
Disabled Person's Control,
Communication and Entertainment

Aid

An Investigation of the Feasibility of Using Speech
Control and Natural Language Understanding to

Control a Manipulator and a Software Application and
Development Environment

A thesis submitted in fulfilment of the requirements for the
award of the degree of

Master of Engineering

from

Victoria University of Technology

by

Malcolm James Dow

Department of Electrical and Electronic Engineering
March, 1994

FTS THESIS
617.030285 DOW
30001002327619
I Dow, Malcolm James
Disabled person's control,
communication and
entertainment aid : an

DECLARATION

I, Malcolm James Dow, hereby'declare that this submission is m y own work and that, to

the best of m y knowledge, it contains no material previously published or written by

another person nor material which to a substantial extent has been accepted for the

award of any other degree or diploma of a university or other institute of higher learning,

except where due acknowledgment is made in the text.

Malcolm James D o w

ACKNOWLEDGMENTS

The author of this thesis acknowledges the following people and organisations for

directly or indirectly providing assistance and guidance while carrying out this research

and writing this thesis.

Mrs. Elizabeth Haywood, Mrs. Ann Pleasants and Mr. Alec Simcock, the academic

supervisors, for their patience, encouragement and constructive criticism during the

research and preparation of the thesis.

Dr Chula na Ranong, for encouraging me to begin investigating the possibilities of

speech control systems.

Mr. Ted Walker and Mr. Wally Evans, previous and present Heads of Department, for

allowing time from my teaching duties, and facilities to complete this research and thesis.

Victoria University of Technology, for the award of a Commonwealth Staff

Development Fund scholarship, which gave me a semester free of teaching to

concentrate on preparation of this thesis.

To my wife, Diana, who endured this work and the loss of my undivided attention for

many years, I express my love and gratitude.

Finally, I dedicate this work to the Lord Jesus Christ, who is my sole motivation, and

who gave me a mind with which to create for Him and to communicate His glory to

others.

PUBLICATIONS ARISING FROM THIS THESIS

[1] Dow, Malcolm J. and Stevens, Mark, "Adaptive Audio Noise Cancelling Unit",

Footscray Institute of Technology, Department of Electrical and Electronic

Engineering, unpublished project report, Footscray 1986.

[2] Dow, Malcolm J. and na Ranong, Chula, "Natural Language Interface for a Disabled

Person's Aid" in Proceedings of the Australian Colleges of Advanced Education

18th Annual Computer Conference, South Australian Institute of Technology,

Adelaide 1987.

[3] Dow, Malcolm J. and na Ranong, Chula, "An Interrupt Driven Memory Resident

Control Program for a General Purpose Speech Recognition System", Conference

on Computing Systems and Information Technology, The Institution of Engineers,

Australia, Brisbane 1987.

[4] Dow, Malcolm J., "SARLIB: A Library of SAR-10 Speech Recognition and Audio

Response Interface Routines", Technical Report 1, Computer Application Software

and Hardware Group, Department of Electrical and Electronic Engineering, Victoria

University of Technology, Footscray, Victoria 1994.

[5] Dow, Malcolm J., "A Machine Readable Dictionary for Natural Language

Understanding Systems", Technical Report 2, Computer Application Software and

ii

Hardware Group, Department of Electrical and Electronic Engineering, Victoria

University of Technology, Footscray, Victoria 1994.

[6] Dow, Malcolm J., "Affix Transforms for a Machine Readable Dictionary for Natural

Language Understanding Systems", Technical Report 3, Computer Application

Software and Hardware Group, Department of Electrical and Electronic

Engineering, Victoria University of Technology, Footscray, Victoria 1994.

[7] na Ranong, C. and Dow, M.J., "A Voice Controlled Robot", Robots in Australia's

Future Conference, Perth, Western Australia 1986.

in

ABSTRACT

The work reported in this thesis is a feasibility study of the possibilities and practical

problems of applying speech control and natural language understanding techniques to

the use of a computer by a physically disabled person. Solutions are proposed for the

overcoming of some of the difficulties and limitations of the available equipment, and

guidance given for the application of such systems to real tasks.

The use of voice control with a low cost industrial robot is described. The limitations

introduced by the speech control hardware, such as restricted vocabulary size and

artificial manner of speaking are partially overcome by software extensions to the

operating system and the application of natural language understanding techniques.

The application of voice control and audio response to common application packages

and a programming environment are explored.

Tools are developed to aid the construction of natural language understanding systems.

These include an extension to the use of an existing context-free parser generator to

enable it to handle context-sensitive grammars, and an efficient parallel parser which is

able to find all possible parses of a sentence simultaneously.

Machine readable dictionary construction is investigated, incorporating the analysis of

complex words in terms of their root forms using affix transformations, and the

iv

incorporation of semantic information using a variety of techniques, such as semantic

fields, the previously mentioned affix transforms, and object-oriented semantic trees.

The software developed for the system is written in Borland Pascal on an IBM

compatible P C , and is produced in the form of library modules and a toolkit to facilitate

its application to any desired task.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS i

PUBLICATIONS ARISING FROM THESIS iii

ABSTRACT v

TABLE OF CONTENTS vii

LIST OF FIGURES xv

LIST OF TABLES x™

CHAPTER 1 INTRODUCTION 1-1

Parti Voice Control

CHAPTER 2. VOICE CONTROL SYSTEMS 2-1

2.1 Two Approaches to Speech Recognition 2-1

2.1.1 Continuous Speech Recognition 2-1

2.1.2 Isolated Word and Phrase Recognition 2-2

2.2 Acoustic Analysis for Isolated Word Recognition 2-3

2.3 Dynamic Time Warping 2_7

2.4 Speech output 2-9

VI

2.5. The Speech Control and Audio Response System 2

2.5.1 The SAR-10 System 2

2.5.2 SAR-10 Software 2

2.5.3 SAR-10 Command Structure 2

2.5.4 Communication Between the SAR-10 and the PC 2

2.5.5 The SAR-10 Speech Recognition Function 2

2.5.6 Speech Recognition Vocabulary Table 2

2.5.7 Recognition Clusters 2

2.5.8 Speech Recognition Parameters and Flags 2

2.5.9 The SAR-10 Audio Response Function 2

2.5.10 Audio Response Parameters 2

C H A P T E R 3 SIMPLE APPLICATIONS OF T H E SAR-10 S Y S T E M

3.1 Application Program Interfacing

3.2 Word Processing

3.2.1 Entry of Text

3.2.2 Navigation Within a File and Command Sequences

3.2.3 Execution of Recognised Commands

3.2.4 Controlling Command Context

3.2.5 Results

3.2.6 Conclusions

VII

3.3 Spread Sheet 3-

3.3.1 Data Entry 3-14

3.3.2 Commands 3-14

3.3.3 Results 3-15

3.4, DOS Shell 3-15

3.5 Keyboard Macro Processor 3-16

3.6 Programming Environment 3-17

3.6.1 Turbo Pascal 3-17

3.6.2 Reusable Code 3-19

3.6.3 Vocabulary Selection and Programming Technique 3 -20

3.6.4 Programming Aids 3-23

3.7 MicroExpert Expert System Shell 3-25

3.8 Use with Mouse Based Applications 3-26

3.9 Conclusion 3"27

CHAPTER 4. APPLICATION: A VOICE CONTROLLED ROBOT 4-1

4.1 The Robot and its Controller 4-1

4.2 The Robot Control Program 4"2

4.3 The Robot Control Language 4~3

4.3.1 Vocabulary Orthogonality 4-4

4.3.2 Speaker Independence 4_7

viii

4.4 Performance of the Robot Control System 4-8

4.4.1 Operation in a Noisy Environment 4-8

4.4.2 Operation Under Stress 4-9

4.4.3 Command Verification 4-11

C H A P T E R 5. OPTIMISING T H E SAR-lffs P E R F O R M A N C E 5-1

5.1 Audio Pre-processing 5-1

5.1.1 Microphone Choice 5-1

5.1.2 Electronic Speech Processing 5-2

5.1.3 Program Control of Microphone On/Off 5-4

5.2 Vocabulary and Reference Pattern Control 5-5

5.2.1 Cluster Control 5-5

5.2.2 Retraining and Updating Reference Patterns 5-6

5.3 Parameter Control 5-7

5.4 User Interface Optimisation 5-8

C H A P T E R 6. E X P A N D I N G T H E V O C A B U L A R Y 6-1

6.1 Vocabulary Context Swapping from Disk 6-1

6.2 Determining and Controlling the Context 6-2

6.2.1 Context Determination 6-2

6.2.2 Manual Context Control 6-3

6.2.3 Automatic Context Control 6-4

IX

6.2.4 Programmed Context Control 6-5

6.2.5 Artificial Intelligence and Context Control 6-6

6.3 Storage and Transfer Considerations 6-7

C H A P T E R 7. VOICEDOS A VOICE C O N T R O L L E D O P E R A T I N G

SYSTEM EXTENSION 7-1

7.1 Methods of Extending an Operating System 7-1

7.2 The VOICEDOS Control Program 7-2

7.2.1 The VOICEDOS Command Interpreter 7-3

7.2.2 The SARLIB Interface Routines 7-4

7.2.3 Speech Control Utilities 7-5

7.3 Implementing Memory Resident Utilities 7-6

7.3.1 Requirements of Memory Resident Programs 7-6

7.3.2 Construction of Memory Resident Programs 7-7

7.4 Making VOICEDOS Utilities Memory Resident 7-7

7.4.1 The Installation Program 7-7

7.4.2 The Interrupt Service Routine 7-9

7.5 VOICEDOS Utilities 7-10

7.5.1 Setting the SAR-10 Recognition Parameters 7-11

7.5.2 Training the SAR-10 for Speech recognition 7-12

7.5.3 Testing the SAR-lffs Recognition 7-14

7.5.4 Training the SAR-10 for Audio Output 7-14

CHAPTER 8. INTEGRATING VOICE CONTROL INTO A N E W

APPLICATION PROGRAM 8-1

8.1 The SARLIB Interface Routines 8-1

8.1.1 An Example SARLIB Routine 8-2

8.1.2 SARLIB Utility Routines 8-2

8.1.3 SARLIB Error Handling 8-3

8.1.4 SARLIB Data Structures 8-3

8.2 Using SARLIB in an Application Program 8-6

Part II Natural Language Understanding

CHAPTER 9. NATURAL L A N G U A G E UNDERSTANDING SYSTEMS 9-1

9.1 Natural Language Interfaces 9-1

9.1.1 Approaches to Language Understanding Systems 9-2

9.1.2 Processes of Language Analysis 9-2

9.2 Syntax Analysis 9-4

9.3 Semantic Analysis 9-5

9.4 Discourse Analysis and Knowledge Representation 9-6

CHAPTER 10. SYNTAX ANALYSIS A N D G R A M M A R S FOR

NATURAL LANGUAGE SUBSETS 10-1

10.1 Words and Word Categories 10-1

XI

10.2 Context-free Grammars and Parsing 10-2

10.2.1 Context-free Grammars 10-2

10.2.2 Parsing 10-6

10.2.3 Recursive Descent parsing 10-8

10.2.4 LALR(l) Parsing 10-10

10.3 Augmented Transition Networks 10-14

CHAPTER 11. A NATURAL LANGUAGE PARSING SYSTEM 11-1

11.1 A Recursive Descent Parser 11-1

11.2 The LALR Compiler Generator 11-3

11.2.1 An LALR Skeleton Using Turbo Pascal 11 -4

11.3 A State Machine Parser Using LALR 11-5

11.4 A Parallel Parser 11-7

11.5 Adapting LALR for Use with Augmented Grammars 11-14

11.5.1 The Grammar for LALR 11-15

11.5.2 Grammar Augmentation Using Descriptors 11-16

11.5.3 Building an Augmented Parser 11-20

CHAPTER 12. THE DICTIONARY 12-1

12.1 The Choice of Words for the Dictionary 12-1

12.2 A Small Dictionary 12-!

12.2.1 Prefix Processing l2-3

12.2.2 Suffix Processing l2-4

xii

12.3 A Larger Dictionary 12-8

12.3.1 Word Features 12-9

12.3.2 Suffixes and Intermediate Forms 12-17

12.4 Problems with this Dictionary Design 12-25

12.5 Dictionary Enhancements 12-28

12.6 Semantic Information 12-29

C H A P T E R 13. D I C T I O N A R Y I M P L E M E N T A T I O N 13-1

13.1 The Structure of the Dictionary 13-1

13.1.1 String Storage 13-1

13.1.2 Dictionary Entry Storage 13-2

13.1.3 Static Two Character Indexing 13-5

13.1.4 Dynamic Three Character Indexing 13-11

13.2 Affix Processing 13-14

13.2.1 Affix Transformations 13-14

13.2.2 Affix Transformation Storage 13-19

13.2.3 Affix Removal 13-20

13.3 Semantic Information Storage 13-24

13.3.1 Auxiliary Verbs 13-25

13.3.2 Affix Transforms 13-25

13.3.3 Meaning Field 13-27

13.3.4 Inter-word Links 13-27

13.3.5 Semantic Reference Field 13-28

XIII

13.4 Dictionary Files 13-28

13.4.1 Dictionary File Format 13-28

13.4.2 Compiling the Dictionary 13-30

CHAPTER 14. SEMANTIC ANALYSIS A N D K N O W L E D G E

REPRESENTATION 14-1

14.1 Canonical Primitives 14-1

14.1.1 Verbs 14-1

14.1.2 Nouns and Adjectives 14-2

14.2 Object Oriented Semantic Actions and Descriptors 14-4

Part III Conclusion

CHAPTER 15. FINDINGS A N D FUTURE DIRECTIONS 15-1

15.1 Summary of the Final Results 15-1

15.2 Future Enhancements 15-3

15.3 Construction of Natural Language Programming Tools 15-6

15.4 Conclusions 15-7

BIBLIOGRAPHY

XIV

APPENDIX A: Parts of Speech for English

APPENDIX B: LALR Skeleton for a Parallel Parser

APPENDIX C: LALR Generated Parallel Parser for an English language Subset

APPENDIX D: An A T N Grammar

APPENDIX E: Augmented Grammar for an English Language Subset

APPENDIX F: Grammar for the Augmentation language

APPENDIX G: English Prefixes

APPENDIX H: English Suffixes

APPENDIX I: Suffix Transforms and their Effects

APPENDIX J: Suffix Rules and their Transforms

APPENDIX K: SARLIB Library Routines and Error Codes

XV

LIST OF FIGURES

Figure 1.1 Speech Controlled System 1-6

Figure 2.1 Speech Recognition with Feedback Between the Analysis Stages 2-2

Figure 2.2 Fourier Analysis Using Bandpass Filters and Energy Detectors 2-5

Figure 2.3 Matrix of Speech Sound Similarity Between Reference and Unknown 2-8

Figure 2.4 Total Accumulated Distance Matrix. 2-9

Figure 2.5 A Simple Speech Synthesiser 2-10

Figure2.6 SAR-10 Data and Status Ports 2-16

Figure2.7 Writing data to the SAR-10 2-17

Figure3.1 Turbo Pascal Block Skeleton 3-21

Figure 3.2 Turbo Pascal Repeat Loop Skeleton 3-22

Figure 3.3 Turbo Pascal Unit Skeleton 3-22

Figure 4.1 Robot Controller Command Language 4-2

Figure 4.2 Voice Controlled Robot Commands 4-3

Figure 4.3 Difference and Accumulated Distance Matrices 4-5

XVI

Figure 5.1 Adaptive Audio Filter and Noise Canceller 5-3

Figure 7.1 Use of the VOICEDOS Command Interpreter 7-3

Figure 7.2 VoiceDosInstall Memory Resident Routine Design 7-8

Figure 7.3 VoiceDosIsr Interrupt Service Routine Design 7-10

Figure 8.1 Recognise First Speech Reference Pattern Candidate Algorithm 8-2

Figure 10.1 Subtree for Parsing the Production A -> X Y Z 10-5

Figure 10.2 Context-free Grammar for a Subset of English 10-5

Figure 10.3 Parse Tree for the Sentence: The small tabby cat scratched the

baby with a claw 10-6

Figure 10.4 Block Diagram of a Parser 10-7

Figure 10.5 A Recursive Descent Parser 10-9

Figure 10.6 Building a State Machine Parser 10-12

Figure 10.7 Operation of an LR parser 10-12

Figure 10.8 Equivalent Context Free and RTN Grammars 10-15

Figure 10.9 An ATN for a Sentence 10~16

Figure 10.10 An ATN for a Noun Phrase 1 °-18

Figure 10.11 An ATN for a Preposition Phrase 10_19

XVII

Figure 11.1 Recursive Descent Parser State Skeleton 11-2

Figure 11.2 Error Correcting Parser 11-6

Figure 11.3 Error Correcting Parser Algorithm 11 -7

Figure 11.4 Switching Shift-Reduce Parsing Algorithm 11 -9

Figure 11.5 Context Record for a Parallel Parser 11-10

Figure 11.6 Context Switching Parallel Parser Algorithm 11-12

Figure 11.7 A Parallel Parser 11-13

Figure 11.8 Augmentation List Notation 11-18

Figure 11.9 Segmenting the Sentence ATN 11-19

Figure 11.10 Some Augmented Grammar Rules 11 -20

Figure 12.1 Word Feature Values 12-10

Figure 13.1 Dynamic Data Storage Structure for a Dictionary Entry 13-4

Figure 13.2 Linked List Dictionary Structure 13-5

Figure 13.3 Static Single Character Indexing 13 -6

Figure 13.4 Static Two Character Indexing 13-7

Figure 13.5 Number of Entries Indexed by Each Array Element 13 -9

Figure 13.6 Linked List Length Distribution 13-10

Figure 13.7 Dynamic Three Character Indexing 13-12

Figure 13.8 Data Structure to Hold Altered Words Information 13-21

Figure 13.9 Dictionary Entries 13-29

Figure 13.10 Dictionary Entries in Compact Format 13-29

XVIII

Figure 14.1 Semantic Descriptor Tree for Nouns and Adjectives 14-3

Figure 14.2 Alternative Treatment for Concrete Objects 14-4

Figure 14.3 Semantic Object Library Implementation 14-6

Figure 14.4 Register Structure for a Sample Sentence 14-7

Figure 14.5 Register Structure Augmented by Semantic Objects 14-8

XIX

LIST OF TABLES

Table 2.1 SAR-10 speech recognition and audio response specifications 2-12

Table 2.2 SAR-10 speech recognition commands 2-14

Table 2.3 SAR-10 audio response commands 2-15

Table 2.4 SAR-10 control and testing commands 2-15

Table 12.1 Prefixes Used to Modify Root Words in the Small Dictionary 12-4

Table 12.2 Suffixes Used to Modify Root Words in the Small Dictionary 12-7

Table 12.3 Word Derivation Table - Part 1 12-18

Table 12.4 Word Derivation Table - Part 2 12-18

Table 12.5 Word Derivation Table - Part 3 12-19

Table 12.6 Word Derivation Table - Part 4 12-20

Table 12.7 Complex Versus Simple Transformation Rules 12-21

Table 12.8 Singular Transformation Rules 12-24

Table 13.1 Memory Occupied by Word Feature Sets 13-3

Table 13.2 List Length Data for Static 2-Character Indexing 13-13

Table 13.3 Effect of Maximum List Length on Actual List Length Distribution 13-14

Table 13.4 The Suffix +ion and Some of its Variants 13-16

Table 13.5 The Suffix +ar and Some of its Variants 13-17

xx

Table 13.6 The Suffix +ary and Some of its Variants 13-18

Table 13.7 The Suffix + meter and Some of its Variants 13-19

Table 13.8 Examples of the +ary Transformation 13-26

Table 13.9 Example of the +smanship Transformation 13-26

Table 13.10 Examples of the + meter Transformation 13-27

XXI

1. INTRODUCTION

The benefits of being able to interact with a computer via spoken language are obvious

and extremely attractive, speech being the most natural means of communication for

human beings. Initial language skills are acquired painlessly by most people, and

communication is carried on with little apparent effort, in contrast to the difficulty

experienced in learning other languages later in life. The acquisition of non-verbal

language skills is also difficult, as evidenced by the labour involved in learning to type or

use Morse code, or the development of proficiency in computer languages. Thus, it is

unfortunate that the primary means of communication with computers is limited to the

less natural skills of reading and typing rather than listening and speaking.

There seem, then, to be considerable advantages in producing machines which can

respond reliably to the means of communication most comfortable for humans, rather

than humans being required to accommodate themselves to the artificial requirements of

machines. However, the optimism of early workers in the area of natural language

communication with computers was soon damped when the true magnitude of the task

was realised. Initial aims of producing fluent understanding by machine of human

language, either written or spoken, gave way to the more modest goal of achieving

halting communication using a small subset of a natural language [MARK93].

Linguistic theory, advanced in the description of human communication [ROBI79]

[ROBI80], had not until then, come up against the requirements of precision,

completeness and freedom from ambiguity needed for implementation of workable

automatic systems. The sheer computing power needed to carry out tasks that the human

brain seems to take in its stride was severely underestimated. In particular, the limited

nature of computing equipment - finite storage capacity, low speed of processing and

retrieval from storage - proved to be major handicaps when attempting to cope with

1-1

language structures that are very large - possibly infinite - in the number of possible

constructions and at the same time frequently imprecise and ambiguous in usage.

Recent natural language research has concentrated on achieving far more modest goals

than the early dreams of automatic translation of speech from one language to another in

real time. Even the more limited aim of translation of written language proved to be

relatively impractical, without having to cope with the vagaries of different speakers'

voice characteristics, speaking rates, pronunciation and dialect.

Progress has been made in speech recognition hardware that copes with a limited

vocabulary and with isolated words and phrases rather than continuous speech. Such

equipment, initially built using discrete electronic devices, is now produced economically

using advanced digital signal processing microprocessors. The reverse process, that of

producing speech from textual information, while not as difficult as the recognition of

speech, can also be carried out using equipment of similar complexity. A complete voice

control system ideally provides facilities for speech output as well as speech input.

A SAR-10 speech recognition and audio response system was acquired by Footscray

Institute of Technology (now Victoria University of Technology) Department of

Electrical and Electronic Engineering in 1986. It was decided to explore its potential by

applying it to a task where its limited capabilities could be of real benefit - the use of

voice control as an aid to physically disabled people, using only low-cost, easily

obtainable equipment. Even with a limited vocabulary and a slow response time, the

system could assist someone otherwise forced to use a far less convenient means to

control and communicate with their environment.

A simple speech controlled computer and robot system was constructed, and its

limitations soon became apparent. The project then became one of seeking means of

overcoming these limitations, and of improving its performance and general applicability.

1-2

The work branched down several paths; real-time control of manipulators, natural

language understanding, automatic parser generation, control of environmental context,

operating systems and user interfaces for effective voice control, and development of

specialised software tools to assist in producing code for natural language understanding

systems. Chapters 5 to 14 describe this work.

The aim was to eliminate use of a keyboard and screen entirely, except for maintenance

and modification of the software, unless even these functions could be carried out by

voice control. The traditional arrangement of the personal computer could be replaced by

a physical device far more amenable to the needs and environment of the users it serves.

The logical extension of this is to compile the entire system onto silicon and use it as an

embedded controller in the devices presently controlled by separate computer equipment.

The task was approached in two phases. First, an investigation was made into obtaining

the maximum possible performance out of the limited facilities provided by the speech

interface. The second phase involved extending the system by incorporating a natural

language understanding capability.

The overall goal of the research was to determine the feasibility of using a voice

controlled system to aid a physically disabled person. The simplest way was to use voice

to control existing computer applications, such as word processing, spread sheet

operation, operating system tasks, programming, and the use of an expert system. This

work shows that these applications are amenable to speech control, although proving

rather restrictive to an able bodied person who has the option of typing or using a

mouse. This work is described in Chapter 3.

For speech control to be of maximum benefit to a disabled person in the ordinary tasks of

living, it must carry out some of the physical tasks otherwise denied to the user, such as

turning the pages of a book or handling a cup of tea. To this end, the speech recognition

1-3

hardware and software were used in 1986 to control a small industrial robot arm, a

Rhino educational robot, as described in Chapter 4, and experiments carried out to

determine the possibilities and problems inherent in such an arrangement. It was soon

discovered that given the state of the art then, this was a risky process for the disabled

user. However, the identification of these dangers, and of possible approaches to their

solution, are considered to be a useful outcome of this work.

The use of a robot in such a way proved not only dangerous but also tedious.

Consequently, a further goal was defined: to expand the facilities provided and improve

the performance of the system using suitable software.

Various methods of improving the performance of the speech system were tried, such as

pre-processing of the speech signal, clustering of small vocabularies into distinct groups

and enabling only those groups relevant to a particular context, and manipulation of the

speech control parameters under program control. The control of vocabulary clusters

proved to be particularly successful, greatly enhancing the reliability of command

recognition, as shown in Chapter 5.

Enhancement of the speech control system was carried out by the development of

operating system extensions in the form of the VOICEDOS memory resident utilities to

control the system, and construction of the SARLIB library of speech control and audio

response routines, as described in Chapters 6 and 7. The memory resident utilities enable

the speech system to control existing application programs for which the source code is

not available, since no modifications to the application program are needed. O n the other

hand, the library routines can be incorporated into new applications, and allow the full

range of speech control and audio response capabilities of the speech system to be

accessed.

1-4

The second phase of the research involved the development of a natural language

understanding facility. Such a capability removes some of the artificiality of adapting

one's speech to a limited vocabulary isolated word and phrase system. To this end, a

suitable grammar, a parallel parser, and a dictionary system were produced. With these, a

flexible natural language understanding system was constructed, as described in Chapters

9 to 14. It can be used with the speech control system, or as a text based system using

keyboard control. The full potential of this part of the work will be especially realised

when a better speech recognition system becomes available.

Apart from investigating the feasibility of speech control for disabled users, and the

production of the practical systems for speech control and natural language

understanding, an important spinoff from this research has been the construction of

powerful tools to support the development of such systems. These include the memory

resident operating system extensions, and the speech control and audio response library

routines. In addition, methods and tools for rapid and automatic production of natural

language parsers have been produced. These greatly facilitate the investigation of such

techniques, and will form the core of the author's future research in this area.

Figure 1.1 summarises the system developed in this project.

1-5

Microphone!

CH* Speech
; Preprocessor

Loudspeaker j I
Speech Recognition

: and Audio
Response Unit

Speech Interface

V H W * W M ^ M M M H M M

Control Computer
and Natural
Language

Understander

BE Robot Control
Unit

Controlled
Device 1

Controlled
Device n

Robot

Figure IA Speech Controlled System

1-6

Parti

Voice Control

2. THE VOICE CONTROL SYSTEM

This chapter describes two methods of speech recognition, and an implementation of one

of these in a particular speech control system.

2.1 Two Approaches to Speech Recognition

The two approaches to achieving a useful speech recognition system are the recognition

of continuous speech, or, as used in this project, isolated word or phrase recognition.

2.1.1 Continuous Speech Recognition

Continuous speech recognition is achievable with today's very fast processing systems,

but is still a formidable and expensive task. In normal speech a person's pronunciation is

often careless, speaker differences are significant, speaking rates vary greatly, and co-

articulation effects (the way the meaning of a sound depends upon the sounds preceding

and following it) exist within and between words. In addition, the importance of a word

within a sentence affects its intonation and stress, and has an affect on h o w it is

articulated. W h e n listening to a speaker, it is extremely difficult to detect the word

boundaries. Looking for periods of silence is not a reliable guide; sophisticated, and even

intuitive, knowledge is required. This knowledge is difficult to codify into an automatic

recognition algorithm. Any form of reliable continuous recognition requires the

simultaneous application of syntactic and semantic analysis. If the component words of

an utterance were already known, the syntactic and semantic information they contain

could be used to aid the further recognition of words in the speech stream. But as this

word extraction is what is being attempted, a circular process is involved. It becomes

clear that a system of analysis based on only partially determined knowledge, and

2-1

complex feedback paths, is involved [AINS76]. The recognition becomes a recursive

process, as illustrated in Figure 2.1.

Feedback of
semantic
information
to guide
syntactic
and acoustic
analysis

Semantic information output

1
Semantic Analyser

a n II II i i

Syntactic Analyser

t L I i 1 \

Acoustic Analyser

I
Speech input

Feedback of
syntactic
information
to guide
acoustic
analysis

Figure 2.1 Speech recognition with feedback

between the analysis stages.

2.1.2 Isolated Word and Phrase Recognition

One simplification that makes a recognition system achievable using relatively simple,

inexpensive equipment is to limit the recognition task to a fixed vocabulary of isolated

words or phrases. The term isolated here means that each word or phrase is separated by

a distinct period of silence long enough to be detected and to allow the recognition

process to be completed before the next utterance arrives.

2-2

Most isolated word recognition systems are based on an acoustic analyser followed by

some form of pattern classifier. The acoustic analyser attempts to extract from the input

speech certain features which are used to form unique identifiers capable of

distinguishing that utterance from all other utterances received. With the vagaries of

human spoken languages, and the variations and inconsistencies between different

peoples' voices and pronunciation, this is, at present, impossible unless severe restrictions

are placed on the total system. These restrictions may take the form of a reduced

vocabulary, a limitation on the number of users, or even a restriction on use of the system

to one particular person for w h o m it has been trained. Limitations on the way the user

may talk are also likely.

Since a major goal of the use of speech recognition systems is to make communication

between humans and machines more natural and efficient, it is clear that any such

restrictions are highly undesirable. Unfortunately, given the present state of the art of

automatic speech recognition, they are unavoidable, especially in low cost systems. The

aim of the present project is, working within the limitations of the available equipment, to

achieve a user interface to a computer which has maximum usability while hiding the

restrictions as much as possible.

2.2 Acoustic Analysis for Isolated Word Recognition

Fourier analysis of human speech [AINS76] reveals that voiced sounds, such as vowels

and nasals, are produced by a train of pulses at a fundamental frequency corresponding to

the vibration of the larynx. The spectrum of this oscillation is shaped by two major

formants (resonances in the frequency response), the frequencies of which are largely

controlled by the position of the tongue and the shape of the mouth. Other formants and

anti-formants (absence of resonance) can also be significant for the production of certain

2-3

sounds. Non-voiced sounds, such as fricatives, are generated by the turbulent flow of air

over a constricted larynx, rather than a more periodic vibration of the larynx.

Thus, important information for the identification of the component sounds of a speech

pattern is found in the fundamental frequency of the larynx vibration, the frequencies of

the major formant peaks and nulls, and the relative sound energy contained in the various

frequency bands. This information can be used to identify the component sounds, or

phonemes, in an utterance.

Phonemes are radically affected by the sounds preceding and following them,

complicating the recognition process. However, even with this simplified approach it is

still possible to achieve low cost automatic recognition. Much of the complexity is then

moved into the processing phase following the extraction of sound features.

The usual method of quantifying the sound features mentioned above is to slice the

incoming speech signal into short time periods and to perform a Fourier analysis on each

sample. This gives a summary of the principal features as they vary with time. This

process is carried out relatively simply, efficiently and inexpensively using Digital Signal

Processing (DSP) microprocessors synthesising a bank of bandpass filters followed by

peak detectors to determine the energy content in each frequency band, as shown in

Figure 2.2.

A more direct method divides the signal into two or more frequency bands using low-

pass, band-pass and high-pass filters, then counts the zero crossings to determine the

frequencies of the fundamental and the formants, and uses detectors to measure the

energy content in each band. A workable model of just such a simple system was

developed by Davis, Biddulph and Balashek in 1952, reported by Ainsworth [ATNS76],

2-4

In practice, feature extraction needs to be considerably more complex than these simple

representations indicate. Preprocessing, such as filtering, noise cancelling and gating,

thresholding and logarithmic compression, to enhance the signal to noise ratio of the

speech, is needed to increase the dynamic range handling ability of the system, and

reduce the effect of interfering signals or redundant components of the wanted signal. In

addition, some method of extraction of features related to unvoiced components of the

speech might be included.

Speech
Samples

i

fr

fr

fr

i

i

i

1 »

Bandpass Fitter 1

Bandpass Filter 2

Bandpass Fitter 3

Bandpass Filter A

m

•

•

Bandpass Filter n

Detector 1

Detector 2

Detector 3

Detector 4

•

•

Detectorn

•::•£•••;.
e

:.::;::-a
t

r
;:,,:..e'x:.'

T
a
b
I : •:•:

,x,«x::

Figure 2.2 Fourier analysis using bandpass

filters and energy detectors

Acoustic analysis results in a table of speech features against time. Once the system is

trained by speaking into it all of the utterances to be recognised, these features, or a

suitable statistical summary of them, are used as templates against which future

utterances are compared. The difference between the stored features and input speech

features is quantified to give a measure of h o w well the input matches any of the trained

2-5

words. If a close enough match is achieved then the input utterance is said to be

recognised, and it is assumed to be the same as the trained word against which it was

measured. What constitutes a close enough match is discussed later.

The key to successful isolated word recognition is finding a set of words or phrases (a

vocabulary) in which each entry is as different as possible. If every entry matches a

different template, then the vocabulary possesses what I have chosen to call

orthogonality (analogous to the orthogonality of vector space basis vectors in

mathematics). Orthogonality will be given a more complete definition in Chapter 4, when

the robot control language is described.

The method of measuring the difference between input utterances and trained utterances

is the source of a number of difficulties, which will be discussed when practical

application of the SAR-10 system is considered in Chapters 3 and 4.

Analysis of the features of incoming speech during the training phase provides

information useful in adapting the preprocessing parameters so that the signal to noise

ratio of the input is improved. Also, once the system has been trained and is in use, an

adaptive process based on the features extracted from the new speech patterns enables

the system to adapt to a different speaker from the one w h o initially trained the system.

Additionally, updating of the trained templates and processing parameters is feasible

using the new information. These techniques also assist in coping with a changing

external environment and variations in a speaker's voice due to fatigue and other factors.

This adaption has been tested under operator control, and improved the performance of

recognition to some extent. Automatic adaption will be explored in a future version.

2-6

2.3 Dynamic Time Warping

To be useful a speech recognition system needs to be tolerant of reasonable variation in a

user's speaking rate. One problem encountered with template matching schemes is that of

normalising each utterance to the same length in the time domain.

One approach used is a dynamic programming algorithm called dynamic time warping,

described by Smith and Sambur [SMIT80]. This is used in the SAR-10 Speech

Recognition and Audio Response system. A simplified explanation of how it functions,

adapted from Smith and Sambur, will help later when the problems produced by the fact

that dynamic time warping can result in very different utterances producing similar or

identical templates are considered.

