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SUMMARY 

The Finite Element Method (FEM) was used to simulate the Photoelastic Stress 

Minimization (PSM) method developed by Durelli to solve the problem of finding the 

optimal stress raiser profiles in isotropic and advanced composite structures. In Durelli's 

method, material in lowly stressed regions of the design domain is removed so as to make 

the sections of the discontinuity boundary become isochromatics of the same Tresca 

stress. The process of material removal was simulated by iterative deleting of elements 

lying on the stress raiser boundary, followed by smoothing and remeshing subroutines. 

The criterion proposed for element "removal" was to select only a number of elements 

having lower stresses among those that are in the design domain and on the current 

boundary. This number was set by a removal rate and controlled to get smaller as the 

optimization proceeds. The process was terminated when the stress distribution on the 

boundary became uniform or the number of elements to be removed reached the 

predefined minimum value. 

It was shown that the proposed FEM simulation could be applied to solve various 

stress minimization problems involving isotropic materials. Investigations of the effects 

of parameters controlling the optimization process on the convergence and the final 

results were carried out. By taking into account the existence of isotropic points of zero 

stress, which could lead to the divergence from the optimal profile, the proposed FEM 

simulation proved to be capable of handling more general classes of stress minimization 

problems. 

The FEM simulation was further extended to search for optimal stress raiser 

profiles for structures made of advanced composite materials. 
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NOTATIONS 

CTi, CT2 stress components in the 1-2 reference axes 

V12 Poisson ratio in plane 1-2 

X12 the shear component in plane 1-2 

(Ti2)uit the ultimate in-plane shear strength (in plane 1-2) 

amax the maximum equivalent or Tresca stress occurring on the hole boundary 

(Wan the mean value of equivalent or Tresca stress distribution occurring on the 

hole boundary 

(Tmin the minimum equivalent or Tresca stress occurring on the hole boundary 

Gx applied stress along X-axis 

oy applied tensile stress along Y-axis 

T-
(CTi )uit the ultimate longitudinal tensile strength (direction 1) 

(CTi )uit the ultimate longitudinal compressive strength (direction 1) 

(CT2 )uit the ultimate transverse tensile strength (direction 2) 

(CT2 )uit the ultimate transverse compressive strength (direction 2) 

9 angular coordinate 

a applied tensile stress 

CAO Computer-Aided shape Optimization 

CPU Central Processing Unit 

D hole diameter 
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Notations 

Dj the distance from Pk to the i
th node lying on the boundary (Figure A. 1) 

ESO Evolutionary Structural Optimization 

Ei longitudinal Young's modulus 

E2 transverse Young's modulus 

esize the smallest element size used to mesh the area along the boundary, 

distance from Pk to Qk (Figure 3.5) 

Ext_elem the set of external elements currently lying on the stress raiser boundary 

within the design domain. 

FEM Finite Element Method 

finetune a flag indicating the status of the cutting stage of the process 

G12 shear modulus 

i, j, k indices 

/, J, K loop indices 

kbiax stress concentration factor under biaxial stress state 

Ktg stress concentration factor based on the gross cross section 

Kto stress concentration factor based on the minimum net cross section 

L plate length 

mr the ratio of the accumulative removed area to the original hole area 

N the number of nodes lying on the the k* section of the boundary 

n_ext_elem the total number of elements of the set Ext_elem 

n_ext_elem(J) the number of external elements lying on the stress raiser boundary, 

counted at the 7th iteration. 

NE the number of elements to be reduced in each step of the K loop 

nmin(K) the number of elements removed at the Kth step of the K loop 

nrem the number of selected elements that have lower equivalent or Tresca 
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Notations 

P S M 

Pk 

Qk,Rk 

remrate(I) 

SEPC 

SKO 

Sr 

STDV 

T 

Tb 

TF 

W 

Xi,Y 

XPk,YPk 

stresses (isotropic material), or Tsai-Wu indices (advanced composite 

material) among elements of the set Ext_elem 

Photoelastic Stress Minimization method 

the k primary control point (Figures 3.5, A. 1) 

the kl secondary control points (Figure 3.5) 

the element removal rate at the Ith step of the I loop 

the structural percentage error in energy norm 

Soft Kill Option 

applied stress ratio, Sr = Gy/cx 

standard deviation 

plate thickness 

distance from Pk to Rk (Figure 3.5) 

tuning factor 

plate width 

Cartesian coordinates of the i node lying on the boundary 

Cartesian coordinates of Pk 
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Chapter 1 

INTRODUCTION 

1.1 Introduction 

Failures in mechanical parts most frequently occur at discontinuities such as holes, 

fillets, grooves, and notches. These features disturb stress distributions, often creating high 

stress concentrations, which ultimately promote failure, Durelli and Rajaiah (1981). 

Minimizing stress concentrations occurring at discontinuities in a structure therefore 

increases the strength and life of the structure under comparable working conditions. 

For minimization of the stress concentration effect, one can either add or remove 

materials. For instance, material can be added to reinforce hole edges to maintain the 

strength of the structure. On the other hand, the geometry of stress raisers can be improved to 

reduce stress concentrations by changing their shapes. In the second approach, an elegant 

method has long been developed by photoelasticians, notably Heywood (1969), Durelli et al. 
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Chapter 1: Introduction 

(1968, 1978, 1979, and 1981). 

Durelli's Photoelasticity Stress Minimization method (PSM) is an experimental 

technique that focuses on a systematic procedure to achieve optimized shapes of components 

or structures. By gradually removing material from the lowly stressed regions, the geometry 

of stress raisers converges toward the optimum. As a result, the optimized structure will be 

lighter and have less stress concentration under the specified loading conditions. 

Shape optimization by PSM requires a model of the structure. The model is usually 

made of transparent polymeric materials. Tresca stress distribution is determined by 

observing its contours or isochromatic fringes through a polariscope. However, PSM is 

practically restricted to the Tresca criterion involving plane stress problems with simple 

geometry, loading and restraints. 

This study explores an effective simulation procedure of Durelli's PSM by the finite 

element method (FEM) so that it can be applied to structures of more complicated geometry, 

boundary conditions, and/or of more complex material properties. The investigation has 

shown that the FEM simulation can be applied to a wide range of stress concentration 

problems including structures made of laminated composite materials. 

1.2 Aims 

The aim of this study is to develop an effective algorithm based on FEM to simulate 

Durelli's PSM to search for optimal shapes of stress raiser profiles in structures made of 

homogeneous isotropic and advanced composite materials. 
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Chapter I: Introduction 

1.3 Research approach 

The algorithm can be effected by existing commercial finite element analysis 

software to perform optimization tasks. Specifically, the following approach will be taken: 

• Firstly, the PSM procedure will be examined and an equivalent simulation algorithm 

based on FEM developed. The optimization procedure by FEM simulation is 

controlled by a number of parameters. It is proposed to study the effects of these 

parameters on the convergence to the optimal shapes. 

• Secondly, the effects of different external loading conditions on the optimal profiles 

will be investigated. 

• Finally, the proposed FEM simulation procedure will be extended to search for 

optimal stress raiser profiles in structures made of composite materials. 

ANSYS 5.3 finite element software developed by ANSYS, Inc. is employed 

throughout the study. Programs are written using the parametric design language, which is 

available in ANSYS 5.3. In this study, all programs were run within the ANSYS 

environment. All errors occurring during the optimization process could be monitored and 

reported. 

Computer facilities used include DEC ALPHA 200/233 (Unix base) and Pentium II-

350 (Windows NT service pack 3, 128 Megabyte physical memory) workstations. All the 

reported running times are based on the Pentium 11-350 (Windows NT) workstation for 
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Chapter 1: Introduction 

consistency. 

All investigations performed were under static boundary conditions. It was assumed 

that all materials behaved linearly and elastically during the optimization processes. 

1.4 Thesis outlines 

The thesis consists of six chapters, a list of references and appendices. 

• Chapter 1 introduces the significance, aims and scope of the study. The content 

presented in each chapter is summarized in the thesis outlines section (Section 1.4). 

• Chapter 2 provides a literature review on shape optimization, with an emphasis on 

boundary shape optimization and stress minimization problems including shape 

optimization in advanced composite material structures. 

• Chapter 3 presents the algorithm developed to simulate the characteristics of PSM. A 

large plate with a hole made of homogeneous isotropic materials under the biaxial 

tensile stress is optimized. The results are then compared with established solutions 

to validate the feasibility of the proposed algorithm. 

The FEM simulation employs a number of parameters to control the optimization 

process. The effects of these control parameters on the speed of convergence and 

final results are also investigated. A homogeneous isotropic plate containing an initial 

central circular hole under biaxial tensile stress is optimized with different set values 
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Chapter 1: Introduction 

of control parameters to study these effects. 

• Chapter 4 presents various optimal stress raiser profiles containing isotropic points of 

zero stress. They represent the optimal solutions that result in profiles having sections 

under compression and tension. These characteristics are commonly found in general 

and technically interesting problems. Two typical examples are given: (i) a large plate 

with a hole in structures made of homogeneous isotropic materials under various 

biaxial tensile-compressive stress ratios; (ii) a finite width plate with initial circular 

holes of different diameters under uniaxial tensile stress. 

• Chapter 5 presents the application of FEM simulation in optimizing a quasi-isotropic 

carbon-epoxy laminated composite plate [0 /±45°/90°]s containing an initial central 

circular hole under various biaxial stress states employing the Tsai-Wu criterion and 

the first ply failure theory. 

• Chapter 6 summarizes the findings of the study. Some recommendations for future 

works are also given. 

• A list of references and appendices. Appendix A presents the analytical solution for 

determining a control point such that the sum of squares of the distances from it to a 

given set of nodes is minimized. Appendix B provides the checks of some of the 

optima with finer meshes: cases Srof 1.5,-1 for isotropic material; and Sr of 1.5 for 

composite material. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

Structural optimization aims to reduce weight or to improve the performance of 

structures while satisfying certain requirements. Although the early development of 

mathematical optimization began after the introduction of calculus by Newton and 

Leibniz during the latter part of the seventeenth century, Venkayya (1993 a), the first 

analytical work in structural optimization was by Maxwell in 1869, followed by a well 

known work of Michell (1904). 

Structural optimization has now become a broad multidisciplinary field, which 

finds applications in aeronautical, civil, mechanical, nuclear and off-shore engineering, as 

well as in space technology. Reviews on the structural optimization field can be found in 

Venkayya (1978, 1993a), Vanderplaats (1982), Olhoff and Taylor (1983), Topping 

(1983), Haftka and Grandhi (1986), Ding (1986), Rozvany et al. (1995), and Seireg and 
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Chapter 2: Literature review 

Rodriguez (1997). Structural optimization problems are commonly classified into three 

important classes: sizing optimization, topology optimization and shape optimization 

problems: 

• Sizing optimization problems 

In sizing optimization problems, the geometry (nodal coordinates) and topology 

(member connectivities) of structures are kept unchanged during the course of 

optimization. Sizing design variables may include cross-sectional areas, moments 

of inertia, plate/shell element thickness. They may include material properties 

such as Young's modulus and/or Poisson's ratio as in the optimization of 

composite structures. 

• Topology optimization problems 

Topology optimization is an optimization problem in which the pattern of element 

connectivity to nodes is to be determined. Topology optimization of skeletal 

structures seeks the number and spatial sequence of elements, joints and supports. 

During topology optimization elements can be removed from the structure and 

hence parameters which describe the presence or absence of each element, can be 

design variables. When nodal positions are allowed to change, the nodal co­

ordinates are also design variables. Topology optimization of continuum 

structures involves creation of internal holes. 
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• Shape optimization problems 

The term shape optimization is often used in a narrow sense to refer only to the 

optimum design of the shape of the boundary of two and three-dimensional 

structural components. It is proposed in this study to use the term boundary shape 

optimization to identify such problems. Design variables in boundary shape 

optimization problems can be nodal co-ordinates related to the finite element 

model and may also include sizing variables. 

However, in a broad sense the term shape optimization, Haftka and Gurdal (1992), 

or generalized shape optimization, Rozvany et al. (1995), is used for any problem 

where the positions of nodes of the finite element model or the patterns of element 

connectivity to nodes need to be changed. Thus, the broad usage of shape 

optimization includes also topology optimization and geometrical optimization of 

skeletal structures (frames and trusses) where member sizes and joint locations are 

design variables. 

The study described in this thesis is related to shape optimization involving both 

isotropic and laminated fibrous composite materials. Consequently, a review on solutions 

for shape optimization including isotropic and advanced composite materials is given in 

the next section. 

2.2 Literature review in shape optimization 

Boundary shape optimization problems are more complex than sizing 

optimization problems since the shapes are continuously changing in the design process 
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resulting in a number of problems. 

The first problem is mesh distortion. As the shape of the structure changes, the 

finite element model is continuously changed. Highly distorted finite element meshes will 

result in the loss of the accuracy in stress and sensitivity derivative calculations. It is 

therefore difficult to ensure that the accuracy of the finite element analysis remains 

adequate throughout the optimization process. This problem can be alleviated by a proper 

selection of design variables, suitable boundary representation using the design element 

concept and by employing the automatic mesh generator with adapted mesh refinement 

capabilities, Haftka and Grandhi (1986) and Ding (1986). 

Another problem is the existence or creation of internal boundaries or holes. In 

many problems the optimal design will have internal cavities. According to Haftka and 

Giirdal (1992), it is impossible to generate these cavities with a standard optimization 

approach without prior knowledge of their existence. One approach to deal with this 

problem is to assume that the material is not homogeneous, but has a microstructure with 

microcavities in the material, Haftka and Giirdal (1992) and Rozvany et al. (1995). Some 

methods were proposed to avoid remeshing problems and to allow internal cavities as 

outlined in sections 2.2.6 and 2.2.7. 

The methods used for solving shape optimization problems range from the 

calculus of variations to the simulation of structural forms found in nature or 

experimental techniques. The main approaches to shape optimization problems can be 

summarized as follows. 
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2.2.1 Mathematical programming methods 

Mathematical programming offers a general tool for solving structural 

optimization problems. Many shape optimization techniques were based on employing 

mathematical programming methods coupled with the finite element method, Haftka and 

Grandhi (1986), and Ding (1986). They include linear programming, penalty function 

method, feasible direction method, sequential linear programming and sequential non­

linear approximate optimization, Vanderplaats (1993). These methods require calculation 

of derivatives of the objective and constraint functions with respect to all design 

variables. This is referred to as sensitivity analysis, Arora and Haug (1979) and Adelman 

and Haftka (1986). Repeated finite element analyses are often performed to carry out 

sensitivity analysis, which is very costly for large problems. Many approximation 

methods and techniques have been developed and employed to improve the efficiency of 

the sensistivity analysis and optimization algorithms, Kamat (1993), Rozvany et al. 

(1995). 

2.2.2 Calculus of variations and optimality criteria methods 

One dimensional shape optimization problems are often solved by the calculus of 

variations. For example, Curtis and Walpole (1982) maximized torsional rigidity of 

axisymmetrical hollow shafts. Plant and Olhoff (1983) used the calculus of variations to 

obtain the optimal forms of shallow arches for vibration and stability requirements. 

While the classical methods used in structural optimization such as differential 

calculus or calculus of variations provide analytical solutions, optimality criteria methods 

can be considered as numerical methods that mimic the classical solution process. These 
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methods can be very efficient when the number of constraints is small compared to the 

number of design variables, Fleury (1980) and Haftka and Giirdal (1992). 

Optimality criteria methods consist of two complementary ingredients. The first is 

the stipulation of the optimality criteria, which can be intuitive or rigorous. The second 

ingredient is the algorithm used to reshape the structure so that the optimality criterion is 

satisfied. A robust mathematical algorithm may be used to achieve satisfaction of the 

optimality criterion, whereas an ad-hoc method may be adopted where optimality criteria 

cannot be derived mathematically. The division into intuitive and rigorous methods is 

usually made on the basis of the chosen optimality criterion rather than of the reshaping 

algorithm. Typical applications and developments of optimality criteria methods can be 

found in Venkayya (1978, 1993b), Khot (1981), Berke and Khot (1988), Haftka and 

Giirdal (1992) and Rozvany et al. (1995). 

The intuitive hypothesis may assume that uniform strain energy density in a 

structure is an optimality criterion. In problems of boundary shape optimization, one may 

stipulate that the best shape is the one that gives rise to stress or strain energy density of 

constant magnitude over the sections of the boundary. Baud (1934) investigated 'Fillet 

Profiles for Constant Stress' by means of photoelasticity techniques. He concluded 'The 

most economical contour from the material and stress point of view is one in which the 

stress is constant for the entire contour, and is equal to the average stress across the 

section'. Durelli and Murray (1943) studied the stress distribution around an elliptical 

discontinuity, of which the major axis was twice the length of the minor axis, under 

various biaxial stress ratios by means of photoelasticity and brittle coatings. They found 

that when the applied stress in the direction of the major axis was twice that of the other 
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applied stress, the stress distribution around the elliptical hole boundary became uniform 

and the stress concentration factor was minimized. They also reviewed and expanded the 

theoretical work of Inglis (1913) to confirm these results. Week and Steinke (1983-1984) 

assumed that a uniform tangential stress was the optimality condition for boundary shape 

optimization problems. 

