best for this, it is

Chapter 5 Developing a Methodology for Event Driven Programming Page 101

pretty hard to know that in advance until you have tried to put one on and have a
play and then you think that is OK.

A further point identified by Lecturer D and Lecturer R was the inability of many students to

determine where to place event code, despite their experience as users of Windows programs:

The main problem that the kids have is that they sort of know what has to happen
but they don't know what events to tack it onto. You say, somewhere along the way
here fellas you have got to calculate the cost of that thing, well yeah what event
are you going to hang that on - gee I don't know. In one way is to put a button on
the screen that says calculate cost that does the job - yeah but there are other
things that might happen aren 't there - are there - lostfocus(LecturerD).

It is a conceptual barrier because it is not just a practical thing it is something
where these environments have all this richness and it is possible to move between
all of the rich places that you are in ... Students can get lost not because any
particular part of Visual Basic is difficult but because they don't know where they
are(Lecturer R).

5.4.4 Program Design Methodology

Lecturer D has been a strong advocate for teaching program design particularly during the

period when procedural languages were popular in programming subjects. He believes that

students still require a systematic approach to the development of an event-driven system and

this starts with the screen:

It has come to imprint itself on me that really the skills that you need for your C
and your COBOL's programs you also need for a Visual Basic program but at a
different level, that is, you don't tackle the whole problem and put in your main
line loop driving your first level manager routine and each of them driving the
second level routine and so on but your structure is more around the structure of
the screen in many ways, what are the activities that are going on in the screen
and then behind each of those what are the subtasks. So I still think you need to
have the skills to be able to break a more complex task down into smaller tasks but
it seems to me the level you think about these is a bit different, you never have to, I
guess I am trying to say, think of the whole problem, if someone gives you a 6 page
spec for a COBOL program the first thing you have to do is work out what the
main bits and pieces of that are, but you sort of don't have to do that much with
Visual Basic, you know the first thing you have to do on looking at the spec is
create the screen with the way you are going to interact with the user and it is
only, I think, with what you finish up with on the screen that you start to think well
there has to be a calculation here, there has to be a check done there, there has to
be a write to file done here. Now when we go behind those activities then what are

the sub activities involved and that sort of thing.

At one of the other universities, similar emphasis was placed upon screen development where

students do very little coding for the first 6 weeks. Lecturer B recognised, however, that they

had not yet adopted a formal methodology:

We start by approaching it in a visual programming sense. What we do is there is
a composition editor in VisualAge and they can develop the user interface and
they do not need to do any form of coding to start with in any way, it is all menu

Chapter 5 Developing a Methodology for Event Driven Programming Page

driven. For those first 5 to 6 weeks what we are doing is very much approaching
the development of applications through this visual programming approach. ...I
don't know if we actually have a methodology - and I suspect that that comes back
to our inexperience. And this is something that we are going to learn a lot more
about in that software engineering unit this coming semester. Much more about
what are the correct methodologies to use from a much more formal approach to
analysis and design and implementing.

Moreover, at that same institution, it would appear that the approach differs significantly

between the first and second subjects.

There are two different approaches depending upon what you want to achieve. The
first one is quite visual the second is not quite so visual and the strategies would
be quite different in how students would approach that design. ...We have relied
particularly on the visual nature of the software and tried to build concepts from
there into language concepts, but talking in terms of application development we
still have quite a lot of work to do (Lecturer B).

This emphasis on screen design and an apparent lack of design methodology in the introductory

subject, however, is of concern to Lecturer R:

I think there is some dangers in that if you to suggest that that is a good way of
doing things. It is hard, I do agree with prototyping but students do get yelled at if
they spend too much time fiddling with the screen. One of the first natural human
reactions to Visual Basic environment is to go and put as many twiddly things on a
screen as you can.

5.4.5 Summary

Procedural languages have been used in introductory programming subjects for decades. The

aims, content and the teaching approach of these subjects had been well documented and it was

often only necessary to consider which of the procedural language had to be used. Object-

based, event-driven languages working within visual environments are modern development

tools and it was logical to assume that they would eventually be adopted by some universities

as the language in introductory programming subjects. The experiences of three Australian

universities has been outlined. It highlighted the problems information systems departments

face attempting to evaluate and, sometimes, change to a radically different paradigm. For some

institutions the change, they believe, will compromise the original aims and objectives of their

introductory subject. For other institutions, the event-driven paradigm has been embraced and,

despite some problems, has been accepted by both students and staff. Lecturer D sums up their

view:

My sort of reaction to using Visual Basic is that it has been absolutely terrific. And
I come to it as an old die hard programmer so it is not like I have a gee whiz
syndrome. I have found that it is much easier to get kids interested in the
programming activity than it ever used to be because you can get some instant
gratification out of it, it is a bit of fun. In programming before it was a bit like
castor oil, you had to say this is good for you, believe me it is good for you believe

old Uncle Peter.

Chapter 5 Developing a Methodology for Event Driven Programming Page 103

The lack of a recognised design methodology is of concern to all of the experts interviewed.

Most have adopted an ad hoc approach choosing to encourage systems development starting

with the screen, although one of the experts appears to use elements of object modelling as

well. The next section describes a program design methodology for the teaching of event-

driven languages to novice programmers.

5.5 The Need for a Design Methodology for Event-Driven Programming

The literature review revealed that Visual Basic has not been adopted as a programming

platform in introductory programming subjects in part because it incorporates multiple

paradigms and encourages ad hoc programming through rapid application development

techniques. Moreover, the interviews with experts who have introduced Visual Basic into

Information Systems courses reveal the need for a program design methodology when teaching

with an event-driven programming language. The issues of structure, rigour, user requirements

and maintenance are clear aims in an introductory programming subject in Information

Systems courses regardless of the programming language adopted.

The proposed program design methodology incorporates design tools from a range of

programming paradigms yet emphasises the heart of event driven systems, that is, that program

flow is controlled by the triggering of events. Moreover, although Visual Basic is not a visual

programming language, Visual Basic programs are developed within an visual programming

environment where the programmer places controls on a form. The design of the user interface

is therefore important as both a means of interaction between the user and the finished program

and as a development platform for the programmer, and therefore should be incorporated into a

program design methodology. Finally, the proposed design methodology was developed to

meet the requirements for teaching event driven programming and although it may be used in

the development of larger commercial systems the primary aim is to construct a framework

within which students can develop, document and test event driven systems.

5.6 A Program Design Methodology for Event-Driven Systems

A program design methodology which addresses the concerns and requirements outlined by

lecturers above has been developed by Peter Shackleton and Douglas McConville (1997) and is

outlined in this section. Moreover, the program design methodology has been developed to

assist novice programmers with the seven programming tasks identified by Shneiderman

(1979) as outlined in the literature review. The program design methodology contains 7

components

Chapter 5 Developing a Methodology for Event Driven Programming Page 104

Problem Statement - a concise expression of the overall aim of the system.

Defining Diagram: - shows the inputs which need to be processed to produced the

required outputs.

Screen Layout: - the screen layout or user interface and shows the placement of

the objects with their names.

Event/Response List - a list of the events and their responses.

Test Data: - a table of test data together with expected results for specific

inputs.

Program Variable Table: - lists and describes the variables in methods used in the

program.

Detailed Algorithm: - a group of pseudocode algorithms for each method

5.6.1 Program Design Methodology and Cognitive Style

The literature review revealed a novice programmer will use one or more cognitive styles in the

early stages of program design, coding and comprehension. A n algorithmic problem solving

approach is frequently preferred in the teaching of procedural languages as it is highly

structured and cognitively fits with the procedural paradigm although some novice

programmers may not be comfortable with this style. Nevertheless, as revealed in the literature

review, novice programmers may place emphasis on one or more tools such as structure charts,

hierarchy diagrams, Nassi-Schneiderman diagrams or pseudocode to help them design and code

a system. Moreover, a lecturer is often forced to make a decision for one methodology over

another in the teaching of programming fundamentals.

Although the programming language behind methods in event-driven languages is procedural,

it is clearly evident that the design and construction of event-driven systems is not as structure

as procedural systems, and this may encourage other cognitive styles and processes. The

program design methodology outlined below, by its very nature, will encourage students to

develop event-driven systems in a preferred sequence. Nevertheless, while recognising this

constraint, it is sufficiently flexible that it enables novice programmers to place emphasis on

one or more steps depending upon their own cognitive style.

5.6.2 Problem Statement and Defining Diagram

The problem statement is the first stage in the process and is designed to encourage students to

give a concise outline of the problem and a brief task description. Students often fail to read the

problem documentation and cannot articulate what is required. Students are encouraged to read

through the documentation, whether this be formal specifications, a description of the case

Chapter 5 Developing a Methodology for Event Driven Programming Page 105

study or interview notes, several times until they believe they have a good understanding of the

exact problem. Moreover, they are encouraged to note any points that they believe are

ambiguous and note any areas that require more details.

As an example, if students were told that a business wanted to establish a computerised payroll

system, they would first need to determine exactly what it was that was actually required. For

example, is there a requirement to print out cheques? Is a summary of the payroll needed?

What data is to be entered - all the details of each employee or just the hours worked?

Recognising that it is difficult at times to determine the exact nature of the problem, students

are encourage to match the problem requirements to a system of inputs, outputs and processes

(or tasks) that work on the inputs to produce the outputs. This systems method would produce:

Inputs - raw data required for the program to act upon. These could be

keyboard data inputs (Note: this does not include events such

as pressing the Enter key) or records from files.

Processes - actions performed by the program. This is not concerned with

how these are performed just that they need to be done. The

processing component of a system shows the sequence of

events that need to be performed in order to produce a

solution.

Outputs - the information produced by the processes in the program.

A defining diagram is used to assist in clarifying the problem and formalising the task of

identifying inputs, processes and outputs. It may also assist with the development of an

algorithm. At the end of the second stage, students should have a clear understanding of the

overall system aims and have determined what needs to be obtained (the input section of the

defining diagram), what is to be produced (the output section of the diagram) and the sequence

of processing steps (the tasks section of the defining diagram).

As an example, suppose a business needs a program that would allow the user to input the

hours and minutes an employee worked during the week together with the rate of pay, so that

the program could then calculate the decimal value of the hours worked and produce a pay slip

for that employee. W e could write the Problem Statement as:

To create a system which will produce a pay slip for an employee showing the time

worked and the gross pay

Chapter 5 Developing a Methodology for Event Driven Programming Page 106

The next task is to develop a defining diagram. The first step in completing the defining

diagram may be to treat the processing component as a black box and identify any inputs that

would be required. In this case three inputs are needed: the hours worked, the minutes worked

and the pay rate of the employee. These things could be called HoursWorked,

MinutesWorked and PayRate although it is not necessary to use variable names at this stage.

The next step could be to determine what will be produced as a result of the process. In this

case, there are two outputs, the decimal value of the hours which could be call TimeWorked,

and the gross pay called GrossPay. The defining diagram (below) would show all the inputs

and outputs.

Input
HoursWorked
MinutesWorked
PayRate

Tasks Output
TimeWorked
GrossPay

The next step could be to work logically through the steps involved in obtaining the inputs, the

tasks necessary to process these inputs, and in producing an output. Firstly the three inputs

HoursWorked, MinutesWorked and PayRate would need to be established (note details of what

is displayed on the screen are not required, only the processes need to be identified). Next,

these inputs are converted to a decimal value: TimeWorked, and then the GrossPay is

calculated. Finally the TimeWorked and the GrossPay are displayed on the screen. The

completed defining diagram would show:

Input

HoursWorked

MinutesWorked

PayRate

Tasks

Get HoursWorked

Get MinutesWorked

Get PayRate
Calculate TimeWorked

Calculate GrossPay
Display TimeWorked

Display GrossPay

Output

TimeWorked

GrossPay

In this example, inputs and outputs were identified and then the tasks were determined,

however there was no specified order for the completion of the defining diagram. Note also that

the defining diagram does not show details of how a calculation is performed nor details of how

the data is displayed.

Chapter 5 Developing a Methodology for Event Driven Programming Page 107

If there were several options such as printing of cheques or calculating note and coin

requirements, then a separate defining diagram m a y be required.

5.6.3 The screen layout

This next step in the process is extremely important in the design of event-driven programs

because it enables the students to consolidate their understanding of the problem so far and to

more closely consider all of the inputs and outputs required. It also gives the student a concrete

object from which to work on the more detailed design of what actions are to be taken in

response to the various events that the user m a y invoke.

In the methodology, students are encouraged to think about the screen layout prior to placing it

on a computer. This process, however, could be viewed as inefficient and discouraging

adjustments to the screen as they become necessary. This may be viewed as either one of the

strengths or one of the weaknesses of visual programming environments, that is, that changes

to the processes of data entry or output on the screen should be encouraged as the system is

developed. While not precluding the need for changes as efficiencies are recognise, such as an

option button rather than text entry, at this stage students are encouraged to have some screen

plan from which the rest of the system can be developed.

To design the screen, students are encouraged to represent the screen or form on a sheet of

paper rather than directly on the computer. The student then builds up a form by progressively

adding objects using the defining diagram as a guide. As an example, they would indicate the

main heading for the screen and draw an Exit button if appropriate. Next, using the defining

diagram, they m a y indicate the position of label boxes to contain the input prompts and the

position of the text boxes which will contain the users' input values. The next stage might

involve drawing label boxes to display the output values (obtained from the output section of

the defining diagram) and next to these they m a y place the labels that will inform the user what

each output represents. Further command buttons and other controls m a y be added that will be

required for the tasks section of the defining diagram.

The student then allocates a name to each of the label boxes, text boxes and command buttons

that will be used for input, output and task control. They are encouraged to use descriptive

names with a conventional prefix to describe the type of control required (Prompt labels could

also be named if required but generally the default is used).

Students may n o w have a paper screen design like this:

tle>«.U

P ^ %

/// /£«*« ft/»rA-x 0*OC&i**T

Note that the calculation of total time worked and gross pay is done in the lost focus method on

the text boxes but students m a y chose to enter a separate command button.

5.6.4 The Event/Response List

The fourth step of this program design methodology is the heart of the methodology as it

identifies all of the possible events which the student will allow the user to perform on the

screen and the responses which they want the program to activate. These response will include

the anticipation of any user errors and the display of relevant error messages. Moreover, this

stage forms the basis for writing the algorithms (and the program code or methods as the last

step in the process).

Students are encouraged to look in turn at each of the objects (controls) on the form, and decide

which controls they want to respond, to which event they should respond, and what they want

that response to be. Typical events would be those listed in Table 5.1.

Chapter 5 Developing a Methodology for Event Driven Programming Page

Table 5.1

Types of Events

Object

Type

Text Box

Button

Form

(window)

Event

Click

Change

Lost Focus

Click

Load

Activate

H o w activated

The user presses the left (primary) mouse button once.

The user changes the text (or numerical value) in the text

box or the user enters any single character.

The user 'Tabs' to another object on the screen or clicks

on another object (- ie the cursor is moved from the box).

The user presses the left (primary) mouse button once.

A form is made active for the first time, either at the

beginning of the program or due to some other event.

A form is activated again, it having been loaded by a

previous event.

Students are asked to write the description of each event as briefly, but also as concisely as

possible, so as to isolate each probable event. The response portion should also be concise, but

most importantly, it should convey a good description of what actions need to be performed. In

this section students are still concentrating on what is to happen, not how it is to happen. For

example:

Event: The user types a character into text box 'txtName' (ie. changes its value).

Response: Check to see if it is the Enter key, if it is then Tab to the next text box.

Event: The user tabs out of txtName (ie. it loses the focus).

Response: Check to see if a name has been entered, if not display message and request

user to re-enter.

As students become better acquainted with all of the possible events, their event portions would

include the actual words used to describe the event, eg. the above might become:

Event: Text box txtName loses focus.

Chapter 5 Developing a Methodology for Event Driven Programming P a g e

Other events m a y be:

Event: Text box txtHours loses focus

Response: Check to see that less than 65 hours, if not display message and request

to re-enter otherwise calculate time worked and gross pay and display

user

Event: Text box txtMinutes loses focus

Response: Check to see that less than 60, if not display message and request user to

enter otherwise calculate time worked and gross pay and display
re-

Event: Text box txtPayRate loses focus

Response: Calculate time worked and gross pay and display

Event: Click cmdExit

Response: End

5.6.5 Test Data

The literature review and interviews with experts revealed that students often fail to test their

programs against adequate test data. Moreover, test data developed by the student often lacks

breadth to test functionality or is incorrect. The importance of test data in the development of a

program is reflected in this methodology where it occupies the fifth stage in the process.

Students are required to develop a table showing values for each input and the expected results

for output. Using our example the test data may be:

Test Data
Hours
Worked

0
1
2

Minutes
Worked

30
0
45

Pay
Rate

100
50
100

Expected Results

Time
Worked

0.5
1.0
2.75

Gross
Pay

50
50
275

Note that the table could include incorrect data to test for error trapping.

5.6.6 Program Variable Table

The sixth step in the methodology describes in tabular form the global and form variables that

are used in the event methods. Students construct a Program Variable Table, a table used to

provide a formal description of each global and form variable. A Program Variable Table is

designed to assist with the development of a program and as a documentation tool. It equals in

part the data dictionary used in larger systems.

Chapter 5 Developing a Methodology for Event Driven Programming Page 111

The Program Variable Table contains information about each of the variables (and constants)

that are used in the program. The structure of the table should be easy to read and the table

should be constructed in the following manner:

Name Description Type Size Comment

Name: the names used for variables and constants in the program.

Description: what the variable is and how it relates to the program.

Type: the data type of the variable.

Size: where appropriate it may be necessary to specify the size of the variable

(eg it is a string of 25 characters)

Comment: if there are any additional pieces of information that are required, they

can be placed here. These comments may be useful when further

developing the problem or for future maintenance. This section may also

be used to show the assignment of an object property to a variable or

vice versa.

Although described as the sixth step in the process, it is unlikely that students could complete

this table directly from the information provided so far. The defining diagram may possibly

provide some information on input and output variables and provide some guide to the

variables that would be needed in an algorithm but it is likely that the program variable table

would be completed as the algorithms are developed.

Using the running example on the calculation of gross pay, a defining diagram was developed

for a program that would allow the user to input the hours and minutes that an employee

worked during the week, together with the rate of pay. The program was then required to

calculate the decimal value of the hours worked and print a pay slip for the employee. The

completed defining diagram was:

Input

HoursWorked

MinutesWorked

PayRate

Tasks

Get HoursWorked

Get MinutesWorked

Get PayRate

Calculate TimeWorked

Calculate GrossPay

Display TimeWorked

Display GrossPay

Output

TimeWorked

GrossPay

Chapter 5 Developing a Methodology for Event Driven Programming P a S e

From this defining diagram a Program Variable Table can be developed

Name

Hours
Minutes

TimeWorked

PayRate
GrossPay

Description

Number of whole hours worked
Number of minutes worked in
last part of hour
Convert time to real number
format. Decimal hours
calculated from hours and
minutes worked
Hourly rate of pay
Gross pay for an employee

Type

Integer
Integer

Decimal

Decimal
Decimal

Size Comments

The algorithm may not place the value of an input text box, say txtHours, into a variable. If this

was the case then those variables would not exist and they would not be included in the

program variable table. The following variables would be declared in the General section of a

form

Dim Hours As Integer

Dim Minutes As Integer

Dim TimeWorked As Single

Dim PayRate As Single

Dim GrossPay As Single

5.6.7 A Detailed Pseudocode Algorithm

Event driven languages use procedural code at the method level to implement the process

describe in the response to an event eg. calculate the total time worked, tax and gross pay, or

assign a value in a label box to a variable, or switch from one form to another. Pseudocode is

still a very popular tool for presenting an algorithm prior to its conversion into the final

program code. Pseudocode enables the writer to easily express the steps in an algorithm in a

way which often matches the processes one uses to solve a problem. Moreover, the writer is

not restricted by complex programming language syntax - pseudocode is language independent.

Pseudocode has benefits too for the teaching of programming as it assists with the development

and description of an algorithm prior to the conversion into a programming language. Students

are required to give some thought to the design of an algorithm before conversion into code

rather than developing the system from scratch directly in the language.

Students are encouraged to write algorithms in a form of pseudocode that matched the structure

and components of programming languages. Although there are no set rules that precisely

Chapter 5 Developing a Methodology for Event Driven Programming Page 113

define pseudocode the important thing is that it should be able to be easily understood and, in

particular, be able to be easily translated into a high-level programming language. Although

pseudocode combines English words with symbols, terms and functions like those used in most

high-level programming languages students are encouraged to avoid using specific computer

programming syntax allowing for the possibility that it could be translated into most event-

driven programming languages.

Students are provided with some guidelines.

• Each line or operation should be described briefly and precisely. Avoid long-winded

descriptions. For example, 'Get FirstNumber' conveys the same meaning as 'Get the

value of FirstNumber from the keyboard'.

• Use standard symbols for arithmetic operations: + for addition, - for subtraction, * for

multiplication, / for division, eg Average = Total/Count

• Pay particular attention to readability. The pseudocode should be able to easily translate into

a computer language. Use a separate line for each instruction, indent blocks of instructions

under the control of selection or iteration statements and add comments if necessary.

• Use key-words to describe operations c o m m o n in high-level languages. Get or Enter

usually describe an input from the keyboard; Read often refers to something obtained from

a file. Display refers to output onto the screen; Print to output onto a printer and Write

refers to writing back to the file.

• Avoid using statements that describe display formats. If something is to be displayed or

printed, such as an invoice or receipt, use a statement like: Print Invoice as per

specifications. W h e n the pseudocode is translated into a programming language, the

programmer will refer back to the detailed specifications to program the form layout.

• Assignment is performed when it is necessary to change the value of a variable, and in

pseudocode this is indicated with a statement like:

ltemPrice = 12.95

This presents no difficulties. W h e n the value of a variable must be increased by 1 a

pseudocode statement like any of the following could be used:

Add 1 to Count

Increment Count by 1

Count = Count + 1

The last (and most common) of these however, presents an apparent 'mathematical

contradiction'. If the statement is taken for a mathematical equation, then it is a nonsense -

there is no value of Count for which it is true. The point is that it is not an equation, but an

assignment and so should be read as: take the value of Count and assign it the new value

Count + 1

Chapter 5 Developing a Methodology for Event Driven Programming Page

Using the example outlined, the algorithm could be:

Module Calculate1

Hours = value of txtHours

Minutes = value of txtMinutes

TimeWorked = Hours + (Minutes/60)

PayRate = value of txtPayRate

GrossPay = TimeWorked * PayRate

Assign GrossPay to IblGrossPay

End module

Module Exit (ie. cmdExit_click () event)

End

End module

The Visual Basic code would be:

Private Sub txtName_KeyPress (KeyAscii As Integer)

If KeyAscii = 13 Then

txtHours.SetFocus

End If

End Sub

Private Sub txtName_LostFocus ()

If Len(txtName.Text) = 0 Then

MsgBox "You must enter a Name first"

txtName.SetFocus

End If

End Sub

This would be attached to the txtHoursJLostFocus, txtMinutesLostFocus and txtPayRateLostFocus events.