Utterances are divided into fixed length time frames and analysed to extract measurable

features on which to base comparisons. A matrix method allows comparison between

reference templates with different numbers of time frames. As an example, suppose that

the input utterance consisting of the word "four" has been analysed to have four time

frames, representing (in a purely hypothetical case) the phonemes F O R R . Further,

suppose that the reference pattern is stored as a five frame sequence representing the

phonemes F F O O R . To produce a measure of the distance between these two patterns, a

matrix is set up whose entries represent DIST(i,j), the difference between the reference

at time i and the utterance at time j, as determined by some suitable measure from the

extracted acoustic features of each pattern. A n example of such a matrix can be seen in

Figure 2.3.

The shortest path from bottom-left to top-right of this matrix is a measure of the

correlation between the reference utterance and the unknown utterance. The optimal path

2-7

to a point (i, j) in this matrix must pass through one of the points (i-1, j), (i-1, j-1), or

(i, j-1). Therefore the minimum accumulated distance to point (i, j) is given by:

D(i j) = DIST(i,j) + Min{ D(i-1 j), D(i-l,j-l), D(i, j-1)}

Reference

R

0

0

F

F

U

9

8

8

2

1

F
nknown

6

1

1

8

7

0

2

8

8

7

7

R

2

6

6

7-

3

R
— •

Figure 2.3 Matrix of speech sound similarity

between reference and unknown

These values are shown in the matrix in Figure 2.4. The dynamic programming algorithm

recursively determines the minimum path length for the unknown against each reference

in the vocabulary. The best acceptable match is chosen.

2-8

R

0
1

o

F
Reference

F

11

28

19

11 7-

5 12

11 4
*

7
3
4_ T
1
F

nknown

9

7

12

14

7

• 9

18

18

12

3

O R R

1

Figure 2.4 Total accumulated distance matrix.

2.4 S p e e c h Output

L o w cost speech output systems are approached in two ways, depending on the voice

quality required and the allowed cost of the system. Inexpensive output systems use

commercially available speech synthesis chips initially developed for the electronic games

industry for educational toys such as spelling teachers and talking calculators.

These low cost speech synthesis chips are based on a simple digital to analogue converter

and amplifier reproducing a string of phonemes constructed from stored digital patterns

in a read only memory. Words are generated by outputting the phonemes in a suitable

order using a simple address sequence generator or store. The output of such chips is

typically characterised by a mechanical tonality and poor pronunciation, making the result

difficult to understand and unpleasant to listen to for any length of time. The design of

such a system is shown in Figure 2.5.

2-9

Addn

1
3ss Generator

;i;..:
Phoneme Store

t
Phoneme Select

Clock

D/A Converter

< Trigger Utterance

— Amp^> » Output

< Word Select

Figure 2.5 A simple speech synthesiser

A n alternative approach, used in the SAR-10, is to store sampled human speech in the

form of words or phrases. The stored speech can be output as required by addressing the

start of the word or phrase and then incrementing through the addresses, passing the

digital samples to a digital to analogue converter and amplifier. The resulting speech

quality is as high as the number of bits stored per sample allows. The sound and

pronunciation are completely natural, being those of the speaker who trained the system.

Data compression saves storage, which can become a limitation if a large vocabulary is

required.

The major trade-off between speech synthesis and speech recording is in the amount of

memory required. A synthesiser only needs to store a relatively small number of

phonemes, used over and over to construct a very large vocabulary. A speech recording

device must store its entire vocabulary intact. Even if compressed, this represents a large

amount of data. If the trained words are well chosen, combining the basic vocabulary

items in different ways allows generation of a larger repertoire of phrases and sentences.

2-10

2.5 T h e Speech Control and Audio Response System

The hardware to implement the speech recognition and audio response interface is

provided by a SAR-10 Speech Control and Audio Response System, manufactured by the

N E C Corporation. The SAR-10 is based on an N E C D S P chipset and is produced as an

add on card for the I B M Personal Computer.

2.5.1 The SAR-10 System

The SAR-10 speech recognition facility is based on a filter bank. Speech energy in a

number of frequency bands is measured and compared with templates previously stored

during a training phase. Templates are normalised using dynamic time warping, and

template matching is performed using the dynamic programming algorithm.

High quality voice output is achieved in the audio response mode by storing the

operator's voice in memory, using Adaptive Differential Pulse Code Modulation

(A D P C M) [CARL86]. This ensures maximum intelligibility of speech output. Speech

input can be from a microphone or a tape recorder, selected by setting a jumper on the

card. The output is suitable for driving a 4 or 8 ohm loudspeaker to a level of 1 watt of

audio power. Input and output connectors and an output level adjusting potentiometer

are available on a panel at the rear of the card, while microphone and tape input levels

can be adjusted on the card itself. The SAR-10 system appears as a pair of ports to the

personal computer. The status and data port addresses and the interrupt level used are

configured by setting a DIP switch and a jumper on the card.

Sufficient random access memory is provided on the SAR-10 card to hold up to 250

trained voice recognition templates and audio response patterns for up to 87 seconds of

2-11

speech. It has a facility to upload and download templates and patterns to the personal

computer.

The specifications of the SAR-10 Speech Recognition and Audio Response System

[NEC85] are shown in Table 2.1.

Speech Recognition Specifications:

Recognition vocabulary size: Up to 250 words or phrases.
Recognition accuracy: Over 98%.
Reject threshold: User programmable.
Recognition clusters: Up to 250 clusters.
Voice control capability: Microphone on/off, Change cluster.
Utterance duration: 0.2 to 2 seconds.
Pause between words: Minimum 250 milliseconds.
Recognition response time: Within 0.25 to 0.5 seconds.
Pattern matching: Dynamic programming matching.
Number of training passes: User selectable.
Input audio bandwidth: 200 to 5000 Hz.

Audio Response Specifications:

Coding method: ADPCM coding with compression coding for silent duration.
Bit rate: 24/28/32 kbps, selectable.
Response vocabulary size: Up to 250 words or phrases.
Total response duration:

Maximum of 87 seconds at 24 kbps.
Maximum of 74 seconds at 28 kbps.
Maximum of 65 seconds at 32 kbps.

Output audio bandwidth: 250 to 4000 Hz.

Table 2.1 SAR-10 Speech Recognition and Audio Response

Specifications

2.5.2 SAR-10 Software

Programs provided with the SAR-10 card enable the system to be used as a stand alone

speech recognition system without requiring any modifications to the user's applications.

There is a utility program named VOICE PLUS for training, recognition and audio

2-12

response, a transparent keyboard handler program, and programs for installation and

configuration.

The transparent handler program is a Terminate and Stay Resident [TSR] device driver

which accepts recognised voice commands from the SAR-10 card under interrupt control

and outputs pre-programmed ASCII strings to the application program as if they came

from the keyboard. Using this handler program any application program becomes

controllable by voice command. The V O I C E P L U S utility program is used to train the

SAR-10 to recognise the required voice utterances and provide the appropriate ASCII

strings for each recognised utterance to emulate the appropriate keyboard responses. The

transparent handler can then be activated, and the application program run.

While this is simple and convenient, it is limited to emulating the user interface provided

by the application program. It is not ideal for use under exclusive voice control. If

optimal voice control is desired, then it is necessary to control the speech recognition and

audio response hardware directly from the application program. Such an approach is

made possible by using SAR-10 commands.

2.5.3 SAR-10 Command Structure

The SAR-10 provides a set of commands for controlling all aspects of its operation.

These can be called by user written application programs, and are summarised in Tables

2.2, 2.3 and 2.4.

These commands provide all of the facilities needed to gain complete control over the

higher level aspects of the speech recognition and audio response processes, such as

administration of sets of vocabularies and reference patterns, switching from one

application environment to another, and tailoring the system for different users. Some

2-13

optimisation of lower level recognition performance can also be carried out by control of

parameters such as the reject threshold. However the basic operation of the SAR-10 is

fixed and not accessible to user manipulation.

The implementation of these commands into a library of functions suitable for calling

from an application program is described in Chapter 8.

Train a new reference pattern
Update a specified reference pattern
Recognise best speech candidate
Recognise best and next best speech candidate
Start recognition mode
Change recognition cluster
Change recognition reject threshold
Inquire about recognition reject threshold
Delete all reference patterns
Delete reference pattem(s) of a specified word
Delete last trained reference pattern of a specified word
Delete specified reference pattern of a specified word
Upload vocabulary table and reference patterns to PC (ASCII format)
Upload vocabulary table and reference patterns to PC (binary format)
Download vocabulary table and reference patterns from PC (ASCII format)
Download vocabulary table and reference patterns from PC (binary format)
Download vocabulary pattern from PC
Change recognition parameters
Inquire about recognition parameters
Change recognition flags
Inquire about recognition flags
Inquire about recognition status

Table 2.2 S A R - 1 0 Speech Recognition C o m m a n d s

2-14

Digitise input speech
Record input speech
Output audio response word(s)
Output audio response macro(s)
Define an audio response macro
Inquire about an audio response macro
Delete all audio response macro definitions
Delete all speech patterns
Delete speech patterns for a specified word
Upload speech patterns to the PC (ASCII format)
Upload speech patterns to the PC (binary format)
Download speech patterns to the PC (ASCII format)
Download speech patterns to the PC (binary format)
Change audio response parameters
Inquire about audio response parameters
Inquire about audio response status

Table 2.3 SAR-10 Audio Response C o m m a n d s

Inquire about error status
Change format of response from SAR-10 to PC
Inquire about format of response from SAR-10 to PC
Change memory contents
Dump memory data
Test work memory
Test recognition reference pattern memory
Test audio response speech pattern memory
Initialise the SAR-10
Cancel command execution
Pause in data transmission to PC
Beep the SAR-10

Table 2.4 SAR-10 Control and Testing C o m m a n d s

2.5.4 Communication Between the SAR-10 and the PC

• Ports: The SAR-10 appears to the personal computer as two 8 bit ports, a status

port and a data port. Both of these ports can be read from and written to in order to

send data and commands to the SAR-10 and receive back data and status

2-15

information. The status port provides the signals needed for handshaking. The data

and status ports can be seen in Figure 2.6.

DATA
(read/write)

STATUS
(read)

STATUS
(write)

MSB

D7

MSB

INT

BitO R

Bit1 T

Bit 2 A

Bit 3-5

Bit6 S

Bit 7 »

MSB

X

BitO ir

D6

SAR
RDY

XRDY

XRDY

RRDY

ARRDY

IT

X

ITEN

D5 D4 D3 D2 D1

0 0 0 AR
RDY

TX
RDY

0: SAR-10 data is ready.
1: Not ready.
0: PC can transmit data to SAR-10.
1: Not ready.
0: SAR-10 ready to accept audio response
1: Not ready.
0: These bits 0 if SAR-10 installed in PC.
1: SAR-10 is not installed.
0: SAR-10 is ready to use.
1: Not ready (SAR-10 hardware error).
0: SAR-10 interrupt disabled.
1: SAR-10 interrupt enabled.

X X X X X

DO

"RX"
RDY

command.

INTEN

0: Disables SAR-10 interrupt.
1: Enables SAR-10 interrupt.

Figure 2.6 SAR-10 Data and Status Ports.

Communication Protocol The communication protocol which used to write data to

the SAR-10 is shown in Figure 2.7. Reading data from the SAR-10 is performed

similarly.

2-16

Read Status

Write Data

Figure 2.7 Writing data to the SAR-10.

Data may also be transferred from the SAR-10 to the P C under interrupt control. If the

SAR-10 interrupt is enabled, the SAR-10 turns on the interrupt signal when output data

is ready. After the P C reads the data, the SAR-10 turns the interrupt signal off again.

2.5.5 The SAR-10 Speech Recognition Function

Before the SAR-10 is able to recognise its vocabulary, it must be trained. During the

training phase speech inputs are digitised and stored, and features of each utterance,

called reference patterns, are extracted to form a template by which the utterance is

2-17

described. These templates are stored along with user supplied ASCII string descriptions

to form a vocabulary table.

When the SAR-10 is recognising speech, the input is digitised and its features extracted.

Then the reference patterns are compared with the trained reference patterns to find a

suitable match. The vocabulary table entry of the pattern which gives the lowest

recognition score, a measure of the distance between two patterns, is sent to the PC. The

application program can then accept this as a suitable match, if its recognition score is

low enough, or reject it.

At least one recognition pattern is needed for each vocabulary table entry. When it is

trained with more than one speaker the SAR-10 achieves considerable speaker

independence. The training can be carried out by a number of different people, and the

SAR-10 will attempt to recognise them all. Even if only one person is to use the SAR-10,

it is desirable to train each utterance several times to allow for variations of the user's

voice.

There is a compromise inherent in this process. As the SAR-10 stores 250 reference

patterns, if N words are to be trained then each word can be trained up to 250/N times.

More training passes results in a smaller possible vocabulary. Another undesired result is

the effect of increasing the number of reference patterns which are potential matches for

each utterance. This decreases the recognition accuracy of the SAR-10. This problem will

be considered later.

2.5.6 Speech Recognition Vocabulary Table

The SAR-10's speech recognition vocabulary tables contain, for each word, the following

items of information:

2-18

• Training message: This is a message describing the utterance to be trained. It is

written on the screen as a prompt so that the operator can know the content of the

current vocabulary item being trained.

• Recognition output code: A character string or hexadecimal code which, when the

SAR-10 is being used in keyboard transparent mode, is to be sent to the application

program. It can consist of up to 32 of any of the ASCII character set.

• Recognition cluster: Vocabulary table entries can be grouped together into what are

called clusters. Each cluster can be enabled or disabled under program control. This is

useful for overcoming some of the limitations of the SAR-10's recognition

performance, as will be described in Chapters 5 and 6. U p to 250 clusters are

possible.

• Reject threshold: This is a value between 0 and 250 for the recognition score above

which the utterance will be rejected as unrecognised.

• Voice control code: Control codes can be used to control certain functions of the

SAR-10 by voice command. These include the ability to set, reset and change clusters

and turn the microphone on and off.

2.5.7 Recognition Clusters

Speech recognition vocabulary entries can be grouped into clusters. The only entries

checked against an input speech pattern during recognition are those in enabled clusters.

It is desirable for recognition accuracy to have as few recognition targets as possible, so

unused clusters can be switched off when not required, enabling a small number of active

entries to serve for a larger actual vocabulary.

As clusters can be enabled and disabled under voice control as well as by program

control, the clustering facility is advantageous even when using the SAR-10 in

transparent keyboard mode with an unmodified application program. Appropriate voice

2-19

commands must be provided to switch in and out the required clusters. Cluster zero is

always active, regardless of which other clusters are being used. This means that by

putting the most fundamental and frequently needed commands into cluster zero the user

can avoid the possibility of locking the system out completely. U p to six clusters can be

selected at any time.

2.5.8 Speech Recognition Parameters and Flags

The SAR-10 has a number of parameters and flags which can be set to adjust recognition

accuracy in different conditions and to control the functions of the card in speech

recognition mode. They are as follows:

• T H O - W o r d beginning point detection threshold: This is the level of input signal

at which the SAR-10 decides that a new word has begun and starts digitising.

• T H I - W o r d boundary detection point threshold: This is the level of input signal

below which the SAR-10 decides that the end of an utterance has been reached and

ceases digitising. T H O and T H I must be carefully selected to suit the prevailing noise

conditions. The recommended values are given in Section 7.5.1.

• T H U - Matching score threshold for update: W h e n the SAR-10 is being trained in

update mode (i.e. existing trained patterns are being improved rather than new

patterns created), if the matching recognition score between the incoming speech and

the old reference patterns already trained is greater than T H U , the pattern which gives

the worst match is overwritten by the incoming pattern.

• L F - Self-learning flag: This flag turns the self-learning function on or off. If self-

learning is on, then the SAR-10 automatically updates reference patterns during

recognition. The reference pattern is renewed by the incoming speech if its

2-20

recognition score is less than the self-learning threshold (THL). A small value of T H L

is recommended (10-20) to avoid too many cases of existing patterns with low

recognition scores being overwritten by new patterns with larger recognition scores.

• T H L - Matching score threshold for self-learning: The recognition threshold

value below which new reference patterns will replace old reference patterns when

the self-learning function is turned on.

• V C F - Voice control flag: This flag enables or disables the voice control function.

• R J B Z F - Reject buzzer flag for recognition: This flag enables or disables the reject

buzzer. This buzzer sounds whenever speech input is rejected as unrecognisable.

• E C H B F - Echo back flag: This flag enables or disables the echo back function. If

this function is enabled then whenever the SAR-10 recognises an utterance it uses the

audio response function to output an audio response. The response chosen is the

vocabulary entry in the audio response vocabulary table which has the same entry

number as the recognised speech recognition vocabulary table entry. This is useful

while training to verify correct recognition while under voice control. If the echo back

flag is disabled recognition proceeds without any automatic audio response.

2.5.9 The SAR-10 Audio Response Function

The SAR-10 is capable of recording speech, music, or any other sound, up to a maximum

duration of 87 seconds, depending on the selected sampling rate. This total duration can

be divided up into a maximum of 250 separate parts, each of varying length depending

upon requirements. Once the sound has been recorded in the SAR-10 it can be output

again, either in individual parts, or in combinations of parts. These are called response

macros.

Recording of speech or other sounds can be carried out using two different commands,

"digitise" or "record". The digitise command causes the SAR-10 to start recording when

2-21

speech is detected. When a silence of more than 0.5 to 2.0 seconds (set by the T E N D

parameter) is detected, recording stops. The record command records speech until it is

commanded to stop. This command does not detect pauses in sentences.

Digitised speech is associated with a prompt string and an entry number in an audio

response vocabulary table, similar to that used for speech recognition.

2.5.10 Audio Response Parameters

• FS - Sampling frequency for digitising/recording: The audio response sampling

frequency can be set to 6, 7 or 8 kHz. The higher sampling frequency gives better

audio output quality but shorter total response duration.

• T E N D - End detection time for digitising: 0.5 to 2.0 seconds silence duration can

be selected as follows:

• T E N D : 1 Time: 0.5 seconds

• T E N D : 2 Time: 1.0 seconds

• T E N D : 3 Time: 1.5 seconds

• T E N D : 4 Time: 2.0 seconds

It is recommended that the shorter detection times be used for short words or phrases

and longer detection times for longer sentences.

2-22

3. SIMPLE APPLICATIONS OF THE SAR-10 SYSTEM

To investigate the practicalities of using the SAR-10 in transparent mode, its use with six

popular application programs and utilities was explored. These were a word processor, a

spreadsheet, a D O S shell, a memory resident keyboard macro processor, a programming

environment, and an expert system shell. Most of these would be useful to the majority

of disabled computer users, but the investigation into a voice controlled programming

environment was carried out to illustrate the potential for this technology to open up, for

a disabled person, the possibility of a career in programming.

3.1 Application Program Interfacing

The simplest way to use the SAR-10 Speech Recognition and Audio Response system is

through its transparent keyboard handler. This can be used with any existing application

program which expects its user input to come from the keyboard of the PC. Examples of

such applications which could benefit from this approach are word processors,

spreadsheets, database systems, C A D / C A M packages, educational programs,

programming environments, network control systems, electronic mail and other

communications programs.

The major advantage of using a transparent keyboard handler is not needing access to the

source code of the application program. This means that commercial packages, for which

source code is not generally available, can be used in association with voice control.

Until practical and efficient voice control becomes commonplace, this is likely to be the

most frequent mode of use of such systems. The alternative is that all applications will

have to be written for a particular voice control system, or source code be supplied so

that voice control facilities can be incorporated and the application recompiled. Neither

option is particularly attractive.

3-1

One solution is to develop a standard protocol for the interaction between voice control

systems and application programs, as has been done for video controllers, M I D I (Musical

Instrument Digital Interface) interfaces [DEFU89], and other computer peripherals. A

good example of this is the Windows environment, where standard device drivers are

provided for peripherals independently of the particular application program being used.

At the present experimental stage of voice control systems this is hardly a practical

proposition, so most users will need to opt for transparent keyboard handlers.

An alternative approach is to incorporate voice control facilities into the operating

system itself. Again, this requires a standard protocol to be developed, and programs

which are to make use of the facilities would have their user interfaces designed

accordingly. Such an approach does, however, remove the need for the application

programmer to be concerned with the low level intricacies of communication with, and

control of, a voice system. This alternative is explored in Chapters 7 and 8.

3.2 Word Processing

The operation of a word processor presents the user with three major activities:

• Entry of text.

• Navigation of the cursor within a file, and recognition of command sequences.

• Execution of recognised commands.

The use of voice control introduces an additional problem of distinguishing which of

these activities is intended by the user at any time and keeping them separate. A n

investigation into the possibilities and problems of controlling the Micropro Word Star

[MICR87] word processing package was carried out.

3-2

3.2.1 Entry of Text

The fast, accurate and convenient entry of text into a file is one of the most basic

functions required of a word processing program. This immediately presents the user of a

voice control system with a problem. The number of possible words which could be

entered by the user is potentially enormous. In actual fact, though, the average person

uses quite a small vocabulary in normal speech, perhaps 500 words, and a somewhat

larger one for written text. However, in both speaking and writing the vocabulary far

exceeds the capacity of the type of speech recognition system under consideration here.

A partial solution to the problem of vocabulary size is to train only the most common

words used in typical text, and rely on the user spelling out any other more unusual

words required. This is not a complete solution for two reasons. The first is that the set

of c o m m o n words needed will vary depending on the writing style of the user and the

subject being written about. The second is that any resort to spelling out words

immediately causes great inconvenience to the writer.

It is possible to alleviate the first problem by having different vocabulary sets available

for different subjects and writing styles. The most appropriate vocabulary can be loaded

by a utility program before the application program is run. Standard suggested

vocabularies, such as Basic English [OGDE68], exist which cover the words typically

used in relatively unsophisticated English text. One of these could be used, if the user is

willing to put up with some cramping of freedom in his or her writing style.

Spelling words out is tedious. It is difficult to maintain creativity at any reasonable level

when one has to consciously say each letter, perhaps repeating it when it is not

immediately recognised, sometimes correcting mistakes when the recognition is

inaccurate. All of this is quite apart from the need for accurate oral spelling, something

3-3

many people find difficult. In addition, after the last letter of each word is spoken and

received, the word itself must then be verified and entered into the system.

The other inconvenience is that the user must remember which words are in the system's

vocabulary and which words must be spelled out. This results in having to continually

switch back and forth between thinking in complete words and in separate letters.

Using a transparent keyboard handler with a commercial word processor presents a

particular problem of word verification before entry. If the user is to verify the

correctness of a word visually, this can only be done by reading the text as it appears on

the word processor screen. At this point the text has already been entered into the

application program. Any necessary corrections can then only be carried Out by using the

word processor's editing commands. Spelling and style checkers can help in the finding

of errors once the text has been entered. This is no different to the problem of typing

errors, but correction is more difficult using voice control. It is possible to verify

recognition aurally by using the SAR-10's echo back facility. If the audio response

vocabulary is constructed and trained so as to correspond to the speech recognition

vocabulary, then each utterance recognised can be repeated by the audio response

facility. Unfortunately, if the word is entered letter by letter then the audio verification

will also be letter by letter. There is no facility for the system to combine the letters into a

word and verify that it is correct. A s well as this, there is still the problem, as for visual

verification, that the text has already been entered into the system, and cannot be easily

altered.

The lower reliability of the SAR-10 when recognising short utterances, such as single

letters, especially with some voices, requires some form of phonetic alphabet to be

provided. This phonetic alphabet may be a standard one, as commonly used in radio

telecommunications. O n the other hand, there is no guarantee that a standard alphabet

will work reliably with all speakers, and special phonetics may need to be devised for

3-4

particular users. Apart from the inconvenience of needing to learn a special set of

phonetics, spelling words in this way is even more tedious than using the common letter

names. If audio response is used for verification of phonetics, the system can be trained

to echo the actual recognised letter, rather than its phonetic equivalent, thus providing

some measure of improvement in operator convenience.

Some of the tedium could be reduced if the word processor program contained a

continuous spelling checker which could automatically correct mistakes, rather than

simply prompt the user to make the correction. Similarly, a style checker would greatly

facilitate text entry, particularly if it was capable of completing words once it had

received sufficient of its component letters to make unambiguous identification likely.

For subject matter which is sufficiently constrained in style and content, such as certain

standard report and letter formats, then an isolated phrase recognition system might

become quite convenient. In the case of such documents, the standard phrases could be

trained in their entirety, rather than as single words. These longer utterances are often

more readily recognised by the system. In addition, the speech entry becomes quicker

and far more natural than uttering isolated words.

3.2.2 Navigation Within a File and Command Sequences

The second essential requirement of a word processing system is that the user should be

able to move the cursor to the position in the file where it is desired to enter or edit text

or carry out some other command. At first the way to achieve this might seem obvious.

The system needs to be trained to recognise such utterances as up, down, left, right,

page up, page down, and so on, as cursor control commands, and simply pass on the

equivalent keyboard characters to the word processor.

3-5

In fact, this is very easy to achieve, and works exceptionally well. The user's pleasure at

being able to merely speak and see the cursor respond, however, lasts only up until the

time it is required to insert one of these words or phrases into the document as text,

rather than execute it as a command.

There are a number of possible approaches to this problem of escaping the cursor control

commands. These same approaches can be used to distinguish any of the other

commands needed by the word processor for functions other than cursor control. The

methods considered and tested in this project were as follows.

• Remember which words represent commands and spell these words when they are

required in text.

• Identify each command by beginning it with sOme sound which never appears in text.

Possibilities for consideration might include nonsense syllables or non-speech sounds

such as a whistle.

• Use utterances for commands which will never appear in text. Examples might

include foreign language words, or other sounds which don't appear in normal

speech.

• Precede each command by a separate escape command, or alternatively, when a

command is required to be entered as text precede it with an escape command.

• Issue a special unique command to toggle the system between text entry and

command execution modes.

• Ensure that commands are words rarely used in normal speech. When they do occur

they can be spelled out.

• Use multi-word word command sequences trained as phrases. When the phrases

appear in the text they can be entered as separate words.

In practice it was found that a combination of the last three is the most useful. When a

lengthy sequence of commands is needed, it is useful to be able to toggle the voice

control system into command mode. The necessary commands can then be issued

3-6

relatively efficiently. Once the task is completed the system can be toggled back into text

mode and text entry continued. An example of an operation where this method is

advantageous is when a block of text must be located and marked and the block moved

to a different location in the file.

For less command intensive operations a mixture of the last two methods listed is

convenient. Unique short utterances are desirable for frequent commands such as enter,

shift, backspace, caps lock and tab. For other commands, such as for cursor movement,

block marking and manipulation, and menu operations, multi-word command sequences

proved to be the most reliable. Independence of vocabulary entries {orthogonality - see

Chapter 2) is easier to achieve with long phrases, because there is more scope for

variation in their longer templates. In addition, such phrases are more natural, making

them easier to remember and more satisfying to use.

The use of escape sequences, while common in keyboard oriented systems, presents

particular problems in voice control. First, with operation generally tending towards the

tedious, anything which increases the average number of distinct recognition operations

required to execute a function is undesirable. Second, the need to initially recognise the

escape command itself means that it becomes one which is extremely critical to the

operation of the system. If the escape sequence should prove unreliable for a particular

speaker or in certain environmental conditions, the user can soon become involved in a

seemingly unending regression of failed commands.

The same objection can be raised against other schemes which require another utterance

to be recognised before the command itself is issued. The use of a special command to

toggle the system between two or more modes has this deficiency also, but in this case

there are fewer uses of the escape sequence. Also, it may be possible to arrange matters

so that fewer special critical commands are required.

3-7

One place where the use of a non-speech sound, such as a whistle, can be justified, is for

the provision of a fail-safe command to facilitate the breaking out of difficult situations,

such as when the voice control system fails to recognise any of the more usual

commands for any reason. It might be used to reset the system. Such an arrangement has

the advantage that it would make less likely an inadvertent system reset due to a

misrecognised command.

3.2.3 Execution of Recognised Commands

The handling of error conditions is one area where a voice control system implemented

by use of a transparent keyboard handler is at a serious disadvantage. Audio responses

cannot be triggered by characters output from the application program, only in response

to recognised speech input. This means that, unless the program issues a warning tone, a

user w h o is not reading the screen does not know that the error condition exists. In any

case they will not know what the error is.

This problem, along with the difficulty of verifying the correct recognition and operation

of a command, limits the usefulness of such a system, particularly for a sight impaired

user. The most effective solution requires the modification of either the application

program or the operating system in order to provide a more sophisticated speech input

and output system.

One solution is to provide a memory resident utility which monitors the calls the

application program makes to the operating system for the purpose of placing text on the

screen. This utility interprets this text and generates commands to the voice control

system to produce suitable audio output. Similarly, some error conditions are detected by

monitoring operating system calls and status, and suitable audible error messages

produced.

3-8

In applying voice control to the operation of a word processor there is always the danger

that a misrecognised command will cause loss of, or damage to, data. This is particularly

so in the case of commands which may intentionally or unintentionally erase text. Apart

from careful use of command verification where possible, it is particularly good for the

user's piece of mind if the word processor has an effective undo command. It is advisable

for this to be made as easily and reliably accessible as possible. O f course, such a facility

is unlikely to be available for commands related to the file system. Responsible use of file

backup facilities needs to be encouraged.

Some of the disadvantages of voice control may be overcome by the provision of

specialised tools. If the word processor has facilities for external programs to be run then

these can be used to simplify tasks which might be extremely laborious if carried out

inside the editor. Such tools as word counters, text formatters, style checkers and file

backup facilities prove useful in this way.

Another useful tool is a utility which could be called by the user if a file was accidentally

erased. In many cases, if the disk is not written to subsequent to the erasure, the file can

be recovered. Being able to carry this out without leaving the word processor

considerably enhances the chances of the original file still being intact and recoverable.

Even more could be gained if the external tools were written especially to take full

advantage of the facilities provided by the voice recognition and audio response system.

For example, a blind user would benefit greatly from being able to call up a utility which

could read a text file and output it as speech.

3-9

3.2.4 Controlling C o m m a n d Context

The provision of a set of commands which are only available when the system has been

toggled into a particular mode makes it possible to use the vocabulary clustering facility

to great advantage. If the commands available in each mode are arranged in distinct

clusters, and only the appropriate cluster enabled when in a particular mode, then

recognition performance is considerably enhanced. Also, by this means the same set of

utterances can be used to produce different results for each mode. This reduces the

number of commands to be remembered and provides a more natural working

environment.

As an example of this, the same cursor movement commands would normally be used

whether the user is moving around in a text file, a command menu, or a help system.

Since in many systems these make use of the same keyboard characters, no recognition

advantage is gained by clustering. The use of clustering in this situation, however, makes

it possible to link these commands to different sets of audio responses. This is of

particular help to a sightless user, who does not then need to continually remember in

which mode the system is currently operating. The system can provide a suitable

identifying response. Even a user with keyboard skills finds such an arrangement useful.

A natural division of the command set of a word processor results from consideration of

its menu system. Each menu can have its own set of commands grouped together in one

or more vocabulary clusters distinct from all other commands, and the command to gain

access to that particular menu can be arranged to also enable the appropriate vocabulary

clusters and disable all others.

Since, after completion of a particular command, the word processor will probably revert

back to text entry mode without any further opportunity for the voice system to reset the

appropriate vocabulary clusters, a special command will need to be issued to achieve this.

3-10

This is a disadvantage which must be considered if such a scheme is implemented.

Normally, however, the mode in which the system will finish after the completion of a

command is known. In this case the speech control command is able to carry out the

required cluster control by placing the appropriate commands in a command macro along

with the required characters to be sent to the word processor to implement the

command.

One area of operation where such a scheme fails is in the case where the word processor

(or any other application program) switches to another mode without being explicitly

commanded to by the user. For example, on encountering an error, such as insufficient

disk space to save a file, some word processors bring up a file handling menu. A second

example is the invocation of a help system when an unrecognised command is received.

When this happens the system is in one mode of operation, but only has access to voice

control commands appropriate to another mode.

To overcome, this careful consideration has been given to the provision of a suitable

default set of commands which are available at all times, regardless of the current

context. In the SAR-10 system such commands are implemented by placing them in

cluster number zero. This cluster is available regardless of which other clusters are

enabled or disabled. This is also the logical place to place emergency commands such as

those which provide entry into the help system, program abort, system reset, and access

to voice recognition retraining and updating, if provided.

3.2.5 Results

Despite the obvious limitations of isolated word and phrase recognition for the control of

a word processor it was still considered desirable to implement such a system to gain

3-11

experience of its potential for a handicapped user. Word Star was chosen as it was the

Department standard at the time this work was carried out.

The command vocabulary chosen consisted of each of the Word Star commands, with

commands for each menu in separate clusters. In addition, the English alphabet,

punctuation, numerals, and cursor control were placed in a cluster, with a standard

phonetic alphabet in another. A selection of common words was also provided. The

prototype system was not specifically intended for use by a sightless user, so only a few

audio response outputs were included for test purposes.

Despite the simplicity of the arrangements described, the vocabulary size was close to the

maximum capability of the SAR-10. A success rate of about 8 0 % of commands

recognised was attained with all vocabulary clusters enabled. This is sufficiently low to

cause operation of the system to be extremely frustrating for the user. Commands for

enabling and disabling vocabulary clusters were provided in order to evaluate the effect

of vocabulary size on recognition performance. As expected, it was discovered that

recognition accuracy improved markedly as unnecessary clusters were disabled.

With clustering in place a recognition rate of about 95% was achieved, decreasing when

the user was not one of those w h o trained the system. This performance also depends

greatly on background noise. This degree of accuracy provided far more satisfactory

operation, but was offset partly by the need to remember to switch clusters when

necessary. Leaving the editing commands and cursor control clusters on and switching

between standard words, alphabet, numerals and punctuation, and phonetics clusters,

proved to be an effective compromise. Cluster switching for different menus was handled

automatically by control codes embedded in the appropriate menu select commands.

The desirability of being able to pop up a vocabulary retraining utility when needed

became evident after considerable use. The recognition success rate varied considerably

3-12

with operator fatigue and changes in the level and nature of background noise. The

ability to perform a quick training pass to update the recognition templates often

successfully eliminated this performance degradation. The tedious nature of letter-by-

letter text entry makes the onset of fatigue, with its attendant lapses in concentration,

rapid indeed.

3.2.6 Conclusions

Except for the case of the entry of highly constrained documents, such as standardised

reports, the only redeeming feature which can be found for using an isolated word and

phrase recognition system in a word intensive application such as word processing is that

it does make text entry possible for someone who, through handicap or environmental

constraints, cannot use a keyboard. It is certainly not the method of choice if some other

text entry system is available.

A continuous speech recognition system with a large vocabulary, high accuracy of

recognition, and a far greater language understanding capability would make such an

application very convenient and natural to use. Anything less than this makes word

processing extremely laborious.

3.3 Spreadsheet

The use of an isolated word recognition system for voice control of a spreadsheet is

more attractive than for operation of a word processor. A spreadsheet is generally less

dependent on text than it is on numbers. Such text that is commonly used tends to be

restricted to relatively short labels for the rows and columns of figures.