A rigorous optimality criterion can be derived mathematically, for instance, to 

satisfy Kuhn-Tucker conditions, Haftka and Giirdal (1992). Dems and Mroz (1978) and 

Dems (1980) used the principle of virtual work and a boundary pertubation analysis to 

derive optimality criteria for attaining a minimum of mean elastic compliance. The 

optimal design was obtained by iteratively solving the optimality conditions using a finite 

element representation of the equations. 

Banichuk (1976) formulated the problem of selecting the optimum shape of a 

cross-section for a shaft to maximise its torsional stiffness with a given amount of 

material. The problem was solved analytically. Banichuk (1989) employed classical tools 

and derived many rigorous optimality conditions for shape optimization problems in a 

planar solid. 

Richards and Bjorkman (1980, 1982) demonstrated that it is possible to leave the 

geometry of an opening unspecified and invert the standard problem in elasticity to solve 

analytically for shapes which achieve an optimum design condition - the harmonic field 

condition - on the final stress state. The strategy was applied to determine the optimum 

shape for the extreme case of a rigid inclusion in a biaxial field, and to the problem of 

reinforced holes to determine optimum liner shape and stiffness properties. 
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Dhir (1981, 1983) used a procedure based on first developing analytical boundary 

stress expression as functions of the hole geometry, plate material, amount of 

reinforcement and specified load. The integral of the square of the stress around the 

opening boundary was assumed to be a reasonable objective function and was minimized 

analytically. He concluded that a uniform tangential stress along the opening boundary 

would lead to the minimum stress concentration. 

2.2.3 Pattern transformation methods 

The pattern transformation method, Oda and Yamazaki (1977, 1979), Oda (1977) 

is a technique that transforms the shape of the boundary based on the stress ratio in the 

boundary finite elements. In the first step, the stress ratio in the boundary finite elements 

is calculated. In the second step, the size of the boundary elements is scaled up or down 

based on the stress ratio. Umetani and Hirai (1978) used the same stress ratio approach, 

whereas Hemada (1980) employed the strain energy ratio approach to obtain the optimal 

shape. 

2.2.4 Methods coupled with the boundary element method 

Because the boundary element method requires only discretizing the boundary, it 

seems to be ideally suited for boundary shape optimization. In dealing with FEM, besides 

the difficulties involved in sensitivity derivatives stemming from inaccurate boundary 

representation, it is necessary to refine and regenerate the mesh in order to ensure the 

accuracy of the analysis in the course of changing the boundary of the structure. Soares et 

al. (1984) obtained the optimal shapes of shafts using the boundary element method. They 

discretized only the boundary of the structure and the optimization problem was solved by 
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Pshenichny's linearization method. 

Tada et al. (1991) exploited the fact that a structure optimized for a given set of 

loading is not optimal for other sets. They then proposed a shape determination method 

by boundary element method for structures under uncertain loads. The authors also made 

the assumption that the optimal shape would be obtained when values of the strain energy 

densities are uniform on every boundary element. 

However, optimization techniques coupled with the boundary element method are 

still not as reliable as FEM, especially when modeling structures made of complex 

property materials such as those of composite materials. 

2.2.5 Biological growth methods 

Biological growth structures such as bones and trees, which change their own 

shape by growth and atrophy to adapt to external loads for reducing stress peaks, provide 

a natural and simple example for shape optimization. 

Mattheck and Burkhardt (1990) developed a Computer-Aided shape Optimization 

(CAO) algorithm by simulating tree growth to optimize mechanical engineering 

structures. The method was based on the assumption that in all structures considered, a 

state of constant stress at the surface of the biological 'component' was always given for 

the natural loading case applied. This technique is therefore equivalent to a procedure in 

which material is added at overloaded places in the structure and is not added (or even 

removed) at places with stresses below the reference stress until the optimal shape 

obtained. 
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Baumgartner et al. (1992) proposed an optimization algorithm called Soft Kill 

Option (SKO) to find optimal structural topology based on simulation of adaptive bone 

mineralization by varying the Young's modulus according to a calculated stress 

distribution. The optimal topology obtained then can be used to generate a new finite 

element model for a subsequent shape optimization with CAO to smooth the contours and 

to reduce remaining stress concentration as described by Mattheck and Burkhardt (1990). 

Chen and Tsai (1993) extended simulated biological growth approaches with a 

fictitious temperature loading to minimize stress concentration subjected to area 

constraint or to minimize area (weight) subjected to stress constraint. 

Tekkaya and Giineri (1996) noted that the application of the biological growth 

method was based on a heuristic approach and studied systematically the effects of 

parameters, which control the optimization process, on the optimization procedure when 

minimizing stress concentration of a square plate containing initial circular hole under 

biaxial tensions. 

Recently, Le Riche and Cailletaud (1998) proposed a mixed evolutionary/heuristic 

approach to solve shape optimization problems. Biological growth was considered an 

efficient heuristic for improving designs by reducing stresses in localized regions, but 

might not yield global optimal shapes. Evolutionary or genetic algorithms, Hajela (1990), 

Jenkins (1991), Rajeev and Krishnamoorthy (1992), on the other hand can handle non-

convex problems and search for the global optimum but their computation cost may be 

high when dealing with large problems. Thus, a mix of evolutionary search and biological 

growth was expected to achieve a reliable, global optimization at a low computational 
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cost. The results were in good agreement with the expectation of Le Riche and Cailletaud. 

2.2.6 Solid-Empty element methods 

One possibility for overcoming difficulties arising from the changing of the shape 

description, remeshing and creation of cavities, is to rely on the entire finite element mesh 

chosen for the initial design domain. The shape of the structure is obtained by an element 

removal procedure (i.e. material is removed from structures) based on appropriate criteria 

for element removal. Thus, the term "Solid-Empty element" used here, indicates solid 

stages where elements are retained, and empty stages where elements are removed. Maier 

(1973) proposed a 'zero-one programming' to try the idea of element removal. 

Rodriguez-Velazquez and Seireg (1985), Seireg and Rodriguez (1997) applied this 

technique and found optimal designs for various mechanical elements and structures. 

Atrek (1989) introduced a program -SHAPE- for shape optimization of continuum 

structures. The program can find optimal shapes of solid, shell or plane-stress systems for 

multiple load cases, with multiple constraints such as stress, displacement, and stiffness. 

A linear maximization sub-problem, employing Lagrange multipliers has to be solved to 

identify the optimal locations for removing elements. 

Xie and Steven (1993), (1994), (1997) proposed a simple approach for shape and 

layout optimization, called Evolutionary Structural Optimization (ESO). The original idea 

of ESO stated that an optimal shape of a structure could be obtained by systematically 

removing lowly stressed elements from the structure. The method has been extended for 

frequency optimization problems and finding optimal shapes of cutouts in composite 

panels. The final design by ESO however requires a post processing tool to extract the 
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structure from the final model and to smooth the boundary, employing conventional 

boundary shape optimization methods, Hinton and Sienz (1995). 

2.2.7 The homogenization method 

An important shape optimization method is the homogenization method proposed 

by Bends0e and Kikuchi (1988). In this approach a structure is represented by a model of 

finite elements containing microvoids i.e. a micro rectangular hole is included in each 

element. By changing the sizes of the rectangular hole, the element can become a 

complete void or solid, as well as a generalized porous medium. The hole's orientation is 

also an important aspect. Thus, the sizes and orientation of the microscale rectangular 

holes are design variables, which characterize the porosity of the porous medium. The 

objective is to minimize the mean compliance of the structure subjected to equilibrium 

equations and a volume constraint. An optimality criteria method is used to derive the 

optimal porosity of such a porous medium. The problem then can be considered as an 

optimal distribution of material. Many successful applications based on this method can 

be found in Bends0e and Kikuchi (1988), Suzuki and Kikuchi (1993), Bends0e (1995), 

Jiang and Papalambros (1996) and Thierauf (1996). 

Generally, homogenization-based strategies for topology optimization (including 

shape optimization) avoid problems of boundary descriptions and remeshing. However, 

there are limitations specific to homogenization: when a non-porous material is used, it is 

necessary to post-process the result of the optimization in order to remove intermediate 

porosities. Finally, certain boundary conditions such as pressure cannot be imposed when 

homogenization is used, Le Riche and Cailletaud (1998). 
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2.2.8 The photoelasticity stress minimization method and its simulation 

In the design of plate and shells, minimization of stress concentration due to the 

presence of holes and/or other discontinuities such as fillets, grooves, notches, is an 

important task. Some photoelasticians have attempted to optimize the shape 

discontinuities experimentally. 

Shape optimization by PSM requires a two-dimensional model of the structure. 

The model is usually made of transparent polymeric materials, Durelli (1968) and 

Heywood (1969). Tresca stress distribution is determined by observing its contours or 

isochromatic fringes through a polariscope. 

The geometry of stress raisers is optimized by removing material from lowly 

stressed regions. A portable router can initially speed up the removal of large amounts of 

material, while a file should be used to remove small amounts of material during the fine 

tuning stage. A stress raiser has optimal shape when its tensile and compressive stresses 

are approximately constant along boundary sections of the discontinuity. 

Durelli and his associates performed a series of experiments and obtained many 

interesting results. Typically, Durelli et al. (1968) optimized a slot end configuration in a 

finite plate subjected to a uniformly distributed load. Durelli et al. (1978) presented 

results obtained in optimization of (i) the tip of the several rays of stars in perforated solid 

propellant grains used for rocket propulsion, (ii) the transition between the blade and the 

dove-tail joint in a turbine, (iii) the inside boundary of a circular ring subjected to 

diametral compression, and (iv) the boundary of a hole in a rectangular plate subjected to 

axial load in the case when the hole diameter to plate width ratio is 0.6. Durelli and 
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Rajaiah (1979) optimized hole shapes in plates of finite width subjected to uniaxial load 

for a large range of ratios of hole diameter to plate width. Durelli et al. (1981) obtained 

optimal shapes of central holes in square plates under uniaxial uniform compression load. 

The study was conducted for a large range of hole diameters to plate width ratios. 

Schnack (1979) and Schnack and Sporl (1986) developed a numerical 

optimization procedure equivalent to the photoelastic stress minimization technique with 

applications to load-free notch surfaces of bodies made of a linear-elastic homogeneous 

isotropic materials. Schnack (1979) exploited works by Baud (1934), Wheeler (1976), 

and the notch stress theory of Neuber (1958) to generate the optimality criteria for more 

general cases of stress minimization problems. The finite element method was employed 

for calculating the displacement and stress field of the structure. An increment procedure 

was introduced for determining the displacement field of boundary nodal positions after 

every iterative step. 

2.2.9 Shape optimization of cutouts in composite laminates 

Designing with laminated composites has become a challenge because a wide 

range of parameters can be varied and because of the complex behaviour of these 

structures, Giirdal and Haftka (1993), Hoa (1995). Finding an efficient composite 

structural design that meets the requirements of a certain application can be achieved not 

only by sizing the cross-sectional areas and member thickness, but also by global or local 

tailoring of the material properties through selective use of orientation, number and 

stacking sequence of plies. The increase in the number of design variables, on the one 

hand, gives designers more control to fine-tune the structure, but on the other hand, 
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challenges them to select design variables effectively. 

Backlund and Isby (1988) used a point stress criterion with Tsai-Hill index at a 

distance of 1 mm from the hole's edge to determine the stress field in the vicinity of the 

cutout in composite panels. The hole was defined using spline curves and these were 

allowed to change with the objective of minimizing the weight without increasing the 

maximum Tsai-Hill index. 

In the case of a given loading, laminated construction and elliptical cutout area, 

Vellaichamy et al. (1990) used linear analysis to search for the aspect ratio and 

orientation of the ellipse such that the value of the maximum failure criterion around the 

circumference of the hole was a minimum. The effect of the hole on the critical buckling 

load was also studied. The analysis demonstrated that the ellipse configuration was the 

optimum, since it had a maximum failure criterion value which was substantially lower 

than that of the equivalent circular hole. The variation of the buckling factor with respect 

to the ellipse orientation was not very significant. The reduction in the buckling factor 

with respect to that in the plate area, due to the presence of the hole, bore a linear 

relationship but the variation of the buckling factor with respect to the aspect ratio was 

not linear, with the result that the lower the aspect ratio, the better buckling strength 

would be obtained. Hyer and Lee (1991) used a fibres placement technique to optimize 

the buckling strength of composite panels containing central circular holes. 

Han and Wang (1993) investigated composite panels with a circular or an 

elliptical hole. The objective was to find the best hole location, size and orientation so as 

to minimize the maximum tangential strain along the circumference of the hole. The 
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problem was treated as a shape optimization problem, and the hole boundary 

parameterization method was developed in order to maintain the required hole shape. The 

parameterized relationship was further utilized to transform the sensitivity data. The 

optimization problem was solved iteratively using P-method finite element analysis and 

linear programming. The results indicated that substantial reduction in the maximum 

tangential strain was achieved by adjusting the size, location and orientation of circular 

and elliptical holes. 

Pedersen (1993) optimized the shape of fillets in orthotropic plates by minimizing 

the "maximum energy density" at the points along the boundary. The approach was based 

on semi-analytical sensitivity analysis and linear programming. Falzon et al. (1996) 

adapted the ESO procedure which was developed by Xie and Steven (1993) to optimize 

the shape of the interior cutout in composite panels made of carbon-epoxy laminates 

[±45°/0790°]s. In this approach, an initial small cutout was introduced into each finite 

element model and elements were removed from around this cutout based on a pre­

defined rejection criterion. The Tsai-Hill failure index was used to determine the limiting 

ply within each plate element around the cutout. Plate elements with values below the 

product of the average Tsai-Hill number and a rejection ratio (RR) were subsequently 

removed. This process was repeated until a steady state was reached and the RR was then 

increased by an evolutionary rate (ER). The above steps were repeated until a cutout of a 

desired area was achieved. 

Recently, Sivakumar et al. (1998) investigated the free vibrational response of 

composite plates with an elliptical cutout. Orientation of the ellipse with respect to the 
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reference axis, aspect ratio of the cutout, orientation of plies, thickness of plies and 

material of plies were used as design parameters with a constraint on natural frequencies. 

A genetic algorithm was employed to locate the optimum. 

2.3 Recent development of FEM simulation of PSM 

As previously discussed in Section 2.2.8, Durelli's PSM has been successfully 

used to solve the optimization problem of finding optimal stress raiser profiles. Solutions 

obtained by PSM are explicit and have been used as benchmarks for a number of 

researchers, for example Schnack (1979), Schnack and Sporl (1986) and Tran and 

Nguyen (1999). 

However, PSM is practically limited to plane elastic problems involving simple 

geometry and boundary conditions. These limits are imposed by the nature of the 

photoelasticity technique, i.e. difficulties in making models as well as simulating the 

same boundary conditions of loading and restraints on the models. A successful FEM 

simulation can extend Durelli's PSM method to solve optimization problems involving 

complicated geometry, boundary conditions and/or structures made of materials of more 

complex behavior. Recently, Tranxuan (1998) investigated the simulation of the concept 

of gradual removal of material of PSM by a FEM procedure, in which lowly stressed 

elements are removed without remeshing the model. The FEM procedure consists of the 

following steps: 

Step 1: Specifying the design objective, design domain, creating a FEM model of the 

structure with the same loading and boundary conditions of restraints. Fine mesh 

should be used in the design domain. 
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Step 2: Analysing the structure by utilising solution and post processing phases. 

Step 3: Monitoring if the optimality criterion is satisfied. If it is satisfied then the process 

stops and results are output, otherwise the process goes to step 4. 

Step 4: Specifying criterion for element removal, selecting elements in the design domain 

satisfying the removal criterion. 

Specifying design objective, 
design domain, 

F E M modeling of initial structure 

I 
Solving and processing results 

Specifying criterion for element removal, 
selecting elements in the design domain 

satisfying the removal criterion 

< 

N 

removing selected elements 
) 

Figure 2.1: Flowchart of a simple F E M simulation 

Step 5: Checking if the number of selected elements is larger than zero. If it equals zero, 

then the process goes back to step 4, otherwise the process goes to step 6. 
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Step 6: Removing selected elements then going back to step 2. 

The simple simulation is presented by a flowchart as shown in Figure 2.1. The 

design objective is to minimize stress concentration as in the PSM technique. Step 1 is 

very straightforward in FEM modelling. In step 2, stress patterns in a FEM model can be 

produced, which is equivalent to observing isochromatic fringe orders in a photoelastic 

model through a polariscope. Step 3 stands for the observation of stress distribution along 

the modified boundary to see whether it is uniform or not in the PSM. Finally, steps 4, 5, 

6 simulate the process of removing lowly stressed materials performed in the 

experimental procedure. Element removal in FEM simulation can be implemented by 

actually deleting elements or by removing them numerically, i.e. by simply not 

incorporating these elements' stiffness matrix into the model structural stiffness matrix. 