Chapter 5 Developing a Methodology for Event Driven Programming Page 115

Private Sub txtHours_LostFocus ()

Hours = Val(txtHours.Text)

Minutes = Val(txtMinutes.Text)

PayRate = Val(txtPayRate.Text)

TimeWorked = Hours + (Minutes / 60)

GrossPay = TimeWorked * PayRate

lblTimeWorked.Caption = TimeWorked

'Display Gross Pay formatted as currency

lblGrossPay.Caption = Format(GrossPay, "Currency")

End Sub

Private Sub txtMinutes_LostFocus ()

Hours = Val(txtHours.Text)

Minutes = Val(txtMinutes.Text)

PayRate = Val(txtPayRate.Text)

TimeWorked = Hours + (Minutes / 60)

GrossPay = TimeWorked * PayRate

lblTimeWorked.Caption = TimeWorked

'Display Gross Pay formatted as currency

lblGrossPay.Caption = Format(GrossPay, "Currency")

End Sub

Private Sub txtPayRate_LostFocus ()

Hours = Val(txtHours.Text)

Minutes = Val(txtMinutes.Text)

PayRate = Val(txtPayRate.Text)

TimeWorked = Hours + (Minutes / 60)

GrossPay = TimeWorked * PayRate

lblTimeWorked.Caption = TimeWorked

'Display Gross Pay formatted as currency

lblGrossPay.Caption = Format(GrossPay, "Currency")

End Sub

Private Sub cmdExit_Click ()

End

End Sub

Chapter 5 Developing a Methodology for Event Driven Programming Page 116

5.6.7.1.1 A Complete Example

The following example uses all of the seven steps in the program design methodology.

Case study description: Peter's Pizza Parlour requires a program to determine the prices of

their pizzas. A Small pizza with no extra toppings is $7. The cost of extra toppings on the Small

size are: H a m 35c, Salami 40c and Prawns 50c. A Large pizza costs 1.7 times the price of a

Small pizza.

Problem Statement

Peters Pizza Parlour requires a program to determine the prices of their pizzas.

Defining Diagram

Input

The size of the pizza

The toppings for the

pizza

Tasks

Display the form with the small size

selected

Get the size and the toppings required.

Calculate the price of pizza + toppings

Display the price

Output

The price of the pizza

Screen Layout

Chapter 5 Developing a Methodology for Event Driven Programming Page 117

Event/Response List

Event:

Response:

Event:

Response:

Event:

Response:

Event:

Response:

The user clicks on a pizza size option button

The button is marked on and the other is marked off.

The user clicks on pizza topping check box

The box is checked or unchecked

The user clicks on the Calculate button

The price is calculated and displayed.

The user clicks the Exit button

The program terminates.

Test Data

Size

Small

Small

Large

Ham

no

yes

yes

Salami

no

no

no

Prawns

no

yes

yes

Expected result

7.00

7.85

13.35

Program Variable Table

N a m e

BasePrice

Price

Toppings

SmallFactor

LargeFactor

Description

price of small pizza,

no extras

price of selected pizza

total price of toppings

multiplier for small size

multiplier for large size

Type

Const

Dec

Dec

Const

Const

Size Comments

= 7.00

= 1.0

= 1.7

Detailed Algorithm

Module Calculate (to be attached to the 'click' event of cmdCalculate button)

Set the cost of toppings to zero

If H a m is checked Then set toppings = toppings + ham cost

If Salami is checked Then set toppings = toppings + salami cost

If Prawns is checked Then set toppings = toppings + prawns cost

Set price = Base price plus toppings cost

If Small size is selected Then multiply price by SmallFactor

If Large selected Then multiply price by LargeFactor

Display the price

End Module

Chapter 5 Developing a Methodology for Event Driven Programming Page 118

Module Exit (attach to the 'click' event)

terminate the program

End Module

Visual Basic Code

Private Sub cmdCalculate_Click()

'declare constants and variables

Const BasePrice = 7

Const SmallFactor = 1.0

Const LargeFactor = 1.7 'ie. 1.7 times base price

Dim Toppings As Single, Price As Single

'set the initial toppings value to zero

Toppings = 0

'for check boxes: 0 = not checked, 1 = checked

If chkHam.Value = 1 Then Toppings = Toppings + 0.3 5

If chkSalami.Value = 1 Then Toppings = Toppings + 0.4

If chkPrawns.Value = 1 Then Toppings = Toppings + 0.5

'add the toppings to the base price

Price = BasePrice + Toppings

If optSmall.Value = True Then

Price = Price * SmallFactor

Else

Price = Price * LargeFactor

End If

'assign price to caption property and format to currency

lblPrice.Caption = Format(Price, "Currency")

End Sub

Private Sub cmdExit_Click()

End

End Sub

5.7 Summary

This program design methodology provides a formal basis for the teaching of event-driven

languages. In the next chapter it will be evaluated in a case study of students who were enrolled

in an introductory programming subject in the Department of Business Computing at the

Victoria University of Technology.

Chapter 5 Developing a Methodology for Event Driven Programming P a g e

Chapter 6 Analysis of a Program Design
Methodology

The experiences of the students and lecturers in a subject utilising the Program Design

Methodology for Event-Driven Programming will be described in this chapter. As outlined

earlier in this thesis, the data includes interviews with undergraduate and post-graduate

students, interviews with experts from other institutions where event-driven programming is

taught, observations of students in workshops, materials collected from students throughout the

semester, and interviews with lecturers w h o trialed the design methodology.

The overall purpose of the design methodology was to support the teaching and learning of

event-driven programming. The analysis commences by reviewing the mental models

developed by students as a consequence of working in this paradigm. This is followed by

consideration in turn of the seven steps incorporated within the design methodology.

Amongst its major findings, the analysis firstly reveals that many students fail to construct a

clear mental picture of the internal operation of an event driven system. This, in part, is caused

by lecturers and workshop leaders who, although having experience with procedural languages,

do not have sufficient examples and metaphors to describe the concepts of event-driven

systems to novice programmers. The absence of a conceptual model to describe an event-driven

system, however, is particularly telling at this point.

Another major finding from the analysis is that an event-response list, which is instrumental in

determining the structure and operation of a system, is often difficult to construct, even for

moderately simple systems. The concept of an event, although apparently easy to describe, in

reality is very difficult for most students to understand. Moreover, lecturers often contribute to

this confusion by modifying the definition of an event or placing a different interpretation on an

event at different stages in a course. The analysis found that most students were confused

about:

The boundaries of an event - that is, whether to include prior actions in an event such

as an input to another object

The context of the event - whether events should be viewed from a programmer's or

from a user's perspective, or from both

The status of an event - the distinction between active and passive events, and

Chapter 6 Analysis of a Program Design Methodology Page 120

The level of detail in a response - whether to include multiple paths such as for

validation.

The full analysis which follows also discovered the differing degrees of importance students

place on each step in the design process and the problems of coding and testing event-driven

systems.

6.1 Mental Models

The literature review suggested that a person will develop a mental model enabling them to

gain some understanding of the operation of a program on a computer. The mental model may

not be accurate in technical terms but embraces the concepts of the particular programming

paradigm. The model enables a person to understand how a program or program instruction is

interpreted and implemented. In many respects, the conventional main line procedural program

is comparatively easy to comprehend, although a student may find it difficult to convert a

solution to a series of ordered instructions. In the procedural paradigm, control is surrendered

to the computer, and each line is executed one after the other. Selection and iteration constructs

separate the logical from the physical structure of the program and increases complexity,

nevertheless, the program is executed from the first line and works its way down line by line.

This start-at-the-top and work-your-way-down approach is still relatively easy to comprehend.

Microsoft Windows is one of the most popular operating systems in the world. Most students in

Australian tertiary institutions would work within a graphic user interface environment for

word processing and on other applications, and a major argument in favour of an teaching of

event-driven language such as Visual Basic, is that it works within a Windows environment. It

was therefore surprising to observe that many students had problems understanding the

fundamental concepts of event-driven programming. Event-driven languages, such as Visual

Basic, are object-based and use a mixture of procedural and object-oriented programming

concepts and, this in part, m a y explain some of the confusion. Nevertheless, the basic concept

of an event-driven programming language is that events are the sole way of triggering code and

a large number of students had trouble understanding this fundamental concept.

Most students could describe an external event, such as a click. External events are commonly

required for applications developed by students in other subjects. Postgraduate students, for

example, are required to develop macros triggered from buttons in their first spreadsheet

assignment in the first year Management Information Systems subject. As an example, when

asked to describe what was meant by an event, Dianne, a postgraduate student, stated:

Chapter 6 Analysis of a Program Design Methodology Page 121

Like a click yes. It triggers something off.
We have been doing this all along with Arthur (Dianne).

Moreover, most students appeared to understand, or came to understand, internal events such as

the loading of a form although they did not appear to see this as a real event. A large number of

students, however, had problems comprehending what will be referred to in this thesis as

external-relMed events, such as lost focus or change. A change event is an external action, such

as the keying in of data, which executes some code each time the value of a text box changes.

As an example, a change event would be executed three times if the number 100 was entered

into a text box when a change event existed. A lost focus event, on the other hand, triggers a

response only when the user moves off the object, that is, the response would be executed only

once after the user typed in 100 and moved to another object. Depending on the type of active

event that is present, a student may view keyboard entry as the event, such as in the case of

change but not for lost focus. This is very confusing for many students. In reality, the event is

either a change of text in an object (which may or may not be done via the keyboard) or

movement off an'object (such as by using the mouse to click onto another object) and not the

keyboard entry itself. In some case, students appear to be relating an external event, keyboard

entry, to an event of another kind.

When asked how easy he found the concept of event-driven programming, Clinton indicated

the problem he has with the change event:

OK- even with change I understand it but it takes a bit of time (Clinton).

Chigden and Elizabeth lamented that they did not use a calculate button for their major

assignment:

I wish I did use it. A calculate button is clearer for me, on change isn 't (Chigden).

It is not easy. If you take away the calculate button I would be lost (Elizabeth).

Windows-based applications often require a strict order of external events to be performed

before a function can be performed successfully. As an example, in a word processor, to turn an

existing piece of text to bold requires the operator to highlight the text and then press the bold

button. Students appear to have a clearer understanding of this ordered process which may

explain the easier transition to an all-embracing Calculate type button on a form.

It was difficult to glean information that hinted at the mental framework which students use to

understand the concepts of event-driven programming. Some students recognised the

importance of gaining some knowledge of how a computer operates, at least in broad terms:

Chapter 6 Analysis of a Program Design Methodology Page 122

Everyday, it opens up, it is so wonderful. It is like when people talk about creation
and how wonderful it is. It is like that. I am staggered how wonderful, how clever
it is. I have been reading a lot. I am aware of the structure of computer. I have
some vague idea. It is not like there is a fairy godmother who takes all these things
(Gerald).

Others appeared to pay little importance in trying to understand the operation of a program at a

level lower than the code:

I haven't thought of it. I have no idea. Just a big box (Dianne).
I have no idea. I have never thought of that (Tom).
You put up the screen layout. You have bits behind it that make it work. That's all
(Mark).

A common technique used by lecturers to help explain a particular concept is to liken it to an

everyday experience which is easily understood by students. In a procedural program, it may be

sufficient to describe the workings of the three constructs, sequence, selection and iteration,

which are the components which describe the entire operation of the system. To describe the

sequence construct, w e could use an example of making a cup of tea - it is necessary to have a

cup before you can pour water from a kettle.

In contrast to procedural languages, it becomes necessary to describe the operation of the whole

system as well as the Structure Theorem in event-driven programming languages. One could

liken the operation of a car to an event-driven system where a car responds to the events of the

driver; turning off the key (clicking on the Exit button) or pressing the accelerator (clicking on

the Calculate button). One student, Fred, recalled an example used by a lecturer who used an

automatic teller machine as an real example of an event-driven system. However, these

analogies often describe external (and some internal) events but rarely can they be used to

describe external-related events such as change and lost focus. W h e n asked to liken event-

driven programming to everyday experiences, most students opted for control based systems:

Probably like some filing system. It makes it way down. It somehow sifts through it
(Jaranka).

They are not much help. In the MIS subject and databases, whether it was because
it was work related, I don't know, I could understand it a lot easier. I cannot with

this subject (Dianne).

Well, a line of Code. Well I think I have some idea and with the writing
background it is just a matter of getting the correct constructions, is what I see,
and once the instructions are clear and precise there is usually no problems and it
is a matter of going back and checking and picking up. Obviously there are going
to be mistakes along the way but usually that is just me and having to find out
clearer and more precise ways of achieving a certain objective. But I see it as just
like writing an essay or reading a book, you start at the beginning and you go
through and certain information or descriptions will be able to provide certain

things. (Mary-Beth).

Chapter 6 Analysis of a Program Design Methodology Page 123

When you enter it into that box you have commanded it to go to a database or
something. To me it is like you are commanding it to do something (Sylvia).

Other students, however, were more precise:

To me it goes top down. I understand modules. It starts at the top line and moves
down. If it gets to a loop it just goes around and around. It looks for the first event
and then it waits for the next event. Triggers first line of procedure and runs down
to the bottom (Fred).

I think it makes it a lot easier. If you know that only on an event you are going to
get a certain reaction. It breaks it down. Only when you get a click or only when
there is change will something occur (Billy).

The comments from Mary-Beth reveal the importance she puts on establishing links between

everyday activities and concepts in event-driven programming.

/ think sometimes it would be useful to have not one example but two examples. So
I think people can draw from two examples their own understanding of what you
are trying to elicit with what is ever being talked about. And that is only because it
gives people two counter points to come up with their own things sometimes. The
other things is that I don't know, I understand what you are saying about jacking
up the car but I don't know how many people in the class would have done that. I
was thinking about it this morning coming to class and I really don't think I
understand or I have a clear understanding or own the knowledge of this stuff and
I think that is really important not only for me but for other people in the class and
I am not clear why that is (Mary-Beth).

It is evident that most students interviewed do not have a clear mental picture of the operation

of an event-driven system on a computer and that this is impeding their ability to master more

difficult concepts. Although a program design methodology might provide some structure to

teaching the concepts of programming using an event-driven language, it is clear that lecturers

need to do a significant amount of work at a conceptual level with students before the benefits

of any methodology can be fully harvested.

6.2 The Problem Statement

The literature review revealed that, irrespective of the language, some students are prone to

developing a system which does not match the specifications. The major purpose of the first

step in the program methodology was to encourage students to determine the nature of the

problem and to gain some broad understanding of what is required from the system. The first

step requires students to write out the problem statement from a broad description of what is

required. No specific directions were given to students on the amount of details that were

required although it was expected to be accurate and concise. In the interview, it was important

to discover if students wrote out the statement, and the process they followed ie. whether they

Chapter 6 Analysis of a Program Design Methodology Page 124

identified key word or phrases. A problem statement was required as part of submissions for

assignments. Fred outlined what we hoped students would appreciate from this process:

When you can actually write the problem statement you can write you have
understood what the program is about. Even if you don't write it down you
mentally have to do it otherwise you don't go anywhere (Fred).

Some students put great importance on writing the problem statement in their own words:

/ re-write it. I like to re-write it in my own words that way I get an understanding
of it (Billy).

I try to put it into my own words and ideas and write it as I interpret it (Jaranka).

In contrast, other students believed that is was not necessary to write a problem statement

Nevertheless, they appear to place importance on the process of developing a problem

statement and move directly to another stage, often the screen.

For the problem statement I would underline what the problem is and what it is
asking for. The problem is there and I don't need to write it down (Tom).

Read what is required and rewrite it. I get rid of some of the unnecessary detail in
the problem that has been written out ... Read through everything again. Then
work out in your mind what the screen would look like (Clinton).

It was evident that the mature age students placed greater emphasis on this first step than most

of the younger undergraduates. Sylvia believes that:

With the problem statement, I know what needs to be done (Sylvia).

In part this may have been due to their previous work experiences. Fred, on describing an

experience he had with a programmer at his work, outlined the process he now follows:

White-board. We would start with the problem and what we want. I would hand
out a whole lot of forms from the organisation and put beside it what it should be.
number, minimum length and so on. I would write out an organisation structure -
a paper flow. The first time I didn 't write down the problem, he and I had different
understandings of what were trying to do. It was in building. And what he was
doing was re-writing the actual building materials that I supplied off the shelf
what they actually wanted was building material where the bill can be altered by
the operator at two points. This option was not understood as we did not write it

down (Fred).

Mary-Beth, a mature age student who had returned to full-time study observed that:

Look I think there were even a lot of problems with people being able to define
input output and the steps in between and that goes back to people defining the
problem. And if people are not defining the problem correctly then they are not
going to be able to do that input output stuff (Mary-Beth).

The introductory programming subject at Victoria University has a one hour workshop per

week which is limits the material a workshop leader can cover. Mary-Beth was critical of the

Chapter 6 Analysis of a Program Design Methodology Page 125

process many workshop leaders follow in trying to skip over earlier steps and move onto

coding:

I think it is underestimated a little bit. You just skip over it. Now you can do that
because of your background. And people say "Well how do you get there " I don't
know. They don't pick it up at that level they pick it up at the input output level
which seems to be a little more hands on in terms of OK they understand inputs
and outputs because they have seen you do that before but they don't necessarily
direct it back to definition of the problem (Mary-Beth).

It is possible that in the process of skipping many of these steps in workshops students believe

that a system can be produced just as easily without going through these steps as it can by

following the steps. The end result is that they become confused:

Maybe they are not clear about what is required of them or they're not clear of
that whole scene. I feel a lot from the class that there is quite a bit of frustration
there, I still don't know and I don't seem to ask the right questions or don't seem
to be able to elicit the information to get me any closer to a solution, and that is
not really a good thing (Mary-Beth).

The process of formulating a problem statement appears to help in determining inputs and

outputs and, possibly, in the formulation of a screen. Fred states:

If I have read it 4 or 5 times but still don't understand it, I won't do anything until
I understand it. When I get a picture, I will start going through the 7 steps which I
definitely follow (Fred).

Peter wrote out a problem statement for the first assignment in the semester but now prefers to

highlight key words or phrases

/ did in the first assignment but not in this assignment. I organise the key words.
But what needs to go on the form that is what they require so that is what the
problem statement would be (Peter).

Peter provided copies of the work he had done on the first assignment over a 4 week period.

The first iteration of the problem statement below read:

P &0 bu&V\ ^~ r>T£ fl6 07

CalcjuJjsjbB

and the final problem statement read:

atUM^Jk*

Chapter 6 Analysis of a Program Design Methodology Page 126

TkOfcU^ STAT6(\6NT f^J

^in^,n,\ 0 ^A/3j-'-.-< J^rr O C.U^I <*>CfS'J itr (p-i-r-i-\<AS <* Glutei

or nc C ^ A W - . T ^ C^;- ̂ K C*I*.UU ̂ ^ Xl^tf

This detailed problem statement starts to reveal some of the inputs and outputs and alludes to

the process of calculation. In the interview, Peter underlined key words in the sample problem

and re-wrote the problem using symbols describing inputs and outputs and a brief outline of the

steps in the calculation of the cost:

R < s * - -

\\)G-\$HT

VUCS-IÂ T — cor* T^MC^ *

It is interesting to observe how students may use an example in the sample problem as a

method of testing a more detailed problem statement. Although no specific calculations are

required at this early stage, some students are obviously trying to determine how an output is

determined. This is actually the first steps towards determining the processing part of the

defining diagram.

Try to use the example as a guide. Then create my own example (Jaranka).

In the interview, Peter used the example and the table of costs. It was observed that Peter

underline points on the sample problem
write outpoints onto a separate piece of paper

Chapter 6 Analysis of a Program Design Methodology Page 127

He then stated

I go back to that (cost table) to find out if I have understood it
And then go to the example to see how it is calculated.

He then writes down details of calculation:

U)J^ 3DO^ — 4 5.30

6)
t

He was asked, "What would you do next?", and he replied:

I would see what the outputs would be - cost of the parcel, unreg or registered

Lecturer T, a lecturer who taught the program methodology at Victoria University of

Technology, believes that students are confused about what to include in the problem statement

and that it is too early for students to determine what processes need to be undertaken in the

system. He believes that the problem statement would be more beneficial if it was written in a

way that it included inputs and outputs:

/ think it would be good if it could lead more into the next step in other words it
could concentrate on inputs and outputs - what the program is doing couched in
terms of output. (Lecturer T).

The problem statement appears to be trivialised by some students as a formal step but for those

students it does appear to be an informal method of leading into the next stages in the

development of a system. O n the other hand, a number of students, particularly mature age

students, appear to place great importance on this step as a method of determining the

boundaries of the system.

Chapter 6 Analysis of a Program Design Methodology Page 128

6.3 Defining Diagram

6.3.1 Introduction

The first step in the design process, developing a problem statement, m a y assist in identifying

the data that has to be input and the information to be output from the system. W e have already

seen that most students identify the output or the form of the output in the problem statement

(ie. print a quotation) and s o m e students identify at least some of the processes (ie calculate)

and data inputs. A s an example, Seeana wrote the problem statement:

*fl£bl^L- calculate rM cho^t c f

$>nch>9 a potest depQnd/t1r
J 'j

o n t-h-e ujfi.yni and if ;t (
fegiSlwed 0/ fiat.

Nevertheless, the process of underlying items can also assist with the identification of data and

processes as indicated by T o m ' s work

A company requires a program to calculate the cost of sending a parcel by mail. Details of the parcel are input

-the name, address, the weight and whether the parcei is to be registered or not (ie., insured). The charge for

sending the parcel depends on the weight of the parcel and where it is registered or not. The following table

represents the cost of the parcel depending on the weight:

Weight of Parcel
less than 100 grams

grams to 1 kilogram
above 1 kilogram

Cost
$0.45
$5.30

$7.50

If the parcel is to be registered i(is twice the price. As an example, an unresy'stprpri 500 f>ram parcel would cosi

$5.30 to send; a 500 gram registered parcel would cost $10.60 to send.

The user should be able to print a label to be stuck on the parcel.

As described earlier, a defining diagram is the first formal step in identifying inputs and outputs

as well as providing a broad outline of the intervening processes. A defining diagram can be

used in a variety of programming paradigms as a method of identifying inputs and outputs. The

processing column, however, implies that an ordered series of operations is performed to

produce an output and probably fits more comfortably in a procedural language. A n event-

driven program m a y allow a user to by-pass steps in a solution to a problem, say getting all the

inputs, and m a y allow the user to go directly to the calculation component, say clicking on a

Chapter 6 Analysis of a Program Design Methodology Page 129

Calculate button. Nevertheless, the processing section of the defining diagram identifies the

processes that must be followed to obtain the correct output and indirectly implies that error

trapping is required.

The input for a procedural program is via the keyboard or a file but this is not the case in

languages such as Visual Basic where input can be made easier by the selection of option

buttons or check boxes via the click of a mouse button. In this case an event may change the

value of a property in the object and it m a y trigger an event. In a procedural language, this

input would have been assigned to a data variable. It was found that some students failed to

recognise the value in option buttons or check boxes as inputs because they were often used

directly as a conditional in a selection or iteration construct, eg. If optFolding.value = True

Then ..., and these values were rarely assigned to a data variable. Moreover, some students

appear to confuse events and with data outputs. Events, such as the click of a command button

may trigger a process, say the printing of a form, rather than the calculation of a data output.

6.3.2 Identification of inputs and outputs

Some students placed a large amount of importance on the defining diagram such as Mary-

Beth:

To me the defining diagram, it is the only handle that I can use to get through to a
solution it does not matter how much code I write if I don't know where I am going
with it (Mary-Beth).

Yes I would have to do something like that clear in my head (Dianne).

It helps clarify everything that needs to be input into the program and what tasks
the program needs to do (Clinton).

Others chose to either ignore it or placed little importance upon it within the overall design

methodology:

/ realise it makes it easier but I have not used it. I have a rough idea of what I
want to do, it is just a matter of writing in the code to do it (Mark).

I usually do that last. You know how you are suppose to sit down and do the
algorithm and all that first. I try and do it on the screen and later on an hour
before ...I think most of us do it backwards. We don't do it the correct way

(Elizabeth).

Some students appear to place a greater emphasis on the input and output section of the

defining diagram, particularly for screen design, while other students use the processing section

to gain an understanding of the tasks in a coded solution. Chigden chooses to by-pass the

defining diagram and moves directly to the event response list. Asked if developing a defining

diagram made analysing the problem easier, Chigden stated:

Chapter 6 Analysis of a Program Design Methodology Page 130

/ disagree. I usually work out my problem first and then I would go and do the
rest. I go back and fill in the defining diagram after everything is done (Chigden).