3-13

3.3.1 Data Entry

The entry of labels, figures and formulas into a spreadsheet are normally distinguished by

a change of mode, triggered either by a particular character typed (e.g. a digit for

numbers, an equals sign for a formula, and a quotation mark for text) or by a particular

command. In either case the mode change can be used to select an appropriate

vocabulary cluster for the new mode. This means that text oriented commands, the

alphabet, and standard labels, can be placed in one cluster, digits in another, and

arithmetic operators in a third. Switching between the appropriate clusters will normally

be totally transparent to the user.

3.3.2 Commands

If the spreadsheet has a menu system this can be operated using cursor movement

commands similar to those described for a word processor. The same considerations for

command verification and error condition handling apply. The ease of segmenting the

vocabulary into logical clusters, and the smaller number of commands available mean that

high recognition accuracy is likely to be achieved.

Handicapped users can take advantage of the fact that for many tasks a preprogrammed

standard skeleton spreadsheet might be used as a starting point, removing much of the

tedious text entry involved in building a sheet from scratch. Application specific sets of

standard labels can be provided, while more general text may be entered by spelling the

words.

3-14

3.3.3 Results

These principles were applied to producing voice controlled Perfect Calc [W A D E 8 4]

spreadsheets with considerable success. The relative ease of producing small orthogonal

command sets for a spread sheet context meant that the spreadsheet packages could be

simply controlled, and numerical information entered fairly rapidly. The package tested

was menu based, so full advantage could be taken of command clustering.

The only real difficulty encountered was the SAR-10's difficulty in distinguishing

between the utterances five and nine - possibly the worst possible problem for a

numerical application such as a spreadsheet. Despite their clear vocal difference, these

two utterances consistently produced very similar normalised reference patterns. For one

particular user, the only effective solution was to revert to training the digits in his native

language, not in English. Others needed to make some artificial distinction in the way

they pronounced these two words. (Interestingly, this problem is well documented -

during World War II pilots needed to pronounce these numbers as fife and niner.

However, the mechanism underlying the confusion is undoubtedly different.)

3.4 DOS Shell

While an experienced PC user might find the use of a DOS shell of limited advantage,

and perhaps even a liability, for the handicapped user such a utility can be extremely

valuable. When voice control is being used, a shell is of even more benefit, since instead

of having to cope with a relatively large set of text oriented DOS commands, the user

can accomplish operating system interaction using voice controlled cursor movement

commands to select menu items.

3-15

A sightless user would not find this of much advantage, as it relies far more on being able

to see the position of items on the screen, and on being able to read file names. A utility

which reads each label on the screen and produces appropriate speech output assists

greatly here. Dependence on text input could be further reduced if some form of file

name generator was provided.

3.5 Keyboard Macro Processor

The provision of a programmable keyboard macro processor can further simplify

operation of a P C under voice control. Using such a utility, application programs which

rely on often repeated complex command sequences can have the appropriate commands

programmed into a macro. The macro can be assigned to an unused control character on

the keyboard, and this character may then be used as the output from the speech

recognition system on recognition of an appropriate voice command.

This scheme was tested using the SuperKey macro processor [BORL85], and was found

to be a labour saving convenience when used in conjunction with Word Star or Perfect

Calc. As an example, the character sequence (<insert> "|" <down arrow> <left arrow>

<insert>) required to repetitively draw a vertical line down the page could be

programmed in, and then a line could be produced using a voice command such as

vertical line. This proved useful for drawing character boxes around items on the page.

A similar process can be followed if the voice control system has been programmed to

output a certain character sequence in response to a certain command and, perhaps

temporarily, a different character sequence is required. The macro processor can be

popped up, assuming a suitable voice command has been assigned to its triggering

character sequence, the macro programmed, and work continued in the application

program. Many such utilities provide other features which have the potential to be of

3-16

great benefit to a handicapped user. These include calculators, calendars, clocks and

notepads.

3.6 Programming Environment

One of the most rewarding applications of voice control via a transparent keyboard

handler proved to be in the area of programming. This offers great potential for a

handicapped computer user, giving such users the ability to create their own specialised

utilities and application programs, and opening up many possibilities for freedom in work

which would otherwise prove to be difficult. Many tools are available to assist with

program development, and these make the benefits of voice controlled programming

even more attainable to the handicapped user.

The capability of handicapped users to write their own programs can help them greatly in

overcoming some of the disadvantages inherent in using computers and software created

with only the able bodied user in view. A disabled user is in an excellent position to know

at first hand what is required in an application interface, and would be able to contribute

greatly to such development if a suitable programming environment is made available.

3.6.1 Turbo Pascal

The approach taken to the development of a voice controlled programming environment

was to build upon the discoveries made and lessons learned through experience with

word processing, spreadsheets and the use of D O S shells and keyboard macro

processors. The programming language chosen was Borland's Turbo Pascal [BORL88b].

This provides a program editor, a compiler, a debugger and an effective help system, all

integrated into a menu driven programming environment. Provision is also made for the

3-17

execution of programs external to the environment by exiting temporarily into a D O S

command interpreter.

Considerable assistance is given to the user by the operation of the command system. For

example, if the programmer attempts to leave the system without saving a file which has

been modified, he or she will be prompted as to whether this is intentional or not.

Unfortunately this prompting is only visual, and so is of no use to a blind user.

A further useful feature for our application is provided by the help system. In addition to

containing a comprehensive reference manual for the language and the environment, it

also provides a cut and paste capability which allows text from the help system to be

exported to the user's program: As the help system also provides example code

illustrating the use of each function and procedure of the language, this can be used to

advantage by cutting and pasting the lines of code into the program. By this means the

amount of tedious voice typing required to write a program can be reduced.

The manner in which the Turbo Pascal compiler deals with errors is particularly

advantageous to its use in a voice controlled system. The detection of an error during

compilation of a program or a unit causes the compiler to halt and a suitable error

message to be displayed. In addition, the file which contains the error is loaded, even if it

is not currently the file being edited, and the cursor placed at the position of the error.

This allows the programmer to immediately rectify the problem. If further assistance is

needed a single keystroke will invoke the context sensitive help system, which will make

available further information on the nature of the error.

This scheme might be preferred by inexperienced programmers, who find one error

enough to cope with at a time, whereas seasoned programmers might prefer to have the

compiler present them with a number of errors at once, so that they can fix the problems

without needing to recompile the program after each one is dealt with. For the user of a

3-18

voice control system, however, the behaviour of Turbo Pascal is a distinct advantage,

since it means that the system automatically carries out the location of the error and the

movement of the cursor to the correct location. The saving in voice commands is well

worth the inconvenience of having to deal with errors on an individual basis. The Turbo

Pascal compiler is fast enough for this not to be a problem for small programs. For large

multi-file programs the automatic loading of the correct file outweighs the enforced

waiting. Borland C + + [BORL92a] implements both schemes and is even more suitable in

this respect.

3.6.2 Reusable Code

For the efficient carrying out of any task using voice control it is desirable to reduce the

need for text entry. The concept of reusable code can take the user a long way towards

this goal.

Turbo Pascal provides an extensive set of code libraries, called units, which provide

hundreds of functions and procedures not available in standard Pascal. These also reduce

the amount of work needed to develop a program. Users can easily create their own

units, and by this means the habit of writing reusable code is encouraged. Many

toolboxes containing units for the carrying out of many tasks are commercially available.

Once a set of general purpose units for such tasks as menu construction, file

manipulation, input and output device control, searching sorting and storage of data and

text, numerical calculation and graphics routines, is available to the user, application

programs for many different tasks can be produced relatively quickly.

Great assistance to the programmer is provided by a unit, called SARLIB, which

implements the necessary routines for manipulation of the voice control system and the

3-19

integration of its input and output facilities into the user's program. The construction of

S A R L I B is described in Chapter 8.

3.6.3 Vocabulary Selection and Programming Technique

The selection of vocabulary entries such as the alphabet, cursor control characters and

menu commands is similar to those for application programs. For a programming

language there are additional considerations. One of these is the need to provide a set of

reserved words for the language. The names of routines in units which the user desires to

use will also be needed. Another consideration is the need for the user to be able to

produce suitable words for the naming of variables, constants, types, functions and

procedures.

To the user there is no difference between reserved words and the names of library

routines. Taken together they form a very large set of names, each of which must appear

as a vocabulary entry. The version of Turbo Pascal used in this study contained 48

reserved words. The main units supplied with the system contain about 220 routine

names and a considerable number of identifiers used for types, constants and variables.

When alphanumeric characters, operators and punctuation symbols are included, it is

clear that the total is greater than the number of entries the SAR-10 can accommodate.

Some limitation will need to be placed on the number of routines made available to the

programmer.

The first approach taken was to determine which subset of the provided routines are

frequently used, and to place these in the vocabulary, using a separate cluster for each

unit. This does not rule out the use of other routines. They can still be accessed by

3-20

spelling the appropriate identifier out. The advantage of placing routine names from

different units into separate clusters is that only the required clusters need to be enabled.

The routines in a unit are only available to the compiler if the name of that unit appears in

a uses statement at the head of the program or unit being developed. This can be used by

the programmer to discover which clusters need to be enabled. To enhance recognition

accuracy it is desirable that the user disable all clusters which are not necessary for the

immediate segment of code being written.

Nevertheless, the number of items needed in the vocabulary at any time is still

considerable. This means that great care must be taken in the selection of suitable

utterances for each identifier if reasonable vocabulary orthogonality is to be achieved. It

is often necessary to give many items names which are not identical to those defined by

the language or the library routines. This is an unavoidable price for using such

unsophisticated speech recognition techniques.

Some advantages can be gained from the use of a speech system. It is possible to

program entire program structures into the system so that they can be reproduced by a

single command. For example, instead of needing to build a Pascal block by placing a

Begin, writing the statements, then placing and End and perhaps a semicolon, the

utterance make a new block might be used to produce the code shown in Figure 3.1.

Begin

End;

Figure 3.1 Turbo Pascal Block Skeleton

3-21

The statements can then be included within the block. This simple process can be taken

further; make a repeat loop might produce the code of Figure 3.2.

Repeat

Until ();

Figure 3.2 Turbo Pascal Repeat L o o p Skeleton

The command to begin a new unit could output the text shown in Figure 3.3:

Unit ;

{ A unit to ...}

{

Interface

Uses

Const ;

Type

Var ;

{

Implementation

{

{Initialisation }

Begin

End. {Unit...}

Figure 3.3 Turbo Pascal Unit Skeleton

3-22

}

}

This process saves much typing and simplifies the process of producing well structured

code.

Another way of reducing the amount of text entry is for a number of standard variable

names to be provided. Such generally useful identifiers as LoopCounter, InitialValue,

FinalValue, Finished, Found, NewValue, OldValue, and so on, could be produced with a

single utterance. These identifiers can then be extended by the simple addition of a digit

by the user, to produce a large number of ready to use names. For a handicapped

programmer, although the resulting identifiers may not be as meaningful as desired, and

the program may be harder to debug, these disadvantages may be outweighed by the

reduced interaction with the text editor.

Any assistance which can be given to the programmer through the provision of automatic

layout should be considered. For example, it proved possible to partially automate

indentation by arranging for the insertion and removal of margin tabs to be triggered by

the Begin Block and End Block commands.

3.6.4 Programming Aids

Clearly, the use of a keyboard macro processor would simplify many of the above

operations. More satisfactory solutions can be arrived at by the use of various

programming tools.

If one was to construct a compiler specifically intended for control by voice, advantage

could be taken of the fact that the compiler "knows" the context of the code on which it

is currently operating. For example, on encountering the identifier while the compiler will

then expect to find a Boolean expression followed by a statement (simple or compound).

A voice system under the control of a compiler could have its current vocabulary

3-23

optimised at any time according to the possible identifiers to be expected. In addition, the

editor associated with such a compiler could use its "knowledge" of the language to

perform automatic layout and production of complex program constructs.

Some experience of such an intelligent editor, under voice control, was gained with

Alice: The Personal Pascal [SOFT85]. This system goes a long way to automating the

writing of a Pascal program, providing the automatic layout control and construct

production mentioned above. Such an environment, with voice control and audio

response integrated into the system, rather than added on by use of a transparent

keyboard handler as was necessary with Alice, would approach the ideal for a

handicapped programmer.

Many other tools exist which can assist greatly in the production of programs by voice

control. Among the most useful of these are formatting tools and code generators. If, in

the interest of saving time and laborious text entry, code is written in a style which leaves

something to be desired, it can be subsequently passed through a formatting tool in order

to transform it into a more pleasing style in terms of indentation and identifier format.

Existing source code, written by various people, can also be converted into a uniform

style for ease of use in one's own environment.

The greatest saving of time can be gained by not writing code at all. Rather, a

specification for a program, in the form of a screen or form description or a language

grammar, or similar, can be produced. This description is then passed to a code

generator, which produces the required program, or program fragment, to interpret the

description.

Good examples of these tools are available in the form of screen and form generators for

the production of code which implements effective user interfaces. A more powerful

example is the parser generator. Later in this work it will be shown how a parser

3-24

generator, principally intended for the production of compilers, can be used for the

implementation of a natural language interface. Typical parser generators, however, can

be used in far more versatile ways than the production of language interpreters. For

example, the tool used in this project, L A L R [M A N N 8 7] , and other examples such as

L E X [LESK75], Y A C C [JOHN75] and Bison [RUBI86], are capable of generating code

for any process which can be described by means of a simple grammar. This includes the

production of compilers, interpreters, translators, text oriented user interfaces,

calculators, syntax and style checkers, and text and program formatters.

These tools are of advantage to the voice control user because a grammar to describe a

process is generally much smaller than the code required to implement the process. In

addition, the resulting code is usually smaller, faster, and more free of errors than code

produced by hand.

3.7 MicroExpert Expert System Shell

MicroExpert [THOM85], a simple expert system shell proved to be an excellent

application for the SAR-10 speech recognition and audio response system. The main

reason for this is that all of the responses to the expert system's diagnostic questions are

well defined. They are also defined by the person who sets up the database for the

system, and so it is easy to select them for their suitability for inclusion in a vocabulary. If

necessary, the responses to each question could be placed in separate clusters. The

routines in the expert system which prompt the user can also be used to switch the

vocabulary clusters.

Another advantage of the design of an expert system shell is that the replies the system

makes to the user, whether to prompt for information or to output the results of an

inference, are well defined and thus suitable for SAR-10 audio responses.

3-25

The combination of an expert system shell and a speech recognition and audio response

system proved to be an excellent development and training system for artificial

intelligence applications. Having the source code of MicroExpert available enabled the

two systems to be optimised to each other, and extended to form a very useful and easy

to use tool, with a very wide range of applications.

3.8 Use With Mouse Based Applications

Since the introduction of Microsoft Windows, the mode of use for IBM style personal

computers has moved from being heavily keyboard based to a more mouse oriented

style. This has advantages and disadvantages for the use of a speech recognition system

using a transparent keyboard handler.

As most software is now oriented around a mouse driven menu interface, the number of

commands which need to be explicitly recognised by the speech system is far smaller. It

is often only necessary to be able to navigate the cursor around the screen and to indicate

when a menu item is to be selected. These few commands can easily be made reliably and

unambiguously recognisable.

The difficulty arises out of the sheer tedious nature of such operation under voice

control. Having to move the cursor by repeatedly saying, :Up, up, up, up,... up, left, left,

... left, select, is unacceptable. To provide distance counts such as Up nine, left five,

select, is an improvement, but it can be difficult to judge the distance to be moved. This

is particularly tedious when moving the cursor through text in a word processing

application.

For voice control to be effective in this environment, the nature of the menu system

needs to be taken advantage of, rather than being allowed to force us back into an

3-26

unacceptable mode of operation. The advantage of a menu system is inherent context

sensitivity. Once the cursor is within a particular menu only the relevant vocabulary

cluster needs to be enabled. The hot-keys are programmed to be the output of the

transparent keyboard handler upon recognition of an utterance representing the name of

a menu, or of any item in a menu. One cluster has the name of each menu, and sub-

clusters have the items contained within each menu.

In this manner, while the mouse commands are not taken advantage of, the provision of

the menus by the application software greatly enhances the operation of the speech

recognition system. The usual provision of context sensitive help is also a great

advantage, as the utterance of a command such as help will immediately bring to the

screen information relevant to the current operation, without it having to be searched for.

Microsoft Windows is especially suitable for such operations since it has a highly

standardised menu structure, with many menus appearing identically in different

applications, and other menus tending to be of a predictable format.

3.9 Conclusion

Experience with the application of voice control to application programs by means of a

transparent keyboard handler has shown that such a technique is useful as an inexpensive

way of producing a voice controlled application, but is not an ideal approach. Limited

ability to control vocabulary clusters and to produce audio output responsive to the state

of the application, along with inadequate control of error conditions proves frustrating.

On the other hand, if a handicapped user has a need to use a particular application

program, and is willing to persevere with these limitations, the results can be rewarding

indeed. With the use of imagination, much can be done to assist such a user in the more

efficient use of such a system.

3-27

4. APPLICATION: A VOICE CONTROLLED ROBOT

To explore the feasibility of using voice commands to control a manipulator, in 1986 a

system was constructed around a low cost industrial robot, the SAR-10 card and an I B M

PC/XT [NARA86a]. Such a system forms a suitable test bed on which some of the

practical aspects of using voice control for a disabled person's aid can be investigated.

Experience of the problems which arise in such an application can be gained without

causing any danger to the potential user of such a system.

4.1 The Robot and its Controller

The robot used was a Rhino XR-2, primarily designed for training in robotic techniques

[RHTN82]. It is a six axis arm using D C servo motors and two phase optical chopper

position and rate feedback. The robot controller is based on an Intel 8748

microprocessor, and communication with the P C is via three wire RS232c. The controller

has the capability to control eight motors and monitor six interrupts from the robot. The

instructions available for each axis are:

• Start a motor.

• Stop a motor.

• Determine motor position.

• Determine the status of a microswitch.

The robot controller can only accept a maximum of 127 optical encoder counts, so large

movements of any joint must be carried out in smaller stages to avoid exceeding this

count.

4-1

4.2 The Robot Control Program

Clearly, these robot controller capabilities provide only a very crude interface between the

robot and application programs. T o improve this situation, a more sophisticated interface

program was developed by Dr. na Ranong [NARA86b]. This is capable of providing

translation between the simultaneous joint movements required by any realistic

application and the crude controller instructions available. The instruction set

implemented by the interface program on the P C is shown in Figure 4.1.

Main Sequence Commands
ADJ
BRA
BYE
DELnn
DUP
GO=aaa
INSnn
GTOnn
UB
LIS
LOD
MODnn
NEW
NST
RUNnn

SAV
WRM

???

Adjust point no. 0
Set branch selector '
Exit to P C
Delete point no. nn
Duplicate a point
G o to point named aaa
Insert point after point nn
Move robot to point nn
List branching selectors
List programmed points
Load programmed points
Modify point no. nn
Start a new program
Nest the robot
Cycle nn times, varying
branch selector 1 ..5

Save programmed points
W a r m start, defining
preset point

List main selection commands

Point Related Commands

Arm Out/In
B R n (n = branch no.)
Carousel Left/Right
D O n (1=main, 2=branch, 3=offset)
Flap Up/ Down (wrist)
Go In/Out (slide base)
Hand Close/Open
IS (micro-switch status)
LO (lower arm)
Ll (lift arm)
N=xxxxxxxxx (naming point)
Offset Delete
Offset Insert
Offset List
Offset Move
Pause +/-
Rotate Left/Right (wrist)
Turn Left/Right (waist)
=ln/Out Up/Down Left/Right nn (inches)
(XYZ control)

EXit to sequence command level
??? List point related commands

Figure 4.1 Robot Controller C o m m a n d Language

In contrast to the applications considered in Chapter 3, the source code for the robot

interface program was available. It was decided to take advantage of this rather than use

the SAR-10 in keyboard transparent mode. By inserting SAR-10 instructions directly into

4-2

the program structure full control of the speech recognition system became available. In

addition, the speech response capabilities were able to be used, thus giving the robot the

ability to talk.

4.3 T h e Robot Control Language

Based on the robot interface instruction set, a vocabulary of about 25 commands was

developed. The commands provided were of a more intuitive nature than those provided

by the robot interface language. They are shown in Figure 4.2. In addition, questions

could be asked of the robot which elicited pre-programmed audio responses. These are

not listed, as they are highly dependent on the application context.

Cluster 0 (Common commands):

Zero Five
One Six
Two Seven
Three Eight
Four Nine

Ten
Fifteen
Twenty

Fourty Ninety
Fifty Hundred
Sixty Stop

Twenty-five Seventy G o
Thirty Eighty Go to sleep

Cluster 1 (Sequence commands):

Adjust point number zero
Delete point number...
Duplicate point number...
Modify point number...
Insert point after point number...
Move robot to point number..

Cluster 2 (Point commands):

Move the arm in ...
Move the arm out...
Raise the arm ...
Lower the arm ...
Move the slide base in ...
Move the slide base out...
Move the wrist up ...
Move the wrist down ...
Rotate the wrist left...
Rotate the wrist right...

Go to point named ...
List programmed points
Load programmed points
Save programmed points
List branching selectors
Set branch selector

Rotate the waist left ...
Rotate the waist right...
Rotate carousel left...
Rotate carousel right...
Open the hand
Close the hand
Is the sensor switch open?
Is the sensor switch closed?
Branch number...
Perform a branch

W a k e up
Sequence commands
Point commands
Help

New program
Nest the robot
Run a number of cycles ...
W a r m start the robot
List sequence commands

Perform an offset
Delete an offset
Insert an offset
Move an offset
List the offsets
Name the point
Perform main sequence
Pause
Resume
List point commands

Figure 4.2 Voice Controlled Robot Commands

4-3

4.3.1 Vocabulary Orthogonality

While developing and testing a suitable set of voice commands, it was soon discovered

that the choice of words and phrases to be recognised is extremely critical. This is

brought about by the need for the vocabulary space to be orthogonal.

For a vector space to be orthogonal it must possess a set of basis vectors which define the

space, and these vectors must be linearly independent of each other. This means that they

have no components in c o m m o n with each other; no basis vector can be constructed by

combining any other basis vectors.

An orthogonal vocabulary space is one where any entry in the vocabulary is independent

of any other entry. Expressing this in terms of the feature templates stored for each

recognised utterance, no two dissimilar utterances will produce a set of feature numbers -

a feature vector - which will differ from any other feature vector by less than the currently

assigned error value, the recognition threshold.

For reliable recognition performance, it is desirable to select a vocabulary which ensures

that the feature vector for each utterance differs by as great an amount as possible and in

as many of its features as possible from the feature vectors of all other vocabulary entries.

If words and phrases could always be selected which were independent in this way, then

recognition could be made completely error free, an ideal but unlikely situation.

In practice, what generally tends to happen is that the words and phrases which appear to

be the most natural choices for an application, produce reference patterns which are far

from orthogonal. Because of the method by which features are extracted from an

utterance during the acoustic analysis process, it is not enough that the words sound quite

different to the human listener to guarantee that they will produce different values in the

feature vector. Extensive testing and revision of the vocabulary is required before

A-\

acceptable performance is achieved, resulting in a command set quite different from the

initial more obvious choices. However, by perseverance and imaginative choice of

phrases, a reliable, functional, and aesthetically acceptable vocabulary can usually be

developed.

Commands which caused considerable difficulty in the context of the robot control

language were: left and lift; in and on, five and nine, listen and ignore. Some of these

result from the words sounding similar, such as left and lift, differing only slightly in the

vowel sound. This is illustrated by the hypothetical difference matrices and the resulting

accumulated distance matrices in Figure 4.3. Both utterances result in the same minimum

path length through the matrix. As this is used to determine whether the utterance

matches the reference template, the two words will be considered to be identical.

T

F

E

L

8

7

8

1

8

9

2

9

8

9

2

9

6

1

9

7

2

6

8

8

T

F

E

L

8

7

8

1

9

8

4

7

6

1

9

7

2

6

8

8

T

F

E

L

24

16

9

1

20

12

r f 3 '
10

20

12

19

12

rf6

14

26

r*8

12

22

34

F T L
(a) Difference Matrices

T

F

E

L

24

16

9

1

22

13
s

8

12

fi6

14

15

r*8

12

22

23

(b) Accumulated Distance Matrices

Figure 4.3 Difference and Accumulated Distance Matrices

4-5

This example also illustrates that, with algorithms like dynamic time warping in operation,

even a difference in the length of two utterances may not be enough to ensure

orthogonality. As can be seen in Figure 4.3, the accumulated distance from the reference

pattern of the utterances left and lift is eight in both cases.

The utterances listen and ignore sound quite different to the listener, and produce quite

different patterns. However, because their distance from the reference pattern is

ultimately determined by a single number, the accumulated distance, it is common for

these also to be impossible to separate. The accumulated distance may be the sum of

different numbers, but still have the same value in each case, or a value which differs by

less than the recognition threshold.

Utterances such as these pose a particular problem, as they are clearly intended to be the

inverse of each other. In the case of the robot controller, ignore was used to turn off the

microphone, and listen was intended to turn it on again. As was mentioned in Chapter 3

and will be explored more fully in Chapter 5, the ability to place commands into clusters

can be used to resolve such recognition problems. This may not be feasible in the case of

commands which are obviously closely related as these commands may need to be placed

in the same cluster. In such circumstances there is no alternative to replacing one or both

of the commands with a different word or words.

The words ignore and listen also illustrate the SAR-10 system's particular sensitivity to

utterances which differ only in implosives with little energy content. One solution to this

problem proved to be restricting the use of short words such as ignore, using instead

longer phrases such as ignore me. Another way around such difficulties is to require

speakers to emphasise vowel differences between words such as left and ////. This,

however, introduces the disadvantage of requiring users to learn to speak in an unnatural

manner. The requirement to speak in isolated words or phrases is restrictive enough

without introducing this additional restriction on pronunciation. In addition such solutions

4-6

also tend to reduce speaker independence, because some people have greater difficulty

remembering the less natural way they had to speak when training the problem phrases.

4.3.2 Speaker Independence

In order to test the speaker independence of the SAR-10 system a subset of 25

commands from the robot control vocabulary and various system housekeeping functions,

was placed in a single cluster.

The first test involved three training passes with a single male speaker in a quiet

environment. The vocabulary was modified until the orthogonality conditions were

achieved, following which a recognition accuracy of 9 8 % was attained.

The second test was again performed in a quiet environment, this time using four male

speakers who had roughly the same voice pitch as the original trainer. The recognition

accuracy dropped to about 85%.

Under the same conditions, two female speakers and a male speaker with a higher pitched

voice all achieved about 7 5 % accuracy.

The system was then retrained, using two passes each from all of the above speakers.

Using these speakers at random an accuracy of 9 5 % was consistently attained. T w o other

speakers who had not trained the system also achieved 9 5 % accuracy. This performance

could be usefUlly described as being 9 5 % speaker independent.

4-7

4.4 Performance of the Robot Control System

4.4.1 Operation in a Noisy Environment

An Institute open day demonstration in 1986 was chosen as the opportunity for a

rigorous test of the voice controlled robot system. To provide the illusion of intelligent

behaviour, and to encourage the public to participate, it was decided to provide the robot

with a rudimentary English language understanding capability. As the demonstration

immediately proceeded a Victorian Football League grand final, the robot was dressed up

in the guise of a very vocal and biased football supporter. It was given a suitable flag to

wave and a bell to ring.

Careful selection of the recognition vocabulary and the audio responses enabled the robot

to carry out a simple conversation on the merits or otherwise of the participating football

teams, and display an appropriate amount of disdain for the umpires to easily win the

heart of the average supporter. A degree of randomness was given to its selection of

suitable responses to speakers' questions and comments to maintain the illusion of

intelligence (an illusion probably being more in keeping with the character than real

intelligence in any case).

The language understanding feature was achieved with a simple parser, using a technique

described by Lea as sequences of isolated words, using linguistic constraints [LEA80].

The grammar consisted of a set of 15 nouns, either preceded by a member of one of a set

of 8 verbs, or followed by one of 19 verbs from a different set. The operation of the

parser was based on a simple finite state machine.

During laboratory tests prior to the public demonstration, this system performed

extremely well, gaining some publicity from the local press. Similar recognition accuracy

and speaker independence were achieved as in the earlier tests, despite the fact that the

4-8

vocabulary size had risen to 50 words and clustering was still not being used. These

results are consistent with those obtained by Flanagan, et. al. [FLAN80],

Performance during the public tests did not live up to expectations, however. The display

was poorly sited, and due to the proximity of video-taped demonstrations and

considerable crowd noise, it was often difficult to obtain any response at all from the

speech recognition system. The major cause of failure was put down to the high level of

background noise preventing the system from detecting the pauses between words.

Another problem was the use of a hand held microphone to facilitate public participation.

This resulted in greater variation of voice levels and increased pickup of environmental

noise.

Despite these difficulties, when the system did operate correctly for any length of time,

single speaker control of the robot remained at a recognition accuracy of between 8 0 %

and 9 0 % . Speaker independence varied between 5 0 % and 7 0 % , enforcing frequent voice

retraining. Such performance levels are not adequate for any serious application, but did

allow some appreciation of the potential, and also the problems, of such a system to be

gained.

4.4.2 Operation Under Stress

Operating the voice controlled robot, even in quiet laboratory conditions, can still result

in some unexpected difficulties. One particular problem was revealed during attempts to

control the robot in real time.

Normally the robot arm was moved by telling it which direction to move and how far to

go. In the absence of the robot having a knowledge of its world model, or limit switches

4-9

to prevent collisions with objects within its reach, such operation relies on the operator

not giving a command which will cause such a mishap.

An alternative method of control is for the operator to start the arm moving in the

required direction, and tell it to stop once it has arrived at the desired position. This is

very convenient, since the operator does not have to measure or estimate the distance

from the initial position to the final position of the arm. If the operator has control of the

speed of movement the arm can be slowed down as it approaches its target position,

resulting in very fine control. At the time the tests were carried out the robot in use did

not have a speed control capability.

Such a method of control worked well when the destination of the arm was not close to

any other object. The movement could be halted quite precisely at will. This was not the

case when the robot was required to stop just before hitting an object. Invariably, at the

critical moment the voice recognition system completely failed to respond, resulting in

many collisions with walls and other objects, occasionally causing some damage.

Clearly, if this system was intended to lead the way to a prototype of a voice controlled

machine to assist a disabled person to perform such tasks as drinking a cup of tea, the

cause of the 100% failure rate in avoiding collisions with target objects under real time

control had to be found. The answer was soon discovered to be operator stress. As the

robot arm nears the object at the destination point and a collision becomes imminent,

tension is generated in the operator, intent on avoiding the collision but still arriving at the

correct point. This produces sufficient change in the operator's voice pitch and

pronunciation to cause the system to cease recognising commands.

No degree of concentration on the part of the speaker seems to be sufficient to overcome

this problem sufficiently to allow such a mode of operation to be considered practical or

safe.

4-10

The conclusion which has been drawn from these tests is that a voice controlled general

purpose robot, at the present stage of development, is not a suitable machine to be used

in close proximity to a person who, owing to physical handicap, is unable to protect

themselves when the voice control system fails to respond. This particularly applies to the

case where the robot is in motion and its path needs to be altered by voice control, but it

is probably equally applicable to the case of incremental control. Too much responsibility

is placed upon the operator's ability to predict the result of any command once it is

activated.

4.4.3 Command Verification

Entry of commands by the use of a keyboard provides a built in verification capability that

the command is correct before the enter key is pressed. The operator can see what was

typed on the screen and mistakes are easily corrected. Martin and Welch [MART76]

point out the need for command verification and correction capabilities in voice control

systems. Three types of mistake are possible. The system may:

• not recognise the command,

• receive a command which is meaningless in the given context,

• mistake the command for another command.

An unrecognised command, should generally be harmless as the speech recognition

system would not transmit it to the application program and nothing would happen. A n

exception must be made in the case of real time control, where the reception of the

command at a particular time may be critical to the prevention of some mishap.

A meaningless command should generally be taken care of by the normal error handling

procedures of a well designed system. However, in some circumstances, such as in real

4-11

time control applications, it could also produce the same unfortunate results as an

unrecognised command.

The third type of mistake, the substitution of one command for another, holds the

greatest potential for disaster. If the application is a relatively benign one, such as word

processing, the result will be at worst some inconvenience to the user, or the loss of data.

However, if the voice system is part of a process control system, for example, the results

of receiving an unintentional command could be extremely dangerous. The result may

well be damage, injury, or even loss of life.

When using the voice control system in keyboard transparent mode a simple form of

command verification was implemented by echoing each recognised command on the

screen and not activating the command until a suitable response is given, such as the

word enter. Vocal backspace and erase commands enabled corrections to be made to

incorrect commands. This method works well, but negates much of the convenience of

voice control. The normally slow operation of giving commands as isolated words is

hampered even further by having to give a second command to activate the system once

the first command has been verified. The operator must still watch the screen, and prevent

the transmission of improper commands by either erasing them and trying again, or

attempting to correct the command by backspacing and spelling out the corrections.

There is still the danger that another command will be wrongly interpreted as the enter

command, although this generally results in an invalid command due to the original

command and the new command being concatenated.

It is possible, under difficult operating conditions, to get into a regressive situation where

attempts to correct a mistaken command are also misinterpreted, and where even

attempting to enter a correctly recognised command will be mistaken. In these

circumstances the pending command gets more and more mutilated with every attempt to

correct it. To take account of this situation some form of panic command, as phonetically

4-12

distinct as possible, and which causes the system to seek some fail-safe position, should

also be provided. Words which people instinctively try in an emergency when all other

commands have failed or forgotten - words such as help, quit, stop and bye - should also

be included. When all else fails it should be possible to resort to keyboard control.

Audio verification can be used to counter the common temptation to ignore the screen.

Confirming commands in this way is slow, even though it would seem to be the more

natural approach for a voice control system.

When operating in non-transparent mode, audio verification is easier to do, since the full

audio response facilities of the system are then under the control of the application

program. The system does not then have to depend on preprogrammed responses linked

with each trained command and output using the echo-back facility. Full advantage can be

taken of audio response macros to build complex responses from simpler vocabulary

entries.

When an audio response is being produced, for command verification or for any other

purpose, it is necessary to first turn off the microphone to stop the system trying to

recognise its own responses. The microphone then needs to be turned on again prior to

the next command. This is necessarily controlled by the program, not the operator, and

means that the current status of the process being controlled must be known by the

program. It may be helpful for the operator to be able to see whether the microphone is

enabled or disabled via an indicator on the screen.

The ability of the SAR-10 to return the utterance which produced the second best match

as well as the best match allows this second candidate to be presented if the first is not

verified. There is a high probability that the intended command was the second best

match. If the second command is correct and verified then the operator is relieved of the

tedium of repeating the utterance in an attempt to have it recognised correctly.