In the above simulation, the original meshing is retained throughout the 

optimization procedure. It allows internal holes created during the course of optimization 

and also avoids problems of boundary description and remeshing. However, a 

consequence of removing elements of finite sizes will result in a new jagged shape 

boundary that introduces 'notch effects' or local stress concentration effects, as reported 

by Tranxuan (1998). These effects cause 'pseudo-minimum stress' and 'pseudo-

maximum stress' phenomena, giving extremely high stress at the root of the notch and 

practically zero stress at shoulders near the root of the notch. 

There are problems, in which the genuine isotropic points of zero stress always 

exist as shown in Chapter 4, the introduced pseudo-minimum elements of very small or in 

fact zero stress would result in quick false spreading of these pseudo-minimum elements, 
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unless smoothing is effected after every iteration (Tranxuan 1998). Furthermore, the 

pseudo-maximum stress will terminate the optimization process early or the resulting 

shape is still far from the optimal one due to the increase of the maximum equivalent 

stress observed. Certainly, the final jagged profile can be smoothed in the final stage but 

the 'notch effect' still prevents it from simulating PSM accurately. Moreover, in 

problems involving stress minimization or boundary shape optimization, the boundary 

description is required. Consequently, a FEM simulation of PSM with boundary 

smoothing and remeshing subroutines is desirable. 

More recently, Tran and Nguyen (1999) have addressed the problem of the notch-

effects by slowly removing lower stressed elements within an intra-layer of external 

elements lying on the discontinuity boundary, followed by smoothing and remeshing sub­

routines. Using the example of a finite width plate with a hole under unixial tensile stress, 

they showed that the results obtained by the FEM simulation gained some further 

improvements over the results produced by PSM reported in Durelli and Rajaiah (1979). 

The above technique, however, requires a number of internal iterations to remove 

elements within an intra-layer, thus increasing the computation cost. A FEM simulation 

procedure with boundary smoothing effected after each element removal, followed by 

remeshing, consequently avoids the notch-effect problems, yet saves the computation 

cost. Futhermore, the proposed FEM simulation avoids sensitivity analysis, thus is easily 

extended to minimize stress concentrations in laminated composite structures. It is 

investigated and presented in the following chapters. 
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FINITE ELEMENT SIMULATION 

3.1 Introduction 

In this chapter, a FEM simulation procedure of PSM with boundary smoothing 

and remeshing subroutines after each step of element removal is proposed. 

Stress minimization of a large elastic plate with a hole under biaxial tensile stress 

is investigated. This problem is chosen since its closed-form analytical solution is 

available. The effects of parameters controlling the optimization process are also 

examined. 

3.2 FEM simulation of PSM with boundary smoothing and remeshing subroutines 

The concept of gradual removal of lowly stressed material of PSM can be 

simulated by a simple FEM procedure as presented in Section 2.4. A closer look at the 

mechanism of removing material of Durelli's PSM, however, indicates that it has the 
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following specific characteristics: 

(i) PSM removes only materials within the design domain from the boundary to be 

optimized. 

(ii) Isochromatics are continually observed to guide the cut and to terminate the 

process as the boundary becomes coincident with an isochromatic fringe order. 

(iii) The cut should provide a smooth transition from the current boundary to the next 

boundary. 

(iv) Material is removed in steps, rough cuts may be used first, finer cuts should be 

used in later stages to fine-tune the boundary. 

The above characteristics play important roles in the success of the PSM, however 

the difference between photoelastic models and the equivalent FEM models requires 

further development for a successful simulation. 

In order to implement the first characteristic of PSM, only elements lying on the 

boundary of the discontinuity and within the design domain, can be considered as 

candidates for element removal in a FEM simulation. The thickness of the cut can not be 

deeper than esize, where esize is the element size used to mesh the boundary of interest as 

shown in Figure 3.3. 

The second characteristic suggests that stress patterns should be observed 

continually during the optimization process. It can be seen that the PSM analyst needs to 

observe not only within the lowly stressed region but needs to have a global view of the 

stress distribution and direction of the boundary and the nearby isochromatics. This 

observation is related to both field values and the gradient. The cut is guided further by 
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the direction of the boundary and that of its nearby isochromatics. Thus the PSM material 

removal does not mechanically focus on regions of low stress confined between 

isochromatics but, if possible, makes a trans-isochromatics cut with the objective of 

making the boundary becoming an isochromatic. 

In a PSM procedure, as the optimization task proceeds, it is expected that the 

Tresca stress distribution along the boundary becomes more uniform after each boundary 

modification, resulting in a decrease of the maximum Tresca stress. Hence, instead of 

observing the uniformity of stress distribution, maximum Tresca stresses on the boundary 

are monitored and their reduction can be considered as the indicator of a convergence 

toward the optimum. Such an observation is very significant in a FEM simulation due to 

the saving in computing effort, as it does not require the calculation of the standard 

deviation, which measures the uniformity of Tresca stress distribution along the boundary 

at each iteration. However, the standard deviation should be employed to check if the 

final output result satisfies the optimality requirement. 

The third characteristic, whilst can be easily exercised in a PSM procedure, is 

greatly affected by finite sizes and shapes of elements in a FEM simulation. For example, 

a finest cut can be simulated by removing only one element, which creates a new 

boundary far different from a PSM cut as illustrated in Figure 3.1, resulting in notch 

effects as previously mentioned in Section 2.3. However, notch effects can be avoided by 

smoothing the jagged boundary and remeshing the structure after element removal as 

reported by Tran and Nguyen (1998b), (1999). The task of the boundary smoothing is to 

create a new boundary, which is based on the geometry of the jagged boundary after 

element removal. 
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The final characteristic results in materials being removed as much as possible 

and thus speeds up the convergence to the optimal contour. In FEM simulation, this can 

be implemented in such a way that large amounts of elements should be removed in 

initial iterations then smaller quantities are removed in subsequent iterations. A 

monitoring scheme should be put in place to ensure that no over-cutting occurs. Over-

cutting happens when the cut is too rough or too many elements are removed in one 

iteration making the maximum stress on the boundary increase. This procedure, while 

improving convergence rate, still ensures the satisfaction of the optimality criteria. 

Boundary due to removing one element by 
F E M simulation, resulting in notch effects 

Figure 3.1: Finest cuts by P S M and F E M simulation 

Before constructing the FEM algorithm for simulating the above characteristics of 

PSM, problems related to boundary smoothing, mesh generation and design of the FEM 

model are discussed. 
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3.2.1 Boundary smoothing 

In order to avoid notch effects created by jagged boundary after element removal 

a boundary smoothing subroutine is essential. The smoothing task is based on the pattern 

of external boundary nodes to create a new smooth boundary. The way used to describe 

the shape of the boundary is one of the key elements in the process of attaining the 

optimum shape. Common shape representations found in the literature include 

polynomials and splines. The use of polynomials with control nodes to describe the 

boundary, however, can result in an oscillatory boundary shape for the boundary shape of 

higher order polynomials due to the numerical instability with higher order curves, 

Haftka and Grandhi (1986), Ding (1986). 

In a PSM procedure, the shape of the boundary only changes at positions where 

materials are removed and is kept unchanged at others. To simulate this characteristic, the 

FEM simulation demands a smooth curve that only changes its shape at locations where 

elements are removed without affecting the remaining parts of the boundary. Thus, B-

splines would be the most appropriate curves that should be employed to smooth the 

jagged shape boundary after element removal. Furthermore, B-splines support local 

control and additional points can be introduced without increasing the degree of the 

curve, Braibant and Fleury (1984). 

In the FEM simulation, an external layer of elements associated with the boundary 

of the discontinuity can be divided into a number of even length sections. Each section is 

represented by a primary control point, which is associated with external nodes lying on 

the boundary of that section as shown in Figure 3.2. After element removals, only 

primary control points at sections that have elements removed are redefined. The control 
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points are redefined following the least square rule, i.e. the sum of squares of the 

distances between a new primary control point to external nodes lying on the boundary of 

that section is minimized. 

,th 
The k primary control point 

The k* section 

The i* external node on the k* section 

Figure 3.2: Primary control points on the boundary 

It has been shown in Appendix A that the kth control point, Pk, of the k* boundary 

section containing N external nodes that satisfies the least square condition is determined 

by: 

1 IN 

= — X xi 
N tl ' 

(3.1) 

1 (3.2) 

Where, 

xp yPk are Cartersian coordinates of Pk. 

xj yi are Cartesian coordinates of the 

i* node 

Figures 3.3a and 3.3b illustrate the boundaries after element removal and after 
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being smoothed. It can be seen that: 

(i) The more elements are removed, the deeper and longer is the change in 

boundary. 

(ii) The less elements are removed or the smaller esize is used, the finer the 

cut that can be simulated. 

Therefore, this smoothing scheme simulates PSM material removal more 

accurately than a procedure in which elements are removed leaving a new jagged 

boundary. 

3.2.2 FEM mesh generation 

Before the advent of automatic mesh generators and adaptive mesh refinement 

techniques, in most cases the meshing of a finite element model was a manual rather than 

an automated process, Haftka and Grandhi (1986). The analyst used judgement and 

experience to generate the mesh. A trial and error process was often facilitated by user-

interface facilities. This manual approach is tedious and inadequate for shape 

optimization problems, in which the analyst needs to remesh for a series of structures 

with unpredictable shapes. In order to overcome this difficulty, an automated mesh 

generation should be employed. However, badly distorted elements may be created 

during automated mesh generating processes, which reduce the accuracy of the stress 

evaluation. 

An important tool to avoid mesh distortion is adaptive mesh refinement. 

Information from an analysis with a trial mesh is used to identify regions which need 
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Smoothed boundary after 
removing 16 elements 

Smoothed boundary after 
removing 1 element 

Smoothed boundary after 

removing 3 elements 

(b) 

Figure 3.3: (a) Boundaries after removing 16 elements and after smoothing; 
(b) Boundaries after removing 1, 3 elements and after smoothing. 
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further mesh refinement. This refinement can take either the form of adding additional 

elements in the area to be refined or of increasing the order of the finite element, Haftka 

and Grandhi (1986) and Ding (1986). In this study, automated mesh generator and 

adaptive mesh refinement available in the ANSYS 5.3 software were employed. 

However, the adaptive mesh refinement requires considerably more computing effort and 

should be kept to a minimum. This is effected by proper design of the FEM model as 

shown in the next section. 

3.2.3 Design of the FEM model 

One of the ways to achieve a finite element model that minimizes the mesh 

distortion problem is to use the 'design element' concept, firstly introduced by Imam 

(1982) and further adopted by many researchers, e.g. Braibant and Fleury (1984), Bennett 

and Botkin (1985). 

In this approach, the structure is divided into a number of design elements. Each 

design element, which consists of several finite elements, is described by a set of master 

nodes that control the geometry. Associated with each design element is a set of design 

variables, which specify the location of the key nodes that are allowed to move. An 

illustration is shown in Figure 3.4, in which a FEM model is divided into four design 

elements. 

In this study the 'design element' concept is employed. As shown in Figure 3.5, a 

quarter model of a plate with a hole can be divided into three areas. Area 1, which 

includes the section of the boundary to be optimized, is meshed with one layer of very 

fine elements of uniform size of esize. For plane problems there are two choices of 
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element shape: triangular or quadrilateral. It has been found that the use of the triangular 

shape does not result in a unique smooth curve as found in the case of quadrilateral shape. 

For instance, one removed triangular element with one side lying on the hole boundary 

results in a smooth curve different from the one with one vertex lying on the hole 

boundary as illustrated in Figures 3.6a and 3.6b. 

Four subregions (design elements): 1, 2, 3, 4 

Fixed control nodes 
Moving control nodes 
Grid of control nodes 
Movement directions 

Figure 3.4: The design element concept (Braibant and Fleury 1985) 

Area 3 can be meshed with coarse quadrilateral elements to reduce the number of 

elements in the model. Area 2 is meshed with transitional triangular elements to join very 

fine elements of area 1 to coarse elements of area 3 with the least error. 

The boundary to be optimized is represented by a B-spline, which goes through 

the primary control points that are determined by Equations (3.1) and (3.2). The points Qk 
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D* 

Area 2 

Area 1 

Area 3 

O 
• 

1 

i 75 

Fixed control points 
Primary moving control points 
Secondary moving control points 

Figure 3.5: Design of the F E M model 
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Smoothed boundary after 
removing 1 element with one 
vertex lying on the boundary 

Smoothed boundary after 
removing 1 element with one 
side lying on the boundary 

(b) 

Figure 3.6: (a) Meshing boundary with triangular shape elements 
(b) Boundaries after removing 1 element with different possibilities and 

after being smoothed. 
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Figure 3.7: A typical quarter F E M model of a square plate 
containing a circular hole 
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and Rk, corresponding to the primary control point Pk and lying on the normal direction to 

the B-spline at Pk, are called secondary control points, as illustrated in Figure 3.5. The 

distances from Qk and Rk to Pk are esize and Tb respectively. Where esize and Tb are 

initially determined in an interactive fashion. 

Figure 3.7 shows a typical quarter FEM model of a square plate containing a 

circular hole. The plate side is of 300mm, hole diameter is of 30mm, esize is 0.5mm and 

Tb is 5mm. 

3.2.4 FEM simulation algorithm 

The proposed algorithm to simulate the PSM technique selects a number of 

elements out of the set of external elements lying on the current boundary of interest 

within the design domain having lower equivalent stress for removal, following by 

boundary smoothing and remeshing subroutines. The structure is reshaped iteratively and 

the maximum equivalent or Tresca stress on the boundary is monitored. The optimization 

process is considered to converge when the uniformity requirement of stress distribution 

along the optimized boundary is attained or the number of elements to be removed in 

each iteration reaches a preset minimum value, whichever comes first. 

The algorithm is illustrated by a flowchart in Figure 3.8. Its main features are 

described as follows. 

3.2.4.1 Main features of the algorithm 

The optimization process proceeds through two stages: 
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(a) Initialization stage 

The initialization task consists of steps 1 and 2. It involves preliminary modeling 

and carrying out stress analysis in an interactive fashion to help improving the FEM 

model and to provide information required in steps that follow. Constraints and the 

objective should be specified. The objective in this study is to minimize the stress 

concentration that occurs on the stress raiser boundary. 

(b) Optimization stage 

The optimization task is composed of three loops, named /, J and K loop, where: 

• I loop consists of steps 10-13 and a number of J loops. It controls the process 

from the beginning of the optimization task until the process switches to the fine 

tuning stage that is controlled by the K loop. The / loop is designed to simulate the 

process of gradually removing material of PSM from rough to fine cuts. 

• / loop is the basic loop (steps 3-9), within which the structure is modified while 

the maximum Tresca stress is monitored. 

• K loop includes steps 10, 15-17 and a number of J loops. It is active at the fine 

tuning stage until the process converges. A few elements or even one element can 

be removed in each iteration at this stage to simulate the process of fine tuning 

stage of PSM using sharp files. 
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1/ F E M modeling of initial structure 
Set esize 

I 
2/ F E M Solve, inspect results, improve model 

Set I=J=K=0,finetune=off 
Set remrate(O), nmin(O) 

9/ Smooth, remesh 
J=J+l 

I 
8/ Remove nrem 
selected elements 

7/ Determine nrem 

6/ Update 
Model A 

N 

3/ Solve and process 
results; Check errors, 
adapt mesh if required 

V 
16/ K=K+I 
Determine nmin(K) 
nrem=nmin(K) 

5/ Maximum Tresca 
stress increased? N 

Y 1 -
f \ 

10/ finetune=onl 

N 
r 

Y k. 

w 

Call Model A 
14/Optimality 

satisfied ? 

11/ 1=1+7 
Call Model A, 

Determine remrate(I) 
nrem=integer[remrate(I) * n_ext_elem(J)] 

Figure 3.8: Flowchart of the F E M simulation 
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3.2.4.2 Definition of parameters used in the flowchart 

• I, J, K are loop indices. 

• Ext_elem is the set of external elements currently lying on the stress raiser 

boundary within the design domain. 

• n_ext_elem is the total number of elements of the set Ext_elem. It is counted at 

each iteration. 

• finetune is a flag indicating whether the cutting stage is fine or coarse. It is 

initially set as "off. It is set to "on" when the process is switched to the fine 

tuning stage. 

• esize is the smallest element size used to mesh the area along the boundary of 

interest as illustrated in Figure 3.3. Uniform quadrilateral shape of small size 

elements should be used to mesh this area as discussed in Section 3.2.3. 

It is found that a value of esize of one percent of the hole diameter would be 

appropriate to give acceptable results (Section 3.3.2). Being subject to the 

constraint of hardware and/or software, a setting of smaller esize would give 

better results but the computation cost would increase (Section 3.3.4). 