In a small program with few inputs and outputs, Tom ignores the defining diagram. Even with a

larger program he is usually confused about the processing section of the defining diagram at

this stage:

In a larger program I use it. I probably leave the task part of the table out because
lam not sure what is in the middle yet (Tom).

Many of the students appear to use the input and output sections of the defining diagram as a

cross-reference to controls on the screen design. In response to the question "Does developing a

defining diagram make analysing the problem easier", some students believe:

It does in a sense knowing what is coming in and out is more important. And this is
it (points to her screen design) what is coming in and going out. This is what I am
thinking of when I am doing the screen. I am visualising inputs and outputs
through the screen (Sylvia).

Yes it does. You have the inputs, tasks and outputs. Once that is done, I go about
the event response and screen especially. You can go back and say, especially for
the screen, I need so many text boxes and so many labels and it helps out with the
event response just having the basic thing of what is going to happen (Billy).

I would go back to the defining diagram. I work out the inputs I would have to put
in - name, address - the outputs - total cost. Then the tasks - calculate, parcel cost
and registration cost (doubled or not). Labels have to come out as well. Yes it sort
of did, but I would have to have the screen layout before hand and then I would go
back to it (Jaranka).

Similarly, Fred believes that:

/ would do the defining diagram first. Most definitely because those input and
outputs are going to have a relationship on the screen. ... I tend to do the defining
diagram and then the screen layout and go back and review it (defining diagram)
and find a few things that I have not thought of. Its a bit of a circle (Fred).

This relationship is clearly evident in the work by Fred on the sample problem in the interview

where he draws lines between the inputs of the defining diagram and the screen design.

Chapter 6 Analysis of a Program Design Methodology P a g e

The defining diagram appears to serve a useful purpose in determining the inputs and outputs

and cross-referencing these against the inputs and outputs outlined on the screen design.

Others appeared to concentrate on the processing section of the defining diagram.

What I try to do, because of my maths background, I look at how things are
calculated and then I try to work out how the example is calculated. So I
understand the guts of what is going on in a mathematical sense. (Peter).

Yes, it involves getting the information from the assignment and putting it into
here so I know exactly what lam calculating (Seeana).

I tend to do the output first which is like the defining diagram in a phrase more or
less. And then I start to put in the inputs and then I look at the inputs then I write

the tasks. (Gerald).

Peter's draft defining diagram for the first assignment in Introduction to Programming shows

how he has used the processing section of the defining diagram as a way of identifying tasks in

calculating the Total Cost.

Chapter 6 Analysis of a Program Design Methodology Page 132

O & P - I O . N I ^ CS Vft«»«.JV»^

lMf!^T

Cft**c<»r / n u

"T f\S Y~^, O l> "T <p n •

^ M O "2* £> MSTflu-s Fo«. c w u coc.^

c,LveS" £... -'- -»..., ĉ <xv*̂ •-,-•- f.. ,v,•»

OS"' pt.. r-.

^ * ' • - - • ̂ • .-"i>

~f ••. ••••••• ,-~ ~r C-1J ,"!,..1 J• <* f •- --.,<•,

C A I- A f> <"<•*->•' <r- ; .\'-:<;

'" AL ToTft '. A ••• t> •. ... > ~\

AM C^t>j~i

A n f t- >

P£<K>"-\ »V-'.. <P<" V • • • f rf 0

Lecturer 0 observed that some students had trouble developing a defining diagram.

7fte defining diagram was not done well. I think there was a lot of inconsistency
between how people approached them. That may be in part due to the way that I
taught it. I tend to get a bit confused myself going on about the distinction between
the defining diagram and the event response list in terms of what actually goes
into the defining diagram and I tended to have events listed in there as well as
data. The defining diagram is almost, might work better perhaps, as a top level
DFD where you have the inputs coming in from the outer environment, you have
the major processes represented and the major outputs represented. I think it is
suppose to represent the same type of information as a level zero DFD. (Lecturer

O).

Lecturer T his undecided on the amount of detail that should be included in the defining

diagram:

I wondered about the middle part of it. The inputs and outputs are clearly useful
but I have been wondering about the tasks. The processes may be useful or not,
and I have sort of come to the conclusion in the end that they probably are but
they should be very broad statements like using this this and this calculate that
rather than ... what rather than how. With the inputs again, I am not total sure,
say, you have got to get someone's name and address. Maybe I suspect it would be
better to put down in the input name and address but maybe we need to put down
surname, first name, address, postcode. I mean how much detail. I don't know

what the answer to that is (Lecturer T).

Chapter 6 Analysis of a Program Design Methodology Page 133

It was c o m m o n to have assignment submissions which included printing a form (a process).

Dianne wrote:

,£fef of A\A>

> * ft T ^
(Jf3^ #T faun

Cu/-p< vJ-

pH«J- ou/- &/-
fA4>& _

<ixsk

flu- LO5+ 4 Ihwa rn*J-
CiU- t&i cf. catyJ(
GO- t&i of- «*3&

j 4^ <O)T of ry^aJ-
f $4r -roUf w')i of smh

, 4th fvk(U>?T *£• «"

I CdaJUk TVW. co?*-
Jf fr&A^

Surprisingly, students tend to be able to identify inputs, processes (such as calculating

information) and outputs but tend to see a physical output, such as a printout, as a data item

rather than a process.

Consistent with her observation that students tend to underestimate the importance of the

problem statement, Mary-Beth adopted a quite different method for the identifying inputs and

outputs.

I do the whole input output table and I do it in the way that you do it. I actually do
it differently to you in terms of, I have an input and I have an output for that input
and then I have to fill in the middle. I break it down from one big problem into a
whole series of little problems, and this is the way that I have been taught, and
then work it from there. And so to do the framing say, you need to get all these
details before you can move onto how you calculate it. You have to have this input
to get this output and then you work from there. And so it is one step after another
sol actually break it down into a series of problems rather than inputs outputs but
they are actually physical steps I suppose.

I don't define output as absolute final. And the thing that I have found is that it is
actually easier for me to do that because I don't necessarily know what the final
output is going to be because I am not familiar enough with the code to be able to
determine the best. And those sequence of steps I will return to and go back

constantly (Mary-Beth).

Chapter 6 Analysis of a Program Design Methodology Page 134

This process was adopted by some other students in the classes. One student, George,

submitted the following defining diagram for his first assignment:

Input

Frame material sizes

- length

- width

Is a mat required?

- Yes / No

- H o w many (0-3)

Is glass required?

- Yes / No

Print command

Exit command

Set Rates command

Task

| Calculate

| - perimeter, area

j - price of frame, of card

| Calculate

| - price of mat

| Calculate

\ - price of glass

1 Print hard copy of screen display.

i Close any open files and terminate

1 program.

1 Open Set Rates sub-form

Output

| Price of frame

| Price of card

1 Price of mat

j Price of glass

| Hard copy.

j None.

I None

The inputs, which include both input data and events, are matched to a specific process which

is in turn matched to an output.

The defining diagram assists with the identification of inputs and outputs prior to moving onto

the next stages, or is used by some students as a tool to verify inputs and outputs on the screen

layout. The problem of modelling an event driven programming system as an ordered series of

steps, as would be the case for a procedural language, are evident at this stage. Some students

appear to be confused between a data item and an event, and that an event, such as the selection

of an option button, can result in a data input. The processing section of the defining diagram

implies that a sequence of operations will lead to the desired output, however, event-driven

programming often enables events to occur out of sequence and may lead to a different output

from that which is desired. A n alternative tool, such as a Data Flow Diagram as hinted at by

Lecturer O, m a y be more advantageous in identifying system requirements than a defining

diagram, which is founded on the premise that processes take valid inputs and produce outputs.

6.4 Screen Layout

The design of the screen involves two steps; creating a screen layout and naming objects.

Decisions about which objects to include on the screen layout may have been determined, at

least partially, by the identification of inputs and outputs in the defining diagram. Moreover,

Chapter 6 Analysis of a Program Design Methodology Page 135

the mode used to process data inputs, outlined in the processing section of the defining

diagram, may necessitate additional controls such as command buttons for calculation or lost-

focus on objects. The screen layout is the first concrete manifestation of the finished system

and one of the aims of this section of the methodology is to provide students with a view of

how the front end of the system will look to the user and to identify key controls on the screen.

Lecturer M stated the importance he places on the screen layout:

/ think they have got to draw it at some stage and they have to draw something.
But it's probably a bit to do with the way I always think and whenever I need to do
something I always draw a sketch or whatever. I get it sorted out in my mind what
size and shape it is going to be. Admittedly, people can get away without doing
that.... It is what they start from, it is something concrete, and they should be able
from their inputs and outputs and everything in between, what is going to happen
I think they do see it that way. It is a bit hard to work out whether they have or
haven't seen it that way (Lecturer M).

Lecturer T believes, however, that it is important that the screen layout be done (whether on

paper or directly onto a computer) but that it is likely that it will be modified through various

iterations as students learn more about what can be done:

... the sense of knowing what can be done. I mean knowing what you want to do
has to be in some way couched in terms of what you can do. If you didn't know
anything about computers, for instance, and you think you could have voice input,
for instance, you might be in for a rude shock when you discover the current state
of voice input. ... What are my range of choices? If I want to get some input, how
can I get input? I could use a text box or I could use some combination of buttons,
option buttons or check boxes. You have to know there is a list of things possible
first to make a choice from them, the problem then is to what extent do you teach
that before the methodology (Lecturer T).

In the subject evaluation sheets completed at the end of the semester, students identified the

development of a screen as the most enjoyable aspect of the design methodology. This view

was supported by evidence from the interviews:

It was fun it was the only thing I enjoy about it. Designing something is great. Do
all the screen first (Chigden).

It is the easiest part. I like to do that first on the computer. I am fussy about that
(Seeana).

I love it. You have done your programming and you get a screen exactly how you
want it. With Visual Basic it is so exact whereas with Pascal it was difficult to get
it where you wanted. With Visual Basic you can virtually do what you want to
(Billy).

Lecturer O revealed in his interview that his research had found that students in the third year

systems implementation subject enjoyed this aspect of event-driven program development as

well. He stated:

Chapter 6 Analysis of a Program Design Methodology Page 136

They enjoyed producing the user interface stuff and some people might criticise
that as just doing pretty colours on the screen. It is a bit more than that Sure it is
playing with pretty colours, I think it is being able to actually construct something
that looks good. They get some pride out of that whereas no matter how hard you
try it is awfully hard to get a nice looking result in Pascal, for example unless vou
were an expert at it. (Lecturer T).

6.4.1 Development of the Screen Layout

Most students submitted extremely detailed screen layouts in their assignments. A typical

screen layout is shown in the figure below.

f**.PPFQuofe

Ou-OTT*

H-U*^

Ibif

UlaSU

W&
QHtrtx>sw/

4xJ-fflh«6tasj laUxs/

(owiBi'^)

U f « M r M « t J ^

(wnwc^st

(^CM^UfcJtCrt)

These final screen layouts, however, are often rewritten and hide the amount of editing that has

been done by a student to arrive at the final draft. Work by Peter reveals the changes that he

made at the various stage. The screen layout below is his first attempt at the screen and

denoting inputs and their location on the screen.

Chapter 6 Analysis of a Program Design Methodology Page 137

?&<K

CM*© ft^e-ft c-/\ y
£

\%^ b°S
*J

MPTTS O
I
2.

2>

$~1<5o F\x&o

K*t Pftttf-?£*.*» r\ + $ 5 CODQ- ^HIIMD

tAA-Kl^

^ o P l*£jD

• 6 o ^ . ^ ^ Ry^

His second iteration builds on these to develop a more detailed screen layout:

Chapter 6 Analysis of a Program Design Methodology Page 138

F i c x u M F&. Ar^we, Ot,0-rA^»oM

;:?«rrt L<ENC,TH O* P«-A«e I 1*--
VjicXTH «<= F*^c- nr"' > — T > ^ . ^ H F > ^

v r\

T*T D«TC-

C O S T OF

N o Of- tAf\7S

Vr
^ s ~ • « 7 ^ 7 ^c£xl&f.,c.',,,0

?

f-l&.fvnFm.Y^.

j^ If*. A"T CARD

d^llfc ^""(•VAT

:«M« C±2^;' @4L7±3^ on!1!, rV\K)W«, cl

?

l_JP_B50_J JcftLCULftteJ

To-rfA I-
4—t HKMO -r«T»i_

1

Work by another post graduate student shows a similar amount of editing between iterations:

&%!f 4*&4b* J W . e„ '•^-,4-

t>«a..

tra/ng Op forts

Mh

Chapter 6 Analysis of a Program Design Methodology Page 140

P B K F # W W ?\CtyRE FRMiAS
Quo Kjs ^ J-e^i CJL j

cm }J#-

O£T10SJS

T~oTuZ
1

^rmp n.
5

'Z.'LO (^
'ftj

«Ho
j (&-G$f

.cuts i \ I T J F / I 7 1 | n r u

xm* $13^. -r^-^L^LJ^ Mb/

li "Tj p - r
SOB TT&T/IC

7*v

W-*«4J WTK1L

In this latter case, the student has changed the method of input, expanded the output section to

include more details, and moved from a calculate button to on change or lost focus. The

comments at the bottom of the last screen gives some idea on the reason for the change.

Chapter 6 Analysis of a Program Design Methodology Page 141

6.4.2 Editing the Screen Layout

It would appear that, once the screen has been developed, students tend not to make major

changes to the screen layout, indicating that they prefer to get an accurate picture of the system,

as depicted by the screen layout, in this stage of the design methodology.

It stays in the corner only because I understand all the processes and how they fit
in but I always find once I have done the algorithm it changes it all apart from the
problem statement and the defining diagram. I probably wouldn't change the
screen because I would think oh my God it would confuse myself even more. Try
and make it balance. (Dianne).

Do the screen layout. Do it in pencil and then stick to it. although I can change it
(Chigden).

What I tend to do is draw up boxes. I haven 'tyet labelled them as text boxes. Some
I know straight away, they are text boxes or label boxes. Some are coming to me
as I am writing it down, but as I tend to not so much move the boxes around I tend
relabel them. (Gerald).

Lecturer M also observed this to be the case:

I found that once they made their screen they stuck with it.

Lecturer T found that a number of students in his class chose to develop the screen layout

directly on the computer. In justifying this approach he states:

/ don't think there is a major problem with that. You would like to think they use
paper first but it is a bit like saying do you sketch your essays out on paper first,
some people say they do but.. . The mere fact that you can put something on the
screen and move it around to where you want I think is important and one of the
differences is that means you don't necessarily have to sketch it out on paper
firstly. Another issue, take that example of folded or not, where do you make a
decision that that is not a text box, you make a decision that that is an option
button rather than a text box, I am not sure. I think in that first step they have to
identify that there is some input that will determine that, then there has to be this
leap of faith that this sort of input comes a text box and this one becomes an option
button. (Lecturer T).

Moreover, a completed screen design, however, does not necessarily lead to the development of

a fully operational system or one that matches the system requirements. A screen is the front

end to a system but appears to give some students the illusion that the system is almost

complete. Asked if students identified more with the design of a screen than other steps in

program design, Lecturer O responded:

Oh yes because it was so much fun to do. Many of the programs I had submitted
didn 't actually work at all, most of them did not work properly and only a handful
gave up the statistics accurately. But every one of them had two forms. (Lecturer

O).

One could liken the development of parts of an event-driven system to the building of a house.

Once developed the screen appears to give a novice programmer a false impression that the

Chapter 6 Analysis of a Program Design Methodology Page 142

program is nearly finished and the rest can be done in an equal amount of time. In the building

industry, the frame of a house can be built very quickly, often giving customers the view that

the house can be completed quickly. There were numerous times in class, particularly in the

early weeks of the semester, when student underestimated the work on their assignments after

the development of the screen. Statements such as "I have done the screen, I am nearly

finished" or "I just have the code to do" were common responses to queries about their

progress.

A number of students found that developing a screen helped guide them through the next steps

of the design process.

Very important. It helps to understand the whole thing. I go back to it all the time
even when I write down the program variables. (Gerald).

Very important. Once I saw it on the screen and played around with it a bit I knew
exactly what to do - well not exactly -I knew what to do.(Dianne).

Yes you get to see what you want to do (Tom).

Fairly important to be able to work out the other parts (Gerald).

Elizabeth, a student who had completed subjects in Pascal and COBOL at a previous institution

found that the screen helped give her a picture of what was required:

Because it is visual, you can see it. You create what you want to see first. You have
to see. You need a vision. When it comes to cutting code, I think you do need to
know what you are doing before you actually do something. When you do Visual
Basic you do get nice boxes, your layout looks nice whereas with Pascal I'd say,
'Why are you doing this, why are you doing that?' At the end it hits you what you
have done. 'Oh, is that why we have done it' You need to know what your
objectives are before you can cut code. Because if you don't understand something
you are not going to put your best into it. You are not going to really do your best
because you don't understand it... If I can see it I can do it.(Elizabeth).

Joanne and Billy, other students with prior experience in a procedural programming language

found that the screen layout helped as well. Joanne appeared to have put great importance on

the screen layout:

I found it pretty good. You had more idea of the problem, what you were meant to
be doing with the problem, so you were not just writing and not realising what it
has got to do with. Whereas if you have got the screen layout you know what you
are actually doing - it is more realistic I find for the problem (Joanne).

whereas Billy only chose to do the screen layout at times:

I have a mental picture of the screen and then do the event response list and then

you can go off and draw it if you like.(Billy).

Chapter 6 Analysis of a Program Design Methodology Page 143

Fred, a part-time student w h o works for a company developing computer-based accounting

systems, related some of his work experience to the importance of the screen layout stage:

We don't go anywhere unless we get the screen layout right 'cause that, from my
point of view, says a lot about what is going to be happening from there on. So
much so, that in that case, I spent 2 days in overalls talking with every person who
would have involvement with it. From that we built up a screen layout and that
tells you a lot more about what is required from the program. Usually do all the
planning first. I am reluctant to enter the screen on the computer just in case it
needs to change (Fred).

Mary-Beth, a mature-age student, identified the dangers of placing too much importance upon

the screen design at the expense of other steps in the process.

Yes I see it as important but I don't see it as more important than anything else,
say to have the screen and work from the screen. The other thing is that the screen
is the very last stage of the process and working from that it might be able to be a
visual incentive for people to be able to do the other steps but it isn 't really
necessarily going to help them in the long run. You can make it look nice and
really pretty. And I put it up in the last class in Arts just to show people that there
are options that they have got to understand; that they are given the base
knowledge but they have got to be able to understand that there are a whole lot of
options out there that they need to investigate in terms of trying to bring this stuff
together. Put up different buttons in different locations - people interact with it in
different ways (Mary-Beth).

Event-driven languages, such as Visual Basic, require systems to be built using forms. The user

interface components of a system under development are pre-programmed within the

environment. To create an acceptable user interface using a procedural language, a person

would often be required to program a number of trivial and repetitive segments of code. Visual

Basic frees the programmer from this task allowing them to concentrate on other, arguably

more important programming tasks. Screen design, although important in introductory subjects

using procedural programming languages, has been elevated to a greater level of importance in

windows-based systems. Lecturer O believes that:

Effective user interface design is essential if a system is to be successful. Visual
programming environments do not so much hijack the User Interface design
process as facilitate the use of different interface controls best suited to the task at
hand, while eliminating the need for the programmer to develop trivial

codefLecturer O).

Although the main aim of developing a screen layout in this design methodology is give

students a concrete picture of how the front end of the system will look, other screen design

issues may need to be considered in introductory programming subjects. As Lecturer O points

out, students are empowered with power design tools in these early subjects without having

been formally trained in user interface design.

One of the great benefits of Visual Basic and also one of the short comings. One of
the good things about the old fashioned systems we use to use was that they were

Chapter 6 Analysis of a Program Design Methodology Page 144

so limited in what you could do on the screen design. You would teach students
good screen design in Pascal in three and half minutes because they were so
limited in what they could do, you know, don't use to many colours, nothing
flashes anywhere You can teach them screen design in Pascal very quickly in
Visual Basic what I did was walk around behind them and say "Oh, that is ugly
and point out what was wrong you are going to lose marks for that suggesting that
if your not too sure where to put things have a look at a few programs. OK button
is at the bottom right hand corner. Try and have the inputs starting at the top left
and finishing at the bottom right hand cause that is the way that people tend to
work. The last thing that they do should be on the right so don't have the close
button on the left. It enables them to do all the very bad things. It enables students
to develop a whole range of bad habits - we don't have time to teach them
interface design but here we have all the tools that enable them to build really
woeful interfaces (Lecturer O).

6.4.3 Relationship to Other Steps in the Design Methodology

The chicken and egg argument applies in the case of screen design and program structure; Does

the screen design determine the structure of system or the structure of the system determine the

screen design? Or do they evolve together? It is clear that aspects of the screen are almost

predetermined by the inputs and outputs and some students go from the defining diagram to the

screen:

That is the way to go. Once I have done the defining diagram this needs to go into
a text box, this into a label box. Because I don't know much about the code I find it
good (Peter).

An early version of a screen layout for an assignment by Peter shows how he matches elements

of the defining diagram, such as inputs (denoted by 'IN') and constants (denoted by 'CONT')

to the screen controls to:

Chapter 6 Analysis of a Program Design Methodology Page 145

ETZZ
nil

G>MOT^IIOW Foe Pipi.if PtJirtiwt;

/

D«-TG
/

To

F.^WM i._.:jfnr"1"'""-'™ ^^^«4. j^*——

Pfrice O F

r\ouN-ieoCft&r> ! .. jc* (5? £ [C#i»T- Ir^l.So

.L*tf„.,fi:..,„,« ».c-..«««M.h A M O U N T
£ * '/ UliTinT 0U1MV

^ V»L0.«V.>«f *.«•

c

P\AKIWC,

.•£>"" I
I!

@ *| lw'^-*Ww

L»L>*i<wt<..iv.<.~r^ ,.

UWMFu^

In «„-. ("-fn*,

PRINT | C *<.<".«.» i f fvi'

Moreover, observations reveal that many students initially opted for their preferred method of

processing data which determined whether the system would have an all embracing calculate

button or process data based on change or lost focus in controls. As mentioned in other

sections, most students were comfortable with a command button which would have a method

that would validate and calculate the output, or they started with a command button and then

eventually eliminated it by transferring code to lost-focus or change events. Elizabeth outlined

a typical approach:

You draw the screen nice and pretty and then you try do the calculate or click
button and then try to do the program, the writing behind it. I probably jot a few
notes down like this equal this where I put everything down but mainly I try to
write the code out without doing the algorithm or pseudocode. (Elizabeth).

Many students preferred to do the screen layout either on a computer or on paper before or

while developing a defining diagram:

Screen layout, actually I do it just before or at the same time as the defining
diagram. Once you know what is going to be on the screen it helps to be able to
see what input is required by setting up the screen (Gerald).

I tend to figure out the screen first and I figure out what text boxes and all that and
then I go back to the defining diagram and try and figure out what actually has to

be put in or calculated or whatever. (Jaranka).

The task part of the defining diagram would not be done until I did the screen
layout. So in the screen I know we have done a calculate so I would go back to the
task part of the defining diagram and write it down.(Tom).

Chapter 6 Analysis of a Program Design Methodology Page 146

Once I have a screen layout, the programmer and I sit together and we scratch out
on the board which now I call the defining diagram, these are the thing I want to
put into it and these are the things I want to get out of it - the middle column you
the programmer, work it out (Fred).

In the interviews, the majority of students did the screen layout after the problem statement and

before the defining diagram (if at all). This may have been due to the fact that the problem was

quite small and because of time constraints, nevertheless, it appears that the screen is both a

check on system inputs and outputs and/or helps formulate these requirements.