4-13

5. OPTIMISING THE SAR-10's PERFORMANCE

The SAR-10 speech control system has limitations which are inherent to the design of its

hardware and software. As these limitations are unable to be removed, attempts were

made to make the best use of the facilities provided. Four areas of optimisation were

tackled:

• audio pre-processing.

- microphone choice.

- electronic speech processing.

- program control of microphone on/off.

• vocabulary and reference pattern control.

• parameter control, to make SAR-10 adaptive.

• user interface.

5.1 Audio Pre-processing

Three avenues of audio pre-processing listed above were investigated in an attempt to

provide the SAR-10 with speech signals with the highest possible signal to noise ratio,

and to minimise the effect of non-speech sounds.

5.1.1 Microphone Choice

The choice of microphone was found to have a great effect on the satisfactory operation

of the SAR-10 system. While any type of microphone of reasonable quality works in

controlled laboratory conditions, when the system is in general use, or the operator is

working in less than ideal circumstances, closer attention to microphone performance was

necessary.

5-1

The most satisfactory performance was obtained using either a headset microphone, or a

throat microphone. These ensure that the microphone provides the best ratio of signal to

background noise. In addition, they leave the operator's hands free for other tasks, such

as typing or using a mouse. For a disabled operator the advantages are even more

obvious. It is highly desirable that the microphone should be of a noise cancelling/noise

masking variety, and suitable for close talking without distortion.

5.1.2 Electronic Speech Processing

The speech input bandwidth of the SAR-10 is restricted to a range of 200 to 5000 Hz,

and little advantage could be expected from using further passive filtering, except possibly

in a very noisy environment. In fact, in normally quiet environments, further restriction of

the speech bandwidth results in a deterioration of recognition performance. O n the other

hand, the application of adaptive filtering, tailoring the filter shape and bandwidth

dynamically to the spectrum of the speech signal, can realise a useful improvement in the

signal to noise ratio. A n adaptive filtering system can also incorporate a noise cancelling

function.

Such a filter and noise canceller was constructed [DOW86] based on a Texas Instruments

TMS32010 D S P microprocessor, as shown in Figure 5.1. The analogue to digital

conversion functions were carried out using 8 bit TP3051 Codec chips, which

necessitated linearisation of their logarithmic response before filtering could be carried

out, but which allowed wide dynamic range to be achieved at low cost. This linearisation

was performed by software in the TMS32010. Since the data bus is 16 bits wide, both

codecs could be read simultaneously, simplifying both the hardware and the software. A

sampling rate of 8 K H z was used, with the D S P chip clocked at 15 M H z .

5-2

Operator's
Microphone

Ambient
Noise

Microphone

A/D
mmmmmm/m*

TP3051

A/D

TMS32010
Digital

Processor

LTU
mm.

MM Output

ROM

Figure 5.1 Adaptive audio filter and noise canceller

Various algorithms were investigated to produce Finite Impulse Response (FIR) adaptive

filters, and to carry out noise cancellation by means of Fourier and Inverse Fourier

transforms. Such adaptive filters have been useful in environments such as aircraft

cockpits and on noisy factory floors. Cancellation of echoes and background noise can

enable operation in environments previously considered impossible. N o improvement

could be measured in quiet laboratory conditions, where performance was already

adequate. A small performance gain was noticed in the presence of moderate noise, and

operation in the presence of significant noise was still impossible. Overall, little was

gained considering the amount of effort involved.

Some form of noise gating, where the signal level must exceed a certain threshold before

any speech is passed on to the recognition system, proved to be of benefit in reducing the

incidence of false triggering due to background noise. However, when the operator

speaks and the noise gate opens, any background noise present will still interfere with the

recognition process. A combination of a noise gate, gentle application of an automatic

5-3

gain system, and a close talking headset microphone, provided the best results. Ideally the

automatic gain system should have fast attack and very slow decay. It is an advantage if

the gain is latched to the average level of the operator's voice, only changing if the speech

level changed significantly over time.

5.1.3 Program Control of Microphone On/Off

One of the most useful facilities provided by the SAR-10 to assist the user in coping with

a noisy environment where the onset of the noise can be anticipated is the control of the

microphone on/off by program or by voice command.

In order to properly test the usefulness of this facility, the environment of a music studio

was chosen. The SAR-10 was used to provide voice control to compose music, using

Band-in-a-Box for Windows [PGMU91] and Musicator G S for Windows [BROD92],

two P C based music composition and performance programs, and two music keyboard

instruments: an E N S O N I Q KS-32 weighted action MIDI studio [TRAC92] and a Roland

JV-30 16 part multi timbral synthesiser [ROLA92]. M I D I is an acronym for Musical

Instrument Digital Interface, the industry standard method of allowing electronic musical

instruments and computers to communicate with each other.

During music composition using computers and synthesisers there is considerable noise

while the music is being played, and silence while editing of the score is carried out.

When using voice control, it is obvious that the microphone must be disabled during the

performance of the music. This can be achieved automatically by embedding the SAR-10

Mic Off code into any command which causes music to be played.

The difficulty still remains of enabling the microphone again once the noise has stopped.

When operating with a transparent keyboard handler, once the microphone has been

5-4

disabled by a Mic Off command, the only command the system will then respond to is

Mic On. Provided none of the sounds made by the music system can be falsely recognised

as the Mic On command, all is well. O f course, the chances of a true Mic On command

being recognised while the music is playing are extremely remote, which means that some

form of fail safe system may need to be provided - perhaps a chin switch or similar for a

disabled operator. Otherwise, the operator will have to wait until the noise stops, if it

does!

These programs greatly enhance the ability of a disabled user to compose and perform

music. Band-in-a-Box, when given a chord progression, can automatically produce

multiple instrument accompaniments in a large number of musical styles. The result can

be exported to a standard M I D I file [DEFU89]. This file can then be read by Musicator,

which provides the facilities to edit the music, enhance it by the addition of other

instrumental parts, perform it, and print it out in manuscript form.

The results achieved using this system were gratifying, although manuscript editing

displayed the same difficulties and tedium already discovered with text editors. It proved

possible, with patience, to complete the cycle of creating, playing, editing, re-playing and

re-editing required for music composition. Performance and printing of existing music

scores was quite simple.

5.2 Vocabulary and Reference Pattern Control

5.2.1 Cluster Control

The use of the SAR-10 vocabulary clustering capability has already been mentioned. This

provides considerable scope for the optimisation of the performance of the speech

recognition system in any given application. By careful design of the clusters, and

5-5

selection of the vocabularies contained in them, many potential problems of ambiguity

and false triggering can be circumvented.

The important principles in cluster design are:

• Minimise as far as possible the number of items in any cluster. This increases the

likelihood of entries being orthogonal.

• Avoid having items duplicated in clusters which will be activated simultaneously. This

helps to reduce the number of active entries, and avoids the difficulty of the

recognition system having to distinguish between such very closely related vocabulary

entries.

• Only put items in a cluster that relate to a single context. Other items present will

reduce the recognition accuracy unnecessarily.

• Complex contexts can be covered by combining together a number of clusters

designed for sub-contexts, or other similar contexts. The SAR-10 allows up to six

clusters to be active at once, not including cluster zero which is always active.

5.2.2 Retraining and Updating Reference Patterns

The SAR-10 provides the capability of accessing the accuracy of reference pattern

matching, and retraining and updating reference patterns under program control. If the

recognition is not performing satisfactorily the user has the option of detecting this and

retraining any desired vocabulary items. This sometimes becomes necessary if the

environment changes, the user grows tired, is under stress, or even has a cold. Changes in

the environment may be an alteration in the background noise, or simply a change in the

acoustic characteristics of the room due to the presence of other people or equipment or

furniture being moved.

5-6

The SAR-10 device driver produced for this project made use of these facilities to

provide reference pattern retraining while still under voice control. A n investigation of the

possibility of providing automatic adaptive retraining was carried out also. W h e n

combined with adaptive control of the recognition parameters, as described below, this

makes the task of the operator much simpler.

5.3 Parameter Control

Some improvement in recognition accuracy can be achieved by careful tuning of the

speech recognition parameters of the SAR-10. Parameters available for adjustment are:

• W o r d beginning detection threshold.

• W o r d boundary detection threshold.

• Update score threshold.

• Self-learning flag.

• Self-learning score threshold.

Adjustment of these parameters under voice control has been provided.

The SAR-10 has a self-learning function, which can be enabled to allow it to

automatically update reference patterns during recognition. The reference pattern is

renewed by incoming speech only if its recognition score is lower than the current setting

of the self-learning threshold. A n attempt was carried out to make the SAR-10 more

adaptive by accessing the value of the recognition accuracy parameter and using it to

adjust all of the speech recognition parameters, including the self-learning threshold

parameter. This is laborious if done manually. A heuristic which causes such adaption to

operate effectively, would allow a significant performance improvement, and be especially

useful for initial adaption to a new working environment. This will be the subject of

further work.

5-7

Combined with adaptive retraining of reference patterns, adaptive parameter adjustment

removes from the operator the need to determine empirically the direction and distance

the parameters need to be changed in order to effect the desired improvement in

recognition accuracy.

5.4 User Interface Optimisation

The one remaining avenue of performance improvement is via optimisation of the user

interface. If w e can reduce the possibility of user stress and fatigue, then w e will go a

long way towards improving the recognition accuracy and the performance of the entire

man/machine system.

An important principle is that the interface language must be simple to learn and easy to

use. It must not place a burden on the memory of the user; rather all necessary

information should be immediately presented in its context. The choice of commands

must be consistent throughout the interface, as must be their effect when executed. The

user must be presented with no surprises which produce uncertainty as to what to do

next.

Another important provision is that of an effective and reliable escape route from any

situation, one which minimises damage to or loss of any work which may have been

completed but left in a vulnerable state by a failure of command recognition.

A useful facility towards this end, and one which would be appreciated by a disabled user,

would be a time out function. If a command has not been received for a certain adjustable

period of time, then the mic off function is automatically activated. That the recognition

system has been thus disabled should be clearly displayed on the screen, and by an audible

prompt, to avoid the frustration of trying to command a system which is no longer

5-8

listening. This type of facility is of particular use to a disabled user, because when all else

fails, the system can be rendered safe simply by sitting quietly back and doing nothing.

In summary, the requirements of an effective voice controlled user interface include:

• careful selection of vocabulary entries.

• clustering of related vocabulary items.

• simple, easy to learn and use interface language.

• commands presented in their context.

• consistent choice and effect of commands.

• reliable and effective escape route from any situation.

• fail-safe time-out operation.

5-9

6. EXPANDING THE VOCABULARY

The major limitation of the SAR-10 system in any substantial application is the small size

of the vocabulary which can be loaded into the speech processing hardware. This is fixed

to a maximum of 250 words or short phrases. In addition to this, if the system is trained

to recognise a large number of words or phrases, then recognition accuracy drops owing

to the difficulty of ensuring that all of the reference patterns are orthogonal.

6.1 Vocabulary Context Swapping from Disk

While careful use of clustering partially overcome the orthogonality problem, vocabulary

size is still limited. A possible solution is to arrange for alternative, previously trained

vocabulary reference patterns to be downloaded from disk or computer memory. In this

way the entire context within which the SAR-10 is working can be swapped to suit a

different application, or different contexts within a single application.

Similarly, the system could be trained for different speakers, each of whom can have their

o w n set of reference patterns. This overcomes the problem of reduced recognition

accuracy due to poorer reference pattern orthogonality, and smaller vocabulary size

because of the larger number of training passes needed to achieve reasonable speaker

independence. It does mean, though, that only one person, or smaller sets of people, can

use the system simultaneously. W h e n a different user is identified the appropriate

patterns are downloaded, and those for the previous user, or group of users, are

discarded.

Voice controlled user identification can be achieved in two ways. The first is for each

user to leave the system in a user identification mode, where the vocabulary and

reference patterns loaded have been trained by all of the users, using a personal

6-1

identification phrase. O n recognising the user, that person's preferred operating

environment and applications could be set up ready for use. This user identification mode

would ideally be the mode into which the system enters when it is booted up, or when a

user indicates he or she is finished.

The second way user identification can be achieved is by searching through the different

users' reference patterns whenever the system starts consistently to fail to recognise the

current speaker. Once a set of reference patterns is found the environment for that user is

loaded.

Such a scheme also provides the basis of a security system based on voice recognition. If

any speaker proves to be difficult to recognise, they could be prompted to identify

themselves by their previously trained identification phrase. If recognition of this fails

more than a set number of times the system could disable itself until reactivated by a

valid user.

6.2 Determining and Controlling the Context

6.2.1 Context Determination

While the simplest and most reliable method of determining the most appropriate context

for the system is for the user to make the decision, what may not be so simple is

remembering the numerous contexts for which vocabularies are available, and

remembering their contents in order to decide which ones are the most relevant to the

current situation.

An efficiently designed help system is useful here. If the user decides to change context,

and issues a voice command to that effect, and yet hesitates in naming the context

6-2

desired, then the help system can present information about the vocabularies available.

The type of information desired would be the name of the vocabulary, the contexts for

which it is designed, and the class of words contained - whether commands, cursor

control, numerals, general words, etcetera.

If the application is menu driven or similar, then the help system could be selective in its

presentation of data, only providing information about those vocabularies likely to be

useful in the current context. Further requests for help would elicit more detailed

information about the presented items, or information about the vocabularies not

presented at the first request.

6.2.2 Manual Context Control

Manual context control requires the user to issue an explicit voice control command to

change to a different context, naming the context desired. The application program, or

the device driver in the case of transparent keyboard handler operation, then locates the

appropriate vocabulary and reference patterns on disk or in memory and downloads them

to the SAR-10.

This method is simple to implement, but does place a considerable burden on the user to

know a great deal about the application. As one of our aims is to reduce the necessity of

having to communicate in a machine dependent way, it should be considered as a last

resort when all else fails. Unfortunately the present unreliable performance of low cost

speech recognition and control systems make provision of manual control necessary as a

backup for the following more automatic systems to be described.

6-3

6.2.3 Automatic Context Control

A logical extension of the facility to switch clusters by voice control is to use spoken

commands to change entire vocabularies as well. As this is not available in the SAR-10

system, the simplest possibility is to provide it within the application program. However,

when using existing applications by means of a transparent keyboard handler, it may not

be possible to alter the application source code in this way.

A solution is to build a Terminate and Stay Resident (TSR) program to be loaded before

the application program is executed. The T S R program is designed to respond to control

keys, function keys and alternate keys which are not used in the present context of the

application program itself. If these keys are used as "voice control" codes embedded in

the vocabulary entries, they can cause the T S R program to perform the necessary

downloading of the required vocabularies and reference patterns to the SAR-10.

Another approach is to incorporate the vocabulary context switching capability into the

transparent keyboard handler itself. In either case, each application program would then

be accompanied by its own resident program or programs and sets of vocabulary and

reference pattern tables.

Of course, once embedded "voice control" commands for vocabulary context switching

have been made available to the application program by means of a suitable T S R

program, the user is no better off than for the manual control method unless the burden

of determining the required context is also removed. The ability to do this will depend to

a large extent on the design of the user interface of the particular application program. If

the application's interface is based on a well designed menu system, then the voice

commands for selecting each menu or menu item can n o w be made to contain the "hot

keys" for vocabulary context switching as well as for cluster control. For application

programs with a different or less well designed interface, the extent of context control

6-4

available will vary, but in all cases some useful enhancement of the programs usability

should be possible.

6.2.4 Programmed Context Control

When speech control is being incorporated into a new application at the time it is being

written, or into an older application program for which source code is available, the task

of providing context switching vocabularies is greatly simplified. Calls to the S A R L I B

library of SAR-10 control and operation routines, to be described in Chapter 8, may be

incorporated at appropriate places in the user interface routines of the application

program. In this way the speech control facilities can be made as simple or as

sophisticated as the application builder desires. In addition, all of the retraining functions,

and the audio response facilities can be put to use in the program.

The user interface may thus be simply adapted to account for the presence of speech

control and response capabilities, or, as is preferable, the interface may be completely

redesigned to make full use of the speech recognition system. Some of the traditional

keyboard interface techniques are not the best way to approach speech control, and so, if

the interface is rebuilt with speech in mind as the primary communication mode with the

computer, life can be made much simpler, particularly for a disabled user.

The use of the programmed context switching capability to enhance a user interface will

be subject to the same constraints as discussed for automatic context switching in the

previous section, except that n o w the application designer has the option of ensuring that

the interface is made suitable for voice control, instead of being restricted to the

arrangement provided for keyboard or mouse control.

6-5

6.2.5 Artificial Intelligence and Context Control

Some applications present a particular difficulty when used with speech control. When

working with an application such as a word processor, the context of most menus is

fairly limited and require only a small vocabulary. However, once in the editing mode,

and text is being entered into a document, the vocabulary required is far larger, most

probably a great deal larger than the SAR-10 can handle. In this case, some

understanding of the meaning of what is being entered is needed in order for the

vocabulary to track this meaning as much as possible. A T S R natural language

understanding system might be able to assist in this situation.

Even if the required vocabulary is not too large for the SAR-10, there is still the problem

of recognising the editing commands in the presence of so many other words and

phrases.

If the user restricted himself or herself to correct sentences, then the language

understanding system could detect these and, as well as trying to determine the semantic

context in order to adjust the vocabulary to suit, it could sensitise the system to editing

commands between the input of sentences. If a non-editing command was then uttered

and recognition of it therefore failed, the system could switch back to the currently

selected general vocabulary and try again to recognise the word or phrase, on the

reasonable assumption that the phrase was not a command.

Of course, in such a case, it would be necessary to provide a means of forcing the system

to accept an utterance as a command rather than input text. This could be done in a

manner analogous to escape sequences in a keyboard oriented environment. A n easily

recognised "escape" command, which is unlikely to appear in text, could be used to place

the system in command acceptance mode. This would be especially useful for such

6-6

operations as formatting text or changing a font. Once the command has been carried

out, the system can be put back into text entry mode using a suitable command. (See

section 3.2.)

Such an arrangement could also form the basis of an editor which automatically assists

the user with grammar and style. This would be of undoubted benefit to a disabled user.

The design of a suitable natural language system will be described later.

6.3 Storage and Transfer Considerations

If vocabulary context switching is implemented in a speech recognition system then the

requirement for entire vocabularies to be downloaded from disk between utterances

places some severe timing constraints on file transfer speed. There are several

approaches which can be taken to provide the necessary performance.

The most obvious, but also one of the most expensive, is to provide a very fast hard disk,

preferably with caching. In 1986, when this research program was started, such a

solution was not affordable, but more recently the cost of high speed systems has fallen

to the point where disk transfer speed is no longer a problem.

Similarly, the use of RAM disk emulators can provide extremely high transfer speed. As

most modern systems have enough memory to be able to implement R A M disks, this also

is a feasible solution. In fact, if memory is limited, a combination of a small R A M disk

and an intelligent caching system which tries to determine from the current context which

vocabularies might be needed next, and keeps them loaded down to the R A M disk, might

be a good approach. Such a system could provide satisfactory performance with even an

older, slower hard disk.

6-7

One way to improve file transfer rate is to reduce the size of the vocabulary and

reference pattern files. This can be achieved in several ways.

The first way is to ensure that all vocabularies are as small as possible. This is a good

general principle, assisting in maintaining recognition accuracy, but it also reduces

vocabulary transfer time by trading off transfer speed against the need to swap

vocabularies more frequently.

Another method is to compress the vocabulary and reference pattern files. This also

reduces the need for disk storage space, but must be balanced carefully against the time

needed to decompress the files after transfer to memory.

The third method, which is also a form of compression, is to take advantage of the ability

of the SAR-10 to upload and download vocabularies and reference pattern tables in

either ASCII or binary form. During development the tables can be used in ASCII form,

where they are easier to read and edit. They can then be translated into binary form so

that they occupy less disk space and can be transferred to the SAR-10 in approximately

half the time taken to transfer an ASCII file.

The ability of the SAR-10 to handle both types of files could even be used as a

"compiler" for vocabulary data, although this transformation can also be easily produced

by a program. There is probably merit in using only the binary format to store data, and

to provide for the transformation in the vocabulary editing utility.

6-8

7. VOICEDOS: A VOICE CONTROLLED OPERATING

SYSTEM EXTENSION

The optimal solution to the provision of speech control and response facilities in a general

purpose computer is to incorporate into the operating system the necessary software to

control and use the speech hardware. If the speech interface is an integral part of the

system in this way, and applications software is produced to run under that operating

system, then the application programs need not be concerned with the nature of the

speech system hardware. Rather, they simply make calls to the provided operating system

interface routines. Even if application programs are not designed with speech control in

mind, provided the operating system extensions are carefully integrated into the existing

input/output routines, then some form of speech control will be available to the user.

As we have seen for application packages, effective incorporation of speech control into

an operating system requires a standard speech control and audio response protocol to be

developed, and programs which are to make use of the facilities will need to have their

user interfaces designed accordingly. This removes the need for the application

programmer to be concerned with the low level intricacies of communication with, and

control of, a voice system.

7.1 Methods of Extending an Operating System

Voice control can be incorporated into an operating system in three main ways. The first

is to write an entirely new operating system with speech as its primary input and output

medium. This is a formidable task, but should be tackled once the development of voice

control systems settles into some kind of generally accepted standard.

7-1

The second method is to replace the existing P C BIOS (Basic Input Output System) with

a new one incorporating the required speech facilities. This might be the preferred

solution for a computer which had the necessary voice control built in as standard

equipment. The new B I O S could be placed in R O M .

The third method is to produce a memory resident program which intercepts the

operating system calls from an application program and diverts them to appropriate voice

control and audio response routines. These routines may then, if necessary, pass the call

on to the original operating system function. This is a simpler task, allowing for easier

experimentation and development, and is the method adopted for this project.

7.2 The VOICEDOS Control Program

The SAR-10's device driver allows the speech system to operate in parallel with the

keyboard, called keyboard transparent recognition by N E C [NEC85]. It takes the form of

a T S R program. A speech recognition and response training utility is also provided.

This software is not easy for an unsophisticated computer user to operate. Also, if while

using an application program the user finds that recognition accuracy is decreasing,

perhaps due to voice fatigue, then the application must be aborted before retraining of the

speech system can be carried out. The small sizes of the recognition and response

vocabularies are a limitation in any substantial application involving more than one

environmental context.

To circumvent these problems a new control program has been designed, incorporating

many of the improvements and extensions discussed in previous chapters. This program,

called V O I C E D O S , is presently implemented as a command processing shell around M S -

D O S , but the intention is to develop it into an operating system optimised for applications

7-2

where speech is the normal means of communication, and keyboard use limited or entirely

absent. The use of V O I C E D O S is illustrated in Figure 7.1.

VOICEDOS is implemented in several layers, and is written in Turbo Pascal. The first

layer is the memory resident command interpreter. Then there is SARLIB, a library of

routines which interface the SAR-10 hardware with the command interpreter and

application programs. The third layer consists of the speech system utilities.

Application Program

t 1
VOICEDOS TSR

i

'

MS-DOS & BIOS

fet,

W
SARLIB Library

Figure 7.1 Use of the V O I C E D O S C o m m a n d Interpreter

7.2.1 The VOICEDOS Command Interpreter

The core of VOICEDOS is a memory resident command interpreter, designed to interface

the numerous speech utilities and application programs with M S - D O S . This is patched

7-3

into the M S D O S keyboard interrupt, so that the voice command system operates in

parallel with the keyboard. This routine, when summoned by a voice command, opens a

window in the screen of the currently running application program, whilst preserving the

context, and then allows full access to the voice control utilities.

VOICEDOS was initially implemented as a transparent keyboard handler similar to the

one supplied by N E C with the SAR-10. The reason for this was that the N E C software

proved to be inoperable in any P C with a clock speed faster than 4.7 M H z . It was

deduced that the likely problem was in the order in which handshaking between the SAR-

10 and the P C was carried out. It is suspected that the SAR-10 sets its data ready flag

before it puts the data in the register, instead of after. If this is the case, it probably

worked on a slower P C because its attempt to read the data was late enough for the data

to be ready when needed. As soon as a faster machine was used, even a 6 M H z I B M A T

or an 8 M H z Turbo X T , it failed and returned a "Communication Protocol Error"

message.

Rather than attempt to pursue this further with the manufacturer, and as the source code

was not available, it was decided to construct a new keyboard handler and take the

opportunity to incorporate some extensions such as vocabulary context switching, and

monitoring of input/output interrupts in order to add audio response capability as well as

reference pattern retraining and user identification capability.

7.2.2 The SARLIB Interface Routines

The interface to the SAR-10 is implemented via the command structure provided by

N E C , and is transparent to the user. It is implemented as a library of Turbo Pascal

routines, called SARLIB. This library is fully described in a technical report [DOW94a],

but its essential features will be described here. They include the ability to invoke all the

7-4

primitives provided by the SAR-10 hardware as if they were Pascal functions and

procedures. These routines are then used to build the more complex library routines.

The main facilities provided are - training and updating speech recognition patterns;

digitising or recording audio responses; audio response output; performing speech

recognition; recognition cluster control; setting and inquiring about parameters, flags and

error status; deleting, uploading and downloading speech recognition or audio response

patterns and vocabularies; and various control and memory housekeeping functions. This

library of interface routines will be described in detail in Chapter 8.

7.2.3 Speech Control Utilities

The speech control utilities include facilities for updating speech patterns, retraining them

if necessary, vocabulary extension or replacement, and testing of recognition

performance. The audio response facility can similarly be trained and tested. These

utilities are built up from the S A R L I B primitives to provide a friendly environment for the

user. Extensive use is made of pop-up windows and audible prompting, so that the user is

never left in any doubt about what action is required or the commands that are available

for use.

At all points in the design of this software, care has been taken to ensure that intelligent

action is taken on the occurrence of any system error. A physically handicapped person

will have even less time than other users for a system which might respond to a command

to answer the telephone with "Error reading drive A - Abort, Retry or Ignore?".

The speech utilities are built around two main program modules. The first is a vocabulary

file system, designed to enlarge the restricted vocabulary of the SAR-10 speech

recognition and audio response unit, without reducing accuracy of recognition or speed

7-5

of response to an utterance. This file system is indexed by context numbers for fast

access, and maintains as many disjoint speech contexts as are necessary for an application.

The second module comprises the routines needed to implement training and retraining of

speech recognition patterns and audio responses.

7.3 Implementing Memory Resident Utilities

A major limitation of MS-DOS (partially overcome now by Microsoft Windows) is its

lack of multitasking facilities. In voice controlled applications the ability to temporarily

interrupt a running program in order to perform voice retraining is mandatory for reliable

and convenient operation. In addition, for a program to intercept interrupts to the

operating system and react to them in order to modify the behaviour of the operating

system as seen by the application program, it is necessary for that program to be resident

in memory.

7.3.1 Requirements Of Memory Resident Programs

The main requirement of a memory resident routine is that it is able to be loaded into

memory by another program and then invoked when needed, either by its parent program,

or directly by the user, without corrupting in any way the running environment of an

already resident program. If a number of different routines are potentially resident, they

must be removable and the memory occupied reallocatable to the operating system.

Since neither MS-DOS or the BIOS is re-entrant, care must be taken to prevent such

routines calling each other or themselves recursively. This can occur particularly when

different routines use the same BIOS facilities to perform I/O. Nor can non re-entrant

7-6

operating system facilities be used, since they may be already being used by the program

whose execution was interrupted when the memory resident program was invoked.

7.3.2 Construction of Memory Resident Programs

VOICEDOS was implemented in the form of a TSR (Terminate and Stay Resident)

program, but owing to difficulties in using the M S - D O S Terminate and Stay Resident

interrupt (INT 27H) with .EXE format programs the M S - D O S Keep Process function

was used (TNT 21H, Code 31H), as recommended by Microsoft [ANGE86].

7.4 Making VOICEDOS Utilities Memory Resident

7.4.1 The Installation Program

Upon boot-up the program VoiceDosInstall is installed in memory as a filter for the

hardware keyboard interrupt. Pressing the <Alt => key, or issuing a voice command

which has been programmed to simulate the <Alt => key, invokes VoiceDosInstall,

whose function is to load and execute another program from disk into a reserved memory

area and execute it, then return to the original application without loss of context.

VoiceDosInstall can remove itself from memory if the user desires by using it to invoke

the utility VoiceDosRemove.

To filter the interrupts, VoiceDosInstall places the original interrupt vectors into interrupt

vectors reserved for user programs. Interrupt #69 is used for the keyboard interrupt

(#09). If these interrupts conflict with current use, they are easily changed by a utility

provided. During the running of a resident routine the interrupts are restored to normal to

prevent the routine from being able to invoke itself recursively, and so cause problems

7-7

with D O S non re-entrancy. A n outline of the design of VoiceDosInstall is shown in

Figure 7.2.

Program VoiceDosInstall
Begin

Save current program status for later restoration.
Open a window to display messages during installation.
Check to see if VoiceDosInstall is already installed by looking at
the identification field in the ISR control block (if it is there).

If VoiceDosInstall already installed then
Inform user and exit.

else if VoiceDosInstall can be safely installed then
Place vector #09 into #69 so that once #09 is changed
the previous ISR can still be invoked.

Prompt the user and wait for a key press.
Install the new interrupt service routine.
Remove the message window to conserve heap space
for the application routine windows.

Exit and remain resident.
End

Figure 7.2 VoiceDosInstall m e m o r y resident routine design

The keyboard Interrupt Service Routine (ISR) needs a local stack of sufficient size to

handle any variables defined in its procedures. The positioning of the ISR stack above the

stack segment base allows for the window routines to allocate needed space for screen

images on the heap. Consequently, an amount of space must be allocated for stack/heap

space during compilation, and that figure passed to the MS-DOS "Terminate and stay

resident" function when terminating. The application program routines use their own

windows. The windows are displayed when needed but removed when no longer

required.

The routine in VoiceDosInstall which installs the ISR first installs the address of the ISR

Control Block into the specified interrupt vector. The first bytes of the ISR Control Block

make a call to the ISR dispatcher, placing the address of the ISR Control Block

7-8

information on the stack. Thus the dispatcher can access the information in the ISR

Control Block. This routine also returns the previous vector so that when necessary it

may be restored. Enough information must be passed to the routine to enable initialisation

of the ISR Control Block.

Removal of a memory resident routine has been accomplished by a process which is

largely the reverse of the installation process. This will not always work if other memory

resident programs have been installed prior to the use of VoiceDosInstall as D O S is not

always able to free the memory, but by keeping only one routine in memory at a time as

this system does, no problems have been encountered.

7.4.2 The Interrupt Service Routine

Installing a memory resident routine is carried out by the procedure VoiceDosIsr. This

interrupt service routine filters the hardware keyboard interrupt (interrupt #09). Every

time an interrupt is generated by the keyboard or voice system this routine gains control.

It immediately invokes the previous keyboard ISR whose address has been moved to

vector #69. Upon return it checks to see if the key or extended key sequence is significant

to the application. If so, it activates the application. A n outline of the design of

VoiceDosIsr is shown in Figure 7.3.

7-9

Procedure VoiceDosIsr
Begin

Save the C P U flags and issue interrupt #69 in place
of the intercepted keyboard service routine.

On return from the keyboard service routine restore
the original flags.

If a keystroke is ready then
If it is one w e are interested then

Save the cursor status then remove the
keystroke from the buffer.

Save the current keyboard interrupt vector.
Disable interrupts while resetting the interupt vector
If the character corresponds with a
particular application program then

Load and execute the desired application program.
Disable interrupt vectors and reset the
interrupt vectors and cursor status to their original values.

End

Figure 7.3 VoiceDosIsr interrupt service routine design

7.5 VOICEDOS Utilities

Although all of the voice control facilities provided by S A R L I B are available for use in

application programs, it is desirable that several be provided as memory resident utilities

to be invoked during normal system use. The most important of these are:

• train or update speech patterns

• upload or download vocabularies or speech patterns

• examine and/or change speech recognition parameters.

The S A R - 1 0 system is relatively speaker independent once it has been trained using

several different voices. However, best performance is obtained if the speech patterns

have been provided only by the person currently using the system. Hence the ability to

change quickly from one user's patterns to those of another person is a great advantage.

7-10

The ability to alter recognition parameters may aid an experienced operator to overcome

the problems of noise or voice fatigue without resorting to the retraining of speech

patterns. The parameters that this utility affects are:

• word beginning detection threshold (level)

• word boundary detection threshold

• update score threshold (an arbitrary measure of word recognisability)

• self-learning flag (the SAR-10 has a certain amount of self-training ability)

• self-learning score threshold

7.5.1 Setting the SAR-10 Recognition Parameters

This utility can be popped up over an application program to allow various parameters

and flags of the SAR-10 to be adjusted. This is useful if the recognition performance

begins to deteriorate, perhaps due to operator fatigue or changed environmental

conditions.

Among the speech recognition parameters which are able to be set are the word

beginning point detection threshold, and the word boundary point detection threshold.

Careful adjusting of these two parameters can aid in achieving successful recognition in

different background noise conditions. The values recommended by the manufacturer for

these thresholds are - in quiet conditions: 10 to 30; in normal conditions: 30 to 50; and in

noisy conditions: 50 to 80.

The matching score threshold for update, the self learning flag, the matching score

threshold for self learning, the voice control flag, the reject buzzer flag, and the echo back

flag are also adjustable. The audio response parameters which can be adjusted are the

sampling frequency for digitising or recording and the end detection time for digitising.

7-11

7.5.2 Training the S A R - 1 0 for S p e e c h Recognition

The utility for training the SAR-10 to recognise words or phrases, when invoked, allows

the user to either build a new vocabulary, edit an existing vocabulary, or to train or

update all or any of the entries for recognition. In addition reference patterns can be

uploaded from the SAR-10 for storage on disk, and download to the SAR-10 for

updating, testing or use.

The information needed for each vocabulary entry is entered using a simple editor and

consists of the following:

• The training message - this is the message displayed on the screen, telling the user

what word or phrase he or she should speak when the SAR-10 signals them to do so

by beeping. This utterance will be digitised and transformed into reference patterns,

and used for later comparison during the recognition mode.

• Recognition output - this is the character string or hexadecimal code to be output to

the application program upon successful recognition of the word or phrase being

trained.

• Cluster number - this is the number of the cluster to which the current word or phrase

being trained will be allocated.

• Recognition rejection threshold - this is the threshold below which recognition

accuracy must be before the word or phrase will be accepted as a match with a stored

recognition pattern.