• remrate is the removal rate. This rate dictates how many elements out of all 

external elements on the current boundary of the discontinuity are selected for 

removal, remrate is active and continually reduced within the I loop as the 

optimization proceeds. 
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In this study, a linear reduction is applied to remrate; the value of removal rate in 

the r loop, remrate (I) is determined as (step 11 - Figure 3.8): 

remrate (I) = remrate (0) - TF*7 remrate (I)>0 (3.3) 

where, 

• remrate (0) is the initial value of remrate, preset at step 2, Figure 

3.8, remrate (0) is valid for any value between 0 and 1, a value between 

0.4 and 0.7 is recommended (Section 3.3.5). 

• I is the loop index; 

• TF is the tuning factor; TF should be between 0 and 0.1. A typical 

value TF of 0.05 is used throughout the study unless otherwise stated. 

• nmin is the number of elements which can be removed in each iteration of the fine 

tuning stage (K loop). It is continually decreased as the process proceeds. The 

smallest possible value of nmin could be one if the structure is asymmetrical. 

However, the value of nmin should be even when dealing with symmetrical 

structures. 

In the flowchart, Figure 3.8, it is assumed that symmetrical properties are already 

utilized or the structure is asymmetrical so that the smallest value of nmin could 

be one. In this study, a linear reduction is applied to nmin. The value of nmin in 

the K^ loop, nmin(K) is determined as (step 16 - Figure 3.8): 

nmin(K) = nmin(0 )-NE*K nmin(K) > 0 (3.4) 
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where, 

• nmin(O) is the initial value of nmin, specified at step 2, Figure 3.8. 

nmin(O) can be preset as the nearest integer of 5% of initial n_ext_elem. 

• JRT is the loop index. 

• NE is the number of elements to be reduced in each step of the K 

loop, NE < nmin(O), a typical value NE = 1 is used throughout the study, 

except otherwise stated. 

• nrem is the number of selected elements that have lowest Tresca stress among 

elements of the set Ext_elem, to be removed. It is determined in each iteration, 

step7 - Figure 3.8. Its determination depends on the cutting stage, which is 

identified by parameter finetune. 

Ii finetune is set as off, at the f1 iteration in the 7th loop, nrem is determined as 

the nearest interger of the product of remrate(I) and n_ext_elem(J), i.e. 

nrem = integer [remrate(I) * n_ext_elem(J)] (3.5) 

Where, 

• remrate(I) is determined by Equation (3.3); 

• n_extjelem(J) is the number of external elements lying on the 

iteration. 

If finetune is set as on, at the 7th iteration in the X* loop, nrem is determined as 
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nrem = nmin(K) (3.6) 

Where nmin(K) is determined by Equation (3.4). 

3.2.4.3 Flow of the algorithm 

The flow of the algorithm is as follows: 

Step 1: Creating a FEM model of the structure with same loading and boundary 

conditions. The smallest element size used to mesh the area along the boundary of 

interest, esize, is set. 

Step 2: Finite element analysis is carried out interactively. A criterion based on an 

equivalent stress is defined and evaluated for each element for the selection of 

elements to be removed. If the structure is made of homogeneous isotropic 

material, either Tresca or von Mises stress can be employed as a criterion to 

simulate PSM as both lead to the same equivalent stress, Tranxuan (1998) and 

Tran and Nguyen (1999). 

Loop indices I, J, K are set to zero. Flag finetune, Parameters - remrate(O), 

nmin(0) - that control the optimization process are now initialized (Section 

3.2.4.2). 

A minor check at this point to ensure that the condition nrem > nmin(O) is 

satisfied so that the process can proceed to rough cutting stage. 

Step 3: Finite element analysis is performed, utilizing solution and post processing 

phases. Errors are checked and mesh refinement is adapted if errors exceed the 
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limit. Element stress values are recorded for evaluation. 

Step 4: Checking if the process is in the first iteration. In the first iteration when 7 = 0, the 

direction of the flow chart should be going straight to step 7, where external 

elements on the stress raiser boundary are selected to be removed. In other cycles, 

it goes to step 5. 

Step 5: Monitoring the maximum Tresca stress. If the maximum Tresca stress increases 

or over-cutting occurs, the process goes to step 10. Otherwise, it goes to step 6. 

Step 6: Model A is updated with new geometry and data. 

Step 7: Determining external elements lying on the stress raiser boundary to be removed. 

The quantity of elements to be removed, nrem is determined by Equation (3.5) 

when finetune is 'off, or Equation (3.6) when finetune is 'on'. To ensure that the 

element removal starts from the current boundary, only Ext_elem, the set of 

elements in the design domain and currently on the stress raiser boundary are 

selected. They are candidates for element removal. 

Based on the element stress data recorded at step 3, elements of the set Ext_elem 

are sorted in order, nrem elements that have lower Tresca stress values are now 

reselected, employing Equation (3.5) if finetune is set as "off (J loop), or 

Equation (3.6) if finetune is set as "on" (K loop). The process goes to step 8. 

Step 8: Removing nrem selected elements. 

Step 9: The jagged boundary after element removal is then smoothed and the structure is 
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remeshed before being passed to the next iteration for the evaluation of the new 

maximum equivalent stress. 

The model is iteratively reshaped and updated within the J loop (steps 3-9) until 

an over-cutting is reached that makes the maximum Tresca stress increase 

(checked at step 5), indicating that the cut is too rough or too many elements are 

removed. The process has to reduce the number of elements to be removed in the 

next iteration to simulate a finer cut of PSM by decreasing remrate(I) (I loop, 

finetune = off, Equation 3.3), or by reducing nmin(K) (K loop, finetune = on, 

Equation 3.4). In order to identify the status of the cutting stage, the process goes 

to step 10. 

Step 10: Checking the status of the cutting stage by reading the flag finetune. If finetune 

is "on" or the process is in the fine tuning stage, indicating that the K loop is 

active, the flow goes to step 14. Otherwise the I loop is still active, the process 

goes to step 11. 

Step 11: At this spot, Model A without over-cutting is recalled. The element removal rate, 

remrate(I) (Equation 3.3), and the number of elements to be removed, nrem 

(Equation 3.5) are redetermined, nrem elements in the set Ext_elem that have 

lower Tresca stresses are then reselected for removal. 

Step 12: nrem is now compared to nmin(0) which had been preset at step 2. If nrem is 

larger than nmin(0), the process goes back to step 8 to start another cycle of the I 

loop again with a "finer cutting tool", i.e. a smaller value of the element removal 

rate, remrate (I). 
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After a number of / loops, remrate(I) is reduced to a value so small that nrem, 

determined by Equation (3.5), is not larger than nmin(O), attesting that the stress 

raiser profile is very close to the optimal profile, the process goes to step 13 to 

activate the K loop. 

Step 13: In order to deactivate the I loop and activate the K loop, the Wag finetune is set to 

"on". The optimizer now starts moving to the fine tuning stage with nrem takes 

the value of nmin(O). nrem elements in the set Ext_elem that have lower Tresca 

stress are then reselected for removal. The process then goes back to step 8 to 

enter the basic loop, i.e. the / loop. 

After a number of J loops with nrem = nmin(O), the over-cutting stage is reached, 

the process exits the / loop at step 5. Because the process is in the fine tuning 

stage, i.e. finetune is set to "on", from step 10 the process proceeds to step 14, 

signaling a possible convergence to the optimum profile. 

Step 14: Model A is recalled for checking optimality, i.e. checking the uniformity of 

stress distribution along the stress raiser profile by calculating the standard 

deviation. If the optimality requirement is satisfied, the process goes to step 17 

and results are output. 

Otherwise, it indicates that the process requires a finer cut compared to the 

previous fine cut that could not make the boundary meet the stress uniformity 

requirement. This can be simulated by reducing nmin (Section 3.2.1, Figure 3.3). 

Step 15: If the smallest value of nmin is not reached i.e. nmin(K) > 1, the process goes to 

step 16, where nmin(K) is reduced to simulate a finer cut of PSM. 

48 



Chapter3: Finite element simulation 

If the smallest possible value of nmin is reached i.e. nmin(K) = 1, indicating the 

optimizer has used the "finest tool" to modify the structure. The process should go 

to step 17 where results are output. 

Step 16: The number of elements to be removed, nmin(K) are redetermined by Equation 

(3.4), nrem elements [nrem = nmin(K)] in the set Ext_elem that have lower 

Tresca stresses are then reselected for removal. The process goes back to step 8 to 

start another cycle of the K loop. 

Step 17: Output results. Results are checked in an interactive fashion at this step. 

If the uniformity of stress distribution along the optimized profile is not satisfied, 

the optimizer needs a finer "cutting tool", which can be simulated by reducing esize 

(Section 3.2.1, Figure 3.3). The structure can then be subjected to the optimization cycles 

again. 

If the specified standard deviation at step 14 is set to zero, or the required 

uniformity of stress distribution is absolute, then the obtained result is the best possible 

outcome of the process. A number of minor checks and on-line output of results in the 

form of stress plots, element plots, maximum stress values, accumulative material 

removal, etc. are also included but not shown in the flowchart. 

3.3. Case study—a plate with a hole under biaxial tensions 

A plate with a hole has been a classical example of a stress concentration 

problem. It has served as an example to demonstrate and validate shape optimization 

techniques by many researchers, see Haftka and Grandhi (1986). 
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In the case of an infinite plate with a circular or an elliptical hole under biaxial 

tensile stress, the analytical solution for the stress distribution was found by Inglis (1913) 

and confirmed by Durelli and Murray (1943). It has been shown experimentally, Durelli 

and Murray (1943) and analytically, Banichuk (1989), that for an infinite plate under 

biaxial tension, the optimal hole profile is an ellipse, the ratio of major axis to the minor 

axis is equal to the ratio of the stresses in the two respective directions. The availability of 

the analytical solution of this problem has served as an excellent benchmark to study the 

sensitivity and stability of the solution process under perturbations. 

3.3.1 Description of the structure 

The structure investigated is a thin square plate of side L = W = 300 mm, of 

constant thickness T of 1 mm, with an initial circular hole of diameter D of 30 mm. The 

material is assumed to be homogeneous isotropic, with Young's modulus of 205 GPa. 

and Poisson ratio of 0.3. 

The plate is under uniform biaxial tensile stresses as shown in Figure 3.9. The 

greater stress, Gy along Y-axis is kept constant for all cases at 10 MPa. The smaller stress 

ox, is determined from ay and the stress ratio Sr, where: 

Sr=ay/ax (
3-7) 

The stress concentration factor kbiax, is determined (Durelli and Murray 1943) as: 

kbiax=cw/max{oy,Ox} (
3-8) 
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Where, omax is the maximum Tresca stress occuring on the hole boundary. As ay > ox and 

Gy = lOMPa for all cases, equation (3.8) can be written as: 

Ktriax — ^max/G' raax'^y (3.9) 

It can be seen that kbiax is proportional to amax. Thus the reduction in omax, which 

also means the reduction in stress concentration factor kbiax, can be used to present results 

obtained by the FEM simulation in this section. 
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Figure 3.9: Description of the problem 

A typical case study when Sr takes the value of 1.5 is presented, followed by the 

study of the effects of parameters that control the optimization process and of the applied 

stress ratios. As the hole boundary is free, Tresca criterion or von Mises criterion leads to 
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the same equivalent stress. In order to produce the best possible outcome, the specified 

standard deviation of the equivalent stress distribution along the stress raiser profile is set 

to zero for all cases. The number of primary control points used is twenty-one and the 

minimum value of nmin(K) is set to 1 throughout this section, except otherwise stated. 

3.3.2 Optimal hole profile when Sr=1.5 

Due to symmetry, a quarter of plate was modelled as illustrated in Figure 3.10. 

The initial mesh consists of 1094 eight node plate elements. Area 1 was meshed with 81 

uniform quadrilateral elements (thus n_ext_elem(0) = 81), of which element size was 0.3 

mm, Area 3 was meshed with 593 elements, of which element sizes vary from 3 mm to 

8mm, and Area 2 was meshed with 420 triangular elements. For displaying the Tresca 

stress distribution along the hole boundary, a polar co-ordinate system was used for 

which the zero angle position (0 = 0°) was at point A and the 90° angle position (0 = 90°) 

was at point B of the hole. 

A 

Figure 3.10: The FEM model 
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Parameters were initially set as follows: 

esize = l%*D = 0.3mm 

nmin(O) = Integer [5%*n_ext_elem(0)] = Integer [5% * 81] = 4 

remrate(O) = 0.5 

(3.10) 

(3.11) 

(3.12) 

The initial stress distribution in the plate generated by the F E M is shown in Figure 

3.11. Stress concentration occurs at point A (0 = 0°), the maximum Tresca stress is 23.37 

MPa. The minimum Tresca stress is 9.93 MPa occurring at point B (0 = 90°). For an 

infinite plate, the theoretical solution by Durelli and Murray (1943) gives the maximum 

stress as 23.33 MPa, and the minimum stress on the hole boundary as 10 MPa. The 

agreement between numerical and the theoretical results indicates that at the ratio of W/D 

of 10, the width of the square was sufficiently large to ensure a uniform stress distribution 

at a distance from the hole, and that the edge boundary conditions do not affect greatly 

the stress distribution in the region around the hole. 

ANSYS 5.3 
NOV 41998 
05:03:32 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP-1 
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TIME-1 
SINT (AVG) 
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SMX-.234E»08 
A -0 
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D -474E-07 
E -.632E*07 
F -789E*07 
G -.947E-07 
H -.111E*08 
I -.126E<0B 
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L ..174E»08 
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Figure 3.11: Initial Tresca stress distribution in the plate, Sr = 1.5 
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The optimal profile was reached after 41 iterations. A drop of 24.82 percent in 

maximum Tresca stress was found. The standard deviation of the distribution of Tresca 

stress along the profile was reduced from 4.75 MPa (initial) to 0.41 MPa (optimal). The 

optimal profile of the hole was almost an ellipse, of which the major axis per minor axis 

ratio was of 1.5. Figure 3.12 shows the maximum Tresca stress distribution in the plate at 

iteration 41 (optimal). 

ANSYS 5.3 
NOV 41998 
05:27:08 
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AVG ELEMENT SOLUTION 
STEP-1 
SUB-1 
TIME-1 
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B -.158E-07 
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D -.474E-07 
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F -,789E»07 
G -.947E-07 
H -.111E«08 
I -.126E*08 
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K -.158E»08 
L -.174E.08 
M -.1B9E-0B 
N -.205E«08 
0 -.221E»08 
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Figure 3.12: Tresca stress distribution in the plate at iteration 41 (optimal), Sr = 1.5 

Figure 3.13 shows the shape variation of the hole profile at a number of iterations 

during the optimization process: iterations 0 (initial), 10, 20 and 41 (optimal). The hole 

shape changed rapidly from iteration 0 (initial) to iteration 20, but then slowly to the 

optimal shape (iteration 41), reflecting respectively the rough cutting and fine tuning 

characteristics of PSM. 

Figure 3.14 shows the variation of the Tresca stress with respect to the angular 

position at iteration 0 (initial), iteration 41 (optimal) and the optimal stress distribution 
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obtained by the analytical solution. The waviness of the curve corresponding to the hole 

boundary at iteration 41 indicates the degree of non-uniformity of the Tresca stress 

distribution. 

h" 

Iter.41 (optimal) 

Figure 3.13: Hole shapes at iteration 0 (initial), 10, 20, and 41 (optimal), Sr = 1.5 

Initial stress distribution (iteration 0) 
Final stress distribution (iteration 41) 
Theoretical optimal stress distribution 

-1 1 1 1 1 r 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 

Angular position, 0 (degree) 

Figure 3.14: Tresca stress distribution along the hole boundary at iteration 0 (initial), 41 
(optimal) and theoretical optimal stress distribution, Sr = 1.5. 
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Figure 3.15 shows the optimization history including the variation of the 

maximum-minimum Tresca stresses and material removal ratio mr versus iteration 

number, where m r is defined as the ratio of the accumulative removed area to the original 

hole area, it measures the saving in weight due to optimization. The graph of m r indicates 

that there was a large rate of material removed at first but from iteration 20, it was 

gradually switched to smaller rates corresponding to the fine tuning stage of the 

optimization process. 
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Figure 3.15: Optimization history, Sr = 1.5. 

Table 3.1 shows optimal results obtained by the F E M simulation and by the 

analytical solution for an infinite plate. Gmax, C7min, (Jmean are the maximum, minimum 

and mean values of Tresca stress distribution along the hole boundary, respectively. It can 

be seen that the standard deviation (STDV) of Tresca stress distribution along the hole 

boundary obtained by the F E M simulation is 2.5 percent in comparison to the theoretical 
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Omean, indicating the proposed algorithm is capable of reaching the acceptable limits. The 

structural percentage error in energy norm (SEPC) (ANSYS Theory Reference, 1996) 

was of 0.083 % for the whole structure, ensuring the reliability of results obtained by the 

FEM simulation. 