Only one student Billy appeared to develop a formal event response list (the next stage in the

design methodology) before building a screen.

/ like to do the screen after the event response list. Once you have gone through
you event response list you can say this and this is going to happen and you might
remember that you need a command button to print and so go back and event
clicks print, program prints screen and that is something you can draw in. You
don't have to draw it do your event response oh forgot this and then go back and
draw it. So it is more systematic.(Billy).

Observations did not find any students in classes who developed an event response list prior to

the screen although it is likely that some students tend to develop a mental picture of some

events and their responses particularly towards the latter part of designing the screen. The

screen layout, it would appear, is not sufficient for most students to enable them to move onto

developing program code. Observations reveal that, when given a system to modify, most

students in classes became confused on h o w to make changes. In the final assignment of the

semester, students were required to develop a booking system for a pleasure cruiser where label

boxes represented each cabin. The system used random-access files to store booked data. In the

past, files and file manipulation have proved to be difficult for students to understand, so a

skeleton version of the system including one cabin label box and some commands, was handed

out to students. N o documentation was handed out although the system requirements were

outlined in the assignment. Students were to add label boxes and additional features such as

saving and modifying data. The fully operational system was demonstrated to students and they

were then required to proceed. It was observed that nearly all the students were unsure how to

add features to the system beyond adding additional label boxes. After a lengthy discussion, it

was found that most students were trying to use the screen as a hint to what modifications to

make rather than matching the system functions to events. W e then re-engineered an event

response list which helped them identify how to implement the required changes.

Although the screen provides students with a good guide on how the system will appear

user and assist then in further steps, it is grossly inadequate in determining system stn

Sadly, it would appear that students place too much emphasis on screen design at the expense

of other stages in the design process, in particular the event response list. The event response

list, in some formal sense, appears to be critical to the documentation and development of these

types of systems.

6.5 Event Response List

In event-driven programming, a system moves from one static state to another by responding to

an event. O n an event occurring, a system follows a predetermined path according to

programmed instructions included under an event procedure of a particular object. Thus,

although two screens may look identical on different systems, there may be a significant

difference between the two systems depending upon the events and their responses. The event-

response list, therefore, is instrumental in determining the structure and operation of a system.

In this design methodology, the event-response list has the added aims of assisting students

identify where to place the code and to provide a systematic method for dividing up the

programming task and developing the code in event and general procedures.

The analysis found that the concept of an event, although apparently easy to describe, in reality

is very difficult for most students to understand. Moreover, lecturers often contribute to this

confusion by modifying the definition of an event or placing a different interpretation on an

event at different stages in a course. Students were confused about the following four areas:

The boundaries of an event - that is, whether to include prior actions in an event such

as an input to another object

The context of the event - whether events should be viewed from a, programmer's or a

user's perspective or both

The status of an event - the distinction between active and passive events

The level of detail in a response - whether to include multiple paths such as for

validation.

6.5.1 Overview

There was a mixed reaction from students to the event response list:

/ have some problems sometimes with the events. What happens when and

what triggers off this reaction. Not quite clear all the time about it.

Therefore I wonder where to put the code. ...To me, not overwhelm but I

would like to say whelming. I am bowled over completely by it. But it is not

just getting to grips with Visual Basic with me I have to get my mind and my

fingers round the computer itself. Clicking pressing things those basic

things I have to get. For me it is two things, or more than two things, it is

learning all that and learning the language. So it is a lot for me. I am not

crushed by it yet. I will stay with it. (Gerald)

Chapter 6 Analysis of a Program Design Methodology Page 148

The theory is OK but the hands on is not. In front of a computer I spend
heaps of time. ... Theory and practise does not go hand in hand (Dianne)

I never do the event response list because to me, maybe that is something to
do with the input output to because maybe that is where I do a lot of the
event stuff. (Mary-Beth)

Not really useful on a small scale but for larger ones it is. It sort of maps it
out exactly what is going to happen when you do this and what the response
will be and makes sure it is doing what it should be doing (Seana).

Probably the easiest part apart from the problem statement. Cause there a
lot of examples in the book and they tend to become quite similar like
pressing the exit button. When you have to input data and the response, it
should come out calculated I can follow that quite easily (Jaranka).

It is quite good... Once you have worked out all the possible events it makes
it a lot easier, because you know exactly what is going to happen at a
particular stage of the program. (Billy)

The event - response I kind of understand a little bit. The algorithm is OK.
(Elizabeth)

It is beneficial. I feel though as if I have done it for nothing unless I get the
code done first? (Sylvia)

The analysis of the data from the event-response list revealed that students appeared to benefit

in latter steps of the process from identification of the events but they had trouble interpreting

the exact nature of an event. The text book used by students in the introductory programming

subject at Victoria University of Technology sometimes varies the description of an event to

include prior inputs or passive events such as turning one option button off as another one is

turned on. Moreover, lecturers and workshop leaders appear to vary their interpretation of an

event depending on the detail of the system ie. whether validation of inputs is to be included or

to reinforce the ordered nature of inputs to obtain an output. Although, students had trouble

with some types of events ie. external-related events, the analysis revealed that the problems

students had interpreting and explaining events and responses can be broken into four main

categories:

The boundaries of an event

The context of the event

The status of an event

and the level of detail in a response.

Chapter 6 Analysis of a Program Design Methodology Page 149

The following program will be used as a running example to help explain each of these

categories.

On the click of a command button, an event-driven system takes inputs from two

text boxes, Hours Worked and Pay Rate, and the true value from a pair of option

buttons, Part-time or Full-time, and calculates the Gross Wage for an employee

and places the value in a label box. O n changing the value of the Gross Pay label

box, that method calculates the Tax and Net Pay and displays each of these in a

label boxes.

6.5.2 Event Boundaries

Observations reveal that a major problem faced by most students was understanding what was

meant by an event. In theory, although an event is relatively easy to define (ie. an action that

results in the execution of a method or section of code), in practice an event appears to take on

different meanings at various stages throughout a programming subject. Analysis of the data

reveals that these different interpretations of what is meant by an event creates confusion in the

minds of some students and their understanding of the concept of event-driven programming.

As mentioned earlier, students appear to understand external events such as the click of a

mouse on a button and most internal events such as form load. The concept of an external-

related event, such as on-change however, can be difficult for some students to identify and to

code. This is clearly evident as a significant number of students opted for a control button to do

most of the validation and calculations rather than use on-change or lost-focus events in their

assignments.

Yes, I haven't worked out how to do the other ones. I was going to do

different for the last assignment but lam not 100% sure. (Elizabeth)

I would have anything other than the Calculate button. That is all I have

been shown. (Dianne)

I am having trouble understanding where the code will go. If this one

changes it automatically changes the other. (Mark)

It is a lot more difficult than the cmdCalculate. (Billy)

Some students started with a Calculate button and then transferred code to on-change or lost-

focus events:

What I do is put it through a calculate button firstly, simplify the problem

then make sure everything is working and then take it out and get rid of the

calculate button. ... What I did in the second assignment was have a

calculate button there and then created all the code and then removed it.

(Clinton)

Chapter 6 Analysis of a Program Design Methodology Page 150

The most c o m m o n variation on the strict definition of an event was to extend the boundaries to

include a number of prior steps or inputs. The first draft of Sylvia's event-response list included

the following events:

frosfr : "TK^ OMV emr** IKQ rx^ <* -the> ce^p^

ce-fe^n^dv<& 4W. La^grr^ q ^0, QaruL ^

..{^W2 . Thfi. Us*" select

Jfeqorf*-

rn<\\ ^y « ^ nAoJ-re. and Q.cM. *K

ex ^fe pcMS. Is.. _ol'Spia^o(•

-JCAflsrtT- os^r GAfefcS _4^c &P<r b j d i t ^

.$&S%>QQt&J, ."y^t- (p ^ ^ c * ^ ; 5€fc> +C/7v~.'.'-0^^^-

Similarly, Ruby, another post-graduate student, submitted the following event-response list:

4.Event/Response List
Event: The prograrm started.
Response: The current (date is displayed

Event:

Response:

Event:
Response:

The user entters length of frame, width of frame, unit cost for length of
frame, unit c;ost for square meter of card, mumber of mats required, unit (cost
per square rmeter of mat, cost for mark and! cut hole, unit cost for square
meter of glatss, and unit cost per square meter of making.
Perimeter off the frame is calculated Areai of the card is calculated
Cost of the fframe is calculated. Cost of thee card is calculated Cost of thie
mats is calculated. Cost for mark and cut iis included Cost for glass is
calculated. Cost for making is calculated. Total cost is displayed.
The user clucks the Exit button.
The prograrm is terminated

Note in both cases the large number of inputs prior to the actual event of clicking a command

button.

Chapter 6 Analysis of a Program Design Methodology Page 151

In the example above, it m a y be possible to state the first event as:

Event: The user inputs the hours worked, the pay rate, selects part-time or

full-time and clicks the Calculate button

Response: Display Gross Pay

In this case the event is modified to include three inputs but does not necessarily check that

they are present or correct. In theory, the event is not a series of ordered steps but some

students appear to benefit from outlining these steps in their event response list. In the early

stages of the introduction to programming subject, students appear to build a mental model

which has the computer program as controlling the system not, as is the case in event-driven

systems, where the user can determine the order of events. Students have a better understanding

of the concept of an event-driven system in the latter part of the subject where they tend to

include validation of inputs and disabling of controls at that time. Their events drop references

to prior inputs. Georgina was the only person interviewed who specifically mention this

anomaly:

When you come to the event response list there seems to be a difference

between what you do next and what happens.

Question: T o you then, the event-response list is confusing?

Yes, to me it simply means it is like explaining what do you do next and what

happens. It is clear on what the events are and their responses. I understand

that. For example you say inputting data itself is not an event but when you

read in the book they say event input name, response is this. (Georgina)

The defining diagram outlines the inputs required for calculation and this may be one of the

reasons why students quote inputs as part of their events. The analysis, however, suggests that

it reflects the problems students have understanding the nature of control in event-driven

systems. In the example in the interviews, only five students did not use a Calculate button.

Although the example may have lent itself to this particular structure, most students had

difficultly describing the events when the calculate button was removed. Moreover, it was

interesting to observe h o w two students in the interviews intended to manipulate their screen

designs with the intention of forcing input in a particular order. Billy's screen layout was:

Chapter 6 Analysis of a Program Design Methodology Page 152

N<

g^? ^ f
lfi,-~t-uwr7 J (S'-ffZi

When he was asked to identify the events if the calculate button was removed, he stated:

P«f w ?/ie weight. Move the option reg or not around so that appears before
the weight - the weight is the last input.
Question: What happens if they had to change the registered status, where
would the code go?
You could link it to weight and the option button I suppose?
It is a lot more difficult than the cmdCalculate. (Billy)

In this case, Billy appears to believe that the inputs will be entered in order from top of the

screen to the bottom and he fails to understand that the user determines the order of events.

In the interview, Peter developed a screen layout without a calculate button:

Chapter 6 Analysis of a Program Design Methodology Page 153

\>oST

AMT fes>T

C6ST or

VLiT€- ?I

J

\ l ^ P ^

and identified the on change of weight as the event for the calculation of the charge. Asked if

the code should go anywhere else, Peter responded:

Should be behind the option boxes - No I think I can get around it

Although Peter has opted to use the on-change event, he appears to require a strict order of

inputs in his system and hints that he would change the screen layout to alter the order of inputs

and get around adding another event.

Lecturer M believes that students were confused about events:

It was probably the confusing part of it. It wasn 't to me but I think it might
have been to them. I think that might have been just too much because it was
quite obvious to us that you type in the telephone no etc then do that. I don't
think they really understood that most of those things did not matter. But
maybe we should have picked out the ones that really did cause the event, I
don't know how you really put it in. ...I think we are trying to put too much
into the event. We are trying to say to them this is how you will operate the
program, this is like a set of user instructions because you have to fill in this
and this and this and then click the button. Now this is not what we are
really after, the event is just click it. This might give them a better idea of

Chapter 6 Analysis of a Program Design Methodology Page 154

assigning a particular bit of code to a particular event on a particular
object.

Similarly, Lecturer O believes students were confused about what to include in an event:

/ don't know - I didn 't get really narked if they left out the exit button they

tended to do either simple or too complex. Some of them would go through

and detail every text box or they chose too long complex events where they

meant to say when you press the OK button, they weren 't too sure how to

handle things like exceptions like validation events for example and there

were a variety, some would say when you enter the data into it if this and if

that, they would have all the ifs in the response, others would have the data

entry as one event, the fact that it was wrong was another event.

From observations, the failure to adhere to describing systems in terms of true events causes

immense problems for students particularly those who are struggling to understand the concept

of event- driven programming. Including a sequence of inputs or steps in the description of an

event may help some students understand how to derive an output but it creates the illusion that

the system will automatically follow these steps and emphasises a procedural approach in an

event-driven environment. This appears to be very confusing for some students.

6.5.3 Event Context

An event can be viewed from two different perspectives or contexts, a user or a programmer

perspective. The response to an event from a user perspective is the change or combined set of

changes to the observable parts of the system; it may be a new form on the screen, an output

added to a form, or intentionally saving a file. Using our example above, the event response list

could be written as:

Event: Click Calculate button

Response: Display Gross Pay, Tax and Net Pay

In this case, the user observes one event changing all the outputs. The system, however, has

two events; one that calculates Gross Pay and another that calculates Tax and Net Pay:

Event: Click Calculate button

Response: Display Gross Pay

Event: On change of Gross Pay

Response: Display Tax and Net Pay

The first event, the click of the calculate button, takes the three inputs and uses these to

calculate the Gross Pay. The second event, changing the Gross Pay, calculates and displays the

Tax and Net Pay. In this case, it is only possible to identify both events if a person, usually a

Chapter 6 Analysis of a Program Design Methodology Page 155

programmer, has a knowledge of the structure of the system. Moreover, some events may lead

to changes in the system state which are hidden from the user.

Throughout the semesters, students were told to describe events for a system from a

programmers perspective. Nevertheless, in the early weeks of the subject in particular, most

students w h o up until that point in time had only been users of applications, had difficulty

identifying events from a programmer's perspective. The difference in events and responses

from a user and programmer perspective was most evident when moving between forms on a

multi-form system, when one event changed the value of a variable prior to the calculation of

an output by another event or in system events such as on form load. W h e n moving from one

form to another, changes are often made to the new form prior to its display - there are often

many options open to the programmer to make these changes. Similarly, the user is often

oblivious to the operations that can be done on the initial loading of a system such as opening

files and setting restrictions. Finally, while operating a system, the user may input data or

change options values which in turn can change the value of variables or trigger the calculation

of some interim values prior to calculation of the final outputs. As an example Irena wrote:

Event: The user enters an even number of pages and selects double side option
button.

Response: The number of pages to be copied is divided by 2.

Event: The user enters an odd number of pages and selects double side option button.
Response: The number changes to be copied is divided by 2 and on the result is added

0.5.

It is unlikely that all the events of a moderately complex system could be identified by a

student in the first pass of the event-response list. In particular, if a student took a user

perspective, it is highly likely that additional changes to the original list would have to be

made. Chigden highlighted this point:

I just sit back and think of it but not straight away I am not. There would be

more tasks but I would put them in as I go. (Chigden)

Observations reveal that many students initially took a user perspective when identifying

events and added additional events, more closely linked to a programmer's perspective, at the

coding stage. This is understandable as students were encouraged to simulate the running of a

system from their form design ie. the user interface, as a way of identifying events. Sadly, they

often failed to link the specific code in methods to events, and to move back and forwards

between these two stages of the design process.

Chapter 6 Analysis of a Program Design Methodology ^ a 8 e

6.5.4 Event Status

To simplify teaching event-driven programming, w e restrict most of the discussion in lectures

and workshops to a few events ie. load, click, lost focus and change. A control object, however,

can have multiple events and it is only when code is attached to an event that it is deemed to

exist. Moreover, some objects are created with the intention of having an attached event while

others are only created to help with display, take inputs or receive outputs. The purpose of an

object frequently depends on the existence of an event.

The structure of an event-driven system is determined by the status of events and this appears

to cause problems for students. As an example, if a command button is used instead of a series

of on-change events, then a text box may change from being an active object in a system to one

which only takes input and does not trigger an event. Similarly, if validation is assigned to an

object, then this change in event status changes the role of the object from one of accepting any

input to only accepting valid inputs. In our example, if validation was included on the lost

focus event of each text box then the event response list would be expanded to include:

Event: O n lost focus of Hours worked

Response: If invalid amount then display message box, clear entry and set focus to

Hours worked

Event: On lost focus of Pay rate

Response: If invalid amount then display message box, clear entry and set focus to

Hours worked

Lecturer M suggested that the event response list be expanded to include compulsory validation

to reinforce the need for inputs prior to calculation of an output:

/ was wondering whether in that event response list we should have error

type things, like the event is they fill in cost and press the click button if they

haven't filled in the cost then do we get in there to write in they trap the

error and say 'you must fill in a cost first'?... May be there should be a set

of preconditions before the event response list. We say, the preconditions

are that they have filled in this, this and this box and they have entered this

data and then a certain event happens. I don't know whether that is getting

too prescriptive at this stage. We are trying to make it relatively simplified

at this stage.

Although, events are deemed to exist only if code is present, students are not so clear on this

issue. In the early stages of the course, it is sometimes difficult to describe to students the

difference between non-existent and existent events. Many students seem to believe that every

Chapter 6 Analysis of a Program Design Methodology Pa8e

keyboard entry is an event. Irena, an undergraduate student submitted the following event-

response list for her first assignment:

Event/Response List

Event: The program is started.
Response: The current date is displayed.

Event: User enters the number of copies required and the number of pages to be
copied.

Response: As the values are entered, they are displayed.

Event: The user chooses and clicks on the paper size, cover type, paper colour,
binding and copy side option buttons

Response: The buttons are marked on and others are marked off.

Event: The user clicks on the folding check box.
Response: The folding is selected and binding and covers type frames disappear.

Event: The user selects the binding type option button.
Response: The binding option button is marked on and others are marked off.

Event: The user enters an even number of pages and selects double side option
button.

Response: The number of pages to be copied is divided by 2.

Event: The user enters an odd number of pages and selects double side option button.
Response: The number changes to be copied is divided by 2 and on the result is added

0.5.

Event: The user enters 2 as a number of pages and the double side option button.
Response: The number changes to 1 and the folding check box appears.

Event: The user chooses and clicks on the binding option button.
Response: The button is marked on and others are marked off.

Event: The user clicks the Print button if he/she wishes to print the price.
Response: The form as displayed is sent to the printer.

Event: The user clicks the Exit button.
Response: The program is terminated.

The second event, User enters the number of copies required and the number of pages to be

copied, is not an event. However, in her second assignment when she included validation on

inputs there was an event associated with the object.

Moreover, some events are part of the program architecture and happen automatically which

often leads to further confusion. An option button in a frame or on form will automatically turn

other buttons to false if it is chosen - no code is required - yet Irena has identified many of

these as events in her system ie. The user selects the binding type option button - The binding

option button is marked on and the others are marked off. It is important to note that unless

option buttons are in a frame or are exclusive to a form, event code would have to be included

behind each option button.

Chapter 6 Analysis of a Program Design Methodology Page 158

6.5.5 Response Detail

The intention of the response section of the event-response list was to define what was required

of the method. In our running example the response to the event Click on the Calculate button

could be Calculate and display the Gross Pay. It is possible, however, to place more detail into

the response thus it could read; Multiply the HoursWorked by the PayRate for either Part-time

or Full-time employees and display the Gross Pay. In the latter case, the response is used as a

tool for the initial identification of steps in the code while the former only identifies outputs.

It was surprising to observe that, almost without exception, students described responses in

terms of the output with little or no mention of how the output was to be determined. Seana's

event response list shows the lack of detail in the description of the response:

F.VKNT R E S P O N S E LIST -

Event - Program is started
Response - Current Date is display and option permanent is chosen

Event - Change Daily hours worked
Response - Calculate Hours and Total Equilivant Hours

Event - Change Total Hours, Change Total Equilivant Hours
Response - Calculate Grosis Pay

Event - Change Gross Pay
Response - Calculate Tax

Event - Change Tax
Response - Calculate Net Pay

Event - Change Normal Rate of Pay
Response - Calculate Gross Pay

Event - Change Employment Status
Response - Calculate Gross Pay

Event - Click Write to File button
Response - Employees information is written to CCPAY.txt, all information is cleared

from form.

Event - Click Exit Button
Response - Program is terminated.

When details were included in a response it was usually due to the need to include additional

outputs or to describe system functions. In the example below, in the first event Sylvia lists the

outputs that are to be calculated and in the second event describes the outputs that are saved to

file and refreshing the screen.

Chapter 6 Analysis of a Program Design Methodology Page 159

EVENT: The File Button is clicked.
RESPONSE: The Date, Pay Week, Employee Name, Employee Number

Gross Pay, Tax Pay and Net Pay is written to the C C P A Y '
Text File. The cleared screen is then returned for the next
Employee details.

If the level of detail in the response section to events reflects the amount of thought students

give to the proceeding stages in the design process, then it would appear that they give very

little consideration to how an output is going to be determined at this stage. Moreover, the

observations of students in class would reinforce this view.

6.5.6 Placement of Code

Students appeared to prefer designing systems that use a command button to calculate the

output. The code to do these calculations is placed in only one location. In these types of

systems, the students are often using mental models developed around the procedural paradigm

assuming the entry of inputs first followed by the click of a button leading to the calculation of

an output. So far w e have only analysed individual events but it is equally important to

investigate how students developed and presented their event response list. The examples so far

show that most students present their events in the order one would expect a user to follow

when using a system, that is, inputs, processes and outputs. This is a logical order to present

events, after all a system is made up of inputs processes and outputs, but the context of some of

the events (particularly passive events such as putting in inputs) is further evidence that a large

number of students appear to look at systems in a procedural manner. As Lecturer O observed

it is sometimes difficult for students to take a holistic view of event-driven systems. Other

observations of students would support this view as it would appear that most students opt for a

top-down systems approach to the development of event-driven systems. Moreover, this may

account for why so many students place importance upon the screen layout seeing this as an

overview of the system. Lecturer O identifies the problem many students have moving from the

screen layout to the event response list:

... some way of tying in more directly the event response to the screen

layouts of forms, as it is when students are building an event response list

they are thinking what has it got to do, oh it has to add up all the numbers

right we '11 make an event for that, whereas what they should be doing is

thinking of it visually, a visual programming systems, they should be looking

at their layout which presumably if they are doing it properly has got spots

for all the input stuff that they need and they will add to it as they go along.

And will work out what has to happen. I tend to sit there with a big pencil

drawing of the screen layout and press the buttons with the fingers and say

what should happen when I press that button, what should happen when I

type in, and to think specifically in terms of text entry, validation, different

ways of doing it, whether you do it on change or lost focus and thinking in

those terms and then work from there to the event response list so that

Chapter 6 Analysis of a Program Design Methodology Page 160

anytime that something is suppose to happen in response to something that
you do it is put in the event response list. It occurred to me correcting the
last set of assignments that putting the event response list on the same piece
of paper might be a useful way of approaching it to tie it in more directly
and you can see at a glance that this particular control is a passive object, it
is there as a display or as passive data entry with no data validation.