• Voice control code - this is a code to specify either a set of up to six cluster numbers

to enable, reset the active cluster number to that cluster specified by the Start

Recognition command, or turn the microphone on or off

The process of training a vocabulary entry is simple. The user is prompted for the file

name which does or will contain the vocabulary and reference patterns. Then the user

must select whether all words are to be trained, some words, or one particular word. The

7-12

system will accept "all words", "some words", or "word number ..." followed by the

number of a word. If all words are selected then the training process will be carried out in

sequence for each word, beginning with the first word. If some words are to be trained

then the user will be prompted for the numbers of the first and last words of the group of

words to be trained.

Once words have been selected, the number of training passes to be carried out must be

entered, and whether the patterns are to be initially trained or updated. If initial training is

selected then any existing patterns in the SAR-10 or the file are cleared. Before this

occurs the user is asked to verify the command.

The process of training each word involves each word number and its training message

being displayed on the screen. If the echo back function is enabled then the system will

output the associated audio response message and ask the user to repeat it after the beep.

Otherwise the user just speaks the displayed training message after the beep. W h e n this

has been repeated for the required number of passes the system moves on to the next

word to be trained.

If updating of patterns is in progress, then if the new patterns do not achieve a

recognition score less than the updating threshold, the system displays the minimum and

maximum scores and does not replace the old patterns with the new ones. It then asks if

the user wishes to continue trying.

Once training or updating has been completed the user may save the vocabulary and

reference patterns to disk. At any time during the use of these utilities the user can

request a display of the contents of the vocabulary as a reminder.

7-13

7.5.3 Testing the SAR-10's Recognition

If the recognition testing utility is called the system displays the vocabulary file name and

each of the speech recognition flags, giving an opportunity for them to be altered. Then it,

both audibly if echo back is enabled, and on the screen, asks the user to speak any word

in the current vocabulary.

The utility tries to recognise the word, and displays its best two attempts along with their

recognition scores and whether or not the best match was accepted as a valid word. If

echo back is enabled then the audio response associated with a successfully recognised

word is output.

This process continues until the user says to stop. At any time the effect of changing

recognition parameters can be tested.

7.5.4 Training the SAR-10 for Audio Output

Training the SAR-10 for audio response is similar to training it for recognition. The only

item to be edited in the vocabulary table is the word or sentence to be output.

Alternatively the training messages from a speech recognition vocabulary can be copied

directly into an audio response vocabulary.

The audio response parameters, sampling time and end detection time, and whether the

trained audio response will be echoed back during training can be set, as can the name of

7-14

the file to contain the vocabulary. The user can select to train or update the audio

responses, and which words will be trained. The system then steps through each of these

words, asking the user to speak them after the beep. If the user selected audio output to

be echoed back then the input speech will be output as an audio response after each

utterance is trained. If the result is not satisfactory the user can elect to redo it before

going on to the next word.

Another function of the audio response utility is that of macro building. Up to eight

macros, which are a sequence of audio responses separated by short periods of silence,

can be loaded into the SAR-10 or saved in a macro file. If macro building is selected then

a simple editor will appear. This editor allows up to eight macros to be constructed on

screen. Each macro consists of up to fifteen word numbers from the current audio

response vocabulary, and a pause value of between 10 mSec and 2.5 Sec. The pause will

be automatically inserted between each word when the macros are saved.

Once macros have been defined they can be tested in a similar manner to audio responses,

and can be downloaded to the SAR-10 or saved on disk.

7-15

8. INTEGRATING VOICE CONTROL INTO A NEW

APPLICATION PROGRAM

Chapter 8 describes the use of the SARLIB library in the construction of the

V O I C E D O S utilities. This library also forms the basis of the speech control and audio

output facilities designed to be incorporated into new application programs.

8.1 The SARLIB Interface Routines

The interface to the SAR-10 is implemented via the command structure provided by

N E C , but is transparent to the user of the system. It is implemented as a library of

Turbo Pascal routines. The primitives provided by the SAR-10 hardware may be

invoked as Pascal functions and procedures incorporated into the SARLIB library.

The construction of these routines uses the fact that the SAR-10 appears to the IBM PC

as two parallel ports. Commands, data and status are transferred between the two

systems using a simple handshaking protocol. L o w level Pascal routines were written to

send a command or data string to the speech processor, and to monitor the status port

for command completion or an error return. Data is returned to the P C in a similar

fashion. These routines are then employed to build the more complex library routines.

The main facilities provided are shown in Appendix K.

These routines are implemented in a Turbo Pascal unit called SarlO, and may be

grouped into three categories as follows:

• Control and test routines,

• Speech recognition routines,

• Audio response routines.

8-1

The routines provided are all listed in Appendix K. The complete SARLIB library is

described in a technical report, "SARLIB: A Library of SAR-10 Speech Recognition

and Audio Response Interface Routines" [DOW94a].

8.1.1 An Example SARLIB Routine

As an example of the design of these routines the algorithm for the Recognise First

Speech Reference Pattern Candidate routine is shown in Figure 8.1.

Procedure SarRecogOne
Begin
Command = 'RA'.
Form a list of the active clusters. Append to the command.
Send the command to the SAR-10.
Get the SAR-10 response.
If the response string begins with '>' then
Get word number from response string.
Get recognition score from response string.
If word number = 999 then
Recognition failed.
Return failure code.

else
Recognition succeeded.
Return word number.

else
Return error code.

End

Figure 8.1 Recognise First Speech Reference Pattern Candidate algorithm

8.1.2 SARLIB Utility Routines

The SARLIB utility routines are the main utilities for performing speech recognition and

audio response, training for speech recognition and audio response, and testing speech

recognition. They are constructed from the more primitive routines described above:

8-2

• SarRecogniseSpeech ~ perform speech recognition

• SarAudioResponse ~ output an audio response

• SarTrainRecognition ~ train SAR-10 speech recognition

• SarTrainResponse ~ train SAR-10 audio response

• SarTestRecognition ~ test SAR-10 speech recognition

8.1.3 SARLIB Error Handling

When the system does not behave as expected error codes are returned. These codes

indicate whether a SAR-10 error or a system error occured, and what was the nature of

the error. For example, the SAR-10 hardware memory may be full, or a vocabulary

upload command may have been unable to access a disk drive. All of the error codes are

listed in Appendix K.

8.1.4 SARLIB Data Structures

Information is transferred to and from the SARLIB routines by means of a standardised

set of data structures, described in the Pascal types below.

Each cluster in a vocabulary is identified by a number, and the 32 possible clusters are

grouped together in an array:

ClusterNoArray = Array[1..32] of Byte;

ClusterRec = Record
NoOfClusters: Byte;
ClusterNos: ClusterNoArray

End;

8-3

Speech recognition reference tables are stored in blocks of memory, allocated

dynamically as required, and accessed through the following structure:

SRPatternRec = Record
NoOfBytes: Integer; {No of bytes in pattern }
PatternPtr: Pointer {Pointer to these bytes }

End;

SRPatternTable = Array[1..250] of SRPatternRec;

Words in a vocabulary are identified in the SAR-10 by a number between 1 and 250,

consistent with their position in a vocabulary table in the PC. The words themselves are

not stored in the SAR-10, so their position number enables them to be identified. Each

vocabulary entry is stored in a dynamically allocated record structure, and a complete

vocabulary is stored by maintaining an array of 250 pointers to these structures, plus

other information such as cluster number, reject threshold, and the voice control code

and output code to be output upon recognition of this word.

VocabRec = Record
SRWordNo: Byte;
ClusterNo: Byte;
RejectThresh: Byte;
VoiceControlCode: Byte;
OutputCode: String32

End;

VocabRecPtr = AVocabRec;

VocabTable = Array[1..250] of VocabRecPtr;

Global speech recognition parameters and flag values are stored in static structures as

follows:

8-4

SRParamRec = Record
WordBeginThresh: Byte;
WordBoundThresh: Byte;
UpdateScoreThresh: Byte;
SelfLearnFlag: Boolean;
SelfLearnThresh: Byte

End;

RecogFIagsRec = Record
VoiceControlFlag: Boolean;
RejectBuzzerFlag: Boolean;
EchoBackFlag: Boolean

End;

Audio response speech patterns and parameters are stored in similar structures as those

for speech recognition. The structures for an audio output word or macro are variant

records, the interpretation of their contents depending upon whether the entry is an.

output utterance or a period of silence.

ARWordRec = Record
Case WordNotPause: Boolean of

True: (WordNo: Byte);
False: (PauseLen: Word)

End;

ARMacroRec = Record
Case MacroNotPause: Boolean of

True: (MacroNo: Byte);
False: (PauseLen: Word)

End;

Audio output word numbers and macro numbers are stored in arrays of these structures.

Any one output can be constructed from up to 32 concatenated single digitised words

or phrases, or macros, separated by pauses from 10 mSec to 2.5 Sec.

A macro is a combination of up to 15 words or phrases, each separated by the same

length of pause, adjustable from 10 mSec to 2.5 Sec. The SAR-10 can store up to 8

macros in its memory at one time, and these can be composed of any of the 250 words

or phrases stored in the SAR-10 memory.

8-5

The audio response structures are defined as follows:

ARWordNoArray = Array [1..32] of ARWordRec;

ARMacroNoArray = Array[1..32] of ARMacroRec;

ARMacroDef = Record
MacroNo: Byte;
NoOfWords: Byte;

WordNos: Array[1..15] of Byte;
PauseLen: Word

End;

ARPatternRec = Record

NoOfBytes: Integer; { No of bytes in pattern }
PatternPtr: Pointer { Pointer to these bytes }

End;

ARPatternTable = Array [1..250] of ARPatternRec;

ARParamRec = Record
SampHngFreq: Byte;
EndDetectTime: Byte

End;

ARStatusRec = Record
NoARWords: Byte;
TotalTime: Word;
TimeUsed: Word

End;

Detailed descriptions of the operation of each of the SAR-10 commands is contained in

the SAR-10 User's Manual [NEC85], and will not be elaborated on here.

8.2 Using SARLIB in an Application Program

Using the SARLIB utility routines as a basis, more application specific routines can be

constructed, analogous to more conventional input and output routines provided by

8-6

most languages. For example, the SARLIB rough equivalents to Pascal's Readln and

Writeln are:

Function ListenPhrase(Var Phrase: String): Boolean;

Procedure SpeakPhrase(PhraseNum: Byte);

Procedure SpeakMacro(MacroNum: Byte);

The ListenPhrase function returns a Boolean result to indicate whether or not a phrase

was successfully recognised. The returned parameter is in the form of a string rather

than a word or phrase number. This is more convenient for programs which also

incorporate a parallel keyboard input facility. The translation between word numbers

and strings is easily accomplished by means of a lookup table, and helps to make

programs easier to read. The same process could also be carried out for the audio

output routines if desired.

It was also found desirable to expand the SAR-10 audio response macro capability to

allow more complex audio responses to be constructed from a basic audio output

vocabulary. It is likely that a single output vocabulary of 250 basic words could be then

used for almost any application program. This was done by paralleling the SAR-10

hardware macro facility with a software version based on storing sequences of output

vocabulary entry numbers in arrays and storing them in files. This gave the additional

advantage of allowing the time period between components to be made variable, rather

than constant as in macros. Using this approach the number and length of macros is

determined by the storage available instead of the SAR-10 hardware.

A number of general purpose input and output routines were also constructed, using the

SARLIB primitives, to perform all of the interface requirements of an application

program. These include:

8-7

• Prompting a user, both audibly and via the screen, to input a value, either audibly or

via the keyboard. A number of such routines were constructed, to accommodate the

different inputs possible, such as strings, integers, floating point numbers, yes/no

responses, etcetera.

• Input in a variety of window formats, with error checking, editing and correcting

facilities.

• Output values, both audibly and visually, in a variety of formats.

• Output help files, both audibly and visually.

If a help file is composed of a small set of words it is a simple matter to train those

words into an audio response vocabulary. W h e n the help facility is invoked, the current

audio response vocabulary and reference patterns can be swapped for those applicable

to the help context, and the SAR-10 can be made to "read" the help file by finding the

number of each word in a lookup table file and outputing it as an audio response.

This approach can be taken for more general applications apart from help files. Given a

suitable vocabulary any text file can be "read" out, enabling talking programs to be

produced.

8-8

Part II

Natural Language Understanding

9. NATURAL LANGUAGE UNDERSTANDING SYSTEMS

One method by which the use of a simple speech recognition system such as the SAR-10

can be made easier to use is to remove, as far as possible, any requirement on the user to

speak in a certain manner. This is particularly beneficial if the restrictions that are

removed are ones which force the user to adopt unnatural modes of speaking.

Because the SAR-10 is an isolated word or phrase recogniser there is nothing that can

be done to remove the need to leave silences between trained words or phrases. What

can be done, however, is to take advantage of the past few decades of research in the

fields of theoretical and computational linguistics and implement a natural language

understanding system.

9.1 Natural Language Interfaces

During the 1950s, and even the late 1940s [WEAV49], the desire for efficient computer

translation from one natural language to another spurred much research into the

development of language analysis programs. The difficulties involved in achieving this

goal had been underestimated, and gradually funding was curtailed. Once it was realised

that little could be achieved in translation without the accompanying ability to

"understand" the material, more realistic aims were set [SLOC85]. More recently, effort

has been applied to achieving machine assisted translation, automated information

retrieval from textual material, and natural language interfaces for application programs

[SNEL79] [PERR86].

9-1

9.1.1 Approaches to Language Understanding Systems

Researchers have approached natural language understanding from a number of

directions. Initially a great deal of work was carried out on theoretical linguistics, and as

computers became powerful enough the field of computational linguistics developed.

Part of this is an attempt to describe language in a rigorous enough way that it can be

analysed by algorithms based largely on formal logic [GRIS86].

The greatest difficulties faced by computational linguists are the ambiguities involved in

natural language, and the reluctance of human languages, which are essentially infinite in

structure, to confine themselves to strictly finite systems of analysis. In addition, much

of the early work of theoretical and computational linguists was aimed at determining

whether or not a string of words is a valid sentence, and at constructing sentences from

a set of rules - a task where ambiguity does not prove to be a major problem. The task

facing the constructor of a natural language system is the reverse of this - the

unambiguous breaking down of a sentence into its components so that its meaning can

be extracted and acted upon.

Rather than taking a theoretical approach, in order to construct a successful natural

language interface, the task was approached from the point of view of an engineer.

Elegance and rigour must take second place to a more pragmatic attitude that says, in

effect, if it works then use it.

9.1.2 Processes of Language Analysis

A possible approach to language analysis is to consider a text or dialogue in terms of a

sequence of sentences. W e can concentrate on analysing a sentence as a unit. Then,

once the sentences are understood, their meanings can be considered together in order

9-2

to try to establish the meaning of the complete text. This is an oversimplification, since

any sentence in a dialogue will almost certainly only be entirely explicable when

considered in conjunction with the other sentences. However, for the purposes of

making progress, such a segmented approach is convenient [GRIS86],

Sentence analysis may be broken into two parts: syntax analysis and semantic analysis.

Syntax analysis is concerned with discovering the grammatical rules which bind the

components of the sentence together, while semantic analysis tries to uncover the

meaning which results from combining the components in such a way.

As with sentence analysis and dialogue analysis, it is convenient to be able to separate

the analysis of the syntax from that of the semantics of a sentence. Such modularity

simplifies the construction of computer programs to carry out the analysis. Dividing the

task in such a way does ignore the fact that grammatical structure and meaning are

closely related. Because of this, much effort is being put into discovering how to make

use of semantic information to aid in syntactic analysis [SCHA75] [RIES75] [RIES78]

[HEND77a] [HEND77b] [CATE82] [KTNG83], especially disambiguation [HTRS87].

Once the sentences have been analysed and their individual meanings extracted and

codified, then the meaning of the overall text must be determined and stored in some

form. This brings in the fields of discourse structure and knowledge representation

[GRIS86] [HOEY83] [WrNT82].

Another area, related to but separate from language analysis, is that of language

generation. This is necessary in any practical natural language interface which intends to

provide anything more than the most rudimentary form of speech output in addition to

speech input [GRIS86].

9-3

9.2 Syntax Analysis

There have been a variety of approaches to the analysis of the syntax of a sentence,

including phrase structure grammar [HOPC79], linguistic string theory [SAGE81],

generalised phrase structure grammar [GAZD85], word grammar [HUDS84],

transformational-generative grammar [CHOM57], and many others.

Rather than following the traditional path of trying to accommodate the results of

theoretical linguistics to the limitations of computer systems, some computational

linguists have come from the opposite direction. They have taken the well defined

grammars and theoretical structures developed for finite computer languages and tried

to expand them to take into account the peculiarities of human language. By restricting

themselves to a subset of a natural language, considerable progress has been possible.

Such an approach has a singular advantage in that it can put to use the powerful

computational tools which have been developed to ease the task of producing compilers

for computer languages. This is the method used to produce the parsers used in this

project, as will be seen in Chapter 11. In addition, a goal of the present work is to adapt

such tools so that they can be used more effectively in the construction of natural

language analysers by being less constrained by the limitations of context free grammars.

This is discussed more in the concluding chapter.

Computer languages generally use a context-free grammar [NAUR63] [AH077], where

the function of a word in a sentence does not depend on the functions of the words

surrounding it. O n the other hand, human languages are context-sensitive. Thus the

description of a natural language using a context-free grammar must of necessity be

incomplete and approximate, so most natural language interfaces only attempt to tackle

a subset of a language. As natural languages are so large and difficult to reduce to a

9-4

formal grammar anyway, it is likely that using any method at all will result only in a

subset of the language being understood, at least with the present state of the art.

One part of this project consists of an attempt to modify the tools and techniques used

for computer language parsing so that they can take into account some of the context-

sensitivity, ambiguity and variability of human languages.

A popular method of describing a natural language is to begin with Recursive Transition

Networks (RTN), which can describe context-free languages, and to augment them with

extra rules and conditions to accommodate special features of the natural language.

Such a structure is called an Augmented Transition Network (ATN). This is the method

followed in the present project, and uses the form of A T N described by Terry Winograd

[WTN083], which will be described in Chapter 10.

9.3 Semantic Analysis

The analysis of the meaning of the sentence is an even more challenging task than syntax

analysis. Researchers have used various approaches to date, with many of them

revolving around an attempt to describe the sentence semantics in some kind of formal

logic language or semantic network, or describing it in the form of a standardised script

or frame of information [WINS 84]. The position of the semantic analysis within the

overall parsing scheme also varies. Margaret King [KING83] describes the three

approaches as sentence-final [W O O D 7 3] , homogeneous [RTES75], and interleaved

[WIN072].

Semantic analysis is complicated by the fact that many assumptions are made by a

speaker about the context in which the sentence is uttered, beliefs and emotions, the

world knowledge and world view of the listener, and many other factors. The later

9-5

stages of discourse analysis and knowledge representation can be of assistance in

resolving some of these problems, which means that it is difficult to separate these

functions of a language understanding system into discrete components.

In the present project the semantic analysis component is rudimentary, and probably can

best be described in terms of a semantic network in which each action, object and

subject are described in terms of a simple set of standard forms. The sentence-final

method is used, that is, syntactic analysis is completed before semantic analysis is

attempted. Further details are given in Chapter 14.

9.4 Discourse Analysis and Knowledge Representation

Discourse analysis is the attempt to understand the inter-relationships between the

sentences and their actions, objects and subjects, so that the overall context and meaning

of the text can be determined. One approach is to maintain a frame of information about

the discourse, and to fill it in with any information gained during the syntax and

semantic analysis phases. This information can be used during these phases to help to

resolve some of their difficulties. After a final pass through the entire set of semantic

networks produced by the semantic analysis, any gaps in the frame may be filled in.

When the context in which the system is working is known, as is the case in many

application programs to which speech control is being added, much of the general

information in the frame can be completed in advance. It then only remains for the

language analysis to provide the specific objects, subjects and actions to be carried out.

This form of simple system has been implemented in the present project.

9-6

10. SYNTAX ANALYSIS AND GRAMMARS FOR NATURAL
LANGUAGE SUBSETS

This chapter describes the method of syntax analysis used in this project, the

development of the grammar used and the augmented transition networks from which it

was derived.

10.1 Words and Word Categories

The syntactic analysis of text or speech requires a categorisation of each word

encountered in the input stream. Words in the English language can be categorised in a

number of ways. The classification chosen here is as follows: adjective, adverb,

conjunction, interjection, noun, prefix, preposition, pronoun, verb, word element.

This differs somewhat from those chosen by Terry Winograd [WTN083], whose

grammar was used as the basis of the parser to be described. Winograd uses the

following word categories: adjective, complementiser, determiner, noun, preposition,

pronoun, proper noun, relative pronoun, verb. However, as each of the more general

word types in the dictionary used in this project has associated with it a number of

properties, it is not difficult to derive Winograd's restricted set of categories from those

provided. This arrangement also permits the derivation of any other word category,

facilitating ready expansion of the grammar.

The large number of features and properties associated with each word will be described

in Chapter 12, where the development of the dictionary is discussed. The word

categories used in this project are fully described in Appendix A: Parts of Speech for

English.

10-1

10.2 Context-free G r a m m a r s and Parsing

10.2.1 Context-free Grammars

In order for text in a particular language to be analysed for its syntactic structure a

specification of the rules and structure of the language must be available. The most

common method for specifying a context-free language such as a programming language,

or any other machine input language, is via a context-free grammar. The use of context-

free grammars was originated by the theoretical linguist Noam Chomsky [CHOM56]

[CHOM59].

Context-free grammars are often described using a notation called BNF (Backus-Naur

Form), developed by Naur to describe the programming language A L G O L 60

[NAUR63]. The notation used in this report is a simplified B N F which is easier to read

but retains all the expressive power of BNF.

Some language constructs are most naturally defined recursively. For example, we might

want to derive a grammar rule to express the statement:

If NP is a NounPhrase and Det is a Determiner, then

Det NP is a NounPhrase.

If we use the syntactic category NounPhrase to denote the class of noun phrases and

Determiner to denote the class of determiners, then this can be expressed by the

recursive rewriting rule or production

NounPhrase -> Determiner NounPhrase

10-2

Another way to read this is: "One way to form a noun phrase is to concatenate a

determiner and another noun phrase".

A second example:

If Al, A2, A3, ... An are Adjectives and NP is a NounPhrase, then

Al A2 A3 ... An NP is a NounPhrase.

Here, we could write:

NounPhrase -> Adjective Adjective Adjective ... Adjective NounPhrase

but the use of ellipses (...) would create problems when we attempt to define

translations based on this description. Each rewriting rule or production must have a

known number of symbols, with no ellipses permitted. To express this statement by

rewriting rules, w e can introduce a new syntactic category AdjectiveList, denoting any

sequence of adjectives separated by spaces. The production then becomes:

NounPhrase -> AdjectiveList NounPhrase

AdjectiveList -> Adjective

-> Adjective AdjectiveList

The production for AdjectiveList can be read as: "An adjective list is either an adjective

or an adjective followed by an adjective list", or, alternatively: "Any sequence of

adjectives separated by spaces is an adjective list".

Sets of rules like the above constitute a grammar. In general, a grammar involves four

quantities: terminals, nonterminals, a start symbol, and productions.

10-3

The basic symbols of which strings in the language are composed are called terminals.

For example, English language words and punctuation symbols are terminals. The word

token is often used as a synonym for terminal.

Nonterminals are special symbols that denote sets of strings. The expression syntactic

category, used above, is a synonym for nonterminal. In the above examples, the syntactic

categories Adjective, AdjectiveList, Determiner and NounPhrase are nonterminals.

One nonterminal is selected as the start symbol, and it denotes the language in which we

are truly interested. The other nonterminals are used to define other sets of strings, and

to help to define the language. They also help to provide a hierarchical structure for the

language. In the grammars constructed for this project the starting symbol is Sentence.

The productions (rewriting rules) define the ways in which the syntactic categories may

be built up from one another and from the terminals. Each production consists of a

nonterminal, followed by an arrow, followed by a string of nonterminals and terminals, as

can be seen in the above examples.

The productions may be applied repeatedly in any order to expand the nonterminals in a

string of nonterminals and terminals, until eventually only terminals are left, and the

expression has been parsed.

A graphical representation of the process of parsing a sentence is the parse tree. It makes

explicit the hierarchical syntactic structure of sentences that is implied by the grammar.

Each interior node of the parse tree is labelled by some nonterminal, say A, and the

children of that node are labelled, from left to right, by the symbols in the right side of

the production by which A was replaced in the derivation.

10-4

For example, if at some step in the parse w e use the production

A -> X Y Z,

then the parse tree for that derivation will have the subtree shown in Figure 10.1

A

Production: A -> X Y Z ,

X Y Z

Figure 10.1 Subtree for parsing the production A -> X Y Z

For example, consider the grammar for a simple English subset shown in Figure 10.2.

s

NP

NP2

PP

VP

- ^

_=>

-*

_ »

— >

-*-

" * •

_ * •

— > •

~ ^

NP VP

Det NP2
NP2

NP2 PP
Noun
Adj Np2

Prep NP

VP NP
Verb NP
Verb

Figure 10.2 Context-free G r a m m a r for a Subset of English

10-5

If w e parse the sentence "The small tabby cat scratched the baby with a claw" using this

grammar, w e obtain the parse tree shown in Figure 10.3. From this example it can be

seen that such simple grammars are unable to handle anything but the simplest of

sentences. This grammar is not able to take into account that syntactically it is just as

possible for the baby to have the claw as it is for the cat.

Det

1
The

1
NP

|

Adj

1
small

1
NP2

I

Adj

1
tabby

1
NP2

I ,
1
NP2

1
Noun

1
cat

S

1

1
VP

1

Verb Det

1 1
scratched the

1 VP

1

1 NP

1 ,
1 NP2

1
Noun

1
baby

Prep

1 with

1 PP

1

Det

1
a

1 NP

|

1 NP2

1
Noun

1 claw

Figure 10.3 Parse Tree for the Sentence "The small tabby cat scratched the baby

with a claw"

10.2.2 Parsing

In order for the parser to analyse a sentence provided in the form of a text string the

individual symbols must be separated out and classified. This is carried out by a scanner

10-6

program. The scanner also removes all information which is not useful to the parser, such

as spaces, tabs, line feeds and carriage returns (white space). The output of the scanner is

a token, usually a number, representing the class of the symbol, and the symbol itself. In

the case of a computer language, the symbol may also be placed in a symbol table. For

natural language parsing systems the symbol table takes the form of a dictionary. The

dictionary is searched for each symbol is encountered, and the features of the symbol

retrieved.

Each token produced by the scanner is passed on to the parser which is used to identify

the forms present in the input, and to call the relevant action routines to do the

processing and possibly generate output. So, the total system might appear as in Figure

10.4.

Figure 10.4 Block Diagram of a Parser

There are two ways in which a parser can be produced. It can either be coded by hand,

or produced automatically from a description of the language to be parsed. One of the

10-7

most popular hand coding methods is that of recursive descent. While this method is

easy to use by hand, it is not easy to automate. T w o more recent methods of compiler

production are called L L parsing and L R parsing. These parsers are difficult to produce

by hand, but extremely suitable for automatic parser production. The most important of

these is L R parsing. These parsers are called L R parsers because they scan the input from

left-to-right and construct a rightmost derivation in reverse [AH077].The first parser

constructed for this project used recursive descent, and although it was later replaced by

an L R parser, it will be described, as it is considered desirable to include it in the

computational linguists toolkit which will be produced as a result of this work (see

Chapter 15).

10.2.3 Recursive Descent Parsing

The grammar rules which are used to describe computer language or natural language

grammars are often based on Recursive Transition Networks (RTNs) [W1N083], a

graphical notation which clearly illustrates the recursive nature of such grammars.

Because of this recursive nature, an obvious approach to constructing a parser is to write

routines which call each other recursively. In the field of parser construction this is called

recursive descent. It was a popular method of parser design, before the advent of

automatic parser generators. The great bulk of compilers which existed in the early

1970s were constructed using this method.

Recursive descent does have one serious deficiency. Recursive descent can produce

some unexpected results, particularly when backtracking is used to assist in the parsing

process. It is possible, if care is not taken, for the parser to recognise inputs which are

not in the language.

10-8

As an example of the application of recursive descent, consider again the very simple

context-free grammar for a small subset of English, shown earlier in Figure 10.2. A

recursive descent parser to analyse a sentence written using this grammar could be

designed as outlined in Figure 10.5.

Function V P
Begin

If V P and PP then
Return true.

else if Token = V E R B then
Get a token.
If N P then

Return true.
else

Return true.
else

Return false.
End

Function NP2
Begin

If NP2 and PP then
Return true.

else if Token = N O U N then
Get a token.
Return true.

else if Token = ADJECTIVE then
Get a token.
If NP2 then

Return true.
else

Return false.
End

Function PP
Begin

If Token = PREPOSITION then
Get a token.
If N P then

Return true.
else

Return false.
else

Return false.
End

Function N P
Begin

If Token = DETERMINER then
Get a token.
If NP2 then

Return true.
else if NP2 then

Return true.
else

Return false.
End

Function S
Begin

Get a token.
If N P and V P then

Return true.
else

Return false.
End

Figure 10.5 A Recursive Descent Parser

It is a relatively simple task to add calls to output action routines to such a parser, in

order to cause it to fulfil a more useful role than that of a mere recogniser.

10-9

10.2.4 LALR(1) Parsing

L R parsing is the preferred method of parsing because it handles a larger class of

grammars than the previous method. L R recognisers are small and fast, and can be

generated automatically from a grammar. N o backtracking is necessary, and syntax

errors can be detected as soon as it becomes possible to do so on a left-to-right scan of

the input. Their only disadvantage is that a parser generator is necessary for their

implementation. But, of course, once a parser generator is available, this becomes an

advantage.

Although LR(k) recognisers were first proposed by Knuth in 1965 [KNUT65], at the

time they were not considered practical. DeRemer proposed a practical LR(k) recogniser

in 1969 [DERE69] and L A L R in 1971 [DERE71], and an efficient method for

computing the LALR(1) look-ahead sets was presented in 1979, by DeRemer and

Pennello [DERE79],

There are several varieties of LR parser. The first, sometimes called Simple LR (SLR), is

easy to implement, but may not work for some grammars which the other types will

handle. Canonical L R is the second method. This is the most powerful but is expensive to

implement. Look Ahead L R (LALR) has a recognising power in between that of SLR

and L R and will work with most languages, while not being too difficult to implement

[AH077].

The symbol k in LR(k) or LALR(k) represents the number of input symbols which the

parser can examine at any one time to help to resolve potentially ambiguous situations as

it parses the input. Usually 0 or 1 are sufficient [AH077].

LALR(l) grammars are a subset of LR(1) grammars. LALR(l) parser tables are

generated by first generating the LR(0) parser tables and then computing look-ahead sets

10-10

from the tables with some sort of graph traversal algorithm. LR(1) parser tables are

generated by first generating the canonical LR(1) parser tables and then merging similar

states.

The recognition power of an LALR(l) parser is only slightly less than that of an LR(1)

parser, and most languages which can be recognised by an LR(1) parser can also be

redefined in such a way that an LALR(1) parser would also handle them.

The following description of the operation of an LALR(1) parser is adapted from that of

Aho and Ullman [AH077].

An LR parser consists of two functional parts, a parsing table or set of parsing tables,

and a driver routine. A n L R parser generator is really a program which reads the

grammar of a language and produces a parsing table or tables that represent the possible

states of that grammar. These tables are combined with the driver routines, which may

also be output by the parser generator, to produce a complete parser for the language

described by the grammar, as illustrated in Figure 10.6. The tables and the driver routine

together form a state machine.

The parser has an input, a stack, and a parsing table. The input is read from left to right,

one symbol at a time. The stack contains a string of the form SQXJSJX2S2 ... Xmsm,

where sm is on top. Each AT; is a grammar symbol, and each s/ is a symbol called a state.

Each state symbol summarises the information contained in the stack below it, and is

used to guide the shift-reduce decision (the meaning of which w e will see shortly). The

parsing table consists of two parts, a parsing action function ACTION and a goto

function GOTO. This is shown in Figure 10.7.

10-11

Grammar
Input

Table
Generator

Parsing
Table
Output

(a) Generating the parser

Symbol
Stream
Input

fPfPPPPPI^WPVWPPM^PPP^^

Driver
Routine

MWWsnnMWiiNM̂ ^

Production
Recognition
Output

(b) Operation of the parser

Figure 10.6 Building a State Machine Parser

Input
Stream aj * * * :

MriiMiiiiiiiHiiiJ

Stack

mm

m

Driver
Routine

iwttjiiiiiiiiiii^

IM

Figure 10.7 Operation of an L R parser

10-12

The program driving the L R parser behaves as follows. It determines sm, the state

currently on top of the stack, and a;, the current input symbol. It then consults

ACTIONEM, atf, the parsing action table entry for state sm and input a\. The entry

ACTIONfSffp aiJ can have one of four values:

1. shift s

2. reduce A -> B

3. accept

4. error

The function GOTO takes a state and grammar symbol as arguments and produces a

state. It is essentially the transition table of a deterministic finite automaton whose input

symbols are the terminals and nonterminals of the grammar.

The four possible values that ACTION returns cause the following processes to be

carried out:

1. If ACTIONfSffp atf = shift s, the parser executes a shift move, in other words, the

current input symbol ai and the next state s = GOTOfSn,, atf are pushed (shifted)

onto the stack.

2. If ACTION[sm atf = reduce A -> B, then the parser executes a reduce move. Here

the parser first pops 2r symbols off the stack, r state symbols and r grammar symbols

(where r is the length of B), exposing state sm_r to the top of the stack. The current

input symbol is not changed in a reduce move.

3. IfACTION [Sm, atf = accept, the parsing is complete.

4. If ACTION[sm atf = error, the parser has discovered an error and calls an error

recovery routine.

The LR parsing algorithm is very simple. Initially the LR parser is in the configuration

where SQ, a designated initial state, is on the stack, and all input symbols aja2...an are

waiting to be parsed. Then the parser executes moves until an accept or an error action is

10-13

encountered. All L R parsers behave in this fashion. The only difference between one L R

parser and another is the information in the parsing action table and goto fields of the

parsing table.

As well as the simple actions involved in the above description, the driver routine must

also be able to resolve conflicts which arise when it is possible to go to more than one

state from the present state. It is here that the ability to lookahead in the input stream is

useful. If this does not resolve the conflict, arbitrary rules such as the first production of

those in dispute will be accepted, or it may attempt to produce the longest possible

language construct.

A parser generator is a program which, when given a grammar as input, automatically

constructs the above tables as data structures, and the driver routines required to make a

complete parser for that grammar.

10.3 Augmented Transition Networks

The context-free grammars described so far are equivalent to grammars which can be

described by means of recursive transition networks. A Recursive Transition Network

(RTN) is a set of nodes, or states, joined by arcs. To pass from one state to another an

arc must be followed. This is illustrated in Figure 10.8, taken from Winograd [WTN083].