Table 3.1: Results obtained by the analytical solution and by the F E M simulation 

Stress ratio, Sr=1.5 

Analytical solution 
for an infinite plate 

F E M simulation 

SEPC 
(%) 

nil 

0.83E-1 

^max 
(MPa) 

16.67 

17.57 

^min 
(MPa) 

16.67 

16.01 

Gmean 
(MPa) 

16.67 

16.75 

STDV 
(MPa) 

0 

0.41 

STDV/Gmean 
(%) 

0 

2.5 

3.3.3 Effects of the minimum number of elements removed at the fine tuning stage -

min {nmin(K)}: 

nmin(K) sets the number of elements removed in each iteration in the fine tuning 

stage and signifies possible convergence to the optimum profile (Section 3.2.4). For the 

case Sr of 1.5, esize of 0.3 mm, initial remrate(O) of 0.5, the effect of minimum values of 

nmin(K) is shown in Table 3.2. The results in Table 3.2 were obtained by initially setting 

nmin(0) as 4, then reducing nmin(K) gradually from 4 to 1 by 1 after each K loop (see the 

FEM flowchart in Figure 3.8) within one run of the program. The structural percentage 

errors in energy norm (SEPC) in all cases were less than 0.1 %. 

As expected, the smaller nmin(K), the finer the cut that can be simulated i.e. the 

larger reduction of the maximum Tresca stress is gained but the number of iterations is 

increased. The STDV values are also decreased as nmin(K) is reduced. 
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Table 3.2: Effects of minimum values of nmin(K) 

Case 

1 

2 

3 

4 

Min. of 
nmin(K) 

1 

2 

3 

4 

Initial 

Omax 

(MPa) 

23.37 

23.37 

23.37 

23.37 

Final 

Omax 

(MPa) 

17.57 

17.60 

17.67 

18.58 

^max 

reduction 

(%) 

24.82 

24.71 

24.40 

20.50 

Initial 
STDV 
(MPa) 

4.75 

4.75 

4.75 

4.75 

Final 
STDV 
(MPa) 

0.41 

0.48 

0.57 

0.78 

SEPC 

0.83E-1 

0.82E-1 

0.69E-1 

0.82E-1 

Number 
of 

iteration 

41 

38 

36 

33 

CPU 
time 
(min.) 

20 

18 

17 

15 

3.3.4 Effects of element size (esize) on the optimal solutions: 

As mentioned previously, Area 1 shown Figure 3.10 was uniformly meshed with 

fine elements having dimension esize. For the case Sr of 1.5, nmin(0) of 4, initial 

remrate(O) of 0.5, the effect of esize on the optimum solutions were investigated for 

values of 0.20, 0.30, 0.40, 0.50 and 0.60mm. The results are tabulated in Table 3.3. The 

structural percentage errors in energy norm (SEPC) for all cases were less than 0.103 %. 

Table 3.3: Effects of esize 

Case 

1 

2 

3 

4 

5 

esize 
(mm) 

0.2 

0.3 

0.4 

0.5 

0.6 

Initial 

"max 

(MPa) 

23.49 

23.37 

23.25 

23.13 

23.02 

Final 

CTmax 

(MPa) 

17.48 

17.57 

17.67 

17.75 

17.69 

Omax 

reduction 

(%) 

25.59 

24.82 

24.00 

23.25 

23.15 

Initial 
STDV 
(MPa) 

4.80 

4.75 

4.71 

4.66 

4.62 

Final 
STDV 
(MPa) 

0.29 

0.41 

0.50 

0.46 

0.49 

SEPC 
(%) 

0.85E-1 

0.83E-1 

0.74E-1 

1.02E-1 

0.92E-1 

Number 
of 

iteration 

56 

41 

25 

20 

17 

CPU 
time 
(min.) 

35 

20 

11 

8 

7 

It can be seen that finer element size would result in greater reduction of stress, 

less fluctuation of Tresca stress distribution along the hole boundary i.e. smaller standard 
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deviation (STDV) obtained, but as expected it requires more iteration steps to converge 

and the computation cost is increased substantially. The increase of computation cost was 

mainly due to larger numbers of elements as smaller esize is used. 

3.3.5 Effects of the initially set element removal rate - remrate(O) 

remrate dictates how many elements out of all external elements on the current 

boundary of the discontinuity are selected for removal. remrate(O) initially can be set at a 

value between 0 and 1. It is controlled and is continually reduced during the course of 

optimization every time an over-cutting occurs (Section 3.2.4). 

For the case Sr of 1.5, nmin(O) of 4, minimum value of nmin(K) = 1, esize of 0.30 

mm, effects of initial remrate(O) values were investigated by running the program for 

seven sets of remrate(O) at: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 respectively. The results are 

shown in Table 3.4. 

Table 3.4: Effects of remrate(O) 

Case 

remrate(O) 

Number of 
iteration 
C P U time 
(min.) 

Final 

o w (MPa) 

1 

0.1 

107 

46 

18.74 

2 

0.2 

61 

24 

18.62 

3 

0.3 

42 

17 

18.98 

4 

0.4 

38 

16 

18.67 

5 

0.5 

33 

15 

18.58 

6 

0.6 

32 

16 

18.56 

7 

0.7 

34 

20 

18.83 

It can be seen that for the cases 1, 2, 3, 4, 5, the number of iterations and running 

time decreased with larger setting of remrate(O) as expected. However, when remrate(O) 

was set at a value larger than or equal 0.5, the running time starts to increase while the 
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number of iterations slightly varies. 

It should be noted that for the same esize and shape, a larger value of remrate(O) 

results in a coarser cut (see Figure 3.3). For this structure a value of remrate(O), which is 

larger than or equal 0.6, results in cuts so coarse that they cause over-cutting. The process 

has to reduce element removal rate to smaller values, which increases processing time. 

Thus, a too small or too large initial setting of remrate(O) can result in a longer process. A 

too small value of remrate(O) can however substantially increase time and should be 

avoided. 

3.3.6 Effects of stress ratio (Sr) 

Effects of the applied stress ratios to the optimization process are studied in this 

section. Three cases of stress ratios, Sr of 1.5, 2, 2.5, were investigated. Parameters were 

set as follows: nmin(0) of 4, remrate(O) of 0.5, esize of 0.4mm. Different optimum 

profiles for stress ratio values of 1.5, 2 and 2.5 are illustrated in Figures 3.16, 3.17 and 

3.18 respectively. The results are tabulated in Table 3.5, including analytical solutions for 

an infinite plate. 

Table 3.5: Effects of stress ratio (Sr) 

Case 

1 

2 

3 

Sr. 

1.5 

2.0 

2.5 

Initial 

Omax 

(MPa) 

23.25 

24.92 

25.92 

Final 

Omax 

(MPa) 

17.67 

16.17 

15.35 

Omax 

reduction 

(%) 

24.00 

35.09 

39.59 

Initial 
STDV 
(MPa) 

4.71 

7.06 

8.47 

Final 
STDV 
(MPa) 

0.50 

0.39 

0.54 

SEPC 

(%) 

0.74E-1 

1.03E-1 

0.98E-1 

No. 
of 
iter. 

25 

47 

70 

CPU 
time 
(min.) 

11 

22 

28 

Analytical 
Solution 

Initial 

Omax 

(MPa) 

23.33 

25.00 

26.00 

Final 

Omax 

(MPa) 

16.67 

15.00 

14.00 
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ANSYS 5.3 
DEC121998 
06:50:42 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP-1 
SUB-1 
TIME-1 
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DMX-.659E-05 
SMN - 86BE*07 
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H -.111E*08 
I -.126E-08 
J •142E*08 
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L -174E+08 
M -189E*08 
N -.205E-08 
0 -221E*08 
P -237E*08 
Q -.253E+08 
R -268E-08 
S -284E»08 
T -300E*08 

Figure 3.16: Effects of stress ratio, Sr= 1.5 

ANSYS 5.3 
DEC 12 1998 
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AVG ELEMENT SOLUTION 
STEP-1 
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TIME-1 
SINT (AVG) 
DMX-.655E-05 
SMN -.798E-07 
SMX-.161E*08 
A -0 
B -158E»07 
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Figure 3.17: Effects of stress ratio, Sr = 2.0 
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ANSYS 5.3 
DEC 14 1998 
06:55:48 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP-1 
SUB-1 
TIME-1 
SINT (AVG) 
DMX-.671E-05 
SMN =.764E*07 
SMX-.157E*08 
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J -142E*08 
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L -174E*08 
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0 -.221E*08 
P -237E-08 
Q -253E»08 
R -268E*08 
S -284E*08 
T -.300E-08 

Figure 3.18: Effects of stress ratio, Sr= 2.5 

The optimal hole shapes obtained are almost ellipses as predicted by the analytical 

solution. It can be seen that larger stress ratios result in greater rewards, i.e. larger 

reduction in stress concentration and larger savings in material can be obtained by shape 

optimization. As Sr is increased, the major axis of the hole is increased or the hole 

becomes elongated. However the FEM simulation requires more iteration steps. 

3.4. Concluding remarks 

It can be seen that a practical algorithm, incorporating boundary smoothing and 

remeshing subroutines as proposed can simulate the PSM procedure. 

The boundary smoothing subroutine adopting cubic B-spline curves can produce 

smooth boundaries with least oscillatory shapes. The use of B-spline boundary 
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representation and primary moving control points based on the simple approximation, 

Equations (3.1) and (3.2), simulates successfully material removal mechanism of the 

PSM procedure. 

By employing the design element concept with automatic mesh generators and 

adaptive mesh refinement, the mesh distortion problems can be avoided. It also reduces 

the computation efforts required in adaptive mesh refinement. 

The proposed algorithm has been applied to find optimal hole profiles in 

homogeneous isotropic plates under biaxial tensions. The excellent agreement between 

results found by the FEM simulation and the closed-form theoretical solutions validates 

the feasibility of the proposed algorithm to simulate the PSM by FEM. The study of the 

effects of parameters given in Section 3.3 highlights the influence of the initial values of 

parameters on the convergence of the optimization process. 

In practice, a completely constant maximum shear stress distribution along a 

profile cannot always be obtained due to the existence of zero stress points on the 

boundaries of the optimized profile. There are usually sections of the discontinuities 

under tension and compression stresses; these sections are joined together by zero stress 

points which exist during the course of optimization. Such problems require more 

attention as presented in the next chapter. 
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OPTIMAL STRESS RAISER PROFILES CONTAINING ISOTROPIC 

POINTS 

4.1. Introduction 

The optimal solution, which can result in a completely constant shear stress 

distribution along a discontinuity profile, as in the case of a large plate with a hole under 

biaxial tensions, exists only in rare cases (Schnack 1979). 

Optimal solutions that result in profiles, sections of which are under compression 

and tension, are more generally found in technically interesting problems. Those sections 

are joined together by isotropic points of zero stress, separating a tensile stress section 

from a compressive stress one. They are always present in the course of optimizing the 

structures given below. The existence of such points prevents the optimization process 

not only from obtaining a completely constant stress distribution over the stress raiser 

boundary, but from eventually converging toward the optimal profile. The proposed FEM 

simulation algorithm (Section 3.2) therefore requires additional characteristics to solve 
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these optimization problems properly. 

Two typical examples of such problems are: 

(i) A large plate with a hole under biaxial stress with negative stress ratios; 

(ii) A finite width plate with a hole under uniaxial tension. 

While the second case has been studied by various researchers e.g. Durelli and 

Rajaiah (1979), Snack (1979), and Tran and Nguyen (1999), to the author's knowledge 

the first optimization problem has not been investigated so far. 

4.2 A large plate with a hole under biaxial stress with negative stress ratios 

Let us consider a large plate with a hole under biaxial stress. If the applied stress 

ratio is negative there will be sections of the boundary of stress raisers under tension and 

compression. A typical case when the applied stress ratio takes the value of minus one 

(Sr= -1) is studied first. 

Using the same notation as presented in Section 3.3.1, the applied stress 0"y along 

Y-axis is kept constant for all cases at 10 MPa. The other applied stress ox along X-axis 

is determined from 0"y and the stress ratio Sr (Equation 3.7). For cases that Sr < -1, the 

absolute value of ax is always kept equal or smaller than cy. Consequently the stress 

concentration factor kbiax determined by Equation (3.8) is still valid. Due to the 

relationship between the maximum Tresca stress and the stress concentration factor 

(Equation 3.9), the reduction of the maximum Tresca stress also reflects the decrease in 

the stress concentration factor and can be used to present results obtained by the FEM 

simulation in this section. 
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4.2.1 Optimal hole profile when Sr = -1 

The initial stress pattern in the plate is illustrated in Figure 4.1 using a quarter 

FEM model since this is a symmetrical structure. It can be seen that: 

• The maximum stress occurs at points such as point A and B with a very steep 

stress gradient around them. 

• Points such as point C are positions of zero stress with a very steep stress gradient 

around them. It should be noted that isotropic points of zero stress are confirmed 

by theoretical solutions and the photoelasticity technique. However due to the 

finite size of elements, exact zero stress is not found by FEM at points like point 

C. For example, in this case the maximum stress at point A and B is found to be 

40.9 MPa and the minimum stress found at point C (0 = 45°) is 0.81 MPa. 

ANSYS 5.3 
JUN 81998 
17:36:34 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP-1 
SUB-1 
TIME-1 
SINT (AVG) 
DMX-.131E-04 
SMN-.104E*07 
SMX-.410E-08 
A =0 
B =.211E*07 
C -421E*07 
D -632E*07 
E -842E-07 
F =.105E«08 
G -126E+08 
H «.147E-»08 
I -168E*08 
J -189E»08 
K =.211E*08 
L -.232E*08 
M -253E*08 
N -274E*08 
0 -295E+08 
P -.316E»08 
Q -.337E*08 
R -358E*08 
S -,379E*08 
T -.400E-08 

Figure 4.1: Initial Tresca stress distribution, Sr= -1 
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• Instability (buckling) could be a factor in the response of the plate, but it is not 

considered here in finding the optimal profiles. 

The structure is now optimized, employing the FEM simulation algorithm 

proposed in Section 3.2.4. Parameters are initially set as follows: esize = 0.3mm, nmin(0) 

= 4, remrate(O) = 0.7. 

The required standard deviation is set to zero so that the process can produce the 

best possible outcome. The optimization process converged after 38 iterations and a 

decrease of 24.9 percent in the maximum Tresca stress was found. The stress pattern in 

the plate and Tresca stress distribution along the stress raiser profile against angular 

positions at iteration 38 are shown in Figures 4.2a, b respectively. It can be seen that: 

• The vertical and horizontal edges are under almost uniform Tresca stresses. 

• There is a very steep stress gradient around the isotropic point (point C), of which 

the angular position 0 is about 45°. The isotropic point lies on the transition 

section of the hole boundary (38° < 0 < 52°), where the stress reverses from 

tension (vertical edge) to compression (horizontal edge). 

4.2.2 FEM algorithm improvement in the fine tuning stage 

Inspecting the log file of the optimization process, however, reveals that there was 

no further improvement obtained when the process was switched to the fine tuning stage. 

This is influenced by the existence of the transition section mentioned above. It should be 

noted that the process starts the very fine tuning stage with a few elements having lower 

stress values in the set Ext_elem to be removed in each iteration. Thus the elements 
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Figure 4.2: a- Tresca stress distribution in the plate at iteration 38, S r= -1; 
b- Stress distribution along the hole boundary versus angular position 

at iteration 38, S r= -1. 
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selected for removal would be neighbors of the isotropic points, lying on the transition 

sections (Figure 4.2b). However, any attempt to remove elements at these corners will 

make the maximum Tresca stress increase as recorded. The process therefore keeps on 

reducing continually the number of elements to be removed until the process converges 

without further improvements. As shown in Table 4.1, the process began the very fine 

tuning stage with four elements, and ended with one element to be removed in each 

iteration without the reduction of the maximum Tresca stress as compared to that 

obtained at iteration 38. 

Table 4.1: effects of removing elements lying on the 
transition section 

Number of 
elements to be 

removed 

4 

3 

2 

1 

Observed 

Omax (MPa) 

30.7117 

30.7300 

30.7259 

30.6981 

Omax (MPa) at 
iteration 38 

30.6924 

In a P S M procedure, at the fine tuning stage the operator can easily detect those 

transition sections by observing directly the isochromatic fringe orders. He then only files 

away lower stressed materials by moving back and forth from one section to the other of 

the boundary, but not the transition sections, until the uniformity of stress distribution is 

satisfied. Thus at this stage, the material to be removed is no longer at the location of the 

minimum Tresca stress occurring on the stress raiser boundary. This can be implemented 

in the FEM simulation by defining elements lying on the transition sections as non-design 

elements or excluding them from the set Ext_elem that contains candidates for the 

element removal at the fine tuning stage. 
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In order to incorporate the above characteristic into the FEM simulation algorithm 

proposed in Section 3.2, a protection scheme for transition sections should be added to 

steps 13 and 16 of the flowchart shown in Figure 3.8. The modified flowchart is shown in 

Figure 4.3. The protection scheme includes: 

• Determining isotropic points of zero stress lying on the boundary. 