When students are required to move to automatic calculation via lost focus or on change events

many are confused on where to place the resultant code. Lecturer M observed that event-

response list did not help these students:

Well I don't think it worked that well last semester, I think they really didn 't
know exactly what was meant what we wanted to put in there. I don't think
they were sophisticated enough probably to say "I want to be able to click
on this button and this happen ", I don't think they could think as simply as
that. ... They know what an object is. I think we have got to have it there. I
think it is one of the main parts. You have got to have that with the screen
because it is no use having the screen if you can't tell people what is going
to happen when they do it. ...it wasn 't clear what an event was. The students
did not understand an event. They did not realise there were only a few
particular events they should be working on - loading, click. They didn't
really know where to put the code. It should have been obvious from that
event response list but it wasn't. It should have told them what object and
under what event. And we don't worry about whether they filled in anything
else unless it was critical . I mean if they filled in name, address and
telephone number it doesn't really matter, they're not events which are
going to cause anything.

Although there is an implicit link between an event in the event-response list and the placement

of code in the matching object it is not explicitly stated. Lecturer O highlights this point:

They did their screen designs early, they often stick with that, later on they
would discover while they were writing the code that they would need
something extra, they would plonk it in but it didn't go back on the form
design. They forgot to go back and fix the documentation when you finished
doing the code. There were a few whose detailed algorithm was an edited
version of the code (replace code with generic pseudocode). There was
obviously not much design there. I think what they tended to do that they do
that event response list by thinking what happened here that I suppose that
and that, and right, a detailed algorithm is something which that you sit
down and a very simple detailed algorithm a sort of top level module design
that basically says you need an input module and you need a processing
module and an output module and there identified and sit down and write
the code and input all the code for all the bits and pieces and there will be
no connection between what they actually did and what was in the event
response list. I don't think they used the event response list as a device to
help them make sure they had done everything. Obviously some of them

didn't because they hadn 't done some of the things.

Chapter 6 Analysis of a Program Design Methodology PaSe

Lecturer T believes it may be beneficial to have an additional column in the event-response list

which specifically mentions the matching object.

Instead of event 1, this is the event that occurs on cmdExityou actually list

the name of the object there. You probably don't need to say it is a

command button because that naming convention tells you that and what

does it do. ... I am suggesting it probably make more sense if you had the

object is cmdExit the event is click and then put the response in words in

other words put the action in symbolic form and the response in words

(LecturerT).

6.6 Test Data

This methodology explicitly requires test data to be produced. There is an implicit assumption

that this data will be used to test a system. Sadly, the analysis reveals little change in the

attitudes of students to the testing event-driven systems from students in previous semesters

where a procedural language was used. Despite the importance placed upon the need to develop

a system that is functionally correct, students often used ad hoc procedures and a limited range

of data to test their systems. N o student was observed testing their program from prepared data

in classes. One of the experts (Lecturer D) observed a similar situation amongst his students:

They do not more or less than they have done. That is, they do the minimal amount
possible but generally do what programmers and programming students have
always done is that they put the data in that they know it is going to accept and
answers come out that they expect and therefore they think everything is OK.

Two issues surfaced from the analysis; firstly, how and when students developed their test data,

and secondly, the strategies they use to test and debug an event-driven system

6.6.1 Development of Test Data

6.6.1.1 When test data is prepared

Students submitted test data with their assignments. Irena's test data is typical of many

submissions:

Chapter 6 Analysis of a Program Design Methodology Page 162

Test Data For A 4 paper size
Copies

100
17
60
10
150
200
100
90
95
45
62
10
5
60
300
50
60
85
55
65
89
60
25
30

Pages

13
3
17
61
88
31
25
5
10
7
8
22
45
47
90
30
61
70
52
125
13
112
51
350

Paper
size
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4
A4

Covers
type
No
No

Light
Clear
Light

No
No

Light
Clear
Clear
Light
Light
Clear
Clear
Light
Light
Clear
Clear

Light
Light
Clear
Clear

Light
Light

Binding
type
Tape
No
No
No
No

Spiral
Spiral
Tape
Tape
Spiral
Spiral
Tape
Tape
Spiral
Spiral
Tape
Tape
Spiral

Spiral
Tape
Tape
Spiral
Spiral
Tape

Paper
Colour
Colour
Colour
Colour
White
White

White
Colour

White
White
White
White
Colour
Colour
Colour
Colour
White
White

White
White
Colour
Colour
Colour
Colour
White

Copies
type
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Single
Double
Double
Double
Double
Double
Double
Double
Double
Double

Folding

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Expected
results (S)
317.00
4.59
103.80
44.20
954.00

1134.00
575.00
229.50
270.75
186.30
264.12
41.80
31.00
472.80
3540.00
200.00
352.20
667.25
375.10
716.30
278.57
689.40
183.50
696.00

The interviews, however, revealed when most students developed test data:

Last. It would be as soon as I am ready to hand it in. It is almost last. I don't like
doing the paper work behind I just like nutting it out. (Elizabeth)

Once you have worked through the algorithm and the program variables I think it
is just logical to do the test data. (Billy)

Pretty much at the end. (Clinton)

I pretty much follow the steps. I do develop some test data using a calculator and
write it down. I develop my own calculations and try to run it through the code and

see whether it matches. (Jaranka)

It is quite easy and I generally leave this to last. (Sylvia)

Some students developed small amounts of test data in the early stages, often prior to any

validation, to test that the main algorithm was correct. Peter developed the following test data

prior to coding:

U W r\ Su«*

6S T6 | V

I V *° 6° no,

Chapter 6 Analysis of a Program Design Methodology Page 163

No other test data, however, appears to have been developed until the very end of the

development process.

It was clear that most students developed test data at the very end of the design process and

viewed it more as a requirement for assignment submission than as an important tool for the

testing of their systems. On the other hand, some students prepared parts of their test data as a

method of understanding the system requirements:

What I try to do because of my maths background I look at how things are
calculated and then I try to work out how the example is calculated. So I
understand the guts of what is going on in a mathematical sense.(Peter)

6.6.1.2 How test data is prepared

Students appear to follow a black box method, in the preparation of formal test data for

assignment submission and for the use of data for the immediate testing of an event. As an

example, in the first assignment students are required to develop a system to calculate the cost

of manufacturing an item, say a picture frame, from a range of options. The test data that is

produced covers all the possible paths based on the range of options . Where an all embracing

calculate button is used this often equates to white box testing of an entire event procedure. In

this case, students are often testing that a set of specific inputs produce the expected results.

Lecturer D, however, identified a second set of test requirements in event-driven systems,

which he calls interface testing, that is often overlooked by students:

So when you test their program and you click on a button, perhaps it opens a file
and then you click on it again and the program crashes, they say "What did you do
that for? ". And you say, "Well, why did you let me do it twice if it was a silly thing
to do?". So I guess what we try to impress upon them is that there are two
dimensions to testing - one is the testing of the fundamental operations that the
program has to do, like multiply 2 by 2 to get 4; if it gets 6 something is wrong.
And the other testing which you really haven't had to do in the past much is the
interface testing, and that is it now possible for the user to do some combination of
dumb things which causes the program to crash or behave incorrectly or whatever
like will you allow them to open a file that is already opened; will you allow them
to write to a file that has not been opened and that sort of stuff.

Moreover, Lecturer O indirectly refers to this problem:

Either obviously they didn't test or they ran out of time and thought heck I still
have to hand it in and see what I can get for it. I assume the latter although some
of them had not obviously tested the disk they were handing up. OK you may get it
working at home but bring it in try it on one of the machines here. And some of

them obviously didn't because they had references to drive b.

It is probably only when students are conversant with the concepts of event-driven

programming and have included validation in their systems that interface testing is fully

Chapter 6 Analysis of a Program Design Methodology Page 164

addressed. This was clearly evident in the latter assignments. A greater emphasis placed on test

cases at an early stage would provide a better structure for the development of test data for both

algorithm and interface testing. Lecturer T shares a similar view:

Test data is something they should definitely do, I am not sure where that should
go and the form of it. I think I would prefer test cases rather than test data, even a
diagram. If it said test for the situation where you have got negative input on any
of the available places, test for folding multiple copies where they cannot do it,
you know more in generalities than trying to list the actual data for each. The
trouble with listing the data for each it is the wood for the trees thing, you get lost
in the detail. I said to students, they don't seem to take that first step what things in
principle do I want to test and then go to the practice of putting in the specific
items. I think they jump to the specifics.

It is clear that most students develop formal test data after the system is complete, use a black

box method to develop test data based on the range of options depicted on the screen, and often

fail to recognise the need to test user interaction with the interface such as for the validation of

inputs.

6.6.2 Testing Strategies

The literature review revealed that object oriented and event-driven programming, which

enables code to be distributed amongst events in different objects, can facilitate testing as the

system is gradually developed. Lecturer B, one of the experts from another university, shares

this view:

And that is one of the features that is not there in procedural languages, is that
you have to go so much further in developing an application before you can test it
where as with this you have that ability to get immediate feedback live while you
are developing stuff, you don't have to go to a compiler and go through that
process, whereas this happens almost instantaneously. You can get that interactive
development strategy and test more often because it is live. Put something in, test,
prove it doesn't work and go back and correct it. So you have this one problem at
a time to solve rather than 15 errors that come out in a C program when you are
compiling to test.

As an object performs a function on a unique set of data, the programmer has a large amount of

flexibility when testing and debugging. In a procedural language it is often cumbersome to

isolate functions in a programs. W h e n Pascal was used in the Introduction to Programming

subject, students had to enter a substantial amount of the program code before the program

could be run. A s a consequence, it was found that students often had trouble identifying which

section of the code was causing the error particularly in a program without procedures. W h e n

event-driven programming was adopted, it was observed that students had a tendency to add a

function to a system, test it immediately and then move onto the next aspect of the system. O n

the other hand, a small number of students would develop a basic system and progressively add

Chapter 6 Analysis of a Program Design Methodology " a S e

functions but they usually tested each function immediately. The interviews with students

revealed some insight into their testing strategies:

/ like to correct the error. As soon as you fix that error you go to another one. I
like doing that way. I don't like having the code all in front of me and fixing
up. (Elizabeth)

I have done a few things as I go along. (Dianne)

Hike to test after each module if I can. (Billy)

I did it in small chunks, I tested parts as I went and sent output to the top left hand
corner which I delete later. Visual Basic is so easy to alter quickly. Unless I tested
at that stage later on you would be scratching your head trying to figure out what
was wrong. (Fred)

Despite the importance given to the development of test data in this methodology, in reality

nearly all students do not return to this test data to undertake a comprehensive test of their

finished systems. Although event-driven programming encourages testing on components of a

system as functions are progressively added, it appears to discourage the testing of a system

against formal test data on its completion. The ability to fragment the code into different events

enables students to develop test data for that function which may not be exhaustive particularly

when a system is complete. Given the problems of identifying and rectifying errors in a

program irrespective of the programming paradigm, it is clear that testing is still viewed by

most students as one of the least desirable tasks in programming.

6.7 Program Variable Table

Although the program variable table is described as the sixth step in the design methodology

for event-driven systems, students quickly come to realise that it is completed as the algorithm

is constructed. Practical examples in workshops and lectures reinforces this fact. The program

variable table names and describes each global and form variable. Local variables, whose

values cannot be transferred to other procedures or forms are not entered into the table. The

program variable table is designed to assist with the development of an algorithm, to assist with

declarations at the coding stage, and to be a reference for a programmer.

Lecturer O observed that the program variable table was not used by most students:

Some of them worked one out after they had finished and they had a long list of
variables. Others basically put down a variable for all the major pieces of data
that they knew they were going to use. I don't think it is something they use, and
for myself, a program variable table is something I think I should maintain but I
wouldn't. But if I did, it is something I would build as I go. And there is not much
point in doing it when you are finished. If you do it on the way, the number of
times I saw people using a different variable for the same thing in different spots
and the number who used last number [referring to an example in the text book]

without needing it.

Chapter 6 Analysis of a Program Design Methodology Page 166

Some students felt that the program variable table was difficult to use.

The defining diagram and the screen layout is OK. The one where you have to put
the variables in I don't understand. I try to put anything down and I look at the
book and say this is what they do and I look at another page and say ' Oh, that is
calculate'. (Elizabeth)

The program variable table is very difficult. When I think I have it down pat, when
I go to use it again it is difficult. ...I usually jump into the algorithm, into the
programming because I think I would be better off that way. (Sylvia)

Only Clinton and Dianne were able to give some hint to why the program variable table seemed

to be difficult for students to use:

Your variables are not necessarily on the screen and there are a lot of variables
that are needed in the calculation so you have got to work out - a knowledge of
what the program is going to consist of before you can have a good understanding
of all your program variables. (Clinton)

I would probably do the code and go back and do the others. Only because it
would make more sense because I have got the code then I will know to define the
program variable table or I might do part of the program variable table, define a
few things and add to it.(Dianne)

The program variable table appears to be used in different ways by different groups of students.

Peter matched the entries in the program variable table with those in the defining diagram. As a

rough draft of a program variable table for the first assignment, Peter wrote:

Chapter 6 Analysis of a Program Design Methodology Page 167

OWSttJ-' T£*rc fee»c j v ^

P 610 VA^ "TÂ CCT ••/ HfviP^S

"T™

N

VWL

.C&cl"

f̂ VA^OST IK;

t vr W

"CtfMt

r>

t;(f

C< V 7

- #-50

In his final draft, Peter used the Description section of the program variable table as a method

of defining h o w each variable was calculated. H e wrote:

Chapter 6 Analysis of a Program Design Methodology Page 168

p*0«M* \)^"ftfeLe

N*^

WlCSTW

p€«une-ve«-

•r-

^escc«iPTiow T^PG-

in

•S12.ce- |Cor»nfw-

C O S T F»m»<-mT(iiA<.

CoSt K>AT

I C0ST rAAKW^

A,vi MO"»J^P> C-*«D

L G . U C ; T H O F flc-u(Lf- 0 « m v i

LK \M (Pic-f"if- fli"> beetle

FiyC-o Pfcitcf OF- ei*.A0C-~ptrt-rr,~-'

•fVAi«f Pfl1*! rf-cn. xCovr I-MC-UKVI CW(IIVFNCN

P.fiuifr. A M * A X <:»?•<*<"<«<•»'>">••« C - " f « f V

Co N?T rt vl

teen** w

lMT€<.€6.

t \

cew^Mii ;

= $ 1 • S<
'/1

= •fc'VO.c

- $&©•<*:

P>ttfc«io .Anf* < K*w»^. *"*?
t^t-lfi KCV/

ft ̂ -y TftTM Af«i>w'|

I

It is interesting to note h o w some students use a section of the program variable table as a

method of describing aspects of the algorithm. Another post-graduate student, Peter P, did not

declare any input variables which took values from text boxes and used the Comment section to

give a brief but comprehensive description of the calculations for output variables. H e wrote:

Chapter 6 Analysis of a Program Design Methodology Page 169

http://�S12.ce

6. Program Variable Table.

Name
AreaTotal

CardPrice
GlassPrice
LabourPrice
MatLabCost
FrameCost

CardCost
MatCost

Glass Cost
LabourCost
TotalCost

Description
Area of Frame in sq. metres

Price of Card
Price of Glass
Price of Labour
Mat Labour Charge
Total Cost of Frame

Total Cost of Cards
Total Cost of Mats

Total Cost of Glass
Total Cost of Labour
Total Cost of Quote

Type
Dec

Const
Const
Const
Const
Dec

Dec
Dec

Dec
Dec
Dec

Size Comments
(txtlength/100) X
(txtWidth/100))
7.50 peT sq. metre.
40.00 per sq. metre.
60.00 per sq metre.
5.00 per mat.
(((txtLength + txt Width) /100)
X 2) X txtFrameMet.
AreaTotal X CardPrice.
(AreaTotal X txtMatPrice) +
(txtMatnum X MatLabCost).
GlassPrice X AreaTotal
LabourPrice X AreaTotal
FrameCost + CardCost +
MatCost + GlassCost +
LabourCost.

Object-based languages, such as Visual Basic, enable programmers to use the properties of

objects as operands without requiring them to assign them to data variables. The programmer

must make a decision whether to create a variable or use a property of an object. Most students

appear to create a variable to hold temporary results and to hold an output before it is assigned

to the caption property of a label box. The choice of whether to create an input variable or not

is confusing for many novice programming students at this early stage and this was recognised

by Lecturer M:

I still have got problems with the program variable table. I think although I have
done it a bit differently from the book where I try to say now where in the coding,
anyway, I have tried to say each value that comes from an input box is allocated to
a variable - we haven't done that before. I have got problems because they don't
know. I think they should define the variables they are likely to use and then use
them in the algorithm. Now some of them don % some of them still use other words
in the algorithm or something or other (Lecturer M).

Lecturer M suggested that the comment column of a program variable table could be used to

show the assignment from an object property to a data variable (the <- symbol) and from an

object property to a variable (the -^ symbol). The program variable table from an earlier

exercise using this suggestion would be:

Chapter 6 Analysis of a Program Design Methodology
Page 170

[Name

Hours

Minutes

TimeWorked

PayRate

GrossPay

Description

Number of whole hours worked

Number of minutes worked in
last part of hour

Convert time to real number
format. Decimal hours
calculated from hours and
minutes worked
Hourly rate of pay

Type

Integer

Integer

Decimal

Decimal

Gross pay for an employee Decimal

Size Comments

<- txtHours
less than 65

<— txtMinutes
less than 60

-• lblTimeWorked

<- txtPayRate

-> lblGrossPay

Lecturer M has a number of other criticisms of the table which he believes may be

confusing for students:

/ don't think that it needs all that other stuff with it. I don't know whether it needs
a description column for a start, it probably does. It just seems to be a big
cumbersome table with columns that they never seem to use. And the other thing I
have problems with is putting constants in a variable table. I think they have to
declare their constants with their values in there so maybe have, I don't know
what to call it, you very rarely put comments on anything other than constants.

The other thing at this stage is that we are talking about the program variable
table and do you include the local variable or do you only put in the global ones.
Each module should really have a program variable table but that is going a little

overboard. (Lecturer M)

One postgraduate student, George divided the program variable table into sections according to

function; constants, input variables and output (or computed) variables. Moreover, he

developed a separate section to define the formulae for computed variables:

6. Variables.

User Input variables.
Description] Unitts

Width ! metres

Length \ metres

Mat Number | Number

Glass | Logical

Range / Limits
0.1 to 2.4 m

0.1 to 2.4 m

0 for none, 1 to 3 rmats

Yes = req'd, No = nott req'd.

CodeNamie

txtWidth

txtLength

txtMatNo

txtGlass

Constants
frame rate

card rate

mat rate

mat labour

glass rate

glass labour

$ per m

$ per sm

$ per sm//mat

$ fixed / imat

$ per s m

$ per s m

Set by manager
it

ti

it

it

tt

txtRateFrame

txtRateCard

txtRateMat

txtRateMatLab

j txtRateGlass

! txtRateGlasslLab

Computed Variables
Perimeter

Area

Frame price

Card price

Mat price

Glass price

Total price

metres (mn) - format #,##0.00

square mietres (s m) - format #,##0.00

currency

currency

currency

currency

currency - format ($#,##0.00)

IblPeri

IblArea

IblFrame \ j/Di

IblCard : PiSri

IblMat

IblGlass —

IblTotalPrice

In larger systems, the program variable table, if completed as the algorithm is developed, could

assist a programmer with the tracking of data variables. In smaller event driven systems,

particularly those where only local variables are required in methods, students appear to find

little benefit from completing the table. Moreover, event-driven languages have three types of

variables, local, form and global, and this adds to the confusion on what or what not to include

in the table. The modifications suggested by Lecturer M , may help to clarify in the minds of

students the difference between an object property and a data variable. Sections based around

the function of the variable, such as input or output may further enhance the table. It is clear,

however, that the table becomes cumbersome when multiple forms are employed.

6.8 Algorithm

6.8.1 Pseudocode

Traditionally, pseudocode has been used as a tool in procedural languages to outline the logic

of a detailed algorithm. In procedural languages where control rests with the computer at all

times there is a clear logical flow from the start to the finish of a program. This is not the case

in event-driven programming where the control of the flow is determined by the actions of the

user. Compared to a procedural language, event-driven systems divide a main-line controlling

Chapter 6 Analysis of a Program Design Methodology Page 172

algorithm into segments and place these against events in objects. The use of pseudocode,

therefore, as a tool in the development of event-driven systems is seen by some experts as

unnecessary:

/ doubt with something like Visual Basic the relative importance of pseudocode
too. I think pseudocode is really on about designing algorithms more than a
program - I am making the distinction that a program might consist of algorithms
but it doesn't necessarily have to have a lot of heavy algorithms, it might or it
might not. Pseudocode is really good to work out the logic of an algorithm but I
am not sure that pseudocode that shows a whole lot of print statements is actually
all that necessary any more (Lecturer T).

Nevertheless, Lecturer T advocates some step in the design process that can help a student to

develop some detail to the logic in each method:

I think you can make the distinction between pseudocode and structured English, a
number of people regard them as the same. Structured English really was English;
pseudocode was more like the first version of a programming language. I mean,
you might say in structured English format this now, or get the following
information from the user where as in pseudocode you would say get this get that.
I think the Structured English approach might be a better way of handling that
side of it given that really most of the examples we are looking at are not really
that algorithmic. I mean a sort is an algorithm but adding up two figures who
cares.

Moreover, other experts appear to advocate a similar stage in the design process:

Yes, I have no worries. I think you have got to get them to write something down,
even if it is only a list of what they are going to do (Lecturer M).

I draw a structure chart. I draw a function hierarchy chart, I teach in pseudocode.
Because you still have to produce the functionality so you need to describe the
functionality, the right way of describing functionality is Structured English and
structure charts. Now if that functionality is obtained by moving from one spot to
another with an event it still doesn't change the functionality. It would not effect
the function hierarchy it would not effect the structure chart the Structured
English. If I want the price of cake I need to obtain the information needed for the
cake and I need to produce an answer. That functionality description is the
same. (Lecturer R).

I have never been one for getting people to do things for the sake of just doing
them, it is not going to help you in the design process then lets not do it. ... I asked
them all to do pseudocode so that you could think of your problem and go and put
it in the programming language but don't both handing in the pseudocode to me,
chuck it in the dustbin because no one keeps that (Lecturer D).

It is clearly evident that the majority of students used some form of generic pseudocode prior to

coding. Moreover, most appear to see this stage in the design process as beneficial:

Yes, I write it down on paper. A system of both pseudocode and Visual Basic.
I could not sit in front of the computer and just code. (Dianne).

It depends on what sort of mood I am in. Usually I like to do it into as much detail
as I can, it makes it easier when you go to the program code. Definitely. It is plain

Chapter 6 Analysis of a Program Design Methodology Page 173

English and you get your ideas down on how you think it should be. It makes
things a lot easier. (Billy).

Yes it is beneficial. To some degree working out whether it is a complete process
of creating your algorithm or whether you jot down some of the difficult or more
complex features of the program down onto apiece of paper and then putting them
into the program first. It is fairly difficult to work out everything that you put into
a program. So for example if you have taxation with all the tax brackets then write
down on a piece of paper how you would manually go about calculating the
tax. (Clinton).

Yes it is beneficial, but I have trouble with it. If I code up strange to the code I lose
track completely but with my algorithm there I know which track to follow
(Chigden).

In the early stages of the subject Peter used a very crude form of pseudocode to help develop

the method for the cmdCalcuate command button in the first assignment:

Chapter 6 Analysis of a Program Design Methodology Pa8e

Wr^r;

^\6ouur> C/VL. (" (Clift y

face*-
CoV OF 1=̂
v . •" Cfir.O

1 ,-r -rv^M ^Hf Co* MAT (/ U<r<••*

c,G-r Cc^ST f^A"
7 "^ ^<=(JlO

This was later expanded to include more detail:

Chapter 6 Analysis of a Program Design Methodology P a 8 e

0-£ Prrj^.oL_ ^ O s A c^ Frc>A-4_ r\<ajk*uJ 0 > \ c/ O ^ J /'

^, C.AL CAro ,.**. - ftr^--- x ^v coc- •

••---•• -,,;_ Vy,.;- ,. • r,.< -A < r,-VA'.\ Cow .*-..•••.•«<

p,»./r- v -<J^A« '^ *'"'•-'

0 ••',(': * V Q'~C V'---" (•• f "̂ t;fec\-7'f*- ,--v>

ff.iy/7 V> t*> -fwi^-s ^ ' •' ,• <s^- v ,-,.