R T N s and context-free grammars have equivalent descriptive power. The R T N makes it

easier to visualise the operation of a grammar, whereas the context-free grammar rules

are more amenable to program construction and automatic parser generation.

10-14

Context-free grammar

S -> NP VP
NP -> Det NP2
NP->NP2
NP2 -H* Noun
NP2->Adj NP2
NP2 -> NP2 PP
PP -» Prep NP
VP -> Verb
VP -> Verb NP
VP-*VP PP

S:

i
(
1

NP:

d

1

PP:

f~*
a
O

^ ^
e

<-*<

£

Recursive transition networks

NP Verb NP

CI^C^^^C^^K^
(0 (c) (dK ' V-/ V-< >L/^ ^ * ^

Det Noun J u m p

< * * * — ^ ** —

\ 7 A A ^ ^ ' N
) CO CgXJpp

Prep Adi NP

*̂"x
)pp

>—/

Figure 10.8 Equivalent Context Free and R T N Grammars

In order to try to accommodate some of the complexities of the English language,

including the fact the English is not context-free, it is desirable to augment the arcs of an

R T N with extra information. This may take the form of conditions which must be

fulfilled before an arc can be taken, actions which are carried out if the arc is taken, and

initialisations which are performed before an arc is taken. The resulting network is called

an Augmented Transition Network (ATN).

The ATN from which the grammar for this project was derived is based on that by

Winograd [WTN083], with amendment to some of the augmentations to accommodate

the different word categories used, and to correct a minor error in the original

formulation. The complete A T N is shown in Figures 10.9 to 10.11.

10-15

17:S/z

Augmentations

alb C: [\Ques = No; \Case = Subj; Mood != Int]
A:[Subj<-*J

b2c C: [\Type = Modal or *.Form = Past
or (*.Form = 3rd-Sing and Subj.Num = Sing and Subj.Pers = 3rd)
or (*.Form = Inf and Subj.Num = Plural)
or (*.Form = Inf and Subj.Pers != 3rd)]

A:[MV<-*]
c3c C: [If (MV.Type = Modal or MV.Type = Do) then \Form = Inf;

If MV.Type = Be then *.Form = Pres-Part;
If MV.Type = Have then *.Form = Past-Part;
If MV.Type = Non-Aux then fail]

A: [Auxs <= MV; MV <- *]
c4d C: [*.Form = Past-Part; MV.Type = Be]

A: [Voice <- Passive; Auxs <= MV; MV <- *; DO <- Subj; Subj <- dummy NP]
c5d C: [".Case = Obj]

A:[DO<-*]
d6e C: [\Case = Obj]

A:pO<-DO;DO<-*]
d7e Wo initialisations, conditions or actions
d8e No initialisations, conditions or actions
e9e A: [Mods <= *]
e10e C: [*.Prep = by; Voice = Pasive; Subj = dummy NP]

A: [Subj <-*.PrepObj]
e11e C: [\Prep = to or '.Prep = for; IO = 0]

A:[IO<-\PrepObj]

Figure 10.9 A n A T N for a Sentence

10-16

file:///Ques
file:///Case
file:///Type
file:///Form
file:///Case
file:///Prep

Augmentations (continued)

e12

x13y
y14z

z15c

a16b
c17e

d18e

a19q

q20c

a21b

a22a

r24a
r25b
c26c

d27d

e28e

a29c

t30a

C: [If (Mood = Int or Mood = WhRel) then Hold = 0;
If IO != 0 then MV.Transitivity = Bitransitive;
If (IO = 0 and D O != 0) then MV.Transitivity = Transitive;
If (DO = 0 and IO = 0) then MV.Transitivity = Intransitive]

C: [* = for]
C: [\Case = Obj]
A: [Subj <- *]
C: r = to]
A: [MV <- d u m m y Verb; MV.Type = Modal]
A: [Subj <- *]
I: [Subj <- \Subj]
A:[DO<-*]
I: [Subj <- \ D O]
A: [IO <- DO; D O <- *]
C: [*.Type != Non-Aux; Mood = Decl or Mood = Int]
A:[MV<-*;Mood<-lnt]
C: f\Ques = No; *.Case = Subj;

MV.Type = Modal or MV.Form = Past
or (MV.Form = 3rd-Sing and *.Num = Sing and *.Pers = 3rd)
or (MV.Form = Inf and *.Num = Plural)
or (MV.Form = Inf and \Pers != 3rd)]

A:[Subj<-*]
C: [\Ques = Yes; ".Case = Subj; Mood = Decl]
A:[Subj<-*;QE<-*]
C: p.Ques = Yes; Mood = Decl]
A: [QE <- *; Hold <- *; Mood <- Int]
No initialisations, conditions or actions
A:[Subj<-*]
C: [(MV + *) ©Diet]
A: [MV <- Diet]
C: [(MV + *) @Dict]
A: [MV <- Diet]
C: [(MV + \Prep) @Dict; D O = 0]
A: [MV <- Diet; D O <- \PrepObj]
C: [\Form = Inf; Mood = Decl]
A: [Subj <- d u m m y NP; Subj.Head <- you; M V <- *; Mood <- Imper]
A: [Binder <- *; Mood <- Bound]

Figure 10.9 (cont.) A n A T N for a Sentence

In order to use the grammar described by this A T N with an automatic parser generator, a

method was devised by which augmentations could be added to a context-free grammar

in such a way that the grammar is still acceptable to a parser generator, so that

conditions, actions and initialisations contained in the augmentations are incorporated

into the parser produced. The method developed is explained in Chapter 11.

10-17

file:///Case
file:///Subj
file:///Pers
file:///Ques
file:///Prep
file:///PrepObj
file:///Form

Augmentations

fig
f2g
g3g
g4h

f5h
f6h
h7h
h8
f9

h10h

h11h

gi2g
g13g

gi*g

f15g

h16p

p17

A: [Num <- *.Num; Ques <- '.Ques; Det <- *]
No initialisations, conditions or actions
A: [Desc <= *]
C: [*.Num = Num or Num = 0]
A: [Num <- *.Num; Head <- *]
A: [Num <- \Num; Per <- *.Per; Ques <- *.Ques; Head <- *]
A: [Num <- *.Num; Head <- *]
A:[Qual<=*]
A: [Case <- Head.Case]
C: [Hold = NP]
A: [Hold <- Empty; Return Hold]
I: [Subj <- *COPY*; Mood <- Rel; MV <- dummy Verb; MV.Type <- Be]
A: [Qual <= *]
I: [Hold <- *COPY*; Mood <- WhRel]
A: [Qual <= *]
A: [Desc <= *]
C: [*.Form = Pres-Part or ".Form = Past-Part]
A: [Desc <= *]
C: [\Num = Sing]
A: [Desc <= *]
C: f.Case = Poss]
A:[Det<-*]
C: [Head.Cat != Pronoun]
A: [Case <- Poss]

Figure 10.10 An ATN for a Noun Phrase

10-18

The PP Network
1:Preposition 2:NP

3:Send

4:Send

Augmentations

i1j A: [Prep <- *]
j2k C: [*.Case = Obj]

A: [PrepObj <- *\
k3 No initialisations, conditions or actions
i4 C: [Hold = PP]

A: [Hold <- Empty; Return Hold]

Figure 10.11 A n A T N for a Preposition Phrase

10-19

11. A NATURAL LANGUAGE PARSING SYSTEM

11.1 A Recursive Descent Parser

Because the ATNs which are used to describe the natural language grammar are based

on recursive transition networks (RTNs), a natural approach to constructing a parser is

to use recursive descent. This was attempted for the A T N s for English described by

Terry Winograd [WIN083]. The size of such a task soon became evident. It was simple

enough to build the recursive descent routines for the networks, but adding the

initialisations, conditions and actions with which the R T N s were augmented to produce

the A T N s proved to be tedious.

Much of the difficulty was overcome by devising a prototype for a typical recursive

routine for a state in the A T N . This took the form of the code skeleton shown in Figure

11.1. These skeletons were filled out with the appropriate information for each possible

state in the A T N , and a complete parser produced.

With the large number of states, and especially augmentations, involved in the ATN, the

recursive descent parser proved to be large, rather slow, and difficult to modify as the

grammar rules evolved. W h e n the L A L R Parser Generator [M A N N 8 7] became available,

and its advantages for such a project became obvious, further development of the

recursive descent parser was stopped. However, because of its usefulness as a teaching

tool, owing to its human readability, it is planned to later produce an automatic generator

of recursive descent parsers, based on this skeleton approach, and incorporate it in the

computational linguists toolbox to be developed (see Chapter 15).

11-1

Function StateO(Var S: Sentence; Var WordList WordArray;
WordNo, NoOtWords: Integer; Var Position: Integer;
Var CurPhrase: PhraseNodePtr): Boolean;

Var
TempS: Sentence; TempPhrase: PhraseNodePtr;
TempWordList: WordArray; TempWordNo: Integer;

Begin { StateO }
If TempWordNo > MaxWords then

Begin
StateO := Failure;
Exit

End;
InitState;

{Over sentence length}
{Failure }

{ 1:Noun }

If Noun(TempWordList[TempWordNo])
If (...) then

Begin

then

If Statel (TempS, TempWordList, TempWordNo + 1,
NoOfWords, Position, TempPhrase) then

Begin
StateO := Success;
Exit

End
End;

{**** 2: Noun Phrase **** }

If NP(TempS, TempWordList, TempWordNo,
NoOfWords, Position, TempPhrase) then

If (...) then
Begin

{Initialise state}

{Special conditions}

{Special actions}

{Success}

If State2(TempS, TempWordList, TempWordNo + 1,
NoOfWords, Position, TempPhrase) then

Begin
StateO := Success;
Exit

End
End;

{**** 3:Jump ****}

If (...) then
Begin

If State2(TempS, TempWordList, TempWordNo + 1,
NoOfWords, Position, TempPhrase) then

Begin
StateO := Success;
Exit

End
End;

{ **** 4:Send ****}

If (...) then
Begin

StateO := Success;
Exit

End;

StateO := Failure
End; { StateO}

{Special conditions}

{Special actions}

{ Special conditions}

{Success}

{Special conditions}

{Special actions}
{Success}

{Failure}

Figure 11.1 Recursive Descent Parser State Skeleton

11-2

11.2 The LALR Compiler Generator

For many years people who write system code for the U N I X operating system have been

making use of two tools provided to make their task easier. These tools are LEX, a

LEXical analyser generator [LESK75], and Y A C C , which stands for Yet Another

Compiler Compiler [JOHN75]. These tools are designed to be used together. L E X

produces a scanner (lexical analyser) whose output is compatible with a parser (syntax

analyser) produced by Y A C C . Actions incorporated into the source code produced by

Y A C C are executed whenever a language construct is recognised.

In 1987 Paul Mann, of LALR Research, produced LALR, an LALR(1) parser generator

[MANN87] similar in performance to Y A C C , but considerably easier to use because it

accepts the more modern style of grammar notation used in Chapter 10. This is more

readable than the B N F (Backus-Naur Form) used by Y A C C .

LALR reads a user supplied grammar for a context-free language and outputs a complete

working parser, in source code or a binary format. This parser accepts valid input in the

language of the supplied grammar, and performs the actions specified in that grammar

when it recognises a production rule. If it encounters a syntax error it detects the source

of the error and attempts to perform error recovery by either substituting a correct

symbol for the incorrect one, deleting an incorrect symbol, or inserting the symbol it

expected to find. The decision as to which method is used is based on which will allow

the parser to continue furthest before failing again.

LALR is comparable in speed, power and memory efficiency to the better known YACC

parser generator. It can produce a parser for the Ada programming language in 28

seconds on an 8 M H z I B M PC, or a Pascal parser in 16 seconds. The parsers it produces

are efficient in terms of memory space. The parser tables produced for Ada occupy about

15k bytes, those for Pascal only 9k bytes. This is very compact when you consider that a

11-3

complete C compiler, of which these tables would form a significant part, occupies 150k

bytes. The parsers produced by L A L R are also quite efficient in terms of speed. A C

syntax checker built using L A L R can perform both scanning and parsing at a rate of

10,000 lines per minute on an 8 M H z PC.

The LALR parser generator was originally designed to produce code for the Borland

Turbo C compiler, but it can easily be adapted for other dialects of C. With a bit more

work in producing suitable skeleton files, which guide the generation of source code, it

can be made to produce output code in any other language as well.

11.2.1 An LALR Skeleton Using Turbo Pascal

As this project uses the Turbo Pascal language and the skeletons provided with LALR

only produce C code, once it was decided to attempt to use L A L R to produce a syntax

analyser for a subset of English, a Turbo Pascal skeleton file needed to be developed.

This essentially involved the design by hand, apart from the contents of the parser tables,

of a full parser in Pascal. By this means the author became familiar with the intricacies of

a full error detecting and correcting LALR(1) parser, which opened up the possibilities

of extending and improving the parser design to handle some of the problems involved in

natural language syntax analysis.

The design of this first LALR(l) parser is based on the C parser provided with LALR

[MANN87]. Mann's original parser relied heavily on pointer manipulation, with dynamic

memory allocation and a considerable amount of multiply-indirect addressing. As the size

of all data structures is known before the parser is ready to be compiled, this was

changed to static allocation. Pascal's very readable method of constant array initialisation

was used to construct the parser tables, and the numerous goto statements were replaced

11-4

with properly designed Pascal control structures. Some of the original intersecting loop

structures proved so difficult to unravel that those sections of the code were completely

redesigned. The resulting parser is produced as a Turbo Pascal unit, as is the hand built

scanner.

The result is a parser design that is much easier to understand, and has proved to be

more adaptable to testing extensions to the LALR(1) parsing method to cope with

syntactical ambiguity and other problems of human language parsing. Later, a parallel

parser was developed, and the L A L R skeleton for this is provided in Appendix B. The

simpler state machine parser will be described first.

11.3 A State Machine Parser Using LALR

The first LALR parser to be constructed was a sequential design which tries to find one

complete parse of the input sentence. If at any point it encounters a state from which it

cannot proceed, it assumes an error has occurred and attempts to correct the error in

order to resume parsing.

The basic error recovery system is based on the assumption that an error might be caused

by three things: either a symbol has been omitted, a symbol is incorrect, or an extra

unwanted symbol is present. Given these possibilities, when an error is encountered the

parser tries out three possibilities: inserting the symbol it expected to find, substituting

the expected symbol for the offending symbol, or deleting the offending symbol. The

parser attempts to continue parsing with each of these alterations, and settles for the one

which allows processing of the language to continue furthest, hopefully to completion. If

it is not able to complete the parse then it aborts. The design is shown in Figure 11.2.

The Recover routine carries out the attempt to correct any error encountered, and, if

11-5

successful, parsing continues. The Recover routine is itself a complete shift-reduce

parser. The basic design of the parser is as shown in Figure 11.3.

Parse

Parser Init

I
Get Token

Parse = - NumErrors

Figure 11.2 Error Correcting Parser

11-6

Function Parse: Integer;
Var

Shifted: Boolean;
Begin {Parse}

Parserlnit;
GetToken;

Repeat
Repeat

Repeat
Shifted := Shift;
If Shifted then

GetToken
Until not Shifted

Until not Reduce;

If Production = Goal then
Begin

Parse := NumErrors;
Exit

End
Until not Recover;

Parse := - NumErrors
End; {Parse}

{Initialise parser and get token}

{Keep shifting until shift fails}

{When shift fails, reduce}
{then try shifting again }

{Return success }

{ W h e n shift-reduce fails, do error recovery }

{If can't recover, return failure}

Figure 11.3 Error Correcting Parser Algorithm

11.4 A Parallel Parser

While evaluating the sequential parser just described, several problems became evident.

The first involved the decision to use error detection and correction, similar to that used

in compiler generators. W h e n applied to computer languages, with their relative freedom

from syntactic ambiguity, such a scheme works well. With a natural language, where

there is almost always more than one way to parse a sentence, and where there are a

great many partial parses which look promising but cannot be completed, such a scheme

is not satisfactory. The input might be a valid sentence, but the correct parse is not found

because none of the assumptions used by the error correcting scheme are able to bring

the parse to completion. Thus the parse is abandoned, when it should not have been.

11-7

Clearly, a parser which evaluates all possible parses is required. Initially this was

attempted by making a recursive call to the parser when a fork in the sentence structure

was reached, such as when a word could be both a noun and a verb. The existing parse

continued with the noun, while a recursive call to the parser was made with the word as

a verb. This scheme showed promise, but was abandoned when a better method was

discovered.

Masaru Tomita constructed a parser which could handle ambiguous sentences by

introducing the concept of a graph-structured stack to an otherwise standard L R parsing

algorithm [TOMI87]. This allows an L R shift-reduce parser to maintain multiple parses

without parsing any part of the input twice in the same way. Owing to the use of

precomputed L R tables, as in the author's parser, Tomita's algorithm proved to be five to

ten times faster than Earley's context-free parsing algorithm [EARL70].

Rather than duplicate Tomita's method, the recursion in the first design was abandoned

and a control structure which simplified the design considerably, was developed. This

uses Boolean flags to record the current state of the shift-reduce cycle, and a switching

scheme to evaluate the current state of the parse and direct it into the correct next state.

The basic shift-reduce parsing is carried out by a routine called DoParse, shown in Figure

11.4.

This scheme works well. It was realised that, if the complete context, such as the state

variables, stack and current symbols, for each parse was stored in separate memory

locations, then it would be a simple matter to extend the switching scheme to implement

a parallel, or concurrent, parser, which evaluates every possible parse of a sentence

simultaneously. In effect, a time sharing arrangement was used between the parses, with

each parse completing one phase of its processing and handing on to the next parse.

11-8

Type
ActionType = (NoAction, ShiftAction, ReduceAction,

Procedure DoParse;
Var

NextAction: ActionType;
Finished: Boolean;

Begin {DoParse}
Finished := false;
NextAction := ShiftAction;
While not Finished do

Begin
Case NextAction of

NoAction:
Finished := true;

ShiftAction:
If Shift then

NextAction := GetNextToken
else

NextAction := ReduceAction;

ReduceAction:
If Reduce then

NextAction := ShiftAction
else if Production = G O A L then

Begin
DoParse := NumErrors;
NextAction := NoAction

End
else

NextAction := RecoverAction;

RecoverAction:
If Recover then

NextAction := ShiftAction
else

Begin
DoParse := - NumErrors;
NextAction := NoAction

End;

GetNextToken:
Begin

GetToken;
NextAction := ShiftAction

End

End {Case NextAction}
End {While not Finished }

End; {DoParse}

RecoverAction, GetNextToken);

Figure 11.4 Switching Shift-Reduce Parsing Algorithm

11-9

When a parse reaches a point where a decision occurs in the direction to be taken, then a

new context is created and a new parse begun in parallel with the existing parse. This

branching occurs when a word can occupy more than one part of speech.

In the parsing routine to be described next, the variable ContextP is a pointer to the

current context values. A context consists of a record structure of the form shown in

Figure 11.5, organised into a context stack. The record is shown here to illustrate the

amount of information which needs to be maintained for each fork in the parse.

Type
Context = Record

State: Integer;
Terminal: Integer;
Head: Integer;
Production: Integer;
Token: CharPtr;
Input: CharPtr;
TokenBeg: CharPtr;
TokenEnd: CharPtr;
NumNextShiftStates: Integer; \

NextShiftStates: StateArray; \
NumNextRednStates: Integer; \

NextRednStates: StateArray \
LineNum: Integer;
LineStart: CharPtr;
DictData: DictRec; <
PartsOfSpeech: WordTypeSet; \
ParseStackTop: ParseStackPtr;
RednStackTop: RednStackPtr;
NumErrors: Integer;
PrevContext: ContextPtr;
NextContext: ContextPtr

End; { Context record}

, Current state number}
Current terminal number}
Current production head }
[Current production number}
Ptr to current scanner text position}
Ptr to next scanner text position }
Ptr to start of current token }
Ptr to end of current token }
Number of next shift states }
' for a state/terminal }
; Next shift states for a state/terminal}
Number of next reduction states }
; for a state/nonterminal }
Next redn states for a state/nonterminal}
; Current text line number}
[Current text line start}
; Returned word data from dictionary search }
; Set of word types for this terminal}
; Ptr to top of parse stack }
; Ptr to fop of reduction stack }
; Number of errors from this parse }
; Link to previous context in context stack}
; Link to next context in context stack }

Figure 11.5 Context Record for a Parallel Parser

11-10

Each new context has such a record on the stack to contain a complete description of its

current state during the parse. Each time a routine such as GetTokens, Shift, or Reduce is

called, it is passed a pointer to the context record for the current context in which it is

operating. In effect, each of the routines is time shared among all of the contexts

currently in existence; that is, each of the current partial parses. The routine for the

parallel parser is defined as shown in Figure 11.6.

This DoParse routine is called from the Parse function, shown in Figure 11.7, which

initialises the context stack, begins the parsing process, and controls the stepping through

the contexts that are created and placed on the stack as parsing proceeds. W h e n Parse

terminates, all possible parses of the input sentence will have been traversed.

When any of the partial parses reaches an error condition, instead of attempting error

correction the parse is simply abandoned and its context storage space released back to

the operating system. B y removing the need to carry out multiple parses in the error

correction phase, it was found that, on average, it was quicker to try to find all possible

parses than to try to produce a single correct parse via error detection and correction.

The parser itself is also considerably smaller and simpler than the sequential version,

although it does need more memory in which to run. It also has the enormous advantage

that if the sentence is valid then at least one correct parse will be found. As already

explained, this could not be relied on with the previous design.

11-11

Type

ActionType = (NoAction, ShiftAction, ReduceAction

Procedure DoParse(ContextP: ContextPtr);
Var

NextAction: ActionType;
Finished: Boolean;

Begin {DoParse }
With ContextPA do

Begin
Finished := false;
NextAction := ShiftAction;
While not Finished do

Begin
Case NextAction of

NoAction:
Finished := true;

ShiftAction:
If Shift(ContextP) then

NextAction := GetNextToken
else

NextAction := ReduceAction;

ReduceAction:
If Reduce(ContextP) then

NextAction := ShiftAction
else

NextAction := NoAction;

GetNextTokens:
Begin

GetTokens(ContextP);
NextAction := ShiftAction

End
End { Case NextAction }

End; {While not Finished }

If Production = G O A L then
Begin

With ContextHead do

, GetNextTokens);

{ Everything in this block is in the}
{ context pointed to by ContextP}

{ Do nothing, finished }

{ Shift until shifting fails, then reduce}

{ Reduce, then try to shift}

{ Get next token, then shift}

{If goal reached return success, }
{ else delete the context }

NumSuccessfulParses := NumSuccessfulParses + 1;
Exit

End
else

Begin
DeleteContext(ContextP);
Exit

End

End {With ContextPA do }
End; {DoParse }

Figure 11.6 Context Switching Parallel Parser Algorithm

11-12

{Parse - find all possible LALR parses}
Function Parse: Integer;
Var

ContextP: ContextPtr;
AHDone: Boolean;

Begin {Parse}
With ContextHead do

Begin
Parserlnit(ContextP);
GetTokens(ContextP);
Repeat

AIIDone := true;

ContextP := ContextStackTop;
While ContextP <> nil do

Begin
DoParse(ContextP);
If not ContextPA.Finished

AIIDone := false;
then

ContextP := ContextPA.NextContext
End

Until AIIDone;

Parse := NumSuccessfulParses
End { With ContextHead do}

End; {Parse}

{Initialise the parser}
{Scanner gets the first terminal}

{Tell parser it is finished }

{Step through the contexts }

{Perform the parse}

{If any parse not finished tell parser}
{Get the next context on the stack }

{Parsing is finished }

Figure 11.7 A Parallel Parser

If the sentence has more than one possible parse, then it is desirable, as happens with this

parser design, to have all of these parses available. Further processing may then be

carried out, perhaps using semantic information, to determine which parse is the most

appropriate to the context of the sentence. A parser which satisfies itself with only the

first example it finds of the possible parses, may return the least appropriate parse in the

context of the sentence. The user will have no way of knowing this, or even of knowing

that there may have been alternative parses which were more satisfactory.

The source code for the parallel parser is provided in Appendix C.

11-13

11.5 Adapting LALR for Use with Augmented Grammars

Two possibilities have been explored for extending the parser produced by LALR to

accommodate the initialisations, special conditions and special actions (called

augmentations) which Winograd incorporated into his A T N for the English language.

The first is the tedious task of editing the parser itself, or its skeleton before producing

the parser, adding the necessary code to provide the desired augmentation. This is not a

satisfactory solution, however, owing to the varied nature and large number of

augmentations.

The most suitable way to extend the parser is to incorporate the necessary information

into the grammar itself in such a way that the initialisations, special conditions, and

special actions are inserted into tables by the parser generator, and to modify the parser

skeleton to provide code which makes use of these tables.

LALR was not designed with such augmentation in mind, but it has proved to be possible

to press into use a facility it does have, called descriptors, which were intended for a

different purpose. B y this means the concepts have been proved, and a future task will be

to build a new parser generator which incorporates these features in a more convenient

form.

To describe this method of augmenting the grammar it is necessary to understand some

of the syntax of LALR's input.

11-14

11.5.1 The Grammar for L A L R

A grammar for L A L R must have the following order of definitions [MANN87]:

• Terminal definitions

• Goal definition

• Nonterminal definitions

Terminal definitions have one of the forms:

Terminal Descriptor?

Terminal Descriptor? => Input-processor

Terminal Descriptor? => Input-processor Input-argument

Terminal is any grammar symbol. Descriptor is optional, indicated by the question-mark,

and may be a string or a number. Input-processor is the name of a routine for processing

the input terminal, and may have an argument. Terminal definitions are used to describe

the terminals to the scanner, and to specify any input processing which needs to be

carried out. For example, a symbol table may need to be searched to check if the input

terminal is a keyword of the language being processed.

There will always be one goal definition, and it is the first production of the grammar. It

has the form:

Goal -> Symbol <eof>

where Goal, Symbol and <eof> may be any grammar symbol. It specifies the goal of the

parser, in this case a sentence.

11-15

Nonterminal definitions have one of the following forms for their first production:

Head Descriptor? ->

Head Descriptor? -> Tails

Head Descriptor? -> Tails => Output-processor

Head Descriptor? -> Tails => Output-processor Output-arg

and one of these forms for subsequent productions:

-> Tails

-> Tails => Output-processor

-> Tails => Output-processor Output-arg

The symbol '|' can also be used instead of the arrow '->'.

Head may be any grammar symbol. Descriptor is optional, and may be a string or

number. Tails may be any number of grammar symbols. Output-processor, and its

optional argument specify an output processing routine to be called if the production is

recognised by the parser.

11.5.2 Grammar Augmentation Using Descriptors

The reason for the provision of descriptors in the grammar is not made clear in the

L A L R manual, but they would clearly allow the insertion of comments or other

information about terminal or nonterminal symbols, which would then be accessible to

the parser routines for output if necessary, maybe as part of an error description or user

help system.

11-16

The feature of descriptors which is useful in the present application is that any string

placed in the grammar as a descriptor in a nonterminal production will become part of an

array of such descriptors in the output of the parser generator, along with indexing

information to link it with the nonterminal definition from which it came. If we insert in

the descriptor a string of information which describes the initialisations, special

conditions, and special actions relevant to that nonterminal definition, then these can be

accessed by the parser which is generated.

Unfortunately, a descriptor can only be a single string or number. As the information

which needs to be placed here generally amounts to a number of different items, a string

is necessary. This string can be parsed as part of the parser initialisation process, and the

information converted into a more useful form. The alternative is for the string to be

interpreted during the running of the parser, but this would considerably slow the

operation of the parser, so compiling the string during initialisation is considered to be

better.

A language had to be devised by which the descriptor strings may be used to represent

the desired items of information. The following scheme, based on the notation used by

Winograd in his ATN descriptions [WIN083], has been adopted:

• A: represents an action

• C: represents a condition

• I: represents an initialisation

Each of these is followed by a list of items in brackets [...]. The list items use the

notation described in Figure 11.8.

11-17

Referencing:

C.R
R.last
•COPY*
dummy X(xxx)

Initialisations:

R1<-\R2

Actions:

RK-R2
R1«*=R2

Conditions:

C.R = X
C.R != X
R = 0
Rl=0
R = xxx
(R1 + R2) @ Diet

In the above, R stands for
C for a constituent; Xfor
recursive call was made.

The R of C
The last member of R
A copy based on A

A d u m m y X with word = xxx

Initialise R1 to the R2 of A

Set R1 to R2
Append R2 to R1

The R of C is X
The R of C is not X
R is empty
R is not empty
The word in R is xxx
R1 and R2 share a dictionary entry

a register (possibly *, the ATN node most recently parsed);
a feature or constituent; and A for the node from which a

Figure 11.8 Augmentation List Notation

A complete description of the A T N , with all of the initialisations, conditions and actions,

is given in Appendix D.

The system used to produce the augmented grammar from the A T N was to segment the

network into self-contained parts which are common to several different ways of

traversing the network, write productions for these sub-networks, and then to add

productions to complete the grammar. The segmenting of the sentence network is shown

in Figure 11.9.

11-18

Figure 11.9 Segmenting the Sentence A T N

The head of each production is named for the ATN states which the arc joins together,

separated by the augmentation number relevant to that arc. A sample of some of the

augmented grammar rules can be seen in Figure 11.10. A complete listing of the

augmented grammar may be seen in Appendix E.

11-19

Goal Production:

Sentence —> S <eof>

Sentence Network Alternate Entry Points:

S-c -> S1

S-r -> Sra S
-> Srb Sbc S1

S-t -> Sta S

S-x -> Sxy Syz S1

S-z -*• Szc S1

Sentence network:

S -> Sac S1
-> Saa Sab Sbc S1
-> Saq Sqc S1

S1 Segment:

S1 -> Sec Scd Sdd Sde See Se
-> See See Se

Arc Productions:

Saa ->
-> Sa22a
-» Sa23a

Sab -> Sa1b
-* Sa16b
-> Sa21b

Sac -*• Sa29c
•

•

•

S a 1 b "C:[*.Ques=No;*.Case=Subj; Mood!=lnt]

A:[Subj<-*]"

-* NP

S b 2 c "C:[*.Type=Modal or *.Form=Past or

(*.Form=3rd-Sing and Subj.Num=Sing

and Subj.Pers=3rd) or (*.Form=lnf and

Subj.Num=Plural) or (*.Form=lnf and

Subj.Pers!=3rd)]

A:[MV<-*]"

-> Verb

•

Figure 11.10 Some Augmented Grammar Rules

11.5.3 Building an Augmented Parser

Because with the present parser generator the augmentation information is in the form of

a string which needs to be parsed in order to produce suitable code for the conditions,

actions and initialisations, producing a parser for an augmented grammar becomes a two

pass process. The alternative is to interpret the augmentation string at run time, and it is

felt that the reduction in parsing speed this would entail is unacceptable.

The first pass in generating the parser is with LALR, using the augmented grammar as

input. The parser skeleton has been modified to produce an array of augmentation

strings. It also places calls to functions and procedures which will carry out the intent of

11-20

these strings into the appropriate places in the parser code. These functions and

procedures are given names consisting of the number of the relevant production

appended to the words "Action", "Condition" or "Initialisation". For example, the names

of the action, condition and initialisation routines for production number 15 would

appear as Action 15, Condition 15 and Initialisation 15 respectively.

At the same time as LALR produces these function and procedure names and calls, it

also produces another file, called A C T C O N I N . G R M , containing the routine names and

their corresponding augmentation strings. L A L R puts a Uses statement in the parser file

for the unit, called A C T C O N I N , to be produced from this file in the second pass

described below.

The second pass in the parser construction process is to parse the ACTCONIN.GRM

file, using another parser produced by L A L R . This produces a file called

A C T C O N T N . P A S consisting of the code for a Turbo Pascal unit containing the

augmentation routines and their interface to the main parser.

The condition strings produce functions which return a Boolean, indicating if the

condition is true or false. The action and initialisation strings produce procedures. The

functions and procedures all take as a parameter the current node being parsed.

The parser for the augmentation strings has been constructed using LALR and a

grammar for the augmentation language described in the previous section. This grammar

is shown in Appendix F.

11-21

12. THE DICTIONARY

At the heart of any natural language understanding system is a lexicon, or dictionary. As

a sentence is parsed, the part of speech represented by each word and the values of

certain features associated with each word need to be known. These feature values are

stored along with the word entry in the dictionary. Later, during the semantic analysis

phase, information about the meanings associated with each word also needs to be

obtainable from the dictionary.

12.1 The Choice of Words for the Dictionary

Owing to three constraints - adequate vocabulary size, memory size and retrieval time -

the choice of words to be incorporated in the dictionary is necessarily a compromise. The

naturalness and flexibility of conversation attainable only when sufficient words are

available must be balanced against the need to reserve sufficient memory for the other

parts of the system, and against the longer retrieval time inherent in searching a larger

dictionary.

12.2 A Small Dictionary

The initial approach taken was to construct the smallest dictionary which was likely to be

useful. This was constructed based on information from three principal sources. The first

source was a basic book of English grammar [MALL44]. From this was obtained the

more commonly used pronouns, irregular verbs, auxiliary verbs, prepositions and

conjunctions. This book also provided the framework for the feature information

associated with each part of speech.

12-1

It is commonly known that much of everyday speech is carried out using a vocabulary of

as few as 500 words. The 'Good News Bible' [BIBL76] is primarily intended for use by

those who do not have a high level of reading ability. For this reason its text is largely

restricted to a vocabulary of about 500 words. By performing an analysis of parts of the

text of this Bible about 300 additional words were found for the dictionary.

The third source was Dolch's Basic Sight Vocabulary [MYER76], a list of 219 words

commonly used by children. This is frequently used to teach literacy to children who are

intellectually handicapped. The combination of these three sources, along with other

words which became evident during testing of this dictionary, resulted in a total

vocabulary of about 1000 words.

A short period of testing demonstrated the inadequacy of this dictionary. While many

basic concepts were represented by the words available, they were generally present as

only one part of speech. For example, the word help was in the dictionary, but helped,

helping, helper and helps were not. Another problem was that while most of the words

used primarily to give a sentence a correct grammatical structure were present, the nouns

and verbs which are more closely related to the context of the sentence were missing.

Missing parts of speech can be tackled in two ways. Extra words can be inserted into the

dictionary, or generated from words already in the dictionary. The second method was

chosen to prevent the dictionary growing too large. After ensuring that the dictionary

contained one basic form of a word, often the verb or noun, rules for the addition of

prefixes and suffixes were used to produce additional words from these roots.

What was required was not the generation of words by the addition of prefixes and

suffixes, but the reverse of this process. A word is presented for testing. If the word itself

is not found in the dictionary, then the possibility of the word having been derived from

12-2

another word by the addition of prefixes and/or suffixes must be considered. To do this

the word must have any possible affixes identified and removed. The presence of the

resulting simpler word in the dictionary is then checked.