• Identifying small sections with very steep stress gradient locating next to the 

isotropic points, i.e. transition sections (Figure 4.2b). 

• Excluding elements lying on the transition sections from the set Ext_elem. 

At steps 13 and 16 of the modified algorithm, if there are no isotropic points 

detected, the process then bypasses the protection scheme. Thus the new algorithm is also 

applicable to the case which results in a completely constant stress distribution along a 

discontinuity. 

The structure in the example given above (Sr = -1) is now re-optimized employing 

the modified algorithm with new added features. All optimization parameters were set at 

the same values as those in the previous run. The new process converged after 42 

iterations and a decrease of 25.2 percent in the maximum Tresca stress was found. 

Compared to the result obtained by the original algorithm in Section 4.2.1, the 

new optimization process took a further 4 iterations and a further decrease of 0.3 percent 

in the maximum Tresca stress was obtained. Figure 4.4 illustrates the maximum Tresca 

stress distribution in the plate at iteration 42 (optimal) produced by the improved 

algorithm. 
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Figure 4.3: Flowchart of the improved F E M simulation algorithm 
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ANSYS 5.3 
JUN 81998 
17:49:32 
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Figure 4.4: Tresca stress distribution at iteration 42 (optimal), case Sr= -1. 

Figure 4.5 shows the hole shape variation at a number of iterations during the 

optimization process: iterations 0 (initial), 10, 20, 42 (optimal). The hole shape was 

changed very fast from iteration 0 (initial) to iteration 10, slower from iteration 10 to 

iteration 20, then slowly to the optimal shape (iteration 42), reflecting rough cutting and 

fine tuning characteristics of the PSM. 

Figure 4.6 shows the optimization history including the variation of the m a x i m u m 

Tresca stresses and the material removal ratio mr versus iteration number. The graph of 

mr indicates that there is a large rate of material removed at first, then it is gradually 

reduced to smaller rates until the process converges. The maximum Tresca stress is 

decreased quickly in the first five iterations, slower until iteration 27, then very slowly 

until the process converges. The minimum Tresca stress occurring on the boundary is not 

plotted since its values are always near zero during the optimization process. 

72 



Chapter 4: Optimal stress raiser profiles containing isotropic points 

tttttttttttttttttttttttt 

b 

Figure 4.5: Hole shapes at iterations O(initial), 10, 20 and 42 (optimal), case S r = -1. 
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Figure 4.6: Optimization history, Sr = -1 
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4.2.3 Results and discussion 

Two additional cases of stress ratios Sr of -1.5 and -2.0 were investigated, 

employing the improved algorithm. Parameters were set at the same values as in the case 

Sr of-1 (Section 4.2.1). Different optimal profiles for stress ratio values of -1.5 and -2.0 

are illustrated in Figures 4.7 and 4.8 respectively. 

The results for three cases Sr of -1, -1.5 and -2.0 are tabulated in Table 4.2. It can 

be seen that larger absolute values of stress ratios result in greater rewards, i.e. larger 

reduction in stress concentration, larger savings in material can be obtained, and more 

iterations are required. 

Table 4.2: Effects of negative stress ratios (Sr < 0) 

Case 

1 

2 

3 

Sr 

-1.0 

-1.5 

-2.0 

esize 
(mm) 

0.3 

0.3 

0.3 

Initial 

OYnax 

(MPa) 

40.92 

37.42 

35.56 

Final 

0"max 

(MPa) 

30.61 

26.39 

24.37 

Omax 

reduction 

(%) 

25.20 

29.48 

31.47 

Initial 
STDV 
(MPa) 

12.56 

10.77 

10.12 

Final 
STDV 
(MPa) 

4.31 

2.96 

2.41 

Hole 
area 

increase 

(%) 

21.17 

58.69 

103.46 

SEPC 
(%) 

0.48 

0.21 

0.37 

Number 
of 

iteration 

42 

56 

82 

CPU 
time 
(min.) 

18 

29 

44 

The optimal hole shapes obtained were no longer ellipses but more like 

quadrangle holes with rounded corners as illustrated in Figure 4.9. As the absolute value 

of the stress ratio was increased, the major axes of the holes were increased or the holes 

become elongated. It is interesting to note that starting from the case Sr of -1, while the 

absolute values of stress ratios were increased at intervals of 1/2, the optimal holes' 

lengths were increased approximately with intervals of 1/3. 
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Figure 4.7: Optimal hole profile, case Sr= -1.5 
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Figure 4.8: Optimal hole profile, case Sr = -2.0 
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a, 
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X 

D 

Figure 4.9: Various optimal hole profiles with different negative stress ratios, where 
D is the diameter of the initial circular hole 

4.3 Finite width plates with holes under uniaxial tensions 

Plates of finite width with holes are common structural elements in many 

engineering applications. The analytical solution for the stress distribution of an infinite 

plate with a circular hole under uniaxial stress was given by Howland (1929-30). This 

solution can be used for a plate of finite width and with the ratio of hole diameter to 

width D/W up to 0.55, Peterson (1953). For finite plates of higher D/W, the 

determination of the stress concentration factor must rely on experimental techniques 

such as photoelasticity or on computational methods, mainly FEM. 

Durelli and his associates have used P S M to study this problem extensively and it 

has served as a benchmark for various shape optimization techniques. 
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4.3.1 Problem description 

The structure investigated is a thin plate of constant thickness T, of finite width W 

with a central circular hole of diameter D, under uniform axial stress as shown in Figure 

4.10. Its length L is supposed to be sufficiently long with respect to D so that the upper 

and lower edge boundary conditions do not affect the stress distribution around the hole 

and hence the optimal profile. The stress concentration effect can be expressed in terms 

of Ktg or Km. These notations are adopted from Pilkey (1997) where Ktg is the stress 

concentration factor based on the gross cross section and Ktn is the stress concentration 

factor based on the minimum net cross section. A graph of Ktg and Ktn (based on FEM 

results) versus D/W is shown in Figure 4.11, where it can be seen that the highest value 

of Kta, is 3 for an infinite plate, the limiting value of Km, when D/W tends to 1 has been 

confirmed as 2 by Parks (1975). ^ 

t t t t t t 

Durelli's design domain 

Plate Thickness 
T 

TTVTl 
Figure 4.10: Problem description 
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C 
CO 

D/W 

Figure 4.11: Ktg and Km versus D/W 

The task is to find the optimal hole profile to reduce Km for an initial circular hole 

of various D/W ratios, from 0.140 to 0.837 such that the maximum stress occurring at 

points on the hole boundary is minimized. The design domain of the problem is the 

region around the hole boundary limited to within a square of side D. The problem has 

been investigated experimentally by Durelli and Rajaiah (1979) and numerically by Tran 

and Nguyen (1999). 

It should be noted that the choice of the design domain by Durelli and Rajaiah 

(1979) was probably due to practical requirements since the optimum profiles do depend 

on the length of the design domain along the plate axis. As the hole profile is a free 

boundary, the Tresca or von Mises criterion leads to the same equivalent stress. To 

facilitate the comparison of results of different cases of D/W, the width W was fixed and 

the applied tensile stresses were also of fixed value a as illustrated in Figure 4.10. 
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The optimization was carried out on a plate of dimensions W = 100mm, L = 

300mm, T = 1mm, for the D/W ratios of 0.140, 0.250, 0.377, 0.518, 0.650, 0.775, and 

0.837. The Young's modulus was assumed to be of 205 GPa, Poisson ratio was assumed 

to be of 0.3 and the applied loads were assumed to be uniform tensions of 10 MPa. 

Due to symmetry, a quarter of the plate was modelled as illustrated in Figure 4.12. 

The initial Tresca stress pattern of a typical case when D/W = 0.837 is shown in Figure 

4.13. It can be seen that: 

• The maximum stress occurs at points such as point 1 in Figure 4.13 with a very 

steep stress gradient around it. 

• Points such as point 2 in Figure 4.13 are positions of isotropic points of zero 

stress. 

Figure 4.12: F E M model (D/W=0.837) 
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• Besides these isotropic points, there are nearby regions of relative low stress 

values (region 3, Figure 4.13). This implies that if Durelli's design domain is not 

imposed and elements are not removed in layers, there is a possibility of 

encroaching on regions like region 3, resulting in an unstable sudden "avalanche" 

of removed elements as reported by Tran and Nguyen (1998 a). 

ANSYS 6.3 
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Figure 4.13: Initial Tresca stress distribution in the plate (D/W = 0.837) 

4.3.2 Results and discussion 

The structure is now optimized, employing the modified FEM simulation 

algorithm (Section 4.2.2). For all cases studied in this section, parameters were initially 

set as follows: remrate(O) = 0.7, nmin(O) = 4. 

Settings of esize are given in Table 4.3. The required standard deviation was set to 

zero to produce the best outcome. The number of primary control points used to represent 
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the boundary was 31 for all cases. Results are tabulated in Table 4.3 and illustrated in 

Figures 4.14-4.24. 

Figure 4.14 shows the changing hole profiles in the course of optimization 

(quarter model) at iterations 0 (initial), 10, 20, 30, 47 (optimal) for the case D/W = 0.837. 

It can be seen that materials were removed quickly from iteration 0 (initial) to iteration 

20, slower from iteration 20 to iteration 30, then very slowly from iteration 30 to iteration 

47 (optimal), reflecting the characteristics of PSM. 

a 
iiiilii iiiiiii i i i U U i 4 

Figure 4.14: Hole shapes at iterations O(initial), 10, 20, 30,47 (optimal) (D/W = 0.837) 
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Figure 4.15 shows the optimization history for the case D/W = 0.837 including 

the variation of the maximum Tresca stress and material removal ratio mr versus the 

iteration number. It can be seen that the maximum Tresca stress decreases quickly from 

initial iteration to iteration 15, then slowly from iteration 15 to iteration 40, and finally it 

reduces very slowly until the process converges. The minimum Tresca stress occuring on 

the boundary was not plotted since its values were always near zero during the 

optimization process. 
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Figure 4.15: Optimization history (D/W = 0.837) 

It can be seen that the reduction in S T D V for these cases (Table 4.3) was not 

much since all horizontal edges of the optimal profiles were still under low Tresca 

stresses. Figures 4.16 - 4.22 show the full optimum profiles for various D/W studied, 

0.140, 0.250, 0.377, 0.518, 0.650, 0.775 and 0.837 respectively, which include all cases 

studied by Durelli and Rajaiah (1979) plus two intermediate cases of 0.250 and 0.650. It 

can be seen that the optimal profiles obtained in this example as compared to those 
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obtained by PSM, have sharper corners, especially at D/W= 0.140. 

Table 4.3: Results obtained by the FEM simulation for various D/W ratios 

D/W 

0.140 

0.250 

0.377 

0.518 

0.650 

0.775 

0.837 

esize 
(mm) 

0.10 

0.15 

0.15 

0.20 

0.25 

0.35 

0.40 

Initial 

Omax 

(MPa) 

30.49 

32.24 

36.19 

44.61 

59.99 

91.03 

125.95 

Final 

^max 

(MPa) 

22.70 

23.64 

25.90 

31.03 

38.67 

55.80 

72.90 

K m 

reduction 

(%) 

25.56 

26.69 

28.45 

30.44 

35.53 

38.70 

42.12 

Initial 
STDV 
(MPa) 

9.79 

10.22 

11.26 

13.48 

17.55 

25.33 

32.86 

Final 
STDV 
(MPa) 

7.13 

7.29 

7.81 

8.96 

11.51 

16.87 

23.75 

Hole 
area 

increase 

(%) 

19.42 

19.79 

21.42 

23.41 

25.98 

27.01 

27.13 

SEPC 

(%) 

0.39 

0.41 

0.78 

0.64 

0.72 

0.79 

0.65 

Number 
of 

iteration 

50 

52 

58 

52 

52 

47 

47 

CPU 
Time 
(min.) 

17 

19 

22 

19 

17 

18 

17 

At the larger values of 0.775 and 0.837, the profiles found by F E M simulation, 

which can be described as square holes with rounded corners, do not show the dimpled 

horizontal curves as given by PSM. It should be noted that the profiles are to be bounded 

by the design domain and that the optimization objective is to minimize the maximum 

stress occurring on the boundaries of holes. For the case D/W = 0.837, it can be seen that 

FEM simulation removes more material, i.e. FEM goes further than PSM in optimization, 

with the percentage hole area increase of about 27 percents, compared to 20 percents 

given by Durelli and Rajaiah (1979). The reduction in the stress concentration factor was 

similar to or better than those obtained by the PSM. This was confirmed by the optimality 

criteria proposed by Schnack (1979) i.e. the profiles obtained by the FEM simulation 

have less stress concentration than those given by PSM, as they were of longer lengths 

under the constant maximum Tresca stress. 
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Figure 4.16: Optimal hole profile, case D / W = 0.140 
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Figure 4.17: Optimal hole profile, case D / W = 0.250 
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Figure 4.18: Optimal hole profile, case D / W = 0.377 
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Figure 4.19: Optimal hole profile, case D / W = 0.518 
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Figure 4.20: Optimal hole profile, case D / W = 0.650 
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Figure 4.21: Optimal hole profile, case D / W = 0.775 
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Figure 4.22: Optimal hole profile, case D / W = 0.837 

Figure 4.23 shows the variation of Ktn for the original circular holes and for the 

optimum profiles obtained by FEM simulation. It can be seen that the reduction in the net 

stress concentration factor is quite remarkable, about 42 % for the case D/W = 0.837. 

3.0 

2.5 

2.0 -

s£ 1.5 

1.0 

0.5 -

-•— Circular hole 
-o— Optimal hole profile 

0.0 -I 1 1 i 1 1 1 1 1 1 1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

D/W 

Figure 4.23: Variation of Kt n versus D / W for circular hole and optimal hole profile 
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Figure 4.24 shows the percent improvement due to the optimum profiles in 

reducing Kta and increasing in the holes' areas. The PSM's results indicate that the 

percentage increase in the holes' areas reached a maximum at D/W of about 0.60 and 

then decreased afterwards as reported by Durelli and Rajaiah (1979) whereas the results 

by FEM showed a continual increase. 
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Figure 4.24: Variation of Kt„ versus D/W for circular hole and optimal hole profile 

4.4 Concluding remarks 

It is evident that the modified algorithm with the added feature of protection 

scheme, which takes into account the existence of isotropic points and transition sections, 

has improved results obtained by FEM simulation and can handle more general classes of 

stress minimization problems. 

The modified algorithm has been applied to find optimal stress raiser profiles in 
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homogeneous isotropic plates under biaxial tension-compression stresses, which have not 

been considered in the literature. 

In finding optimal hole profiles of finite width plates under uniaxial tension, the 

results found by the FEM simulation demonstrated some improvement over PSM 

solutions. This is due to the fact that PSM faces difficulties in optimizing a plate with a 

very small hole. This is reflected in the comparatively more rounded shapes obtained by 

Durelli and Rajaiah (1979). Furthermore, it is not possible to experiment freely at will 

and to venture too far with cuts in the photoelastic model, as models cannot be 'recut' as 

in cases of FEM simulation. 

Another point of interest in all the cases studied in this chapter concerns the small 

radius corner of the optimal profile. It is well accepted that in structural discontinuities 

any re-entrant corner with a very small radius is a potential source of stress concentration 

and should be avoided. However, in the profiles optimized, the corner regions or 

transition sections happen to be lowly stressed areas with isotropic points of zero stress. 

Hence, there may be stress raiser profiles with sharp re-entrant corners, which do not 

introduce stress concentration. 

With the development of FEM applications in analyzing advanced composite 

structures, the proposed FEM simulation of the PSM now can be extended to find optimal 

stress raiser profiles in advanced fibrous composite panels as studied and presented in the 

next chapter. 
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Chapter 5 

OPTIMAL STRESS RAISER PROFILES IN A LAMINATED 

COMPOSITE PLATE 

5.1. Introduction 

The behavior of composite laminates with stress concentration is of great interest 

in design because of the resulting reduction of strength and life due to damage growth 

around the points of stress concentration, as discussed by Daniel and Ishai (1994). 

Minimizing stress concentrations occurring on discontinuities in a composite laminate 

consequently increases the strength and life of that laminate under comparable boundary 

conditions. 

The FEM simulation technique has proved to be very efficient in optimizing stress 

raiser profiles in plates made of isotropic materials as shown in Chapters 3 and 4. In this 

chapter the FEM simulation is further extended to solve the optimization problems 

involving advanced composite materials. Finding optimal stress raiser profiles in 

composite structures presents a more challenging task due to both the complex behavior 
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of these structures, as well as the variations possible in a wide range of parameters e.g. 

the choice of number of plies, ply orientation, stacking sequence. For these reasons, the 

study presented in this chapter is confined within a pre-configured composite laminate, 

i.e. parameters that configure composite laminates are kept unchanged during the course 

of the optimization process. The objective is to find the optimal stress raiser profiles such 

that a certain index representing the maximum failure criterion occurring on the 

discontinuity boundaries of the composite laminate is minimized. 