In contrast, another postgraduate student Gary used a form of Structured English in the early

stages to establish the logic of the main algorithm of the first assignment:

Chapter 6 Analysis of a Program Design Methodology Page 176

L M&$Jidkr4

b<k V > 4 ^ < ^ ^ ^ g ^ r ^ _ , V O ^ c l l J } _ ; &*r\gQp\\

p j o J b i o W a <#gfeBfe C**V fin<»w_

CrlLe-O \&&b gcsS^rOsy^ .

_t£- /̂ -'- M ^ — : 2 £ j * d « * L _ t i ^ L _ . r v L t / / i ^ ^w. /a_vfc_£fsfc_

ftrlcl f^g*" fl/Dbfvwg , Ccos4ctW / ̂ C<E>Sr" Atoi

_kn£/ijie£Je^

W&jU? Wu*~ IT..". - - •--
^gAcf j 4 ^A^.fey. hs>Ujif/sf^-

JjdL ^

(rW^._Ji^4

~_£yf$_. fictbtk .__... ._

Other comments reveal that some students appear to use pseudocode selectively and tend to

concentrate on the complex calculation component of an algorithm. This is understandable

given that event-driven programming languages such as Visual Basic enables code to be

fragmented, often along functional grounds, into general and event procedures particularly in

large systems. It is more likely, however, that the early assignments which often require

students to place a large piece of code against an event in one object, necessitate a greater

degree of attention than other methods.

/ would only write down the calculation part - probably in words. I always
comment in the Visual Basic code so I know what I am doing but I don't do any
pseudocode other than the calculation. Only for calculation before writing the
code was beneficial. (Tom).

I use the pseudocode in the hard core calculation. I am an accountant, I define the
module and then start writing the logic or the mathematical calculation. Once I
am happy and I know it is working I then move on ... coming from an accounting
background I write out the calculation required to get that. I say to myself, "Well
how would I do this with a calculator? ", so that is the logical formula, so how do I
put that into the code. Do I use a loop, a case, if- then. (Fred).

Fred's pseudocode for the first assignment is a good example of how a student experiments

with the logic of method code at this stage of the design process:

Chapter 6 Analysis of a Program Design Methodology Page 177

69^ C ^\CM

C/h^< "^rj-yCfrllS. Ci/Vfr~x^

This concentration on the calculation algorithm is clearly evident in the following pseudocode:

Chapter 6 Analysis of a Program Design Methodology Page 178

fo£r £^ rtc*UU **"**^"^ ̂ °c^t^^<^-< M ^ * 4 h

<Hf&V^ S&-"" CaWUil Fm^cfewMcrG^(FfrK«.Uw;-rH-*-2.)-'- 6=MK VJI0T* *X)«

„**<# cu^fe ±7 5^ ;„-, sir- «

lr ^ |K*-UJcm(SJrS«4'rCtn»iffcosT/n
,-xl,io*««.A«cA)*ll+^S .) p

rT v t M *^T f *lo jr ̂ (

»•« M M •••o + te itj f

ac;Xo*i OJucJl«Ae IW

Co#~ <vf qjL&« dfer ̂ n » - 5^-

JlTvaLl, <V«> (?azfa~<<. cJivc iter Wo^G^j^mO^"-5^ GikJlAte fW

,cSJ»«»u4^J0*CjW3r'F^*v^'r- ifi^c^dt \\c*J2LOU. +- Ar^+K-d" CoXoJlcife. Ic^G

r-

_T<̂ r*Jlc54>̂ vir'o-iv $£*. io-ee^.., ^ i p ^

Grve(r1©A«A«_

Although pseudocode or a crude form of Structured English seems to be favoured by students

during aspects of algorithm creation, it would appear that in later assignments at least, many

students move directly into coding in Visual Basic or believe developing pseudocode will

eventually become unnecessary.

You draw the screen nice and pretty and then you try do the calculate or click
button and then try to do the program, the writing behind it. I probably jot a few
notes down like this equals this, where I put everything down, but mainly I try to
write the code out without doing the algorithm or pseudocode ...I write down
pseudocode when I am stuck(Elizabeth).

Chapter 6 Analysis of a Program Design Methodology Page 179

If I knew more about it I would go into code but at the moment I find it beneficial.
You are only writing in English. I dare say at the end of the year people will go
straight into the code. With experience you don't have to write things
down.(Peter).

With the assignment I actually did the code first and went home and did the
algorithm after the code. I got the printout. The code was not working -1 did all I
could. I had some things down before hand - the calc tax. But the other one came
to me. I do prefer to write it out first and change it and scribble and rub it out and
then put it on and keep changing it.... It was pretty big, but I was running out of
time and I thought I better get a printout first. I some how found it easier. I had the
printout of the Visual Basic code at home. The algorithm is pretty similar. So I
found it pretty easy to go back and change a few things (Jaranka).

I don't do any pseudocode before coding (Sylvia).

Lecturer T takes a similar view and, again, advocates Structured English rather than

pseudocode as part of the answer:

In the extreme example, do you need pseudocode for the Exit button? Definitely
not. I suspect that in many cases you would be better off with a one or two line
description of what the thing does in a Structured English sort of format more than
trying the formal pseudocode because I just don't think they actually do the formal
pseudocode before they write the code. I think they probably do that afterwards.
Formal pseudocode for an event - I think they do that afterwards, whereas if they
had to write down in a couple of sentences what this thing did in a Structured
English approach, I suspect they might just do that beforehand.

In the early weeks of the semester many students requested assistance or had queries

concerning their pseudocode solutions. As the semester progressed, it was observed that fewer

and fewer students worked from pseudocode. It would appear that there is little difference

between the behaviour of students using event-driven languages or procedural languages, that

is, there is a temptation to launch directly into coding in the programming language and to by­

pass the pseudocode stage. There is a danger, however, that event-driven programming

encourages this more so than procedural languages.

6.9 Visual Basic Code

Visual Basic code is based on the original Microsoft BASIC, however there are no line

numbers and there are far more instructions. Visual Basic code is based on the procedural

paradigm and is placed in event and general procedures. Although programmers are

encouraged to declare variables, there is no requirement to do so but instead default to Variant,

an all-embracing data type.

Chapter 6 Analysis of a Program Design Methodology Page 180

A major disadvantage of using Visual Basic as opposed to using a language such as Pascal, was

the lack of support materials. There are a huge number of texts for popular procedural

languages such as Pascal and C O B O L which students can purchase or borrow from libraries.

Moreover, in the past students have been able to seek assistance from other students or friends

who have a knowledge of procedural languages. In addition, many lecturing staff are not

familiar with Visual Basic. In contrast, student texts for Visual Basic were just starting to enter

the market while the alternative, technical manuals and how-to-books, were often very

expensive and/or difficult to use. Moreover, the text produced by the author concentrated on

issues of program design and although it contained a large number of examples, it did not

concentrate on Visual Basic syntax. Peter and Dianne summed up the frustration of many

students:

Not knowing where I was going because I could not follow what I was to do. When
I hit a brick wall, I was on the phone. When you are at college you are all
together, feedback straight away. But when you come here you work and go home,
I felt I was in the room by myself. (Peter)

A couple of hours per night late at night in which case the brain is in
reverse. (Dianne)

Irrespective of the language platform used in the subject in the past, it has been found that

many students have had problems converting their algorithms into code. Given the shortage of

alternative texts and the lack of knowledge from other students and lecturing staff about Visual

Basic, it had been expected that many students would experience additional problems

developing Visual Basic code. It was surprising to observe, therefore, that this did not turn out

the be the case. Lecturer O believes this to be the case:

... not a great amount of difficulty. The syntax is very wordy and as such I don't
think it caused a lot of problems. I don't think a lot of them thought of it in an OO
structured sense where values were built up, the form name the control name of
equal value. I don't think they thought of it in the object hierarchical sense but
they nonetheless saw those things as good descriptors and most of the code is
almost self explanatory. No, I don't think the syntax is a problem

Question: N o more than for another language?

Probably less so than another language because in some ways there is less bits of
it. I mean you are getting around the loop stuff. You do have loops in this but not
too many. The only loops we had were rolling through a list. You don't need loops
for control.

Certainly students expressed concern that they could not get access to additional text books on

Visual Basic:

My Bible. At my level, an idiots guide I don't want, but I want something that will
strip some of the jargon so I can understand it and then we can bring the jargon
back ...I never have problem with theory. But it is when it comes to writing the

Chapter 6 Analysis of a Program Design Methodology " a S e

code, I would like a book to help me write the syntax. I have to look through your
examples the book to find things. For example the word lost focus means nothing
to me. I tried to look to see what it means and I haven't found it. I think the biggest
problem with this book is in finding out where to use it. OK we look at the
exercises. Then again I cannot even voice these things because I don't have the
knowledge; many people know this anyway. (Gerald)

I would really like a dictionary. I am finding it really difficult. It is a drawback for
people not to have a resource.(Mary-Beth)

I don 'tfind it that easy to follow. When I went back to do the assignment I found it
difficult. There is nothing there on how to write the code. Should be something
there on how to get there not just on the solution. (Dianne)

Although a specific Visual Basic text may have provided some assistance to many students

who had problems writing the code, it is evident that many students had fundamental problems

developing and debugging code and expected a text to solve their problems. Chigden

highlighted the difference between a subject like Accounting where there are many fixed

procedures compared to Computer Programming:

Basically, if I have got a problem I cannot turn to a theory book. OK, this is the
problem, go through and fix it up. With Accounting if I am stuck on a particular
part then I can go to a book and I can go back and fix it. With programming there
is no set rules, the coding itself, if the coding is wrong I don't know where it is
wrong. ...I can do up to steps 4 or 5. I understand it but once it comes to the
algorithm I don't know whether I am right - if I make a mistake I am not aware of
it. It doesn't tell me why I am wrong it just says it is wrong. That is really
confusing for me.(Chigden)

Many others expressed concern that they have trouble with coding:

I struggle with the code. A structure for writing code would be good. (Peter)

No. I don't know where I start. (Dianne)

When you explain things they seem clear but when I apply it I have great
problems. I have trouble with the Visual Basic code. (Sylvia)

I know what has to be done but the code is difficult. Not easy.(Seeana)

In small programs, the physical order and the logical order of the code are usually the same. As

the size and complexity of a program increases, the logical order departs from the physical

order and this is usually the stage when many students have problems writing algorithms and

programming code. There is some evidence to suggest that event-driven systems which enables

code to be divided into segments matching events, reduces the need for a large amount of

program code as is the case in a procedural language, and makes coding easier for students.

Observations of students and the nature of their queries would support this view. Like Lecturer

Chapter 6 Analysis of a Program Design Methodology Page 182

M, observations found a substantial reduction in the number of queries concerning program

logic compared to previous semesters when Pascal was used:

The problems were generally how do you do it type problems. They were not
programming how to just "How would I go about making this do this?", and I
would show them there is a particular way you can do it or whatever. I don't think
they came with any logic type problems particularly. It would be mostly Visual
Basic type problems.

The interviews with students who had some experience with procedural languages appears to

support this view:

I know what is expected of the code. If you do the name or the design or how you
like you know what you are going to call it, where as if I did this second it is not as
easy for me. That is why I like Visual Basic much better because you can see what
you are doing where as COBOL and Pascal you hit the code and you only see your
end product when the code is correct. This is why this is much more appealing to
everyone it is much easier to learn. It is picture wise. ... With COBOL you write
the code first. You do this equal this. And when it finally runs and you get all the
errors out that is when you can see your screen layout and it is not as good
looking as this or not as appealing to anyone learning it. COBOL is really bland. I
am more a person. I see things and I can talk about but when it comes to writing I
am not as good. I have a better understand at looking. Visual Basic is good to
learn straight away. When I first saw it I thought "This is not programming' I
thought grouse. This might be a bit easier that is why I may have understood it a
bit more. I have remembered "Oh this is how you do it' It has made me think "Oh
that is right in Pascal' Now I understand, it is a bit late, that after I have done it
this way I have understood it a bit more. (Elizabeth)

I think it is a lot easier due to the event-response than Pascal.(Billy)

6.10 Problem Solving Strategies

The literature review and interviews with experts found that most introductory programming

subjects using a procedural language directly or indirectly advocate a structured, top-down

problem solving approach which is usually highly structured and sequential. Moreover, the

literature review revealed that this approach may not necessarily match the problem solving

strategies used by students in other disciplines or in real life. Constraints on the introductory

programming subject from subjects in the second and third years (such as Systems Analysis

and Design, other programming subjects, and Database Systems) required students to learn a

structured approach to programming hence the need for a design methodology when Visual

Basic was introduced. In addition, the design methodology needed to help students understand

the concepts of event-driven programming, not to put unnecessary steps in the way.

Moreover, the literature review found that experienced programmers have more schema than

novice programmers, that is, a greater number of templates or standard algorithms in their long-

Chapter 6 Analysis of a Program Design Methodology Page 183

term memory. W h e n faced with solving a problem, experienced programmers are more likely

than novice programmers to identify components of a system's requirements and use schema

for parts of the solution. The literature review identified research that advocates an algorithmic

approach in the teaching of programming, that is, developing a student's semantic knowledge

and building up their schema.

In addition to covering many traditional topics in the introductory programming subject, we

gradually introduce students to more and more standard procedures, routines and algorithms as

the semester progresses. B y the end of the semester students should be able to recall these

limited number of standard routines and to apply them to solve similar problems. Although this

method of teaching is probably followed in introductory programming subjects in other

institutions, it is a specific aim of introductory programming subject at Victoria University.

It was therefore interesting to investigate the strategies students use to solve computer

programming problems.

6.10.1 Problem Solving Strategies

In the interview, students were asked to outline the way they would normally go about solving

a small but unexpected problem in their normal everyday life. As one would expect, there were

a range of responses:

... organising a school sports. I look at all the things I have to do then do one thing
at a time; organise the bus, organise coaches for the teams. I know from
experience that if don't have all those things going then you haven't got those
things all organised. Always cut it down (Peter).

I stew over things for ages. I don't rush into things. If things go wrong I panic and
then I would think of something else to do. I think of things I would do in my head
as I am going through. For some things I consult someone. If something does not

work then we go back (Dianne).

I first have to first understand. I have to sit and think and if it is something I can
read - it is a problem that is written out, then I have to read it a great many times.
I must have an overview. I never rush into solving it and making the mistake. I am
very cautious in everything that I do. I always stand back and look at it and then
attack it. I test it out in my head before I actually try it and fail at it because I
don't want to fail at it... I like to find my own way and make my own mistakes but I
like to know I can have the help of other people. But I do like to work by myself

(Gerald).

Help. If I am left by myself, I ring someone up and nag them. If I cannot do that, I
will just read the problem and try and understand it and break it down and then
solve one part at a time and it will go to the second part. If you break it down into

Chapter 6 Analysis of a Program Design Methodology Page 184

smaller pieces it is easier to handle than one big problem. It is easier to handle
(Elizabeth).

I try to figure out pros and cons of a decision. And I try to weigh that up Normally
if there is more pros I will do it although if I don't want to do it I will.

Before that I would try to do some research - some background to it. And then
weigh up the pros and cons and then make a decision. ... If it was a very large
problem put up by someone I would probably try and go to them and get their
opinion and try to ask other people and see what they would try to do in that
position (Jaranka).

Always ask someone who I think may know about the problem and then I try to do
it. If no one available then go for it. If I cannot do it then step back and go for it
(Georgina).

I first find out what the problem is? I may ask someone. And then try to work out
ways to solve the problem. If I have no knowledge of it I ask someone. Read about
it (Mark).

When you come to the problem, I would look for alternatives and go with the
alternative. I would go and see someone else I know. Researching as well. I would
look to see that I could get to do the job (Sylvia).

Define the problem - by the evidence available to you - noises in the engine, What
are the symptoms? Does it go? Does it turn over or not? Does it drive on the road
or not? Next, almost a process of elimination (Fred).

Think about the steps need to solve it and then go through it Seek help if need it
(Seena).

If it a general problem I would go to my parents or friends to get information
(Chigden).

The height of craziness. To try to get to a solution in the quickest way is to
obviously ask someone who knows a little bit more than you but that doesn't seem
to be the approach that students take here (Mary-Beth).

Although some students are less adventurous than others, the responses indicate that most

students would seek information on a problem from someone who may have more experience.

Moreover, most students, particularly the post-graduate students, appear to place more

emphasis on the initial analysing of a problem before attempting a solution.

6.10.2 Strategies Used in Solving a Programming Problem

Students were then asked to identify differences between these strategies and the strategy used

in the introductory programming subject. A large number of those students interviewed saw

very little difference although many recognised the distinctive steps involved in programming

and the penalties that are paid if these are not followed:

Chapter 6 Analysis of a Program Design Methodology Page 185

/ don't think it is that much different. It is only more theory. You do define the
problem and you do try to test the data - what would happen. It is similar to what
we do (Elizabeth).

It is very similar but not as rigorously applied. I do all the steps (Clinton).

There is not all that much difference. You have your problem and then you have to
try to work out the problem then in between there will be a whole lot of problems
which you have to solve (Mark).

Sort of the same, but with real world have more alternatives to chose (Seena).

Similar in the sense and come to you or my friends and ask around in a Visual
Basic sense. Theory wise there is not a lot of options I can go to, like in a book
because it is not there. Basically you have to be one on one to solve my problem
(Chigden).

No I don't think so. You are required to have a certain amount of knowledge in
order to determine the problem. If you cannot define what a problem is then you
cannot go any further in terms of those 6 other steps. And in order to define the
problem need to be able to be competent about your knowledge about saying what
the problem is. You might have one solution but 15 different problems come out of
it. And how people solve it will be 15 different ways (Mary-Beth).

Some students, particularly the post-graduate students, reveal the difficultly they have adapting

their real-life problem solving strategies, to the structured approach adopted in the subject:

I find they are very different because the problems I solve are to do with people
and their emotions and all of the other things that you cannot really quantify. With
a computer I am finding that it is so logical, it is so cut out that if you don't do
that, the other things simply won't happen. Like my printer it wouldn't work and
later when it worked it printed out 5 things that I had gone tap tap tap and those 5
taps were all lined up. and I couldn 't over-ride that they had to do all of that. But
that applies to all of this computer work. There are certain steps and you have got
to follow them. It is very different to the way I think. ...I can pick up something
and I cannot even understand the English in it. That was my problem with maths I
could not make any sense of it. But by reading it several times, I will then

understand it (Gerald).

There is a systematic step to every problem that we have been given. There is a
systematic step we have to take to solve it. In everyday life everything is different
and I don't think you can really apply something set like that to a problem that you

come across everyday (Billy).

This is very structured. You have said if you don't do certain things it won't work.
That is what I have found. If something does go wrong then you have only got a set
way you can do things. So soon or later if you follow the right steps you get the

achieve the right answer (Dianne).

You have more of a procedure - steps you can follow those. Whereas other

problems are not as structured (Joanne).

Clearly, a large number of students view the program design methodology used in the

introductory programming subject as more structured with less alternatives available than

Chapter 6 Analysis of a Program Design Methodology Page 186

would be the case in everyday problems. A large number of students feel that unless they can

master the steps in the process, they will not be able to develop a computer solution. Moreover,

although many lecturers use examples to introduce new topic areas, it is interesting to note the

importance students place on these examples to assist with their understanding. In a paradigm

where many students do not have a clear mental picture of how an event-driven system

operates, the use of examples appears to play an important role in the teaching of programming

concepts.

6.11 Summary

The analysis so far has revealed the strengths and weaknesses of each component of the

program design methodology. How effective, however, was this design methodology for the

teaching of event-driven systems? As one would expect, there were a range of views about the

methodology but it is clearly evident from observations and from interviews with lecturers who

taught the introductory programming subject and with students, that the vast majority of

students use tools of some form or anther to assist with the design of event-driven systems.

Moreover, this would finding matches the views of the experts who were interviewed. Lecturer

M believed that the methodology had a number of benefits:

Well I thought it was a great idea we had to come sort of way they could work
through it logically and, just by giving them a defining diagram and a structure
chart really wasn't enough to get them into it. I think you have to give them steps
so that they can build it up and I think the 5 - 7 steps get them to look at it from
different aspects from the point of view from what the screen looks like, from the
point of view from what the responses are going to be, the inputs and outputs and
their program variables. And I think for them to look at all that before they start
gives them a better idea or a wider range of aspects of what the program is going
to do or should do or whatever. Well, whether it actually does that or not I don't
know. I think it does - I think we finished up with some very good programs
towards the end of semester

Lecturer O recognised the problems trying to lay down a structured approach to event-driven

programming and suggested some changes:

It is a very difficult task to come up with a structured approach to something so
tempting unstructured as visual programming and I think the event response thing
which I think is the core to the whole thing is the key. I think what is missing from
that design methodology is some way of coping with multiple forms in a more
reliable fashion, I don't think that is formally built into it. ... You are trying to
represent a dynamic thing, event driven things necessarily have built into them a
time scale which you cannot represent nicely on a piece of paper. There is a
precedence that you cannot represent nicely on apiece of paper. I would in such a
system, build into the structure of the little event response list the precedence that
happens within the program so that I have on the on load event... on got focus
would have before on change before on lost focus, you would insist that things

happened in that sequence.

Chapter 6 Analysis of a Program Design Methodology Page 187

Lecturer T supported Lecturer O's view that the design methodology broke down when

multiple form systems were required:

After doing it, I think there are a couple of holes in it but it is basically good... I
suppose the major hole I have seen in the past is that it doesn't work for multiple
forms.

It is therefore interesting to compare the views of students with lecturers. A number of students

felt the methodology used in the introductory programming subject helped then in the design

process:

The steps are a big help. I know what is coming. I follow them closely (Chigden).

This semester I have been doing the 7 steps first then the programming code and
that find that, related to the problem statement, and I find that it is a lot easier to
go through the 7 steps work out everything and then go and do the program. It
breaks down the problem, I guess you could say "Well", and gives you a good
understanding of the problem (Billy).

I love it. That is my nature to have these all broken into very clear boxes. You
should see the way I live. It is just me. To have those things to develop into that.
When you get us to do a little thing in the tut one day, I was going back to the
problem statement - you were saying don't hack the code straight off-1 never will
because that is how I think and for a new thing like that that is how I must think. I
must see it from that overview that problem statement. So breaking into modules is
Gerald!... Hike it makes more sense (Gerald).

Yes I do. I try to do as much as I can (Jaranka).

Hike it. It is easier for me rather than go straight into the coding (Georgina).

When I get a picture, I will start going through the 7 steps which I definitely follow
(Fred).

The analysis revealed that many of these students moved back and forth between the various

steps before coding their systems. Other students left steps out or changed the order:

Yes except for one. The defining diagram and the screen layout is OK. The one
where you have to put the variables in I don't understand (Elizabeth).

I would do the program variable later and the event response list later as well. It
makes more sense to me. I think, this is what it should do, so I will try and do it
and then I go back and write an event-response list from that. I would probably do
the code and go back and do the others. Only because it would make more sense
because I have got the code then I will know to define the program variable table
or I might define part of the program variable table, define a few things and add to

it (Dianne).

I do the defining diagram and the screen layout. I don't do the program variable
table, the test data and the event response list. I know what I want so I don't need

to do the event response list (Tom).

Sometimes I do the screen layout straight after the problem statement so I have a
better knowledge of the inputs and outputs depends on the problem. Then I do the

Chapter 6 Analysis of a Program Design Methodology Page 188

event response list. I usually test at the end. I then do the Program Variable Table
(Joanne).