The only solution to the lack of contextual variety is to add words to the dictionary. This

was done in two ways: by incorporating the 3000 familiar words identified by Dale in

readability studies [DALE48], and by scanning through the Macquarie Dictionary

[MACQ81], selecting the simpler forms of words which seemed likely to occur in normal

conversation. The dictionary was expanded to approximately 4000 entries.

12.2.1 Prefix Processing

It is difficult to include all desired words in a small dictionary. Instead, the basic forms of

words, or roots, are stored and additional parts of speech are handled by the removal of

prefixes and suffixes in order to obtain the root of the word. The motivation for this

approach was taken from an examination of a spelling checker program, Perfect Speller

[GOOD84], [DOW87b].

To allow for a wide range of words the possibility of up to two prefixes and two suffixes

is taken into account. The processing of prefixes is quite simple. The initial letters of

each word are scanned to find a match with one of the prefixes provided. This process is

speeded up by only checking those prefixes which begin with the same letter as the first

letter of the word, for example: un + finished -> unfinished

Table 12.1 shows the set of prefixes used to modify root words in the small dictionary.

12-3

a
all
arch
CO

electro

iso
micro
over
pseudo
super
under

ab
ana
astro
centi
fore
kilo
milli

pre
radio
stereo
vice

abs
ant
auto
deci
hyper
magneto
multi

pro
re
tele

ad
ante
bio
dis
intra
mega

mis
poly

sub
thermo

after
anti
bi
en
inter
meta
non
post
self
un

air
aqua
by
ex
in
mono
out
photo
semi
ultra

Table 12.1 Prefixes used to modify root words in the small dictionary

12.2.2 Suffix Processing

A special notation is used to describe the rules used to describe the process of adding a

suffix to a word. This is adapted and expanded from that used in the manual for the

Perfect Speller program. The rules are as follows:

• A plus (+) means that the following letters are added to the end of the word. For

example, +ing means add ing to the end of the word, so: build -> building

• A minus (-) means the letters are removed. For example, -e+ing means remove

the final e and add ing, so: age -> aging

• A capital C means that the final consonant must be doubled. For example,

+C+ing means double the final consonant and add ing, so: fit -> fitting

• A lower case letter with no sign means that the indicated letter must already be

present for this rule to be used. For example, a+n means that if a is present add n, so:

Australia -> Australian

12-4

Suffix removal is similar to prefix removal, but additional complications arise. The

addition of a suffix to a word very often requires changes to the root word. As an

example, if the word ends in a consonant, the addition of ing often requires the

doubling of that consonant, so: hop + ing -> hopping

This situation is complicated by the fact that there are exceptions to this rule. An

example of this is where the word already ends in a double consonant, so:

add + ing -> adding

Other rules require the removal of certain letters before the suffix is added, so:

hope + ing -> hoping

Still other rules require the substitution of some letters for others before the addition of

the suffix, so: happy + er -> happier

In this case the transformation could be approached in two ways. The first is to change

the y to /', then to add the er. This would be expressed by a sequence of two rules,

-y+i and +er. A problem with this approach is that the intermediate word, happi, will

not be found in the dictionary. Although the rule +er is extremely useful, it is unlikely

that the rule -y+i would be of general usefulness. A better approach is to carry out the

transformation in one step: remove the y and add ier. This is expressed in the rule

-y+ier.

The method used to find which suffix ends a word is a simple test of each suffix which

ends with same letters as the word, accepting the first suffix which matches the final

letters of the word.

Because many suffixes end with the same letter or letters, it was found necessary to test

for the presence of suffixes in a certain order. If this is not done it is possible for some

12-5

rules never to be used because an earlier rule which matches the word is accepted, when

a later rule would have carried out a more 'powerful' transformation. For example, if the

rule +an precedes +ian, the second rule will never be used because every word which

ends in ion also ends in an. This dictates that the suffixes be ordered with the longer

ones placed ahead of the shorter.

Another factor to be taken into account is the different effect the same suffix will have on

different words. As was seen in the above examples, the addition of ing to a word

requires a different rule, depending on how the root word ends. In fact, three different

rules are needed to handle the suffix ing. These are +ing, +C+ing and -e+ing.

Some suffixes require even more rules. For example, the simple addition of er to a word

may occur in at least four ways:

• +er E.g. kill +er -> killer

• +C+er E.g. dig +er -> digger

• -e+er E.g. file +er -> filer

• -ry+er E.g. angry +er -> anger

These situations cannot be handled by a simple ordering of the application of the rules.

Remembering that we are applying the rules in reverse (e.g. anger -> angry), then

certainly, the case of the double consonant +C+er can be discriminated from the other

three rules because we are actually searching for a double consonant followed by er.

Thus, as long as +C+er appears before the other rules, the following rules will still be

found once it is determined that the er is not preceded by a double consonant.

However, the other rules present a more difficult problem, because each of them can only

depend on the same information - the presence of er.

The solution adopted was to partition the rules into three sets, placing each of the

conflicting rules into a different set than the others. These sets are tested for separately,

12-6

and following a match in any set the dictionary is checked for the presence of the

resulting word. If the word is not found the next set of rules is tried.

Partitioning of the rules in this way also helps with some of the words which break the

more general rules. For example, the word adding presents a problem - its root add

ends with a double consonant. Applying +C+ing produces ad, a non-word. The

system would conclude that adding is not a real word, unless it was included in the

dictionary intact. If, when partitioning the suffix rules, +C+ing and +ing are placed in

different sets, this problem is overcome. After failing with +C+ing, the rule +ing will

be tested and the resulting word add found in the dictionary.

Suffix rules used to modify root words in the small dictionary are shown in Table 12.2.

+s'
-y+ied
+C+able
+C+ence
+ative
+ee
-y+ial
-e+ion
•e+our
-e+er
-ety+ous
+'s
-y+iest
-cy+t
+ly

Set 2
+ic
-e+ee
a+n
-f+ves
+ity

Set 3
-e+ic

+'
+C+ed
-e+able
+ence
-e+ive
-t+ce
+al
+ian
-y+ier
-e+or
-y+ious
+s
+C+est
+bility
+ary

+ed
+ing
e+n
-e+ant

-ry+er

+ac
-e+ed
+C+ible
+C+ance
-e+ize
+C+ing
-e+ism
+an
-le+ular
-y+iness
-x+ces
+ment
-e+est
-le+ility
-te+cy

-t+d
-e+al
+our
-e+ent

-ism+ist

-y+ic
-y+ihood
-e+ible
+ance
-e+ise
-e+ing
-y+ication
+ren
+C+ar
+ness
-y+ies
+ent
-y+ist
-e+ity

+y

+able
-y+ian
+ar
-e+ist

-se+t

+C+ard
+d
-e+ade
-an+ane
-ce+se
+full
-y+ation
+en
-e+ar
-y+iless
-fe+ves
+ant
-y+ieth
-y+ily

+ible
+ation

+er
+est

-er+ry

-y+iad
-y+iable
+age
+like
+re
+ful
-e+tion
+ship
+C+er
+less

+es
+C+art
+th
-e+ify

+ade
+ion

+or
-d+t

-e+y

Table 12.2 Suffixes used to modify root words in the small dictionary

12-7

12.3 A Larger Dictionary

The small dictionary performed adequately for simple specialised tasks, such as

recognition of operating system or application program commands, but users frequently

used words and phrases which it could not accommodate, producing considerable

frustration. It was felt that little user freedom had been gained because the system

imposed the need to adapt one's language to its requirements rather than allowing the

user to use more natural language. Evidently, a larger vocabulary was desirable.

Analysis of the roots of words in the Macquarie Dictionary which begin with the letter

'a', and extrapolating .the word count to include the whole alphabet (by noting the number

of pages out of the total dictionary size devoted to the 'a' words), a decision was made

to aim at a total of 10000 to 15000 basic words. This number is further enhanced by the

application of prefixes and suffixes to form more complex words and other parts of

speech.

A combination of listing all prefix and suffix forms listed in the Macquarie Dictionary and

the Concise Oxford Dictionary, and the experimental development of other prefixes and

suffixes, revealed about 450 prefixes and 650 suffixes. For the small dictionary, the

approach to affix processing had been to code all the prefixes and suffixes into a set of

large procedures based on Pascal case statements. These selected appropriate processing

statements on the basis of a match between the first characters of the input word and a

prefix, or the last character of the word and a suffix. With only about 50 each of prefixes

and suffixes this method was simple and efficient. With the number of affixes increasing

to approximately 1100, and with the likelihood of considerable experimentation being

required to optimise the choice and ordering of these affixes, such an approach was

undesirable.

12-8

The approach adopted was to read the prefix and suffix rules from files into memory, and

to provide a pair of routines which interpret the rules and apply them to the input words.

Care was needed to develop a processing algorithm which could operate in this more

general manner without losing any of the speed of the hard coded scheme used in the

small dictionary. The method used to rapidly access words from the dictionary also

proved ideal to handle the prefixes and suffixes. The lists of prefix and suffix rules used

appear in Appendices I and J respectively.

The result of using common methods for retrieving both words and affixes, and of

reading in all lexicographical data from text files, is that the resulting dictionary system is

completely user programmable. Words and word features can be added, altered, or

removed from the dictionary, as can prefixes and suffix processing rules, by editing the

files. Thus the system can be adapted to different English language subsets, or even other

languages. In the case of some languages, it may be desirable to also alter the rules for

processing affixes, which will be the subject of future work. The dictionary entries are

described in a technical report, "A Machine Readable Dictionary for Natural Language

Understanding Systems" [DOW94b].

12.3.1 Word Features

The dictionary stores, as Word Type, the following information about the parts of speech

of the English language: prefix, word element, noun, pronoun, verb, adjective, adverb,

preposition, conjunction, interjection. For each word type, provision is made for the

storage of its features. Feature values are either true or false, present or absent. The

features provided are shown in Figure 12.1.

12-9

Prefix:
No features

Word Element:
No features

Noun:
Class:
Group:
Person:
Number:
Gender:
Case:

Pronoun:
Class:
Person:
Number:
Gender:
Case:

Verb:
Kind:
Voice:
Mood:
Tense:
Person:
Number:
Form:

Adjective:
Class:
Kind:
Degree:
Type:

Adverb:
Meaning:
Type:
Kind:
Degree:

Preposition:
No features

Conjunction:
Group:

Interjection:
No features

common, proper
abstract, concrete, collective
first, second, third
singular, plural
masculine, feminine, neuter, common
nominative, possessive, objective

personal, relative, interrogative, demonstrative, indefinite
first, second, third
singular, plural
masculine, feminine, neuter, common
nominative, possessive, objective

transitive, intransitive, bitransitive, principal, auxiliary, regular, irregular
active, passive
indicative, subjunctive, imperative
present, past, past-participle, perfect, past-perfect, future-perfect
first, second, third
singular, plural
be, can, do, have, may, must, shall, will

descriptive, limiting, proper
regular, irregular, numeral, article
positive, comparative, superlative, non-comparable
cardinal, ordinal, definite, indefinite

time, place, manner, degree, cause, purpose, number
affirmative, negative, interrogative, relative, conjunctive, comparison
regular, irregular
positive, comparative, superlative, non-comparative

coordinating, subordinating, correlative

Figure 12.1 W o r d Feature Values

The prefix and suffix processing introduces an additional complication into establishing

the value of each of the features of a word. The root word (from which a more complex

word is derived) has well established feature values. These are obtainable from the

dictionary, or determined by the provision of default values. However, when an affix rule

12-10

is applied the value of features may change. In the case of a rule which produces a word

of an entirely different part of speech from the root word, a whole new set of features

will become appropriate. This is particularly so for the addition of a suffix. Placing a

prefix ahead of a word often has little more effect than changing the meaning of the

word; its part of speech and feature values are rarely affected.

To accommodate the changes in word type and feature values each suffix rule must have

associated with it one or more transformation rules to describe its effect on the root

word. As in the case of the suffix rule itself, what is described is the effect of applying the

transformation to the root word. During processing, what actually happens is the reverse

- the root word is recovered from the compound word. This means that the inverse of

the transformation needs to be applied.

To illustrate the varied effects suffix rules can have on the part of speech which a word

represents, some of the suffixes and their transformations are presented here. These have

been compiled from entries in the Macquarie and Concise Oxford dictionaries

[MACQ81][FOWL70]. A complete listing of the suffixes, their meanings and associated

transformations can be found in a technical report [DOW94b].

• ed - suffix forming past-tense; the past-participle; participial adjectives indicating a

condition or quality resulting from the action of the verb; adjectives from nouns. For

example:

+ed add -> added [v -> v]
beard -> bearded (n,v -> v,adj]

recess -> recessed [n,v -> v]

+C+ed bog -> bogged [v -> v]
-e+ed hope -> hoped [v -> v]
-y+ied ready -> readied [v -> v,adj]

12-11

This example illustrates that a suffix may transform a word from a variety of parts of

speech into the same or different parts of speech. In such a case it may be difficult to

decide the effect of the reverse transformation. For instance, transforming beard to

bearded may result in either a verb or an adjective. When parsing, it is often enough to

determine the possibility of the resulting word being a certain type, without having to

know if it is actually of that type. On the other hand, if the meaning of the sentence is

being determined, the part of speech represented by a word is important. The uncertainty

might often be resolved by the fact that the sentence is only syntactically correct if the

word is of a certain type.

• able - suffix used to form adjectives, esp. from verbs, to denote ability, liability,

tendency, worthiness, or likelihood, but also attached to other parts of speech (esp.

nouns), and even verb phrases. Many of these adjectives - e.g. durable, tolerable,

have been borrowed directly from Latin or French, in which language they were

already compounded. However, -able is attached freely (now usually with passive

force) to stems of any origin. For example:

+able teach -> teachable [v -> adj]
peace -> peaceable [v -> adj]
objection -> objectionable [n -> adj]
act -> actable [v,n -> adj]

+C+able club -> clubbable [n,v -> adj]
chop -> choppable [v -> adj]

-e+able sale -> salable [n -> adj]
debate -> debatable [n,v -> adj]
receive -> receivable [v -> adj]

-ate+able navigate -> navigable [v -> adj]
+isable actual -> actualisable [adj -> adj]

• iable - form adjective, esp. from verb to denote ability, liability, tendency,

worthiness, likelihood. For example:

-y+iable pity -> pitiable (n -> adj]

12-12

ible - variant of -able, occurring in words taken from the Latin or modelled on the

Latin type. For example:

+ible add -> addible
percept -> perceptible

-e+ible reduce -> reducible
-t+sible revert -> reversible
-ge+sible submerge -> submersible

[v -> adj]
[n -> adj]
[v -> adj]
[v -> adj]

[v -> adj]

These examples, -able, -table and -ible, illustrate that many suffixes reliably transform a

variety of different word types into one particular part of speech, in this case an

adjective.

• ing - suffix of nouns formed from verbs, expressing the action of the verb or its

result, product, material, etc. It is also used to form nouns from words other than

verbs. Verbal nouns ending in -ing are often used attributively - e.g. the printing

trade, and in composition - e.g. drinking song. It is also a suffix forming the present

participle of verbs, such participles often being used as adjectives (participial

adjectives) - e.g. warring faction. For example:

+ing

+C+ing

-e+ing

+ising
+ualising

-e+ating

sew -> sewing
build -> building
off -> offing
shirt -> shirting
print -> printing
war -> warring

wad -> wadding
receive -> receiving
actualise -> actualising
actual -> actualising
concept -> conceptualising

act -> actualising
active -> activating

[v -> adj,v]
[v -> adj,n,v]
[prep -> n]
[n -> n]
[n,v -> adj,v]
[n -> adj,v]

[n,v -> n,v]
[v -> v,adj]
[v -> v,adj]
[adj -> v,adj]
[n -> v,adj]
[n,v -> v,adj]
[adj -> v,adj]

The example of -ing reveals that a suffix may predominantly produce one particular part

of speech, yet allow for exceptions which prevent a general rule from being applied. In

12-13

addition, by observing the several ways that the word actualising may be derived, it may

be seen that there is considerable scope for efforts designed to optimise the set of suffix

rules provided in a completed system. Intractable cases of word transformation may be

resolved by a judicious choice between shorter, more general suffix rules and longer,

more specific rules. If this fails to bring satisfactory performance then the final resort of

placing the complete word into the dictionary is always available.

• al - adjective suffix meaning of or pertaining to, connected with, of the nature of

like, befitting, etc., occurring in many adjectives and nouns of adjectival origin;

forms nouns of action from verbs; suffix indicating that a compound includes an

alcohol or aldehyde group.

+al

-e+al

-a+al
-us+al
-y+ial

+C+ial
-ary+C+ial
-e+ential
+ional

-ed+dural
+ual
+eval

economic -> economical
poetic -> poetical
regiment -> regimental
betroth -> betrothal
refuse -> refusal
suicide -> suicidal
lingua -> lingual
virus -> viral
deny -> denial
actuary -> actuarial
centen- -> centennial
centenary -> centennial
preside -> presidential
concept -> conceptional
except -> exceptional
recess -> recessional
proceed -> procedural
concept -> conceptual
long -> longeval

[n -> adj]
[adj -> adj]
[n -> adj]
[v -> n]
[v -> n]
[n -> adj]
[n -> adj]
[n -> adj]
[v -> n]
[n -> adj]
[prefix -> adj]
[n -> adj]
[v -> adj]
[n -> adj]
[v-> adj]
[n,v -> adj]

[v -> adj]
[n -> adj]
[adj -> adj]

• ical - compound suffix forming adjectives from nouns; providing synonyms to words

ending in -ic; providing an adjective with additional meanings to those in the -ic

form.

12-14

+ical

-e+ical
y+ical
cy+tical
r+tical

atical
ic+istical
a+istical
e+istical

class -> classical
dynam- -> dynamical
cone -> conical
history -> historical
policy -> political
grammar -> grammatical
problem -> problematical

logic -> logistical
lingua -> linguistical
state -> statistical

[n -> adj]
[prefix -> adj]
[n -> adj]
[n -> adj]
[n -> adj]
[n -> adj]
[n -> adj]
[n -> adj]
[n -> adj]
[n -> adj]

The suffixes -al and -ical illustrate all of the above points. In particular, the example of-

al shows that a suffixal ending may have a well defined effect on a word. In this case the

suffix itself has a meaning. The suffix -ical provides examples of all four of the different

suffix rule types - +sss, -sss+ttt, +C+sss and -sss+C+ttt.

• ly - normal adverbial suffix, added to almost any descriptive adjective; adverbial

suffix applied to units of time, meaning per; adjective suffix meaning like.

+ly

-e+ly
-Ie+ly

+ively

-y+ily

-e+ingly

+ably
-e+ably
-able+ably
+ibly
-ible+ibly
-y+ially
-ial+ially

+ually
-ual+ually

forceful -> forcefully
active -> actively
saint -> saintly
scholar -> scholarly
hour -> hourly
feeble -> feebly
supple -> supply
multiple -> multiply
*decept -> deceptively
percept -> perceptively

happy -> happily
day -> daily
receive -> receivingly
action -> actionably
conceive -> conceivably
conceivable -> conceivably
percept -> perceptibly

terrible -> terribly
actuary -> actuarially

actuarial -> actuarially
concept -> conceptually
conceptual -> conceptually

[adj -> adv]
[adj -> adv]

[n -> adj]
[n -> adj]
[n,adj -> adv]
[adj -> adv]
[adj -> adv]
[adv,n -> adv,v]
[element -> adv]
[n -> adv]
[adj -> adv]
[n,adj -> adv]
[v -> adv]
[n -> adv]
[v -> adv]
[adj -> adv]
[n -> adv]

[adj -> adv]
[n -> adv]
[adj -> adv]
[n -> adv]
[adj -> adv]

12-15

One feature to be noticed in this example is the use of a non-word *decept. More will be

said about this in the next section. In addition, this example demonstrates some of the

variety of forms in which a simple suffix such as -ly may appear. One fact, which does

not come out in the examples, but which does cause some difficulty, is that such a

combination may also appear at the end of a word without it representing a suffix. An

example of this is the word belly. A naive English understanding system could apply a

suffix rule such as -y+ly to the legitimate word bell, transforming it into belly, also a

common English word. This word could then be assumed to be an adjective meaning

like a bell. However, I suspect that this would be a mistaken assumption. Fortunately, in

this case, the more common transformation for English adjectives ending in -ly is via the

rule -y+ily, and this would obviously fail to extract a root from the dictionary.

• iatry - combining form meaning medical care.

+iatry psych- -> psychiatry [prefix -> n]

• olatry - word element meaning worship of.

+olatry demon -> demonolatry [n -> n]
-ol+olatry idol -> idolatry [n -> n]

• atry - see olatry.

+atry idol -> idolatry [n -> n]

• metry - word element denoting the process of measuring, abstract for -meter.

+metry anthropo- -> anthropometry [prefix -> nj

12-16

These final examples show even more clearly that a suffix may have a literal meaning, as

well as producing a certain transformation from one part of speech to another. Suffixes

such as those shown here are in fact derived from words, often Latin or Greek. It would

perhaps be more correct to describe metry as a word element rather than a suffix,

although its use here is clearly suffixal. Sometimes such word elements may appear at the

beginning of, or embedded within, a word. Frequently their use as a suffix requires some

slight change in their form.

12.3.2 Suffixes and Intermediate Forms

As mentioned earlier, a particular transformation can often be achieved in a number of

ways. For example, idolatry can be obtained by appending the suffix -atry. In addition,

it can be formed by removing the final letters ol and appending -olatry. The second may

be preferred, although more complex, because -olatry has a defined meaning - worship

of. Thus, it can be seen that the shortest transformation may not always be the most

desirable.

Examine the entry for +ively. Here the non-word *decept is transformed into

deceptively (the * is used in linguistics to indicate a word or sentence which is not

grammatical). This assumes that decept appears in the dictionary.

The reason for the incorporation of such non-words into the dictionary may be seen by

examining the following word table with the accompanying rules to produce each word

from the word at the head of the table. The first part of the word table is shown in Table

12.3:

Each of the rules used could reasonably be expected to appear in the set of suffix rules.

However, there are a large number of other words which are derivable from these same

12-17

root words, but which do not have such a simple derivation. Consider the next part of

the word table in Table 12.4:

receive

received
receiving
receiving ly
receiver
receivable
receivabieness
receivability
receivably
receipt

deceive

deceived
deceiving
deceivingly
deceiver
deceivable
deceivableness
deceivability
deceivably

deceit
deceitful
deceitfully
deceitfullness

conceive

conceived
conceiving
conceiving ly
conceiver
conceivable
conceivableness
conceivability
conceivably

perceive

perceived
perceiving
perceiving ly
perceiver
perceivable
perceivableness

Rule

-e+ed
-e+ing
-e+ingly
-e+er
-e+able
-e+ableness
-e+ability
-e+ably
-ve+pt
-ve+t
-ve+tful
-ve+tfully
-ve+fullness

Table 12.3 W o r d Derivation Table - Part 1

receive

reception
receptionist

receptive
receptively
receptiveness
receptor
receptacle

recipient
recipience

deceive

deception
deceptionist

deceptive
deceptively
deceptiveness
deceptor

conceive

concept
conception
conceptionist
conceptional
conceptive
conceptively
conceptiveness
conceptor

conceptual
conceptually
conceptualise
conceptualised
conceptualising
conceptualism
conceptualist
conceptualistic

perceive

percept
perception
perceptionist
perceptional
perceptive
perceptively
perceptiveness
perceptor

perceptual
perceptually
perceptualise
perceptualised
perceptualising
perceptualism
perceptualist
perceptualistic
perceptible
perceptibleness
perceptibility
perceptibly
percipient
percipience

Rule

-i ve+pt
-ive+ption
-ive+ptionist
-ive+ptional
-ive+ptive
-ive+ptively
-ive+ptiveness
-ive+ptor
-ive+ptacle
-ive+ptual
-ive+ptually
-ive+ptualise
-ive+ptualised
-ive+ptualising
-ive+ptualism
-ive+ptualist
-ive+ptualistic
-ive+ptible
-ive+ptibleness
-ive+ptibility
-ive+ptibly
-eive+ipient
-eive+ipience

Table 12.4 Word Derivation Table - Part 2

12-18

Clearly, the suffix rules are undesirably complex. More importantly, these rules are

probably not used for many, if any, other words. This situation can be improved in two

ways. The first is to rely on the application of two suffix rules in succession. Application

of the rule -ive+pt produces the results shown in Table 12.5:

receive

*recept

deceive

*decept

conceive

concept

perceive

percept

Rule

-ive+pt

Table 12.5 W o r d Derivation Table - Part 3

The words concept and percept are real English words whereas *recept and *decept

are not. This is of no importance if w e are going to transform them by the application of

the second suffix rule, hopefully to produce receive, deceive, conceive and perceive.

However, the use of two suffixes on one word results in considerable processing

overhead. A more satisfactory solution is to place the intermediate words and non-words

*recept, *decept, concept and percept in the dictionary. Once this is done the second

group of words originally derived from receive, deceive, conceive and perceive are

able to be reached via simpler suffix rules. Also, these are likely to be rules which will be

required for many other word derivations, and so will already be available, as can be seen

from the word table in Table 12.6:

The judicious selection of dictionary entries can also be seen to advantage when the list

of words which could conceivably be built upon the root word act is considered, along

with the rules required to do so, using both complex rules without the use of

intermediate words and simple rules with the use of intermediate words. The

intermediate words which seem to be the most satisfactory choice become clear in such a

12-19

table, and consequently the table, shown in Table 12.7, has been partitioned to make

them easily recognisable.

"recept

reception
receptionist

receptive
receptively
receptiveness

receptor
receptacle

recipient
recipience

"decept

deception
deceptionist

deceptive
deceptively
deceptiveness
deceptor

concept

conception
conceptionist
conceptional
conceptive
conceptively
conceptiveness
conceptor

conceptual
conceptually
conceptualise
conceptualised
conceptualising
conceptualism
conceptualist
conceptualistic

percept

perception
perceptionist
perceptional
perceptive
perceptively
perceptiveness
perceptor

perceptual
perceptually
perceptualise
perceptualised
perceptualising
perceptualism
perceptualist
perceptualistic
perceptible
perceptibleness
perceptibility
perceptibly
percipient
percipience

Rule

+ion
+ionist
+ional
+ive
+ively
+iveness

+or
+acle
+ual
+ually
+ualise
+ualised
+ualising
+ualism
+ualist
+ualistic
+ible
+ibleness
+ibility
+ibly
-ept+ipient
-ept+ipience

Table 12.6 W o r d Derivation Table - Part 4

12-20

W o r d

act
acts
acted
acting
actable
actables
actability
actabilities

active
activity
activities
activate
activates
activated
activating
activation
activations
activator

. activators
actively
activeness
activist
activists
activism

action
actions
actionable
actionables
actionability
actionabilities
actionless
actionist

actor
actors
actress
actresses

actual
actualise
actualises
actualised
actualising
actualisation
actualisations
actualisable
actualisables

Complex Rule
(based on 'act')

+s
+ed
+ing
+able
+ables
+ability
+abilities

+ive
+ivity
+ivities
+ivate
+ivates
+ivated
+i vat ing
+i vat ion
+i vat ions
+ivator
+ivators
+ively
+iveness
+ivist
+ivists
+ivism

+ion
+ions
+ionable
+ ionables
+ionability
+ ionabilities
+ion less
+ionist

+or
+ors
+ress
+resses

+ual
+ualise
+ualises
+ualised
+ualising
+ualisation
+ualisations
+ualisable
+ualisables

Simple Rule
(based on intermediate word)

+s
+ed
+ing
+able
+ables
+ability
-•-abilities

-e+ity
-e+ities
-e+ate
-e+ates
-e+ated
-e+ating
-e+ation
-e+ations
-e+ator
-e+ators
-e+ly
+ness
-e+ist
-e+ists
-e+ism

+s
+able
+ables
+ability
+abilities
+less
+ist

+s
-or+ress
-or+resses

+ise
+ises
+ised
+ising
+isation
+isations
+isable
+isables

Table 12.7 Complex Versus Simple Transformation Rules

12-21

Word

actualize
actualizes
actualized
actualizing
actualization
actualizations
actualizable
actualizables
actuality
actualities
actually

actuary
actuaries
actuarial
actuarially

actuate
actuated
actuating
actuates
actuator
actuators
actuation
actuations

Complex Rule
(based on 'act')

+ualize
+ualizes
+ualized
+ualizing
+ualization
+ualizations
+ualizable
+ualizables
+uality
+ualities
+ually

+uary
+uaries
+uarial
+uarially

+uate
+uated
+uating
+uates
+uator
+uators
+uation
+uations

Simple Rule
(based on intermediate word)

+ize
+izes
+ized
+izing
+ization
+izations
+izable
+izables
+ity
+ities
+ly

-y+ies
-y+ial
-y+ially

-e+ed
-e+ing
-e+es
-e+or
-e+ors
-e+ion
-e+ions

Table 12.7 (continued) Complex Versus Simple Transformation Rules

Considering the number of letters to be added to a word by a rule to be some measure of

the time taken to search for these letters when removing them, the counts for the above

table are as follows:

Number of letters (complex rules, no intermediate words): 438
Number of letters (simple rules with intermediate words): 242

Number of complex (less generally usable) rules: 69
Number of simple (more generally usable) rules : 56
Number of words which can be generated : 70
Number of dictionary entries (complex rules): 1
Number of dictionary entries (simple rules): 7

12-22

In the system developed, the actual method used to group suffixes during search brings

the two methods somewhat closer together in search time, so a smaller improvement

than might be expected is achieved. The use of multiple suffixes can achieve a similar

result in terms of processing operations to that of the simple rules, but at the expense of

more suffix processing time.

When more than one root word is taken into consideration the use of complex rules

rapidly becomes unwieldy. Separating out the pluralising function into a separate process

reduces the overheads significantly, as illustrated by the following rework of the word

table for act, shown in Table 12.8:

It can be readily seen that the simple but more generally useful rules now enjoy a

considerable advantage over the more complex rules:

Number of letters (complex rules, no intermediate words): 411
Number of letters (simple rules with intermediate words): 153

Number of complex (less general) rules: 52 } plus plural
Number of simple (more general) rules : 39 } rules

Number of words which can be generated : 70
Number of dictionary entries (complex rules): 1
Number of dictionary entries (simple rules): 7

Many more intermediate forms could be placed in the dictionary to facilitate

disambiguation of rules. For example, the derivation of solicitude from solace can be

carried out in one step:

solace -> solicitude (-ace+icitude),

or it can be achieved in two stages by the use of the non-English *solice:

solace -> *solice (-ace+ice) -> solicitude (-e+itude).

12-23

Word Complex Rule
(based on 'act')

Simple Rule
(based on intermediate word)

act
acts
acted
acting
actable
actability

active
activity
activate
activates
activated
activating
activation
activator
actively
activeness
activist
activism

action
actionable
actionability
actionless
actionist

actor
actress

actual
actualise
actualises
actualised
actualising
actualisation
actualisable
actualize
actualizes
actualized
actualizing
actualization
actualizable
actuality
actually

actuary
actuarial
actuarially

actuate
actuated
actuating
actuates
actuator
actuation

+s
+ed
+ing
+able
+ability

+ive
+ivity
+ivate
+ivates
+ivated
+ivating
+ i vat ion
+ivator
+ively
+iveness
+ivist
+ivism

+ion
+ionable
+ ionability
+ionless
+ionist

+or
+ress

+ual
+ualise
+ualises
+ualised
+ualising
+ualisation
+ualisable
+ualize
+ualizes
+ualized
+ualizing
+ualization
+ualizable
+uality
+ually

+uary
+uarial
+uarially

+uate
+uated
+uating
+uates
+uator
+uation

+s
+ed
+ing
+able
+ability

-e+rty
-e+ate
-e+ates
-e+ated
-e+ating
-e+ation
-e+ator
-e+ly
+ness
-e+ist
-e+ism

+able
-•-ability
+less
+ist

-or+ress

+ise
+ises
+ised
+is ing
+isation
+isable
+ize
+izes
+ized
+izing
+ization
+izable
+ity

+ly

-y+ial
-y+ially

-e+ed
-e+ing

-e+es
-e+or
-e+ion

Table 12.8 Singular Transformation Rules

12-24

This intermediate form can also be taken advantage of to produce the word solicitous.

At first sight it might seem to make more sense to derive solicitude and solicitous from

the word solicit, which would be in the dictionary, and from which would also be

derived solicitation, solicitor, solicited, soliciting, etc. Tempting as this might be,

examination of the semantic content of the words reveals that solicit and solicitude are

not as clearly related to each other in meaning as are solace and solicitude.

The task of identifying suitable intermediate forms is not easy. Much time and

experimentation will be required to produce an optimal balance between root forms and

affix rules. Rather than incorporate such non-word intermediate forms into the dictionary

as a new word type, they have been included with the existing word element type.

12.4 Problems with this Dictionary Design

While the transformation of one word into another by the addition of one or more affixes

is a relatively simple process, the reverse of this - removing affixes - is not so easily

achieved. Modifying a word, particularly by the addition of a suffix, often results in some

loss of information about the root word. This causes the possibility of ambiguity when

the root needs to be rediscovered.

For example, consider the word sentence. The application of the rule +ence will result in

the root sent, obviously incorrect. Yet sent may be found in the dictionary, or, if not,

then by the further application of -d+t, its root send will be found, also incorrect. The

simplest solution to this problem is to ensure that sentence itself appears in the

dictionary. As it is not formed from a root by the application of affixes, then it ought to

have an entry of its own, but as not all words can be included in a small dictionary, it may

12-25

have been omitted. In this case an incorrect root would have been returned rather than

the more useful information that the word was unknown.

In a similar fashion, a word such as repented may appear to have a prefix, when in fact

it has not. The present system, on not finding the whole word in the dictionary, first

removes possible prefixes. It will not find the resulting pented in the dictionary, so

eventually it will remove the suffix ed. The word pent will be found and incorrectly

reported as the root of repented.

The most satisfactory solution to this problem would be to arrange the affix processing

to incorporate single suffix removal before that of mixed prefixes and suffixes. In fact,

this has been done in the present design, but in whatever order the testing is carried out,

an incorrect root may be arrived at before the correct root.

Another possibility which should be kept in mind is that of the interaction between

multiple affixes. The present dictionary design allows for up to two prefixes and two

suffixes to be removed from a word. It is conceivable, however, that the application of an

incorrect first suffix rule to a word may still result in a form with a recognisable second

suffix. In this case removal of the second suffix may result in an incorrect root result.

The suffix rules used by Perfect Speller [GOOD84] did not need to take into account the

resulting word type. If possible it would be best to try to standardise on a progression of

word types, for example, nouns transform to verbs, and so on. At present, the

transformation may go either way, depending on which rule is invoked. Determining

which word type should be in the dictionary is a compromise between selecting the most

basic form of the word, and, if more than one basic form is available, selecting the one

which contains the most useful information in its feature set.