A large quasi-isotropic laminated composite plate with a hole under various 

biaxial stress states is used as an example to validate the capability of the FEM simulation 

in optimizing composite structures. The initial results of this study were reported by Tran 

and Nguyen (1998b). 

5.2 Composite laminate 

A laminated composite material plate is a stack of bonded plies, where a ply or a 

lamina is a single sheet of the resin pre-impregnated tape with the fibres aligned in a 

particular direction. A ply may be of the form where all the fibres are aligned in one 

direction and the ply is then said to be a unidirectional ply. Figure 5.1 illustrates a 

laminate formed by four unidirectional plies with different orientations, where axes 1 and 

2 denote the fibre and transverse directions of each ply. 

In Chapters 3 and 4, the Tresca or von Mises criterion can be used for analyzing 

structures made of isotropic materials. Such criteria are not appropriate for composite 

materials since these materials are anisotropic. Consequently, macro-mechanical failure 

theories for composites are employed. 
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Figure 5.1: A laminate formed by four unidirectional plies 

5.2.1 Failure criterion for element selection and removal 

Among failure theories available, the following four are most widely used: 

(i) Maximum stress theory; 

(ii) Maximum strain theory; 

(iii) Deviatoric strain energy theory for anisotropic materials (Tsai-Hill 

criterion); 

(iv) Interactive tensor polynomial theory (Tsai-Wu criterion). 

Brief discussions about the validity and applicability of the above theories can be 

found in Datoo (1991), Daniel and Ishai (1994) and Kaw (1997). Although any of the 

above failure criteria can be adopted, the Tsai-Wu theory with the plane stress 

assumption is employed in this study, since the Tsai-Wu criterion is mathematically 

consistent and operationally simple. It also allows for the distinction between tensile and 

compressive strengths, Daniel and Ishai (1994). 
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In a plane stress condition, Tsai and Wu (1971) considered a lamina to fail if the 

condition 

Hid + H2o-2 + H6Ti2 + Hnai
2 + H22O-22 + H66Ti2

2 + 2H12O1O-2 <1 (5.1) 

is violated. Where, G\ and 0*2 are stress components in the 1-2 reference axes, and T12 is 

the shear component in plane 1-2. The components Hi, H2, H6, Hn, H22, H66 of the theory 

are found using the five strength parameters of a unidirectional lamina (Kaw 1997). 

1 l 

H i = 7-^ TT^ (5-2) (°"l )ult (Pi) ult 

H2=-T; 7-cT- (5.3) 
(CT2)ult (al) ult 

H 6 = 0 (5.4) 

Hn-—T:—-"cT (5.5) 
(°l )ult(CTl )ult 

H 2 2 - T T 7 ~ — c 7 — (5-6) 
(CT2)ult(a2)ult 

H « = — - (5.7) 
y.T 12 /uit 

Where, 
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(°"i )uit : the ultimate longitudinal tensile strength (direction 1) 

(<?! )ult : the ultimate longitudinal compressive strength (direction 1) 

(CT2 )uit : the ultimate transverse tensile strength (direction 2) 

(CT2 )uit : the ultimate transverse compressive strength (direction 2) 

(Ti2)uit : the ultimate in-plane shear strength (in plane 1-2) 

The component Hi 2 cannot be found directly from the five strength parameters of 

the unidirectional lamina. It can be found by a biaxial test or by some empirical rules 

(Kaw 1997). Instead of carrying out a biaxial test, Tsai and Hahn (1980) employed von-

Mises criterion and derived: 

2\ (a[)uU(af )ult(o"2)uit(
a2)uit 

In this chapter, the component H12 determined by equation (5.8) is employed 

throughout. As the material property is very complex and damage may occur when the 

operator files away materials from the stress raiser boundary, it is not practical to apply 

Durelli's PSM. The FEM simulation of Durelli's PSM consequently is used to find the 

optimal profiles for laminated composite plates. 

5.2.2 FEM simulation algorithm 

The flowchart of the FEM simulation algorithm for laminated composite materials 

is shown in Figure 5.2. It inherits all characteristics of the modified FEM simulation 

algorithm in Section 4.2.2; the difference is the criterion assigned to each element for 
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element selection and removal, i.e. a failure criterion for composite materials is used 

instead of a yield criterion for isotropic materials. 

The composite structure under a pre-defined boundary condition is analyzed by 

FEM. It should be noted that failure criteria for composite materials are applied at the ply 

level rather than the laminate level. An index based on a failure criterion (e.g. Tsai-Wu 

criterion) is assigned to each ply or layer within each finite element. By adopting the first 

ply failure philosophy, Daniel and Ishai (1994) and Kaw (1997), the ply with the 

maximum failure index within an element is chosen as the limiting ply for that element. 

Based on the failure indices of the limiting plies, elements with lower limiting ply failure 

indices lying on the boundary of interest are selected as candidates for removal. 

While the optimality criteria for minimizing stress concentrations involving 

isotropic materials have been confirmed theoretically, for example by Schnack (1979) 

and Banichuk (1989), an optimality criterion for minimizing the stress concentration 

occurring on the hole boundary in composite laminates has not been derived 

mathematically. 

In this study, the uniformity of the elements' limiting ply failure indices 

distributed along the stress raiser profile is assumed to be the optimality criterion, which 

minimizes the maximum failure index occurring on the boundary of interest. The 

uniformity of the failure index distribution can be measured by calculating the standard 

deviation of the failure indices along the boundary. 

5.3. Case study - a large composite plate with a hole under biaxial stress 

Stress distributions and stress concentrations around notches can be determined 
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1/ F E M modeling of initial structure 

Set esize 

2/ F E M Solve, inspect results, improve model 
Set l=j=K-0, finetune=off 
Set remrate(O), nmin(O) 

9/ Smooth, remesh 

J=J+l 

3/ Solve and process 
results; Check errors, 
adapte mesh if required 

8/ Remove nrem 
selected elements 

16/ K=K+1 
Determine nmin(K) 
Apply protection 
scheme if required 
nrem=nmin(K) 

II Determine nrem 

6/ Update 
Model A 

N 5/ Maximum failure 
index increased? 

I 
N 

10/finetune=onl 

N 

Call Model A 
14/ Optimality 

satisfied ? 

11/ 7=7+1 
Call Model A, 

Determine remrate(I) 
nrem=integer[remrate(I) * n_ext_elem(J)] 

13/ finetune=on 
Apply protection 
scheme if required 
nrem=nmin(0) 

17/ 

Output 

Figure 5.2: Flowchart of the F E M simulation algorithm for laminated composite plates 
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by linear elastic analysis, FEM and experimental techniques, Daniel and Ishai (1994). 

In the case of an infinite plate with a circular hole, the analytical solution for the stress 

distribution around the hole can be obtained by anisotropic elasticity as shown by 

Lekhnitskii (1963). An analytical solution for finding the optimal profile in an infinite 

composite plate under biaxial stress, however, has not been reported so far. 

5.3.1 Description of the structure 

The geometry of the structure investigated was a square plate of side L = W = 300 

mm, of constant thickness T of 1.04 mm with a central circular hole, of which the 

diameter D was of 30 mm. The composite plate was a quasi-isotropic graphite/epoxy 

laminate of eight unidirectional plies. The stacking sequence was of [0 , ±45 , 90 ]s lay-

up as illustrated in Figure 5.3. The fiber direction of the first ply was parallel to the X 

direction. The composite material data for a single unidirectional ply is given in Table 

5.1. 

The plate was under uniform biaxial stresses as shown in Figure 5.4. The greater 

tensile stress, ay was applied along Y-axis. The smaller stress ox, was determined from oy 

and the stress ratio Sr (Equation 3.7). In each case the applied loads have been scaled 

such that the maximum Tsai-Wu index occurring on the initial discontinuity boundary 

corresponds to 1. For displaying the Tsai-Wu index distribution along the hole boundary, 

a polar co-ordinate system was used for which the zero angular position (0 = 0°) is at 

point A and the 90° angular position (9 = 90°) is at point B of the hole. The number of 

primary control points used is twenty-one, and the minimum value of nmin(K) was set to 

1 throughout this section, otherwise stated. 
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Ŝ fe:; 

L 

Mater lal# 

1 

t 

^v L ' 
s 

^S^S 
1 

imi&z 45 \>>93<?o^ 
45 

0 

• ^ 

•7—7 7 v v y / 
/////// / / / ; / / 7 

1 

1 

1 

15:33:01 
P10TN0. I 
LAYER STACKINB 
TYPE = I 
REAL = I 
LAYERS: 
TOTAL = 9 
SHOWN : 
FROM 1TD 9 
ZV =1 
D1SW425 
XF =125 
TF =.055 
MUFFED 

Figure 5.3: Stacking sequence of the laminate [0 , ±45 , 90 ]s 

Table 5.1: Material data 

Nominal material data for Carbon fiber/Epoxy unidirectional preimpregnated tape 

Longitudinal Young's modulus, Ei 

Transverse Young's modulus, E2 

Shear modulus, G12 

Poisson ratio, V12 

Ply thickness 

Ultimate strength 

Longitudinal 

Transverse 

Shear 

151 GPa 

10.6 GPa 

6.6 GPa 

0.31 

0.13 m m 

Tensile Compressive 

1.401 GPa 1.132 GPa 

54 MPa 211 MPa 

72 MPa 

Due to symmetry, a quarter of the plate was modelled as illustrated in Figure 5.5. 

The element used for modeling is SHELL99-100 layer structural shell element (ANSYS 

Theory Reference, 1996). 
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Figure 5.4: Description of the problem 

Figure 5.5: The F E M model 
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5.3.2 Results and discussion 

The case when the plate was under biaxial tension (Sr > 0) is presented first, 

followed by the case when the plate was under biaxial tension-compression (Sr < 0). All 

the contour plots in the following sections of this chapter are based on the average 

element solution (ANSYS Theory Reference, 1996). 

5.3.2.1 Optimal stress raiser profiles in a composite plate under biaxial tension 

(Sr>0) 

The structure was optimized employing the FEM simulation algorithm for 

composite laminates as presented in Section 5.2. For three cases with stress ratios Sr of 

1.5, 2 and 2.5 studied in this section, parameters were initially set as follows: esize = 0.3 

mm, remrate(O) = 0.5, nmin(0) = 4. The objective standard deviation was set to zero to 

produce the best outcome. The results are tabulated in Table 5.2 and illustrated in Figures 

5.6-5.12. 

Table 5.2: Results for stress ratios Sr = 1.5, 2 and 2.5 

Case 

1 

2 

3 

Sr 

1.5 

2 

2.5 

Initial 
Max. 

Tsai-Wu 
index 

1 

1 

1 

Final 
Max. 

Tsai-Wu 
index 

0.786 

0.664 

0.622 

Reduction in 
Max. Tsai-Wu 
index (%) 

21.4 

33.6 

37.8 

Initial 
STDV 

0.21 

0.29 

0.33 

Final 
STDV 

0.020 

0.019 

0.018 

Number 
of 

iteration 

45 

74 

97 

CPU 
time 
(min.) 

90 

131 

194 

Figures 5.6 and 5.7 show respectively the initial and optimal Tsai-Wu index 

distributions in the plate of a typical case when Sr is of 1.5. It is seen that the maximum 
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Tsai-Wu index initially occurs at point A corresponding to 0 degree angular position (0 = 

0 ). The optimal profile was reached after 45 iterations. A drop of 21.4 percent in the 

maximum Tsai-Wu index was found. The standard deviation of the distribution of Tsai-

Wu indices along the profile was reduced from 0.21 (initial) to 0.02 (optimal). The 

optimal profile of the hole was almost an ellipse, of which the major axis per minor axis 

ratio was about 1.5. 

Figure 5.8 shows the plot of the initial (iteration 0) and final (iteration 45) Tsai-

Wu index distribution along the profile versus angular positions (0° < 9 < 90°) for the 

case Sr= 1.5. It can be seen that the Tsai-Wu index distribution at iteration 45 was much 

more uniform than the intial one, resulting in the reduction in the maximum Tsai-Wu 

index. This confirms that the assumed optimality criterion (Section 5.2.2) is applicable. 
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Figure 5.6: Tsai-Wu index distribution at iteration 0 (initial), case Sr = 1.5 
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Figure 5.7: Tsai-Wu index distribution at iteration 45 (optimal), case Sr = 1.5 
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Figure 5.8: Tsai-Wu index distribution along the profile versus angular positions at 

iteration 0 (initial) and iteration 45 (optimal) for the case Sr = 1.5 
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Figure 5.9 shows the changing hole profiles in the course of optimization (quarter 

model) at iterations 0 (initial), 15, 30, 45 (optimal) for the case Sr of 1.5. It is seen that 

materials were removed quickly from iteration 0 (initial) to iteration 15, slower from 

iteration 15 to iteration 30, then very slowly from iteration 30 to iteration 45 (optimal), 

reflecting the characteristics of PSM. 

tttttttttttttttttttttttt _ 

Iter.45(optimal) 

x 

D 

Figure 5.9: Hole shapes at iterations O(initial), 15, 30 and 45 (optimal), case Sr = 1.5 

Figure 5.10 shows the optimization history for the case Sr of 1.5, including the 

variation of the maximum, minimum Tsai-Wu indices and material removal ratio mr 

versus the iteration number. It is seen that while the maximum Tsai-Wu index keeps 

decreasing as the optimization proceeds, the minimum is increasing continually, resulting 

in a more uniformity of the Tsai-Wu index distribution along the profile. The graph of mr 

indicates that a large amount of materials has been removed from iterations 0 to 15, 
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slower from iterations 15 to 30, and very slowly from iteration 30 to 45, reflecting PSM's 

characteristics. 
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Figure 5.10: Optimization history for the case Sr = 1.5 

Figures 5.11 and 5.12 show the optimum profiles for the cases when stress ratios 

Sr takes values of 2 and 2.5 respectively. The optimal hole shapes obtained were almost 

ellipses with the major axis to minor axis ratio proportional to the applied stress ratio. It 

can be seen that larger stress ratios result in greater rewards, i.e. larger reduction in the 

m a x i m u m Tsai-Wu index and larger savings in material can be obtained by shape 

optimization. A s Sr was increased, the major axis of the hole was increased or the hole 

became more elongated, and the F E M simulation required more iterations. 
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Figure 5.11: Tsai-Wu index distribution at iteration 74 (optimal), case Sr = 2.0 
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Figure 5.12: Tsai-Wu index distribution at iteration 97 (optimal), case Sr = 2.5 
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5.3.2.2 Optimal stress raiser profiles in a composite plate under biaxial tension-

compression (Sr< 0) 

Employing the FEM simulation algorithm for composite laminates (Section 5.2). 

For three cases with stress ratios Sr of -1, -1.5 and -2 studied in this section, parameters 

were initially set as follows: esize = 0.3 mm, remrate(O) = 0.7, nmin(0) = 4. The 

objective standard deviation was set to zero to produce the best outcome. The results are 

tabulated in Table 5.3 and illustrated in Figures 5.13-5.19. 

Figure 5.13 shows the initial Tsai-Wu index distributions in the plate of a typical 

case when Sr is of -1. It can be seen that: 

The m a x i m u m Tsai-Wu occurs at points such as point A (6 = 0°) with a very steep 

Tsai-Wu index gradient around them. 

Points such as point C (0 = 45°) were positions of 'near zero' Tsai-Wu index with 

a very steep stress gradient around them as well. These points always exist during 

the course of the optimization process as observed. 

The parttern of the index contours however was not symmetrical with respect to 

the direction of 45° as in the case of isotropic materials (Figure 4.1). 

Instability (buckling) could be a factor in the response of the plate, but it is not 

considered here in finding the optimal profiles. 
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Table 5.3: Results for stress ratios Sr = -1, -1.5, -2 

Case 

1 

2 

3 

Sr 

-1 

-1.5 

-2 

Initial 
Max. 

Tsai-Wu 
index 

1 

1 

1 

Final 
Max. 

Tsai-Wu 
index 

0.700 

0.698 

0.651 

Reduction in 
Max. Tsai-Wu 
index (%) 

30.0 

30.1 

34.9 

Initial 
STDV 

0.281 

0.287 

0.295 

Final 
STDV 

0.108 

0.129 

0.142 

Number 
of 

iteration 

71 

119 

140 

CPU 
time 
(min.) 