The program variable table is very difficult. When I think I have it down pat, when
I go to use it again it is difficult. ...I usually jump into the algorithm, into the
programming because I think I would be better off that way. What I have found,
that I went to do the 7 steps but it appears like a waste of time unless I get the
program to go. I need help with the programming. I make it work and move my
way back (Sylvia).

I usually get the problem and go through the problem to work out what you want
the program to do. And then I do my screen layout based around that, you can put
everything in there and get everything out you want. And then I do the screen
layout on the computer and try and type in the code then (Mark).

I prefer to have the variable table after the event response and then the algorithm
and then the test data at the end. It is jump like you are trying to structure the
program once you get the event response and then it is the test data - it seems out
of place for me. Once you have worked through the algorithm and the program
variables I think it is just logical to do the test data (Billy).

Observations reveal that the vast majority of students adopted, in varying degrees, the first four

steps ie. the problem statement, the defining diagram, the screen layout and the event-response

list, and a limited form of pseudocode or Structured English. There is clear evidence to suggest

that the majority of students were confused by the program variable table or found it

unnecessary, and that most students adopted an ad hoc approach to testing. Lecturer M states:

I still have got problems with it. I think although I have done it a bit differently in
the book where I try to say now where in the coding any way I have tried to say
each value that comes from an input box is allocated to a variable - we haven't
done that before. I have got problems because they don't know..., I think they
should define the variables they are likely to use and then use them in the
algorithm. Now some of them don't. Some of them still use other words in the
algorithm or something or other.

Lecturer T expresses concern about the program variable table as well as pseudocode:

/ think that up to the event response has definite possibilities, there is a little bit of
change suggested but the pseudocode I have doubts about because what I was
saying before I think what we tend to be doing tends not to be highly algorithmic
for the parts that are fine but to make them do pseudocode for the whole lot I am
not sure. I don't know about the programming variables to some point they have
got to do variables I am not sure whether that's a good place.

It is possible that a major benefit of this methodology is its flexibility, that is, it enables

students to select, re-order or modify individual steps that better suit their particular problem

solving strategies, although it was never intended to be so. A concern, however, is that the

deletion of too many steps could lead to an ad hoc approach to programming. Mary-Beth states:

/ think they do the defining diagram because I think in the long run it actually
helps them to get to where they are going. It is irrelevant that it is the last stage
but maybe the first step is defining the problem, the second step is drawing a
visual of the screen and the next step is input/output. Maybe that is something that

Chapter 6 Analysis of a Program Design Methodology Page 189

people need to know as well. Just because it says 1 through 7 it doesn't mean that
is the sequence.

Although some modifications may be necessary the analysis of the data suggests that the

program design methodology has been successful in teaching a structured approach to

programming event-driven systems.

In summary, the analysis of the methodology indicates that, although some students find the steps

advantageous in the development process, many students are heavily reliant upon the screen layout

and are confused about the meaning of events and where to place the code. Moreover, many

students often fail to establish a clear mental picture that depicts the operation of event driven

systems. Conversion of pseudocode to code syntax and testing routines, which are common

problems experienced by students using procedural languages, continues to plaque inexperienced

students using event driven languages.

Chapter 6 Analysis of a Program Design Methodology Page 190

Chapter 7 Conclusion

One of the unique characteristics of the computing discipline is rapid and on-going

change. W h e n tertiary institutions first established Information Systems courses to cater

for the growing demand of business for graduates, they too locked themselves into this

endless cycle of change. N o w , as computers are becoming increasingly powerful and

permeate more of the daily operations of businesses, tertiary institutions are being

forced to re-evaluate the content of their courses.

7.1 Findings

7.1.1 Language Trends in Introductory Programming Subjects

Programming, always a fundamental building block in Information Systems curriculum,

is one area which has not escaped pressure to change. Programming environments have

changed significantly in recent times with the advancements in technology and software.

The literature reveals that the traditional procedural programming paradigm, so long the

backbone of introductory programming subjects, is increasingly being replaced with

languages from other paradigms. The literature also reveals that, with the widespread

use of application languages, it is possible to categorise these languages according to

their use, rather than by the paradigm. The first category is languages used by

professional programmers such as C or C++, the second category is power-user

languages such as Delphi or Visual Basic, and the final category is user languages such

as macros in spreadsheets. This study reveals that programming subjects in Information

Systems courses appear to be moving away from procedural languages and towards

power-user languages opening up a clear distinction from Computer Science courses in

the area of the teaching of programming. It is possible to represent this trend

diagrammatically (see Figure 7. 1) with the shaded areas in the diagram depicting the

domain of each respective discipline area.

Chapter 7 Conclusion Page 191

Figure 7.1: Scope of Information Systems Courses in Teaching Programming

It is clear that introductory programming subjects aim to teach a range of programming

concepts rather than just the syntax of a language. Fundamental to these subjects is the

notion that students should plan before acting. Structured programming is the most

popular method used for procedural languages and has a number of conceptual

modelling tools such as structure charts and hierarchy charts. There is, however, no

recognised methodology for the event-driven paradigm and it is clear from the study

that lecturers w h o are using event-driven languages are still trying to determine an

appropriate methodology to enhance learning programming concepts and in presenting

material.

Chapter 7 Conclusion P a S e

7.1.2 Findings F r o m Use of the Design Methodology

This study evaluates the use of one design method which places emphasis on the

development of a screen layout and a list of active events with appropriate responses.

The methodology comprised seven steps incorporating elements of analysis, design and

testing. Although a methodology must provide rigour in the design process, it must also

help students to understand the concepts of programming. This study evaluated the

design methodology and found that, although students came to a subject with differing

sets of cognitive processes and a range of skills, the methodology helped most of the

students through the difficult process of learning an event-driven programming

language.

It is unrealistic to believe that students work systematically through a design

methodology without revisiting and modifying earlier stages. It is clear from this study,

however, that there is far more movement back and forth between design steps when

working with event-driven languages compared to other platforms. Moreover, this

movement needs to be encouraged to facilitate learning, but creates problems for those

who attempt to develop a design methodology. The study found that students placed

emphasis on different steps in the design methodology; for example, mature age

students concentrated on understanding the nature of the problem through the program

statement, while younger undergraduates appeared to launch straight into screen design.

The literature suggests that human memory is essentially associative and must be

presented with concrete retrieval cues to make contact with relevant knowledge.

Although most students come to Information Systems courses having worked in a

Windows environment, many have great difficulty in the early stages understanding the

concepts of event-driven systems. The study showed that many students have very little

trouble developing and modifying a screen layout but have great difficulty

conceptualising the operation of the system to assist them with development beyond this

stage. A major cause of this problem is the inability of most students to develop a

corresponding mental representation of event-driven systems, which is exacerbated by

the fact that there is no suitable conceptual model that can adequately describe the

operation of an event-driven system. Although event-driven languages have unique

characteristics, they incorporate aspects of the object-oriented and procedural paradigm

Chapter 7 Conclusion Page 193

and the study found that lecturers, often unknowingly, find themselves describing an

event-driven system in one of these other paradigms creating even more confusion for

students. Moreover, the study found that lecturers do not have a range of real-world

examples and metaphors that can assist them to describe event-driven systems and teach

programming in this paradigm. This may be partially due to the limited amount of

support for the language at this early stage but the study found lecturers often face

difficulty developing an appropriate mind-set for event-driven languages and leaving

behind their procedural habits.

7.2 Recommendations for Further Research

7.2.1 Revised program design methodology

In recent years a number of object-oriented analysis and design methodologies have

adopted a Use Case approach to analyse system data structures and behaviours. A n

alternative to the first two steps in the design methodology could be to develop a use

statement. The Use Statement may comprise a number of cases depending upon the

number of functions performed by a system eg. a Use statement for a system which can

add details to a database, delete data or modify details would comprise at least three

cases. Each case in the statement would have a name, detail the purpose and show the

typical course of the system. Where an alternative course may occur such as for

validation of an input, an alternative course of the system would be outlined. As an

example, suppose w e need a program that would allow the user to input the hours and

minutes an employee worked during the week together with the rate of pay, so that the

program could then calculate the decimal value of the hours worked and produce a pay

slip for that employee. W e could write the Use Statement as:

Name: Produce Pay Slip
Purpose: Describes the process of producing a pay slip for an employee

Typical Course of System:
1. The user enters the employee name.
2. The user enters the hours worked, the minutes worked and the pay rate in any

order.
3. O n entry of hours worked, the minutes worked or the pay rate the time

worked and gross pay are calculated and displayed.

Another advantage of a use statement is that it caters for multiple screen systems.

Chapter 7 Conclusion Page 194

The event response table in the current methodology could be altered to identify the

object and the type of event for active events. Using the example above an event

response table could include heading and entries as follows:

Object

txtHours

txtMinutes

txtPayRate

cmdExit

Object Type

Text box

Text box

Text box

Command

button

Type of Event

Lost Focus

Lost Focus

Lost Focus

Click

Response

Calculate and display time

worked and gross pay

Calculate and display time

worked and gross pay

Calculate and display time

worked and gross pay

The program is ended

Finally, the testing routines could be modified to include test cases and the test data.

This may help students to move methodically through the testing process.

7.2.2 Recommendations for further research

Traditionally, programming has been taught in the small with the belief that many of the

concepts could be extrapolated to the large. A major criticism of the program design

methodology used in this study is that it is limited to teaching small systems. There is a

need for further research which will enable a design methodology to be used for

teaching and for the development of large systems. It is, frankly unacceptable that a

paradigm so popular as the event-driven paradigm, comes with no design methodology

and therefore has the potential to undo so much of the long term benefits that come from

properly designed systems.

Another area that also would seem to warrant further investigation is the impact on the

content and order of proceeding subjects in an Information Systems curriculum when an

introductory programming subject adopts an event-driven language as its platform.

What changes would need to be made to subjects such as systems analysis and design?

Is it important to include new subjects such as user interface design in the curriculum

and, if so, how early in the course should it be taught? H o w much importance should be

Chapter 7 Conclusion Page 195

place on the teaching of other languages such as procedural languages in the

Information Systems curriculum?

It would be unrealistic to expect that one of the first program design methodologies

developed to teach novices h o w to program using an event-driven language would be

entirely successful. Nevertheless, this study makes a significant contribution in

attempting to develop a structured approach to the teaching of these types of systems

and provides a valuable insight into some of the problems faced by lecturers who adopt

event-driven languages as part of their courses.

Chapter 7 Conclusion
Page 196

Bibliography

Aaronson, D. (1976), 'Performance Theories for Sentence Coding: Some Qualitative
Observations', Journal of Experimental Psychology: Human Perception and Performance 2
42-45. ' '

Abelson, H., Sussman, G. & Sussman, J. (1985), Structure and Interpretation of Computer
Programs, 2nd Edition, M I T Press, N e w York.

Adams, Joel C. (1996), 'Object-Oriented Design: A Five-Phase Introduction to Object-Oriented
Programming in CS1-2', in Klee, Karl J., (ed), Twenty-Seventh SIGCSE Technical Symposium
on Computer Science Education, Philadelphia, Pennsylvania, A C M Press, 78 - 82.

Alexander, Patricia & Judy, Judith (1988), 'The Interaction of Domain-Specific and Strategic
Knowledge in Academic Performance', Review of Educational Research, 58(4), 375-404.

Ang, Ang Yang & Lo, Bruce Wai Ning (1991), 'Changing Emphasis on Information Systems
Curriculum: A n Australian Perspective', Second Annual Australian Conference on Information
systems and Databases Special Interest Group, University of N e w South Wales.

Armstrong, A. (1989), 'The Development of Self-Regulation Skills Through the Modelling and
Structuring of Computer Programming', Educational Technology Research & Development,
37(2), 69-76.

Attwood, M. E. & Ramsay, H. R. (1978), Cognitive Structures in the Comprehension and
Memory of Computer Programs: An investigation of Computer Debugging, U.S. Army
Research Institute for the Behavioural and Social Sciences, Report Number TR-78A21,
Alexandria, VA.

Bayman, Piraye & Mayer, Richard (1988), 'Using Conceptual Models to Teach BASIC
Computer Programming', Journal of Educational Psychology, 80(3), 291 -298.

Beck, Kent (1994), 'Patterns and Software Development', DrDobbs Journal, February, 1994,.

Bell, J. (1987), Doing Your Research Project, Open University Press, Stratford, England.

Bellin, D. (1992), 'A Seminar Course in Object Oriented Programming', SIGCSE Bulletin,

24(1), 134-137.

Benbasat, I., Goldstein, D. & Mead, M. (1987), "The Case Research Strategy in Studies of
Information Systems', MIS Quarterly, 11(3 (September, 1987)), 369-386.

Biddle, Robert & Tempero, Ewan (1996), 'Explaining Inheritance: A Code Reusability
Perspecitve', in Klee, Karl J., (ed), Twenty-Seventh SIGCSE Technical Symposium on
Computer Science Education, Philadelphia, Pennsylvania, A C M Press, 217-221.

Bogdan, R. & Biklen, S. (1992), Qualitative Research for Education: An Introduction to

Theory and Methods, Allyn and Bacon, U.S.A.

Bogdan, R. & Taylor, S (1975), Introduction to Qualitative Research Methods, Wiley, New

York.

Event Driven Languages for Novice Programmers Page 197

Boland, R. J. (1979), 'Control, Causality and Information Systems Requirements', Accounting,
Organizations and Society, 4, 259 - 272.

Bonnici, Joseph & Warkentin, Merrill E. (1995), 'Revisted: Fabbri and Mann's Criticism of the
D P M A Model Curriculum', Journal of Computer Information Systems, 35(3), 96 - 98.

Booch, Grady (1991), Object Oriented Design with Applications, Benjamin/Cummings
Publishing, Redwood City, California.

Bostrom, Robert, Olfman, Lome & Sein, Maung (1988), 'End-User Computing: A Research
Framework for Investigating the Training/Learning Process', in Carey, Jane M. (Ed.) Human
Factors in Management Information Systems, Norwood, N e w Jersey, Ablex Publishing, 221 -
250.

Boulay, B. & O'Shea, T. (1981), "The black box inside the glass box: presenting computing
concepts to novices', International Journal of Man-Machine Studies, 14(1), 237-249.

Braithwaite, Richard (1996), 'Design Tools for Event-driven Software Systems', Australasian
Conference on Information Systems, Hobart, Tasmania, Australia, University of Tasmania, 69 -
78.

Brooke, J. & Duncan, K. (1980), 'Experimental studies of flowchart use at different stages of
program debugging.', Ergonomics, 23(11), 1057-1091.

Brooks, R. (1977), 'Towards a theory of the cognitive processes in computer programming',
International Journal of Man-Machine Studies, 9, 737-751.

Brooks, R. (1983), 'Towards a theory of comprehension of computer programs', International
Journal of Man-Machine Studies, 18, 543-554.

Burnett, Margaret M & Mclntyre, David W. (1995), 'Visual Programming', IEEE Computer,

March, 1995, 14-16.

Burrell, G. & Morgan, G. (1979), Sociological Paradigms and Organization Analysis,

Heinemann Books, London.

Carroll, John, Thomas, John & Malhotra, Ashok (1979), 'Clinical-experimental Analysis of

Design Problem Solving', Design Studies, 1(2), 84-92.

Carroll, John, Thomas, John & Malhotra, Ashok (1985), 'Presentation and Representation in

Design Problem-solving', British Journal of Psychology, 71, 143 - 153.

Carroll, J., Thomas, J., Miller, L. & Friedman, H. (1980), 'Aspects of Solution Strucutre in
Design Problem-solving", American Journal of Psychology, 93(2), 269-284.

Cattell, R., (Ed.) (1987), Intelligence: Its structure, growth and action, North Holland :

Elsevier Science Publishers.

Chang, Shi-Kuo (1990), Principles of Visual Programming Systems, Prentice-Hall Inc.,

Englewood, Cliffs, N e w Jersey.

Coad, Peter & Yourdon, Edward (1990), Object Oriented Analysis, Yourdon Press, Englewood

Cliffs, N e w Jersey.

Cooke, R. (1990), 'Full Circle', Byte, August, 1990, 211-214.

Event Driven Languages for Novice Programmers
Page 198

Cornell, Gary (1993), The Visual Basic 3 for Windows Handbook, Osbourne McGraw-Hill
California, USA.

Craig, Annemieke (1996), Encouraging Female Students in Business Computing, M. Business
Thesis, Victoria University of Technology, Melbourne, Australia.

Cross, James H. II & Philips, Thomas M. (1996), 'Successfully Integrating Traditional and
Object-Oriented Approaches with A D A 95', in Klee, Karl J., (ed), Twenty-Seventh SIGCSE
Technical Symposium on Computer Science Education, Philadelphia, Pennsylvania A C M 19 -
23.

Curtis, Bill, (Ed.) (1985), Human Factors in Software Development, IEEE Computer Society
Press, Washington.

Decker, Rick & Hirshfield, Stuart (1994), "The Top 10 Reasons Why Object-Oriented
Programming Can't Be Taught in CS 1', in Joyce, Daniel, (ed), Twenty-Fifth SIGCSE Technical
Symposium on Computer Science Education, Phoenix, Arizona, A C M , 51-55.

DeClue, Tim (1996), 'Object-Orientation and the Principles of Learning Theory: A New Look
at Problems and Benefits', in Klee, Karl J., (ed), Twenty-Seventh SIGCSE Technical
Symposium on Computer Science Education, Philadelphia, Pennsylvania, A C M Press, 232 -
236.

Department of Employment, Education and Training. Economic and Policy Analysis Division
(1990), Education and Training Needs of Computing Professionals and Para-professionals in
Australia, Information Paper No. 1, Volume 1: Data and Findings, Australian Government
Publishing Service, Canberra, Australia.

Department of Employment, Education and Training, Department of Industry, Technology and
Commerce & Information Industries Education and Training Foundation (1992), Report of the
Discipline Review of Computing Studies and Information Sciences Education, Volume 2,
Australian Government Publishing Service, Canberra, Australia.

DeGrace, P. & Hulet Stahl, L. (1990), Wicked problems, righteous solutions: a catalogue of
modern software engineering paradigms, Prentice-Hall, New Jersey.

Denenberg, S. (1990), 'A course for the nonmajor: Teaching Collaborative Problem Solving
via the Classical Computer Science Space-Time Tradeoff, in McDougall, A. & Dowling, C.
(Eds.), Computers in Education, Amsterdam, North-Holland.

Dijkastra, Edward (1968), 'Go To Statement Considered Harmful', Communications of the

ACM, 11(3), 147-148.

Dumas, Joseph & Parsons, Paige (1995), 'Discovering the Way Programmers Think About
New Programming Environments', Communications of the ACM, 38(6 (June)), 45 - 56.

Duntemann, Jeff (1993), 'The (Shower) Curtain Falls', Dr Dobb's Journal,(Apn\),.

Eberts, R (1987), 'Human Computer Interaction', in Hancock, P. (Ed.) Human Factors

Psychology Advances in Psychology Series, N e w York, N e w Holland.

Evans, M.D. (1996), 'A New Emphasis & Pedagogy for a CS1 Course', SIGCSE Bulletin,

28(3), 12-16.

Event Driven Languages for Novice Programmers Page 199

Fabbri, Tony & Mann, Ronald A (T9931 'A Critic A« 1 • r- ,
CumculumModels', ̂ ^ ^ ^ ^ £ £ v f . ^ " *

28")P'2f-a2k5(1996)' <Rethinldng ^ CS_2 ^^ Wlth 3n 0bJ-t-Oriented Focus', SIGCSE,

Foreman, K. (1990), 'Cognitive Characteristics and Initial Acauisition of r™ *
Vrogrammmg', School of Education Review, 2(Spring), 55-6L q U 1 S l t l ° n °f C o m P u t e r

Galliers, R. (1991) 'Choosing Appropriate Information Systems Research Approaches- A
Revised Taxonomy', in Nissen, H., Klein, H. & Hirschheim, R. (Eds.), InfoCon Systems
Research: Contemporary Approaches & Emergent Traditions, Amsterdam, North-Holland,

ntmZS'h °9!?' Ilf°J!nation Systems ^search: Issues, Methods and Practical Guidelines
Blackwell Scientific Publications, London.

Gersting, Judith (1994), 'A Software Engineering Frosting on Traditional CS-1 Course'
Proceedings of the 25th SIGCSE Technical Symposium, ACM, 233 - 237.

Giddens, Anthony (1987), Social Theory and Modern Sociology, Standford University Press
Stanford, California.

Gilmore, D. & Green, T. (1984), 'Comprehension and recall of miniature programs '
International Journal of Man-Machine Studies, 21, 31-48.

Ghnert, E. (1990), Visual Programming Environments: Applications and Issues, IEEE
Computer Society Press, Washington.

Glinert, P (1990), 'Nontextual Programming Environments', in Chang, Shi-Koo (Ed.)
Principles of Visual Programming Systems, New Jersey, Prentice Hall, 144 - 230.

Goodson, Ivor F & Mangan, J. Marshall (1991), 'An Alternative Paradigm for Educational
Research', in Goodson, Ivor F & Mangan, J. Marshall (Eds.), History Context and Qualitative
Methods in the Study of Education,, RUCCUS Occasional Papers Vol 1, University of Western
Ontario, Canada.

Gorgone, John T., Couger, J. Daniel, Davis, Gordon, et al. (1994), 'Information Systems '95
Curriculum Model - A collaborative Effort', Data Base, 25(4), 5-8.

Goschnick, S. (1993), 'Object-Oriented Language Set to be the Inventive Code-Cutter's Best
Ally', The Age, 12th October, 1993.

Goslar, Martin D. & Deans, P. Candace (1993), 'A Pilot Study of Information Systems
Curriculum in Foreign Educational Institutions', The Journal of Computer Information
Systems, 34(1), 8-17.

Greeno, J. G. (1973), 'The Structure of Memory and the Process of Problem Solving', in Solo,
R. (Ed.) Contemporary Issues in Cognitive Psychology, Washington, Winston.

Gugerty, Leo & Olson, Gary M. (1986), 'Comprehension Differences in Debugging by Skilled
and Novice Programmers', in Soloway, Elliott & Sitharama, Iyengar (Eds.), Empirical Studies
of Programmers, Norwood, New Jersey, Ablex Publishing Corporation, 13-27.

Event Driven Languages for Novice Programmers Page 200

Guvenir, H. Altay (1995), 'An Object-Oriented Tutoring System for Teaching Sets' SIGCSE
Bulletin, 27(3), 39 - 46.

Guzdial, Mark (1995), 'Centralized Mindset: A Student Problem with object-Oriented
Programming', in White, Curt, (ed), Twenty-Sixth SIGCSE Technical Symposium on Computer
Science Education, Nashville, Tennessee, A C M Press, 182 -185.

Hanif, Mohammed (1996), The Need for a Representation System for Visual Basic Program,
Victoria University of Technology, Melbourne, Australia.

Harmon, Paul (1995), 'Object-Oriented Al: A Commercial Perspective', Communications of
the ACM, 38(11 (November)), 80 - 86.

Johnson-Laird, P.N. (1989), The Computer and the Mind - An introduction to Cognitive
Science., Fontana Press, London.

Kant, Elaine (1985), 'Understanding ans Automating Algorithm Design', Transactions on
Software Engineering, 11, 1361-1374.

Kant, E. & Newell, A. (1984), 'Problem Solving Techniques for the Design of Algorithms',
Information Processing & Management, 20(1-2), 97-118.

Kaplan, B. & Duchon, D. (1988), 'Combining Qualitative and Quantitative Methods in
Information Systems Research: A Case Study', MIS Quarterly, 12(4 (December)), 369-386.

AGPS (1985), Quality of Education in Australia,, Canberra, Australia.