126 

223 

265 

For the case Sr = -1, the optimal profile was reached after 71 iterations as shown 

in Figure 5.14. A reduction of 30 percent in the maximum Tsai-Wu index was found. The 

standard deviation of the distribution of Tresca stress along the profile was reduced from 

0.281 (initial) to 0.108 (optimal), indicating that the uniformity of the Tsai-Wu index 

distribution along the profile was not high. This is due to the existence of the transition 

sections and 'isotropic points' as shown in Figure 5.15. 
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Figure 5.13: Tsai-Wu index distribution at iteration 0 (initial), case Sr = -1 
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Figure 5.14: Tsai-Wu index distribution at iteration 71 (optimal), case Sr = -1 

Figure 5.15 shows the plot of the initial (iteration 0) and final (iteration 71) Tsai-

Wu index distribution along the profile versus angular positions (0° < 0 < 90 ) for a 

quarter model (case Sr= -1). 
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Figure 5.15: Tsai-Wu index distribution along the profile versus angular positions at 

iteration 0 (initial) and iteration 71 (optimal) for the case Sr = -1 
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Figure 5.16 shows the changing hole profiles in the course of optimization 

(quarter model) at iterations 0 (initial), 20, 40, 60 and 71 (optimal) for the case Sr of -1. It 

is seen that material was removed quickly from iteration 0 (initial) to iteration 40, but at a 

slower rate from iteration 40 to iteration 60, then very slowly from iteration 60 to 

iteration 71 (optimal), reflecting the characteristics of PSM. 

ttttttttttttttmttttttt 
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D 

Figure 5.16: Hole profiles at iterations O(initial), 20, 40, 60 and 71 (optimal), case Sr = -1 

Figure 5.17 shows the optimization history for the case Sr of -1, including the 

variation of the maximum Tsai-Wu index and material removal ratio mr versus the 

iteration number. The minimum Tsai-Wu index on the boundary was always close to zero 

due to the existence of "isotropic points", so it was not plotted on the graph. It can be 

seen that the maximum Tsai-Wu index keeps decreasing as the optimization proceeds. 

The graph of mr indicates that a large amount of materials was removed initially, then the 
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rate of material removal gradually reduced until the optimization process converged, 

reflecting PSM's characteristics. 
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Figure 5.17: Optimization history for the case Sr = -1 

Figures 5.18 and 5.19 show the optimum profiles for the cases when stress ratios 

Sr takes values of -1.5 and -2 respectively. The optimal hole shapes obtained in three 

cases studied were like quadrangle holes with rounded corners as illustrated in Figures 

5.14, 5.18 and 5.19. As the absolute value of the stress ratio was increased the hole 

became more rounded at the transition sections, and the major axes of the holes were 

increased or the holes became more elongated. However, the lengths of major axes did 

not follow a rule as was in the case for isotropic materials. The FEM simulation also 

required more iterations as the absolute value of the stress ratio was increased. 
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Figure 5.18: Tsai-Wu index distribution at iteration 119 (optimal), case Sr = -1.5 

ANSYS 5.3 
JAN 13 1999 
10:11:37 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP-1 
SUB-1 
TIME-1 
TSAI W U (AVG) 
TOP 
DMX-.271E-03 
SMN -.045786 
SMX -.651069 
A -0 
B -.058824 
C -.117647 
D -.176471 
E -.235294 
F -.294118 
G -.352941 
H -.411765 
I -.470588 
J -.529412 
K -.588235 
L -.647059 
M -.705802 
N -.764706 
O -.823529 
P -.882353 
Q -.941176 
R -1 

Figure 5.19: Tsai-Wu index distribution at iteration 140 (optimal), case Sr = -2.0 
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5.4 Concluding remarks 

It has been shown that the FEM simulation can be extended to solve successfully 

the problem of stress minimization involving advanced composite laminates, employing 

the Tsai-Wu criterion and the first ply failure theory. 

The FEM simulation has been applied to find optimal stress raiser profiles in a 

quasi-isotropic composite laminate plate [0°, ±45°, 90°]s under various biaxial stress 

states. While the optimal profiles in the case of the plate under biaxial tension looked 

identical to those of isotropic materials under the same stress ratio (Chapter 3), the 

optimal profiles obtained in the case of the plate under biaxial tension-compression did 

not. It should be noted that quasi-isotropic laminates' elastic properties are, by definition, 

independent of orientation, i.e. the in-plane stiffnesses and compliances and all 

engineering elastic constants are identical in all directions. Quasi-isotropic laminates, 

however, are not isotropic as far as the first ply failure is concerned according to Daniel 

and Ishai (1994). 

In the case of the composite plate under biaxial tension-compression, the results 

show that there are 'isotropic points' of near zero Tsai-Wu index lying on the boundary 

of the discontinuity, which always exist during the course of optimization. This results in 

the optimized profiles, the corner regions or transition sections of which happen to be 

lowly stressed areas with isotropic points. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORKS 

Algorithms have been proposed to simulate Durelli's P S M by F E M to solve the 

stress minimization problems, involving both isotropic materials and advanced fibrous 

composite laminates. In this chapter, conclusions drawn from this study and some 

recommendations for further investigations are given. 

6.1. Conclusions 

Durelli's PSM has been successfully simulated by numerical procedures based on 

FEM, incorporating boundary smoothing and remeshing subroutines. The graphs of mr 

versus iterations plotted in the optimization histories in all cases studied indicated that 

materials were at first removed quickly from the boundaries, the material removal was 

then controlled to be slower. This characteristic speeds up the convergence, or reduces 

computation costs while it still ensures the satisfaction of the optimality criteria by 

monitoring the maximum equivalent or Tresca stress for isotropic material, or Tsai-Wu 
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indices for composite material, until the processes converged. 

The use of B-splines for boundary representation and primary moving control 

points based on a simple approximation given in Equations (3.1) and (3.2), simulates 

successfully the 'smooth' material removal mechanism of the PSM procedure. The 

boundary smoothing subroutine adopting cubic B-spline curves can produce smooth 

boundaries with least oscillatory shapes and thus avoids the notch-effect problems which 

may make the optimization process diverge as reported by Tranxuan (1998). By 

employing the design element concept (Section 3.2.3) with automatic mesh generators 

and adaptive mesh refinement, the mesh distortion problems associated with changing 

boundary can be avoided. It also reduces the computation efforts required in adaptive 

mesh refinement. 

It is found that when the required uniformity of stress distribution along the stress 

raiser profile is not met, the use of a preset minimum number of elements to be removed 

at the fine tuning stage - min{nmin(K)} as a termination criterion ensures the 

convergence of the process. The value of min{nmin(K)} influences the convergence and 

final results significantly as presented in Section 3.3.3. It is suggested it should be set as 

one (asymmetrical structures) so that the process can simulate the finest cut with the 

preset esize. 

A class of optimal profile problems, which were solved experimentally and 

explicitly by Durelli and his associates but usually overlooked by other numerical 

methods, were presented in this study. They are optimal profiles containing isotropic 

points of zero stress. It was shown in Chapters 4 and 5 that isotropic points, which always 

exist during the course of optimization in general, could lead to divergence from the 
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optimal profile. This problem was addressed by adopting a protection scheme, which 

takes into account the existence of isotropic points and transition sections. It was shown 

in Chapter 4 that results obtained by FEM simulation were further improved by the added 

feature of the protection scheme, and that the improved algorithm (Section 4.2.2) could 

handle more general classes of stress minimization problems. 

The FEM simulation was also extended to solve successfully the problem of stress 

minimization involving advanced composite laminates, employing the Tsai-Wu criterion 

and the first ply failure theory as presented in Chapter 5. The optimality criterion for 

minimizing stress concentration in advanced composite laminates proposed in Section 

5.2.2, was proved to be applicable. It should be noted that such problems cannot be easily 

studied by PSM since damage in the composite materials may occur when the operator 

files away materials from the stress raiser boundary. 

It is seen that the proposed smoothing subroutine is not limited to two-

dimensional structures, but can be extended to three-dimensional structures by taking into 

account the Z direction and employing a smooth surface function. 

It was also demonstrated that the results found by the FEM simulation showed 

further improvement from PSM solutions by Durelli and Rajaiah (1979). This is due to 

the fact that FEM simulation does not experience difficulties in the practical 

manufacturing and optimizing process of photoelastic models. For instance, using PSM to 

optimize a plate with a very small hole can be quite a challenging task. This is reflected 

in the comparatively more rounded shapes obtained by Durelli and Rajaiah (1979). 

Furthermore, it is not possible to experiment freely at will and to venture too far with cuts 

in the photoelastic model, as models cannot be 'recut' as in cases of FEM simulation. 
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6.2. Recommendations for future works 

The proposed FEM simulation algorithm has been applied to solve certain stress 

minimization problems found in isotropic material and advanced fibrous composite 

laminate structures. Further studies are however required to improve the convergence, 

and/or to extend the capability of the proposed algorithm to solve more technically 

interesting optimization problems. 

• In the proposed FEM simulation, a fixed value of esize is used throughout the 

optimization process. The effects of esize on the convergence as outlined in 

Section 3.3.4 have shown that a substantial computation cost can be saved and a 

"less optimal" result is obtained if a larger esize is used. Therefore, an 

investigation on a FEM simulation procedure, in which large esize values can be 

used first, smaller values can be used later in the fine tuning stage, should be 

carried out. Such a procedure, while keeping the computation at reasonable costs, 

still produces acceptable results. 

• As PSM, the FEM simulation only emphasizes on modifying a pre-given design 

so that the stress concentration is minimized and further weight savings can be 

obtained. However, designing a component of a given volume (weight) with stress 

minimization, or designing a component of a given stress constraint with volume 

(weight) minimization, is of more technical interest in practice. Consequently, the 

investigation on the problems (i) stress minimization subjected to volume 

(weight) constraint, or (ii) area minimization (weight) subjected to stress 

constraint by extending the proposed FEM simulation technique, is suggested for 

further studies. 
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• The proposed technique should be extended to three-dimensional structures. 

• The optimal profiles for composite laminates have been obtained employing the 

Tsai-Wu and first ply failure theories. Investigation of the effects of different 

failure theories to the convergence and final results should also be carried out. 
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Appendix A 

ANALYTICAL SOLUTION FOR DETERMINING A POINT SUCH THAT THE 

SUM OF SQUARES OF THE DISTANCES FROM IT TO A GIVEN SET OF 

NODES IS MINIMIZED 

Given a set of N nodes, i = 1,..., N. The task is to find a point Pk such that the 

sum of squares of distances from it to those points is minimized. 

(i-irnode 

1th node 

th. + (i+l)mnode 

+ 

X 

XPk Xi 

Figure A.1: Diagram of minimization of 2w >2 

i=1 
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Let 

XPk, YPk be Cartersian coordinates of Pk*, 

Xi5 Yj be Cartersian coordinates of the I
th node; and 

Dj be the distance from Pk to the i* node. 

From Figure A. 1, we have 

Di
2 = (Xi-Xpk)

2 + (Yi-Ypk)
2 (A-D 

Sum of squares of distances from Pk to the given N nodes: 

ID? =X(X, -XPk)
2 +I(Y; -YPk)

2 (A-2) 
i = l i=l i=l 

N N 

It can be seen that Y D 2 is minimized if both £(X;-X P k )
2 a n d X^Yi _ Y P ^ are 

£ i=1 i=1 

minimized simultaneously. 

Let 

G(Xrt) = £(x1-xP>)
2 (A_3) 

i=l 

G(XPk) has a minimum or maximum at XPk, if 

3G(XP ) n (A-4) 
= 0 

axP 

From Equation (A-3) and (A-4), we obtain: 

i N 

xP =-£x i 

(A-5) 
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Hence G(XPk) has a minimum or maximum at XPk determined by Equation (A-5). 

Furthermore, 

a2G(xPt)=2 (A-6) 

dXp
2 

Thus G(XPk) is concave and has a minimum at Xi^. 

Similarly, we proved that 

Y -iyv (
A-?) 

Pk_NtT j 

N 

is the condition for Y (Y; - Y p )
2 to have a minimum at YPk. 

i=l 

Hence, point Pk having Cartersian coordinates X^ Yv^ determined by Equations 

(A-5) and (A-7) satisfies the least square condition, i.e. the sum of squares of distances 

from it to the given N nodes is minimized. 
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CHECKING OPTIMAL SOLUTIONS WITH FINER MESHES FOR CASES: Sr 

OF 1.5, -1 FOR ISOTROPIC MATERIAL; AND SrOF 1.5 FOR COMPOSITE 

LAMINATES 

The optimal solutions for three cases: Srof 1.5, -1 for isotropic material; and Srof 

1.5 for composite laminates were presented in sections: 3.3.2, 4.2.1 and 5.3.2.1 

respectively. They are further checked against those with finer meshes in this appendix. 

For each case, the FEM mesh of the optimal solution produced by the programs is 

refined. Since the element sizes on the hole boundaries are very small (esize = 0.3 mm), 

only meshes in areas 1 and 2 are refined (figure 3.7). 

B.l Case Sr of 1.5 for isotropic material 

Figure B.l a and B.lb show the FEM models before and after mesh refinement. 

Figures B.2a and B.2b illustrate the Tresca stress distribution in the models before and 

after refining mesh. The results are tabulated in Table B.l. It can be seen that a larger 

number of elements were used for the refined FEM model, which results in the reduction 

of SEPC. However the magnitude of the maximum Tresca stress occurs on the boundary 

of interest still remains the same. 
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Table B.l: Case Sr of 1.5 for isotropic material 

FEM model 

Algorithm produced 

Mesh refined 

esize (mm) 

0.3 

0.3 

No. of elements 

1408 

3536 

Omax(MPa) 

17.57 

17.57 

SEPC (%) 

0.0834 

0.0474 

B.2 Case Sr of -1 for isotropic material 

Figures B.3a and B.3b show the FEM models before and after mesh refinement. 

Figures B.4a and B.4b illustrate the Tresca stress distribution in the models before and 

after refining mesh. The results are tabulated in Table B.2. As the previous case, a larger 

number of elements were used for the refined FEM model, which results in the reduction 

of SEPC. However the magnitude of the maximum Tresca stress occurs on the boundary 

of interest after mesh refinement is 0.32 % higher than that originally produced by the 

optimization program. 

Table B.2: Case Sr of -1 for isotropic material 

FEM model 

Algorithm produced 

Mesh refined 

esize (mm) 

0.3 

0.3 

No. of elements 

1168 

3290 

Gmax(MPa) 

30.613 

30.712 

SEPC (%) 

0.479 

0.215 
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B.3 Case Sr of 1.5 for composite laminates 

Figures B.5a and B.5b show the FEM models before and after mesh refinement. 

Figures B.6a and B.6b illustrate the Tsai-Wu indices distribution in the models before and 

after refining mesh. The results are tabulated in Table B.3. For SHELL99-100 layer 

structural shell elements, the calculation of SEPC is not available by ANSYS 5.3 

software. However, no errors were detected when checking the distortion of element 

shapes. The difference between the magnitudes of the maximum Tsai-Wu indices occur 

on the boundary of interest before and after mesh refinement is unnoticeable. 

Table B.3: Case Sr of 1.5 for composite laminates 

FEM model 

Algorithm produced 

Mesh refined 

esize (mm) 

0.3 

0.3 

No. of elements 

1771 

3475 

Max. Tsai-Wu 

index 

0.78613 

0.78612 

SEPC (%) 

nil 

nil 
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Figure B.l: (a) F E M mesh produced by the optimization program; 
(b) F E M mesh after mesh refinement. 
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Figure B.2: (a) Optimal Tresca stress distribution before mesh refinement; 
(b) Optimal Tresca stress distribution after mesh refinement. 
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Figure B.5: (a) F E M mesh produced by the optimization program; 
(b) F E M mesh after mesh refinement. 

148 



Appendix B 

ANSYS 5.3 
NOV 27 1996 
21:11:19 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP=1 
SUB =1 
TIME=1 
TSAIJWU (AVG] 
TOP 
DMX 
SMN 
SMX 

X 

C 
D 
x 
p 
Q 
;j 

T 

J 
K 
L 
M 
N 
r\ 
P 
P 
R 

=.288E-03 
=.308769 
=.786133 

^ i-. >< •-. * * '} 

-.16-o6"; 
« . 2 Z 
-.3 3 223 3 
= .*].S6S'< 
= .:] 

= .523333 
=.666657 
= .75 
=.833333 
=.916667 
= 2 
=1.083 
=1.167 
=1.25 
=1.333 
=1.417 

ANSYS 5.3 
NOV 27 1996 
21:14:30 
PLOT NO. 1 
AVG ELEMENT SOLUTION 
STEP=1 
SUB =1 
TTME=1 
ISA] 
TOP 
DMX 
SMN 
SMX 

;' 
n 
..• 

v 
G 
;.. 
'; 
J 
K 
L 
M 
N 
0 
P 
Q 
R 

WU (AVG] 

=.288E-03 
=.310049 
=.786121 

=.0S3iJ3 

..... x.t,, 

. J \ ~t_ 'J 'i 

=.4:666 7 
= . i; 

=. 66i>'>6? 
= .75 
=.233333 
=.916667 

=1 
=1.083 
=1.167 
=1.25 
=1.333 
=1.417 

Figure B.6: (a) Optimal Tsai-Wu index distribution before mesh refinement; 
(b) Optimal Tsai-Wu index distribution after mesh refinement. 
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