Keen, P.G.W. (1987), 'MIS Research: Current Status, Trends and Needs', in Buckingham, R.A,
Hirschheim, R.A., Land, F.F. & Tully, C.J. (Eds.), Information Systems Education:
recommendations and implementation, Cambridge, Cambridge University Press, 1-13.

Kennedy, Stuart (1995), 'Object Occult', Information Age, May, 1995, 16 -19.

Kirk, J. & Miller, M. (1990), Reliability and Validity in Qualitative Research, Sage
Publications, Newbury Park, California.

Klein, H., Nissen, H. & Hirschheim, R. (1991), 'A Pluralist Perspective of the Information
Systems Research Arena', in Nissen, H., Klein, H. & Hirschheim, R. (Eds.), Information
Systems Research: Contemporary Approaches & Emergent Traditions, Amsterdam, North-

Holland, 1-20.

Rolling, Michael, Koch, Bert & Rosenberg, John (1995), 'Requirements for a First Year
Object-Oriented Teaching Language', in White, Curt, (ed), Twenty-Sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tenessee, A C M , 173-177.

Rolling, Michael & Rosenberg, John (1996), 'An Object-Oriented Program Development
Environment for the First Programming Course', in Klee, Karl J., (ed), Twenty-Seventh
SIGCSE Technical Symposium on Computer Science Education, Philadelphia, Pennsylvania,

A C M Press, 83 - 87.

Koubek, R, Salvendy, G. & Dunsmore, H. (1989), 'Cognitive issues in the process of software
development: review and reappraisal', International Journal of Man-Machine Studies, 30,

171-191.

Event Driven Languages for Novice Programmers Page 201

^t'fi Vl7!}^™™"*™/^™86™ ' ̂ Routinization of Computer Programming
in the United States, Springer Verlag, New York. "jamming

^Sd,DH,STnt*«l?,1^^^ (1986)' 'AStudy ofthe Development of Programming

^ ^ " ^ f m ^ S C h ° 0 1 StUdentS' J°Umal °f£d^onal C^omputinl

Letovsky S. (1986), 'Cognitive Processes in Program Comprehension', in Soloway E &
Ivengar, S. (Eds.), Empirical Studies of Programmers, New Jersey, Ablex Publishing, 58-79.

Levy, Suzzane Pawlan (1995), 'Computer Language Usage in CS1: Survey Results' SIGCSE
Bulletin, 27(3), 21-26.

Lincoln, Y.S. & Guba, E.G. (1985), Naturalistic Inquiry, Sage Publications, Beverley Hills
California. '

Linn, Marcia C. (1985), 'The Cognitive Consequences of Programming Instruction
Classrooms.', Educational Researcher, 14(5), 14-16.

in

Linn, Marcia C. & Songer, Nancy Butler (1991), 'Cognitive and Conceptual Change in
Adolescence', American Journal of Education, 99(4), 379-343.

Lisack, Susan (1996), 'Making the Plunge: Switching from COBOL to a New Language',
Tenth Annual Midwest Conference on Information Systems, Loyola University, Chicago, 1 - 6.

Lisack, Susan (1996), "The Move to a GUI Programming Environment: Selecting an
Appropriate Language for the Programming Curriculum', Tenth Annual Midwest Conference
on Information Systems, Loyola University, Chicargo.

Littman, David C, Pinto, Jeannine, Letovsky, Stanley & Soloway, Elliot (1986), 'Mental
Models and Software Maintenance', in Soloway, Elliot & Iyengar, Sitharama (Eds.), Empirical
Studies of Programmers, Norwood, New Jersey, Ablex Publishing Corporation.

Longenecker, Herbert E. Jnr, Feinstein, David L., Gorgone, John T. & Davis, Gordon G. J

(1995), Information Systems '95: Model Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems - Draft Report, ACM, DPMA, AIS, U.S.A.

Longenecker, Herbert E. Jnr, Feinstein, David L., Couger, J. Daniel, Davis, Gordon G. &
Gorgone, John T. (1994), 'Information Systems '95: A Summary of the Collabarative IS
Curriculum Specification of the Joint DPMA, ACM, AIS Task Force', Journal of Information
Systems Education, Winter, 174 - 186.

Lyytinen, K. (1987), 'Different Perspectives on Information Systems: Problems and Solutions',
ACM Computing Surveys, 19(1), 5-46.

Malhotra, A., Thomas, J., Carroll, J. & Miller, L. (1980), 'Cognitive processes in design',
International Journal of Man-Machine Studies, 12, 119-140.

Marion, Bill (Moderator), Chi, Paul Ping-Chung, Smith, Suzanne, Moses, Louise & Stoecklin,
Sara (1996), 'Experiences in Teaching Object-Oriented Design and Programming with C++ in
the Computer Science Curriculum', in Klee, Karl J., (ed), Twenty-Seventh SIGCSE Technical
Symposium on Computer Science Education, Philadelphia, Pennsylvania, A C M Press, 405 -
406.

Event Driven Languages for Novice Programmers Page 202

Martin, James & McClure, Carma (1984), Diagramming Techniques for Analysts and
Programmers, Prentice Hall Inc., N e w Jersey.

Martin, James & Odell, James (1992), Object-Oriented Analysis & Design, Prentice Hall
Englewood Cliffs, N e w Jersey.

Matsumura, Kazuo & Tayama, Shuichi (1990), 'Visual Man-Machine Interface for Program
Design and Production', in Ichikawa, Tadao, Jungert, Erland & Korfhage, Robert R. (Eds.),
Visual Languages and Applications, N e w York, Plenum Press, 99 -119.

McNeill, P. (1990), Research Methods.

McNutt, L. J. & Lo, B. W. N. (1991), 'The Cognitive Dimensions of Computer Programming:
Implications for Teaching Programming in Information Systems Courses', Second Annual
Australian Conference on Information Systems and Databases Special Interest Group,
University of N e w South Wales, 403 -414.

Miles, Matthew (1983), 'Qualitative Data as an Attractive Nuisance: The Problem of Analysis',
in Van Maanen, John (Ed.) Qualitative Methodology, Newbury Park, California, Sage
Publications, 117-134.

Mintzberg, H. (1983), 'An Emerging Strategy of "Direct" Research', in Van Maanen, J. (Ed.)
Qualitative Methodology, Newbury Park, Sage Publications, 24, 105 -116.

Myers, M. D. (1994), 'Quality in Qualitative Research in Information Systems', Shanks, G. and
Arnott, D., (ed), Proceedings of 5th Australasian Conference on Information Systems, Monash
University, Department of Information Systems, Monash University, 763 - 766.

Navrat, Pavol (1994), 'Hierarchies of Programming Concepts: Abstraction, Generality, and
Beyond', ACM SIGCSE Bulletin, 26(3 (September, 1994)), 17-22.

Neal, Gregory & Lorents, Alden (1995), 'Introduction to Programming with Visual Basic', in
Little, Joyce Currie, (ed), ISECON'95 IS Education: Meeting the Challenge of a Global
Marketplace, Charlotte, North Carolina, D P M A , 54-61.

North, Ken (1994), 'Database Development and Visual Basic 3.0', Dr Dobbs Journal,
February, 1994,.

Oliver, Ron (1991), "The Development of Semantic Knowledge in Introductory Programming
Teaching', Australian Computers in Education Conference, Brisbane, Australia, CEGQ, 264-
272.

Orlikowski, W.J. & Bardoudi, J.J. (1991), 'Studying Information Technology in Organizations:
Research Approaches and Assumptions', Information Systems Research, 2(1), 1 - 28.

Osbourne, M. & Johnson, J. (1993), 'An Only undergraduate Course in Object-Oriented

Technology', SIGCSE Bulletin, 25(1), 101 - 106.

Palumbo, D. & Reed, W. M. (1991), "The Effect of BASIC Programming Language Instruction
on High School Students' Problem Solving Ability and Computer Anxiety', Journal of

Research on Computing in Education, 23(3 (Spring)), 343 - 372.

Pancake, Cherri M. (1995), "The Promise and the Cost of Object Technology: A Five-Year

Forecast', Communications of the ACM, 38(10), 33 - 49.

Event Driven Languages for Novice Programmers Page 203

Pea, Roy. D. & Kurland, D. Midian (1983), On the Cognitive Prerequisites of Learning

Computer Programming (Technical Report No. 18), Bank Street College of Education N e w
York.

Pennington, N. (1982), Cognitive Components of Expertise in Computer Programming: A

Review of the Literature, Technical Report N o 46, University of Michigan Centre for
Cognitive Science, Michigan.

Petre, Marian (1995), 'Why Looking Isn't Always Seeing', Communications of the ACM, 38(6),
33 - 44.

Ratcliff, B. & Siddiqi, J (1985), 'An Empirical Investigation inot Problem Decompostion
Strategies used in Program Design', International Journal of Man-Machine Studies, 22(1), 77-
90.

Reid, Robert (1994), The Reid Report, U.S.A.

Reitman, W. (1965), Cognition and Thought, Wiley, New York.

Resnick, Mark (1992), Beyond the Centralized Mindset: Explorations in Massively-Parallel
Microworlds, Unpublished Thesis, Massachusetts Institute of Technology.

Rich, Charles & Waters, Richard C. (1988), 'The Programmer's Apprentice: A Research
Overview', Computer, 21(11), 10-25.

Richards, Roy Martin & Sanford, Clive C. (1992), 'An Evolutionary Change in the Information
Systems Curriculum at the University of North Texas', Computers & Education, 19(3), 219 -

228.

Robertson, L. A. (1993), Simple Program Design, Second Edition Edition, Thomas Nelson,

Melbourne, Australia.

Rosen, M. (1991), 'Coming to Terms with the Field: Understanding and Doing Organizational

Ethnography', Journal of Management Studies.

Rowan, J (1973), The Social Individual, Davis-Poynter, London.

Rumbaugh, James, Balha, Michael, Premerlani, William, Eddy, Frederick & Lorensen, William
(1991), Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, N e w Jersey.

Schurmann, Joachim (1994), 'A Program Architecture for Visual Basic Development', Dr

Dobb's Journal, 19(9 (Fall)), 32-41.

Seddon, P. (1991), 'Information Systems: Towards a Definition for the 1990's', Second Annual
Australian Conference on Information systems and Databases Special Interest Group,

University of N e w South Wales, 415-427.

Shackleton, Peter & McConville, Doug (1997), Program Design Through Visual Basic, 3rd

Edition, Data Publishing, Melbourne, Australia.

Shaler, Sally & Mellor, Stephen J. (1992), Object Lifecycles: Modelling the World in States,

Yourdon Press/Prentice Hall, Englewood Cliffs, N e w Jersey.

Shneiderman, Ben (1982), 'Control Flow and Data Structure Documentation: Two

Experiments', Communications of the ACM, 25(1), 55 - 63.

Event Driven Languages for Novice Programmers
Page 204

Shneiderman, B (1983), 'Direct Manipulation: A Step Beyond Programming Languages' IEEE
Computer, 16(8), 57 - 69.

Shneiderman, B. (1986), 'Empirical Studies of Programmers: The Territory, Paths and
Destinations', in Soloway, E. & Iyengar, S. (Eds.), Empirical Studies of Programmers, New
Jersey, Ablex Publishing, 1-12.

Shneiderman, B. & Mayer, R. (1979), 'Syntactic/Semantic Interactions in Programmer
Behaviour: A Model and Experimental Results', International Journal of Computer and
Information Sciences, 8(3), 219-238.

Sime, M.E., Green, T.R.G. & Guest, D.J. (1973), 'Psychological Evaluation of Two
Conditional Structures Used in Computer Languages', Journal of Man-Machine Studies, 5,
123 -143.

Sloan, K.D. & Linn, M.C. (1988), 'Instructional Conditions in Pascal Programming Classes', in
Mayer, R.E. (Ed.) Teachning and Learning Computer Programming: Multiple Research
Perspectives, N e w Jersey, Lawrence Erbaum Associates, 207 - 235.

Smith, Dianne & Kelly, Paul (1994), 'A Visual Approach to Computer Programming', Women
in Computing, Melbourne, Victoria, Victoria University, Melbourne.

Soloway, E., Bonar, J. & Ehrlich, K. (1983), 'Cognitive Strategies and Looping Constructs: An
Empirical Study', Communications of the ACM, 26(11), 853-860.

Soloway, E. & Elliott, K. (1984), 'Empirical Studies of Programming Knowledge', IEEE
Transaction on Software Engineering, SE-10(5), 595-609.

Soloway, E. & Iyengar, S. (1986), Empirical Studies of Programmers, Ablex Publishing,

Norwood, N e w Jersey.

Sudbury, Neil (ed) (1995), 'Design, not objects, decides useability', Computer Week, 4th

August, 1995, 18.

Tatnall, A (1993), A Curriculum History of Business Computing in Victorian Tertiary
Institutions from 1960 -1985, Master of Arts Thesis, Deakin University, Victoria. Australia.

Tatnall, Arthur & Davey, Bill (1995), 'A Conceptual Development in an Object Environment',
World Conference on Computer Education, Burmingham, England.

Tesch, Debbie B., Tesch, Robert C. & Albin, Marvin (1996), The Role of Visual Basic in the

CIS Curriculum, Working Paper, Morehead State University.

Tesch, R. (1990), Qualitative Research: Analysis Types and Software Tools, Falmer Press,

Great Britain.

Trauth, E. & O'Connor, B. (1991), 'A Study of the Interaction Between Information,
Technology and Society: A n Illustration of Combined Qualitative Research Methods', in
Nissen, H., Klein, H. & Hirschheim, R. (Eds.), Information Systems Research: Contemporary

Approaches & Emergent Traditions, Amsterdam, North-Holland, 131 -144.

Tucker, Allen (ed) (1991), 'Computing Curricula 1991 :A Summary of the ACM/IEEE - CS
Joint Curriculum Task Force Report', Communications of the ACM, 34(6), 69 - 84.

Event Driven Languages for Novice Programmers
Page 205

Udell, Jon (1994), 'Componentware', Byte, May, 1994,46 - 62

Van Knk, D. (1995), 'Visual Basic: a Diamond in the Rough', Computer Week, 4th August,

Van Merrienboer, J & Paas, F. (1990), 'Automation and Schema Acquisition in Learnmg
Elementary Computer Programming: Implications for the Design of Practice' Compel
Human Behaviour, 6(3), 273-289. computers in

Slw S' p l& FfTS\MA °r
 88)' ^^^ SkiUs fr0m Trainin§ to the A^al Work

Situation. The Role of Task Application knowledge, Action Styles and Job Decision Latitude'
A^'w 'f^'88 HUmm FaCt°rS iH C°mPUt™Z Systems, Washington, N e w York
Addison-Wesley, 55-60. '

Vessy, Iris & Weber, Ron (1986), 'Structured Tools and Conditional Logic: An Empirical
Investigation', Communications of the ACM, 29(1), 48 - 57.

Victoria University of Technology (1993), Code of Conduct for Research, Office of Research
Melbourne, Australia.

Vitalari, N. & Dickson, G. (1983), 'Problem Solving for Effective System Analysis: An
Experimental Exploration', Communications of the ACM, 26(11), 948-956.

Wallingford, Eugene (1996), 'Toward a First Course Based on Object-Oriented Patterns', in
Klee, Karl J., (ed), Twenty-Seventh SIGCSE Technical Symposium on Computer Science
Education, Philadelphia, Pennsylvania, A C M Press, 27 - 31.

Walsham, G. (1993), Interpreting Information Systems in Organizations, John Wiley and Sons,
Chichester.

Waters, C. (1993), 'Where do we GOTO now?', Informatics, April, 1993,47.

Wick, Michael (1995), 'On Using C++ and Object-Orientation in CS1: The Message is Still
More Important than the Medium', in White, Curt, (ed), Twnety-Sixth SIGCSE Technical
Symposium on Computer Science Education, Nashville, Tennessee, A C M , 322 - 326.

Wiedenbeck, Susan (1991), 'The Initial Stage of Program Comprehension', International
Journal of Man-Machine Studies, 35, 517 - 540.

Wilkes, M. (1991), 'Software and the Programmer', Communications of the ACM, 34(5), 23-
24.

Winograd, Terry (1995), 'From Programming Environments to Environments for Designing',
Communications of the ACM, 38(6 (June)), 65 - 74.

Wolcott, Harry F (1990), Writing Up Qualitative Research, Sage Publications, Newbury Park,
California.

Yin, R. (1989), Case Study Research: Design and Methods., SAGE Publications, Inc., Newbury
Park, CA.

Event Driven Languages for Novice Programmers Page 206

Yourdon, Edward (1994), Object-Oriented Systems Design, Prentice Hall, Englewood Cliffs,
New Jersey

Yourdon, E. & Constantine, L. (1979), Structured Design: Fundamental of a Discipline of
Computer Program and Systems Design, Prentice Hall, Englewood Cliffs, N.J.

Zikmund, W. (1991), Business Research Methods, The Dryden Press, Orlando, Florida, U.S.A.

Event Driven Languages for Novice Programmers Page 207

Appendix 1 Student Interview Sample Program

A company requires a program to calculate the cost of sending a parcel by mail. Details of the

parcel are to be inputted (Name, Address, the Weight of the Parcel and whether the parcel is to

be registered or not (ie. insured during delivery). The charge for sending the parcel depends on

the weight of the parcel and whether it is registered or not. The following table represents the

cost of sending an unregistered parcel based upon the weight:

Weight of Parcel

less than 100 grams

100 grams to 1 kilogram

above 1 kilogram

Cost

$0.45

$5.30

$7.50

If a parcel is to be registered the cost of sending the parcel is double the unregistered cost as

given in the table above. As an example, an unregistered 500 gram parcel would cost $5.30 to

deliver, a 500 gram registered parcel would cost $10.60 to send.

The user should be able to print a label from the system which can be stuck onto the parcel

showing the cost and registered status.

Please solve the problem showing any documentation, screens and coding you would use. Try

to describe what you are doing as you go.

H o w would you test your solution and at what stages would you test?

Event-driven Programming for Novice Programmers
Page 208

Pr
ev
io
us

P
r
o
g
r
a
m
m
i
n
g

E
x
p
e
r
i
e
n
c
e

Pr
ev
io
us

Qu
al
if
ic
at
io

ns

a
o

3
9
o
u

o

Y
e
a
r
s

in

C
o
u
r
s

e

E
n
r
o
l
m
e
n
t

St
at
us

CD
(19
SM

s
O

U

F
a
m
i
l
y

Na
ti
on
al
it
y

4»

M
<*

a
©

9
<u
PH

Pa
sc
al
 (
re
pe
at
in
g

su
bj
ec
t
 f
ro
m

la
st

se
me
st
er
)

g

3
U
id

a

m

.§
1

3
PH

bO
(=1

st
PQ y,

^ 3
CO

1
s

O

•f-H

PQ

g

i
oo

(S

e

3
PH

'So
•S
3

00 &

PQ w

1
PH

ON

bo

u

u
c

1

§

1
a
00

cs

<u

s
•C
1

3
PH

•bfi

a
3

«> &

PQ y.

3
CO

1

S

I—1

.s

u
(=1

o

CO

PQ

u
co

o

»—1

CD

£

i
PH

2 £ « 3

© Q PQ U

3
i — i

PH

T-H

m

Da
ta
Fl
ex

i

As
se
mb
le
r

o c
u rt R -~
U o 1) /«•».

trt -tl 2 PH

< u s b

•S s
+; to a

§ 6 3

S - 1
R M S
< oo U m

u
B

•l-H

+-»

PH

"bO

00 §
IX o

S <c
PQ O

3
CO

3

S

T3
i-i

PH

+
h-1
h-1

u
co
£>

Q

o

1
•X3

a
00

<N

CU

B
•

3
PH

(=1

st
PQ ii

I
PH

rs

S3
bo

s
O

N
o
n
e

i

-S g

m &
PQ 3

i-.

3 °
•2 v «

co o ?
U Q •£

-

u
B

PH

2 S <L> 3

a.&s i
O Q PQ U

^3
CO

3b
c

w
S

2
3
o

o
(N
u
60
m

a.

5

fee

>

5
5
a

I

t*3

§

§

%
TJ

a 00

CN

U

£
+->

,_!<
G
PH

bO

G
•-G

B
B
U
S

(C
om
pu

>
•5
O
bO
3 ><

PH

C\

CO

J*

I

bO -M

ea
ti
n

m
l
a
s

P. Q

Pa
sc
al
 (
re

su
bj
ec
t
 f
r

se
me
st
er
)

1
TJ

3 OO

<N

CO

£
+-»
, ',

s PH

/—N
bo

B
B
U
S

(C
om
pu

u
• H

3
GO

3

1
PH

ON
.-H

D

O
I—>

CD

§

<+H

« «
-a £ .g
U cd -E3
§,2 §W

A
d
v
a

Ce
rt
iJ

A
c
c
o

(T
AF

G
u TJ

a OO

T, "« bo

© ° s •2? cd VC

As
so
ci
a

Di
pl
om

Ac
co
un

(
T
A
F
E
)

-

u
£
+-»

i

G
PH

bO

.£

B
B
U
S

(
C
o
m
p
u

§
•1-H
f—<

CO

G

<3

s

O
tN

1
2

G

1
<4H
O
Cd t

£ G*

Di
pl
o

Nu
rs
i

CU

3

G
TJ

3 00

T — 1

o
£
, H

G PH

BA
rt
s/
Bu
si
ne
s

s
Co
mp
ut
in
g

§

1
co
G <

PH

m

£
<u
m

2

G

1
G
O '•C
cd
O
G TJ
W
PQ

ic
al

.a
ti
on

he
r

co w o

>>.3 rt
PH W H

-

<u
£

t-
CO
PH

<+H

o
U M Ifl

bfl

G

Gr
ad
ua
t

Di
pl
om
i

Bu
si
ne
s

C
o
m
p
u
t

§
3
h
CO

G
<J

s

ON

m

PH

u
G

1

u

1

T)

£
00

<N

<U

£
•!-»
— i

G PH

00

PQ
PQ

42
CO

£

bu
G

1
o
U

PH

OS

cd

oo

CU

G

1
bo
.£ -*-»

B
B
U
S

(A
cc
ou
r

<U

In
su
ra
nc
e

Cl
ai
ms
 O
f

i-H

<D

£
•e
cd
PH

C+H

O
O rrt CO

bfi

G

Gr
ad
ua
t

Di
pl
om

Bu
si
ne
s

Co
mp
ut

s
3
CO

3 <5

PH

CN

cd

00

W

u >
G

Pa
sc
al
 a
nd

DB
as
eI
II
+

CU

G

1

G
1» TJ
?.
00

<N

V

B
•*-»
T—•* |

G PH

be
G

B
B
U
S

(C
om
pu

u
CO

g
JG u

5

o

£

u
BO

«
ft.

5
£

be
s

S
5

o

s
>

Appendix 3 Student Consent Form

Victoria University of Technology

Dear Student,

I am currently interviewing Bachelor of Business and Graduate Diploma of Business
Computing students about their attitudes towards, and experience of, Visual Basic. I am
undertaking these interviews as part of a study to determine the appropriateness of
Visual Basic as a first year programming language. Information gained will be used to
improve the teaching of the language and the development of skills in the introductory
programming subject.

If you agree to be interviewed, your interview will be treated with strict confidentiality.
Any reference to your interview in the write up of the study will have any identifying
data removed. Any reference to you, and any individuals to w h o m you refer, will be
given pseudonyms.

I would like to stress that your participation, or non participation, in these interviews
will in no way affect the results of any of your subjects in the Bachelor of Business or
Graduate Diploma of Business Computing.

Thank you for your assistance.

Peter Shackleton

I,

of

agree to be interviewed for the research on:

'Event-Driven Programming for Novice Programmers'

being conducted by Peter Shackleton at Victoria University of Technology.

Signed: Date:

Event-driven Programming for Novice Programmers
Page 211