12-26

The prefixes present little difficulty. They are simply appended to existing words and so

can be as easily removed. There may be a case for more complex prefix rules - e.g. at is

equivalent to ad before a t; e.g. attend -> (at) tend. This could be expressed as +at?t,

meaning add at if next letter is t. It would be removed by checking if the first three

letters are att and if so removing the at.

Words which begin with the same letters as a prefix but which do not use them as a

prefix need to be placed in the dictionary. For example, re is not a prefix in the English

word remedy, although in its original Latin derivation remedium it might be looked

upon as a prefix to the stem med.

Words which end in a double consonant and can take -ing might need to be in

dictionary (e.g. adding), especially if the result of applying the suffix rule +C+ing still

produces a valid word. A similar warning applies to many of the rules.

Much of the interaction of suffix rules can be avoided by the order in which the rules are

tried. In the small dictionary it was necessary to separate the rules into three distinct sets

to handle cases where the rule searched for the same string. The sets are tried

sequentially until the resulting word is found in the dictionary. This means that a

dictionary check needs to be carried out following each rule application, not necessary

for prefixes.

The larger dictionary implements an exhaustive test of all applicable suffix rules, again

stopping with the first rule which produces a word found in the dictionary. In both the

small and the larger dictionaries this means that a word could be attributed to the wrong

root because that root was discovered first, even though the correct solution is

potentially available. One way to circumvent this problem would be to pass in from the

application program, information about the part of speech required for the word being

searched for. This information will be available in the case of a natural language parser

12-27

attempting to prove the truth or falsity of a production rule. If the word obtained does

not match the needed type, the system could continue its search through the suffix rules

for another word.

An aid to the process of filtering out incorrect words produced by the application of

suffix rules would be to make a reject table of words generated by the rules which are

wrong, for example ad from adding via the rule +C+ing. The overheads involved in

this would mean it would be best to restrict its use to overcoming intractable cases

involving important words, and then only if the problem cannott be resolved by

reordering the rule applications or rearranging the partitioning of the rules.

12.5 Dictionary Enhancements

A desirable enhancement to this dictionary would be the provision of special purpose

sub-dictionaries containing words needed in a particular context or subject field. This

concept is easily implemented, and could be extended by partitioning the entire dictionary

into sections determined by word popularity.

Another enhancement would be the provision of the ability to automatically learn new

words and correct improperly derived words. With this facility enabled, the detection of

an incorrect or unknown word by either the application program, the user, or the

dictionary system could prompt the user for information about the spelling of the word,

its parts of speech, its semantic content, and its possible derivation from simpler roots.

This information could then be used to update the dictionary word and affix files.

A further enhancement would be the provision of a compiler for the word and affix files.

This would reduce the disk space occupied by the files, shorten the loading time, and

increase the security of the data, which could also be compressed if desired. Ideally the

12-28

dictionary system would provide routines for reading both text and compiled files,

writing both types of files, and translation between one type and the other.

12.6 Semantic Information

The use of this dictionary in a natural language understanding system requires its

extension to incorporate semantic information for each dictionary entry. The derivation

of many of the words from more basic forms by the use of prefixes and suffixes

complicates this process considerably. The effect of an affix on the meaning of a word

needs to be defined and the information incorporated into the affix rules. While this

complexity is regrettable, the alternative of constructing a complete dictionary becomes

even more formidable when the addition of semantic information to each entry is

contemplated.

The subject of designing a suitable meaning representation scheme and its incorporation

into the dictionary will be considered in Chapter 14.

12-29

13. DICTIONARY IMPLEMENTATION

This chapter describes the implementation details of the dictionary. The primary

requirements of very fast access and efficient use of memory required innovative

adaptions of the more usual database techniques to be employed.

In order to reduce the amount of memory required for storage of dictionary information

without restricting the number of words in the vocabulary, it was decided to use a

dictionary of root words and enhance this by using prefix and suffix transformations to

attempt to reduce more complex words to these root words.

13.1 The Structure of the Dictionary

13.1.1 String Storage

The dictionary for the present system is a stable database with permanent data being

added as it is developed. Experiments show it is to have a capacity of 10-15,000 entries,

giving a size of approximately 75,000 bytes, assuming an average word length of 5

characters. Each word is stored in a dynamic string. Pointers to this and the features

belonging to the word are stored as a record linked into a list structure, with indexed

access using the first two or three characters of the word. This allows each entry to be

accessed in minimum time. The data remains largely unaltered during the life of the

system, except for minor changes to rectify mistakes or improve performance. The only

likelihood of needing to regularly add words to the dictionary would arise if it was

desired to make the speech understanding system able to learn new words while it is

being used - a future development.

Instead of using Turbo Pascal strings, with their overhead of wasted memory, it was

decided to construct dynamic strings. When a string is to be stored in memory its length

13.1

is determined and one more memory byte than this number is allocated at run time. The

length of the string is stored in the first byte, as in Turbo Pascal, and the string characters

are placed in the bytes following this. This provides efficient use of memory while

retaining the ability to quickly determine the string length, a feature useful in the

application of prefix and suffix rules and in providing a fast test for the possible

inequality of two strings. Null-terminated strings do not have this advantage.

As the structure in memory of the dynamic stringmatches that of a Turbo Pascal string, it

is possible to access the string in one assignment statement by type casting it to a suitable

static string type. Even if the string type is longer than the dynamic string the extra

characters copied which do not belong to the string will be ignored by string

manipulation routines which use the length byte. Copying a string into dynamic memory

using this technique would be more hazardous, however, as either the string itself or

other data would certainly be corrupted unless the string type used in the cast were

exactly the right size.

Addition of a length byte increases character storage to 90,000 bytes (15,000 x 6). This

does not take into account the need to access these dynamic strings in some way. This

can be done in numerous ways. A linked list of all entries would occupy at least 150,000

bytes, allowing 4 bytes per pointer, a 1 0 0 % overhead in storage space over that required

for the characters alone. Sequential access would also be too slow. Instead a dynamic

indexing scheme was devised, and will be described once the method of storing each

entry has been detailed.

13.1.2 Dictionary Entry Storage

Space must also be allocated for storage of the feature values associated with each word

entry. The simplest and most efficient method of describing the features of words is to

13.2

use items which are simply present or absent, true or false. Consequently, each word type

has associated with it a collection of Boolean valued features, as described in Chapter 12.

In Pascal, the most convenient method of storing such a collection is in a set type.

As the smallest amount of memory that can be allocated to an item is one byte, or eight

bits, the memory occupied by the feature set for each word type is as shown in Table

13.1. The average feature set size, taking into account the frequency of the different

parts of speech in the dictionary, is approximately 3 bytes.

Word Type

Adjective
Adverb

Conjunction
Interjection
Noun
Prefix
Preposition
Pronoun
Verb
Word Element

Bits in Set

15
19
3
1
17
1
1
17
31
1

Bytes Occupied

2
3
1
1
3
1
1
3
4
1

Table 13.1 M e m o r y Occupied by W o r d Feature Sets

The simplest way of accommodating data items of varying sizes is to use a variant

record. This is not very economical of space, since each item then occupies the same

amount of storage as the largest item, in this case 4 bytes for a verb feature set. Instead,

a dynamic data structure again gives the most economical solution. This is easy to

implement because the size of the set for each word type is known in advance. As the

word type also needs to be stored along with the feature values, the size of the set to be

retrieved is simply determined. Figure 13.1 illustrates the dynamic data storage for each

13.3

entry. Addition of the feature values and the word type increases the memory required

for each entry to 14 bytes, equating to 210,000 bytes in total for 15,000 entries.

String Length

Characters

of the

String

Word Type

Feature Set

Figure 13.1 Dynamic Data Storage Structure for a Dictionary Entry

For each entry in the dictionary, a Pascal record is created containing two pointers. One

pointer contains the address of the dynamic data entry described above, the other forms

the link to the next entry record, enabling a linked list to be formed, as shown in Figure

13.2:

An improvement would be to incorporate the data fields into the linked list nodes,

removing the need for an extra four byte pointer per entry. This will be carried out in a

future revision of the software. The removal of this redundant pointer would decrease

the total storage of the scheme as described so far by 60,000 bytes, from a total of

270,000 bytes to 210,000 bytes for 15,000 entries.

13.4

Next

Entry

Entry

1 Data
Entry

Next
Entry

Entry

1 Data
Entry

Next

Entry

Entry

I
Data
Entry

Figure 13.2 Linked List Dictionary Structure

13.1.3 Static Two Character Indexing

An alternative to linked lists is a linear byte array, storing the size of each entry along

with the entries. The array could be traversed by using the size of the entries to locate the

next entry. This would be economical in the use of storage, but the time taken to search

for an entry, owing to the arithmetic required to locate each entry from the information

about the size of the entry before it, would be too great. Also, the memory allocation

routines on a P C can only allocate a maximum of less than 64k bytes to any one item,

requiring the dictionary data to be partitioned into three or more components. A third

problem is the difficulty of altering the data once it is loaded into memory.

As the total amount of memory required was not yet prohibitive, and as retrieval time is a

very important factor in a dictionary system, it was decided to retain linked lists. The

problem then became one of organising the list in such a way that access time was

minimised. First an index array, indexed by the first letter of each word, was constructed.

The array entries consisted of a pointer to the first entry in a linked list of words

beginning with that letter, as shown in Figure 13.3.

Next
Entry

Entry

I
Data
Entry

13.5

While the dictionary was small this scheme worked well, but as the number of entries

increased the linked lists grew too long, resulting in an unacceptable access time.

One-dimensional
Index Array

•B"

Linked List

-t> nil

•O nil

Figure 13.3 Static Single Character Indexing

The solution adopted was to change the single linear index array to a two dimensional

array, indexed by the first two letters of the word, as illustrated by Figure 13.4. This, in

fact, is an array of 53 x 30 pointers, a 1590 byte overhead. For a small dictionary this

would be a large price to pay, but as the dictionary size increases the index array

becomes insignificant, amounting to only 0.59% of the memory requirements for 15,000

entries. In fact, this overhead is exaggerated, since the pointers it contains have already

been accounted for in the calculations for memory size if linked lists are to be used.

13.6

Two-dimensional
Index Array

'A'.'A'

'A'.'B'

'A'.'C

'A'.'z'

'B'.'A'

< z.y

'z'.'z'

i

i

i

i

i

•

i

i

Linked List

->

- ^

-:.:.::.:.:.:;:...

Figure 13.4 Static T w o Character Indexing

The 53 x 30 array allows for an apostrophe and for proper nouns to begin with a capital

letter. It was thought desirable to retain case sensitivity in order to retain the possibility

of discriminating between ordinary nouns and proper nouns when they consist of the

same letters but have different meanings. This is not possible with spoken input, but

broadens the scope of applications for the dictionary. The index array is quite sparse,

especially as many two letter combinations never begin a word.

13.7

The apostrophe is included as a first letter because the same type of array structure is

used to control the storage of prefix and suffix rules. Suffixes are indexed by the last and

second-last characters, and it is possible for the last character to be an apostrophe. The

use of the same construction simplified the programming task. The second index has 30

values, to handle the extra characters - space, apostrophe, and plus and minus signs. The

space character is necessary to facilitate the handling of words, prefixes and suffixes

which consist of only one character.

Figure 13.5 shows an example of an array indexed by the first and second letters of 469

English prefixes. It gives the counts of all entries pointed to by each array element. The

sparsity of the array can be seen. There are only 142 non-zero elements, out of a total of

1590. The figure of 142 two-letter combinations is typical of the start of English

language words, so a 15,000 word dictionary has an average linked list length of 106

entries. This was found experimentally, by measuring access speed, to be longer than

desired. (In fact, some lists would be considerably longer than this.) If all two-letter

combinations were used then the average list length is just over 9. The actual figure will

be somewhere between these two extremes. By inserting suitable counters into the

routines which load the dictionary files actual list lengths were determined, along with a

measure of the memory space taken up by the components of the dictionary.

When the dictionary had been expanded to the point of including all desired words

beginning with the letter 'a' and 'b', a total of 3809 entries, the following results were

reported. The word array contained 225 non-empty entries and the longest list, that of

the words starting with 'bu...' contained 211 entries. These figures give an average list

length of 16.93 entries. The average word length was 5.36 characters and the average

feature set size was 2.83 bytes. So, with a total of 31,196 bytes of useful information,

each byte of information requires around two bytes of storage in order to make it easily

and rapidly accessible.

13.8

Second Letter
a b c d e f g h i j k l m n o p q r s t u v w x y z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V

w
X
Y

z
a
b
c
d
e
f

J
k
l
m
n
o
P
q
r
s
t
u
V

w
X

y
z

2

1 2 3 1
3
8

1 2

3
4

1 2

4
7
1

1 1 4
10

2
3
4

2

2 2 1 1
2 4
6 7 2
11 7

1
3 1
3 1
17 4

2
1 4
10 6
4 1

2
8 9 1

5
10 1 1
6 4 1

1
1 1 2

| 1

1

4

6 2 8
4

2 1 1
3

2 1 5

2

2 1 2
6

1 1

1 3

3 1 3 2
4

10 4
4

3 1
4 1

5
11

2 2

4
6
2

1 1 2
2 5 4

2
3 1
2 2

1

1

1

2 3

1
1

1 1 5
2

1
1

2

4

1
3

1
2
1 1

4

8 13 I 5
3 1

2

a b e d e f g h i j k I m n o p q
Second Letter

r s t u v w x y z

Figure 13.5 Number of Entries Indexed by Each Array Element

Code was added to the dictionary system to analyse the data structure for the distribution

of linked lists, and the results shown in Figure 13.6 were obtained.

13.9

List Length

Number of Lists

Number of Words

% of Words So Far

0-1 2-4 5-9 10-19 20-49 50-99 100-199 200+

35 55 40 51 26 11 5 2

35 156 264 718 694 765 758 419

0.9 5.0 11.9 30.8 49.0 69.1 89.0 100.0

Figure 13.6 Linked List Length Distribution

These figures reveal that 40% of all lists are less then 5 entries long, 58% are less than 10

entries long and 81% are less than 20 entries long. Such a distribution should give

satisfactory retrieval speed, unless the longer lists happen to contain a preponderance of

very popular words. On examining the figures for the number of words contained in each

category of lists the latter is found to be likely, since the longer lists, of course, contain

more words than the shorter ones. Only 5% of all words lie in lists with less than 5

entries, 12% in lists with less than 10 entries, 31% in lists with less than 20 entries, and

49% in lists with less than 50 entries.

The use of the two letter indexing makes it unnecessary to store the first two characters

of a word. This results in a saving of almost 30,000 bytes for a 15,000 entry dictionary.

The complexity of adding and removing two characters from each word did not slow the

system down. Not having to read as many characters from dynamic storage and

reassemble them into a string actually more than compensates for this extra computation

time.

The eight byte granularity of the Turbo Pascal memory allocation scheme nullifies some

of the gains made in this area. Any item whose size is not an exact multiple of 8 bytes

wastes some memory. To indicate the magnitude of the effect of granularity, memory

usage was measured. For a dictionary size of 3809 entries the memory requested was

13.10

61,692 bytes, whereas the memory actually allocated was 73,936 bytes. The difference of

almost 12k bytes of memory represents a wastage of 16.6% of the allocated memory.

The figures also indicate that the average size of an entry is 16 bytes. If space becomes a

premium a solution is to construct one's own memory allocation routines.

13.1.4 Dynamic Three Character Indexing

During use of the dictionary with static two character indexing, when a word such as

buzz, which was stored in one of the longer lists, was being retrieved, a considerable

degradation in access speed was noticeable. Some of the lists were of the order of 200

entries long. Clearly, some means of reducing the length of these lists was needed.

The indexing was extended to use three characters. A three dimensional static array

requires 53 x 30 x 30 = 47,700 four byte pointers, occupying 190,800 bytes. This is a

prohibitive amount of memory to use simply for indexing, and the structure is too large

for a Turbo Pascal static variable. Most of the entries would never be used. It is capable

of individually addressing approximately 3 to 5 times as many words as the dictionary is

likely to contain. Even so, as there may be many words which begin with the same three

letters, linked lists will still be needed for many entries.

It was decided to extend the existing two dimensional indexing array, with a maximum

allowed length for a list addressed by a two letter combination. Once a list exceeded this

length, it is broken up into smaller lists, each distinguished by the third letter in the word.

These lists were accessed by pointers contained in a one dimensional array indexed by

this third letter. Importantly, it was a dynamic variable, created only when it was required

to break a long list up into smaller lists. A pointer to this dynamic array was placed into

the original index array instead of the pointer to the original long list. In addition, a flag

was added to each two dimensional index array entry to indicate whether its pointer

13.11

pointed to a two character indexed list or a set of three character indexed lists. The

structure is illustrated in Figure 13.7.

Two-dimensional
Index Array

•AVA'

'A'/B'

'AVC

• •

b,r

b,s

i •

• •

•z'.'w'

'z'.'x'

•z'.y

'z'.'z'

1 1

Thir
Dyr

'a'

"u*

'z'

d Charac
lamic Inc
Array

i

ter
lex

i

•

•

•

•

•

Linked List

Linked List

..I'

Figure 13.7 Dynamic Three Character Indexing

13.12

This scheme provides a considerable improvement in access times for the poorly behaved

lists, i.e. lists with words beginning with letters c o m m o n to many other words. To

determine the optimum length to set as a maximum for a two character indexed list, and

to examine the memory requirements of this scheme, the analysis code was modified to

traverse the complete data structure. The results obtained are shown in Table 13.2.

Total number of entries = 3809
Number of index array entries = 225
Average word length = 5.36
Average feature set size = 2.83 bytes

Max list length

Average list length
N u m 2-char indexed
N u m 3-char indexed
Total n u m indexed
Longest list length
Longest list chars.
Memory requested
Memory allocated

5

4.36
102
771
873
53
'bra'
76452

88696

7

4.52
117
725
842
53
'bra1

74652

86836

10

4.77
134
664
798
53
'bra1

72612

84856

15

5.50
164
529
693
53
"bra1

69012

81256

20

6.47
184
405
589
53
"bra"
66612

78856

35

8.14
204
264
468
53
'bra'
64212

76456

50

8.66
207
233
440
53
•bra"
63852

76096

75

10.95
216
132
348
75
'bi'
62772

75016

100

11.94
218
101
319
95
•al"

62532

74776

150

13.56
221
60
281
149
'be'
62172

74416

200

15.61
223
21
244
185
•ba'

61932

74176

250

16.93
225
0
225
211
'bu'
61692

73936

Table 13.2 List Length Data for Static 2-Character Indexing

The data in Table 13.3 illustrates the effect of setting different maximum list lengths on

the distribution of lists and words through the data structure. The entries represent the

number of lists in each length group, with the percentage of words in lists shorter or

equal to this length in parentheses.

13.13

Max List

Length

5
7
10
15
20
35
50
75
100
150
200
250

1

243(6.40)
223(5.90)
205(5.40)
157(4.10)
123(3.20)
83(2.20)
77(2.00)
54(1.40)
48(1.30)
43(1.10)
36(0.90)
35(0.90)

2-4

400(35.2)
376(33.0)
340(30.2)
278(24.2)
208(18.4)
142(12.4)
125(11.1)
94(8.40)
83(7.30)
71(6.30)
59(5.30)
55(5.00)

Actual List length

5-9

153(60.7)
166(60.7)
172(59.6)
148(49.8)
128(40.5)
99(29.5)
94(27.3)
68(20.2)
59(17.6)
52(15.4)
44(13.0)
40(11.9)

10-19

49(77.9)
49(77.9)
53(77.9)
82(77.9)
99(76.3)
95(64.0)
92(60.8)
75(48.0)
71(43.9)
60(37.8)
54(32.9)
51(30.8)

20-49

26(97.3)
26(97.3)
26(97.3)
26(97.3)
29(97.3)
47(97.3)
50(97.3)
46(82.0)
45(77.2)
39(67.0)
33(57.3)
26(49.0)

50-99

2(100)
2(100)
2(100)
2(100)
2(100)
2(100)
2(100)
11(100)
13(100)
13(89.8)
13(80.1)
11(69.1)

100-200

0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
3(100)
5(100)
5(89.0)

201+

0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
0(100)
2(100)

Table 13.3 Effect of M a x i m u m List Length on Actual List Length Distribution

13.2 Affix Processing

The affix transformation table is loaded into memory. A word which is not found in the

dictionary is checked to see if applying transformations produces other possible words. If

any new words are produced by this process, the dictionary is again checked for their

presence. If a word is successfully transformed to one which is in the dictionary then the

meaning and part of speech of the root word is altered according to which

transformations have been applied to it, and possibly producing syntactic and semantic

information which will be correct for the derived word. The affixes and their transforms

are described in detail in a technical report, "Affix Transforms for a Machine Readable

Dictionary for Natural Language Understanding Systems" [DOW94c].

13.2.1 Affix Transformations:

If an affix transformation is applied to a word to find its root form, the root is likely to

form a different part of speech than that of the complex word. In addition, the meaning

of the word will usually have changed, sometimes only in emphasis, but often to a related

13.14

but quite different meaning. Consequently, adjustment of both the word type and the

meaning returned by the dictionary is needed.

By laboriously examining the effect of all of the transformations which were candidates

for the dictionary, a set of transformations which seemed to be stable and reliable was

identified. Many transformations were so diverse in their effects on different words that it

was not possible to discover a single effect to associate with them. These transformations

were omitted from the dictionary and the words they affected placed in the dictionary

intact. However, if a transformation had the same effect on a large number of words,

then even if there were also a large number of exceptions to this rule, the transformation

was included. The exceptions were accounted for by including those words in the

dictionary. Also, some words which, although derivable, are common roots of other

words and are likely to be accessed frequently, were also placed into the dictionary to

reduce processing overhead.

It may be more efficient to omit some transformations which don't produce many

commonly used words, but a case can also be made for deriving these words and not

having to carry them in the dictionary.

Prefixes, unlike many suffixes, don't usually produce complex transformations. Rather,

they usually result in the juxtaposition of two meanings, or the negation or emphasis of

the root word meaning. For this reason prefixes have been handled by looking up the

prefix itself in the dictionary and treating it as a separate word which modifies the root

word. Any case which is greatly different from this is handled by including the complete

word in the dictionary. A complete list of the prefixes used is given in Appendix G.

Each suffix transformation identified was given a name which described both the effect it

had on the part of speech of the word, and the semantic effect of the suffix. Thus a suffix

which takes an adjective, noun or verb and produces a noun, and at the same time

13.15

conveys a sense of producing an action or describing a condition related to the root

word, would be named

AdjNounVerbNounActionOrCondition.

This transform is illustrated by the examples of the +ion suffix, shown in Table 13.4.

Suffix

+ion

-e+ion

-ite+ion

-ect+icion

-de+sion

-se+sion

-t+sion

-ge+sion

-it+ission

-ine+ension

Example Transformation

assert -> assertion

flex -> flexion

reflect -> reflection

concept -> conception

recess -> recession

intersect -> intersection

private -> privation

converse -> conversion

c o m m u n e -> communion

opine -> opinion

agitate -> agitation

contrite -> contrition

pollute -> pollution

infuse -> infusion

unite -> union

suspect -> suspicion

allude -> allusion

provide -> provision

explode -> explosion

converse -> conversion

perverse -> perversion

convert -> conversion

submerge -> submersion

remit -> remission

decline -> declension

[v->n]

[y->n]

[v->n]

[n ->n]

[n,v -> n]

[n,v -> n]

[adj -> n]

[n->n]

[v->n]

[v->n]

[v->n]

[adj •> n]

[v->n]

[v->n]

[v->n]

[v -> n]

[v-> n]

[v->n]

[v->n]

[n->n]

[adj,n -> n]

[v->n]

[v->n]

[v->n]

[v->n]

Suffix

-d+sion

-ce+sion

-el+ulsion

-e+ision

+tion

-l+tion

-ive+ption

+ation

-e+ation

-a+ation

+uation

-y+ication

Example Transformation

extend -> extension

pretence -> pretension

compel -> compulsion

precise •> precision

incise -> incision

prevent -> prevention

actual -> actuation

conceive -> conception

consider -> consideration

decor -> decoration

tempt -> temptation

commend -> commendation

pacific -> pacification

deprive -> deprivation

decline -> declination

starve -> starvation

immunise -> immunisation

preserve -> preservation

active -> activation

realise -> realisation

saliva -> salivation

act -> actuation

pacify -> pacification

[v->n]

[n->n]

[v->n]

[adj -> n

[v->n]

[v->n]

[adj -> n]

[v->n]

[v->n]

[n->n]

[v->n]

[v->n]

[adj -> n]

[v->n]

[v->n]

[v->n]

[v->n]

[v->n]

[adj.n -> n]

[v->n]

[n->n]

[n,v -> n]

[v->n]

Table 13.4 The Suffix -Hon and Some of its Variants

Some transformations have alternate effects, depending on the part of speech of the

original word. For example,

13.16

NounAdjPertaining V e r b N o u n A g e n t

transforms a noun into an adjective, with the meaning of'pertaining to' whatever the root

word means, while if it is applied to a verb it produces a noun which describes the agent

which produces the action of the original verb. Consider the example of the +ar suffix, in

Table 13.5.

Suffix

+ar

+C+ar

-e+ar

-al+lar

Example

line -> linear

beg -> beggar

tube -> tubular

lie -> liar

pedal -> pedlar

Transformation

[n -> adj]

[v->n]

[n -> adj]

[v->n]

[v -> n]

Suffix

-le+ular

-ule+ular

Example Transformation

corpuscle -> porpuscular

muscle -> muscular

single -> singular

molecule -> molecular

granule -> granular

[n -> adj]

[n -> adj]

[adj -> adj]

[n -> adj]

[n -> adj]

Table 13.5 The Suffix +ar and Some of its Variants

Again, some transformations are even more complex. The transformation

AdjNounPfxVerb AdjNoun FunctionLocationOrRelation

transforms an adjective, noun, prefix or verb into either an adjective or a noun, the

resulting part of speech depending on the original word. The present system is unable to

decide which it will be, so it is left for the parser to try and make this decision. The

meaning of the resulting word is that of a function, location or relation, again depending

on the original word, and also on the particular suffix removed. This transform is

illustrated by the example of the suffix +ary, in Table 13.6.

13.17

Suffix

+ary

-e+ary

-eer+ary

-ant+ary

Example Transformation

diction -> dictionary

function -> functionary

secret -> secretary

centen- -> centenary

contr- -> contrary

adverse -> adversary

prime -> primary

volunteer -> voluntary

militant -> military

[n -> adj.n]

[n,v -> n]

[adj.n -> n]

[pfx -> n]

[pfx -> adj]

[adj -> n]

[adj -> adj]

[n,v -> adj]

[adj -> adj.n]

Suffix Example Transformation

-ample+emplary

•our+orary

-ain+anary

-an+ary

-nial+ary

-ate+ary

example -> exemplary

honour -> honorary

grain -> granary

apian -> apiary

centennial -> centenary

arbitrate -> arbitrary

primate -> primary

actuate -> actuary

[n -> adj]

[n •> adj]

[n->n]

[adj •> n]

[adj -> n]

[v -> adj]

[n •> adj]

[v-> n]

Table 13.6 The Suffix +ary and Some of its Variants

Some of the transforms have a very clear semantic interpretation. For example,

AdjAdvNounVerb_Noun_Proficiency

reduces the original word to a noun which describes the action at which the original

word indicated a degree of proficiency. As an example, application of the suffix rule

+smanship to gamesmanship results in the noun game, and the transform

A d j A d v N o u n V e r b N o u n Proficiency shows that the original noun indicates a

proficiency in games. Similarly,

NounPfxNounMeasuringlnstrument

clearly indicates that the original noun or prefix described an instrument for the

measuring of the particular quantity indicated by the root noun. The word

transformations for the suffix +meter, in Table 13.7(a), illustrate this. However, the

transformations in Table 13.7(b) show that there are exceptions to this rule, and these

words would need to be individually included in the dictionary if this transform is

adopted for use in the system.

13.18

(a)

(b)

Suffix

+meter

+ometer

-p+C+meter

+meter

Example

alti- -> altimeter

bare-- -> barometer

water -> watermeter

gas -> gasmeter

gas -> gasometer

amp -> ammeter

penta_ -> pentameter

tri- -> trimeter

Transformation

[pfx -> n]

[pfx -> n]

[n-> n]

[n->n]

[n ->n]

[n -> n]

[pfx -> n]

[pfx -> n]

Table 13.7 The Suffix +meter and S o m e of its Variants

A total of 188 such suffix transforms were finally selected for inclusion in the dictionary

system, and these are listed in Appendix H. A list of each transform and its effect is in

Appendix I, while the transform associated with each suffix is given in Appendix J.

The transform appropriate to each suffix is stored along with the suffix and applied to a

word at the same time the suffix is applied. In addition, the transform is passed along

with the resulting root word in order for the meaning change to be taken into account

when the word is used. B y producing the transforms as a table of constant values, only

one extra byte of storage is needed for each suffix to incorporate the syntactic and

semantic information encoded by the transform. It can be seen that, even though the

dictionary entries in the dictionary so far provide only rudimentary semantic information,

the application of these suffix transforms provides considerable information about the

meaning of derived words.

13.2.2 Affix Transformation Storage

Because the scheme for efficient storage and fast access of dictionary entries proved so

successful, it was used again for the information required for prefix and suffix

13.19

transformation rules. To determine which affix rules result in a root word which is in the

dictionary, many transformations may need to be tested. Hence, high access speed is

essential. The number of items of information for affixes is far smaller than the number of

words in the dictionary, so the simpler two dimensional indexing scheme has proved to

be fast enough.

13.2.3 Affix Removal

The removal of affixes from a word presents a number of problems. When the original

parser, which only tried to find one correct parse, was in use, the process was relatively

simple. If a word was not found in the dictionary then successive attempts were made to

remove prefixes and suffixes in a predetermined order, until a word which was in the

dictionary was discovered. This word was passed on to the parser. If it represented the

part of speech which the parser was expecting, parsing would proceed, otherwise the

parse failed.

This process overlooked the fact that different numbers of prefixes and suffixes can be

removed from many words in a number of different orders, to produce a variety of words

which will have different syntactic and semantic values. Any one of these may be the one

which the parser requires in order to continue parsing. Altering the parser to allow it to

try each of these words was not a simple task. In addition, if more than one word was

acceptable, there was no way to determine which would lead to a correct parse when

combined with later words in the sentence.

Changing the parser to one which attempted all possible parses in parallel provided the

opportunity to also try every possible word and affix combination. O f course, this

increased the number of possible parses, with a corresponding possibility of much longer

time taken to find the correct parse or parses. However, in practice, many of the possible

13.20

words produce partial parses which quickly fail and can be abandoned. Given the speed

of dictionary access, and provided the parser is written efficiently, and run on a fast

processor, the extra work required is worth the guarantee that if a correct parse is

possible it will be found.

To facilitate the finding of all possible derivations of a word the routine which removes

affixes returns a data structure which has room for the original word, and for a large

number of derived words along with the prefix and suffix rules used to derive that word.

The structure, AlteredWordsRec, takes the form shown in Figure 13.8.

Type
AffixOrders = = (N, P,

SPP,

Altered Word Entry =

AlteredWordArray =

AlteredWordsRec =

S, PP, PS, SP, SS, PPS, PSP, PSS,
SPS, SSP, PPSS, PSSP, SPPS, SSPP);

=Record
NumPrefixes: Byte;
NumSuffixes: Byte;
Prefixl: StringlO;
Prefix2: StringlO;
Suffixl: StringlO;
Suffix2: StringlO;
SufTfml: SuffixTransforms;
SufTfm2: SuffixTransforms;
Altered Word: String30;
InDictionary: Boolean;
AffixOrder: AffixOrders

End;

= Array[1..MaxAltered Words] of Altered Word Entry;

: Record
UnalteredWord: String30;
NumAlteredWords: Byte;
NumlstPrefixes: Byte;
Num2ndPrefixes: Byte;
NumlstSuffixes: Byte;
Num2ndSuffixes: Byte;
LastEntryChecked: Byte;
Entries: AlteredWordArray

End;

Figure 13.8 Data Structure to Hold Altered W o r d s Information

13.21

The routine RemoveAffixes returns one of these structures containing all of the root

word derivations it was able to find for the complex word passed to it. For

developmental purposes a parameter is provided which indicates how many prefixes and

suffixes will be tried and in which order. A limit of two prefixes and two suffixes was

placed on any word, but this still allows for nineteen different orderings, as follows:

• No affixes

• One prefix (P)

• One suffix (S)

• T w o prefixes (PP)

• One prefix followed by one suffix (PS)

• One suffix followed by one prefix (SP)

. T w o suffixes (SS)

• T w o prefixes followed by one suffix (PPS)

• One prefix followed by one suffix followed by one prefix (PSP)

• One prefix followed by two suffixes (PSS)

• One suffix followed by two prefixes (SPP)

• One suffix followed by one prefix followed by one suffix (SPS)

• T w o suffixes followed by one prefix (SSP)

• T w o prefixes followed by two suffixes (PPSS)

• One prefix followed by one suffix followed by one prefix followed by one suffix

(PSPS)

• One prefix followed by two suffixes followed by one prefix (PSSP)

• One suffix followed by two prefixes followed by one suffix (SPPS)

• One suffix followed by one prefix followed by one suffix followed by one prefix

(SPSP)

• T w o suffixes followed by two prefixes (SSPP)

13.22

It is likely that trying all of these orderings might slow processing down too much, so

only one of these is passed to the affix processing routine. Each combination which

includes the same number of prefixes and suffixes should produce the same derivations.

However, the order in which they are tried will affect the number of false derivations

which must be looked for in the dictionary, and so greatly influence the speed of finding

the root words. Experience will enable a judgment to be made as to which orderings are

the most desirable.

By careful design of the affix processing routine, the number of times the dictionary

needs to be checked can be minimised. For example, if the ordering is to be PPS, the first

step is to check if the word is in the dictionary. If it is, the dictionary entry is returned. If

the word is not in the dictionary then an attempt is made to remove one prefix from the

word. This may generate a number of candidates, since one prefix may also be part of

another prefix. This can be seen in the case of the prefix abs, which begins with the

prefix ab. Either the root word might be prefixed by abs, or it could begin with s and

be prefixed by ab. Each candidate generated is placed in the data structure, along with

the prefix rule which was applied to it.

Looking the words up in the dictionary may reveal some possible roots, in which case the

InDictionary flag is set for these words. The candidates which were not found in the

dictionary cannot be discarded yet, as they may form the basis of a more complex

derivation. The second prefix is then removed from each of the successful and

unsuccessful candidates, forming more possible words, which are added to the data

structure. The dictionary check is repeated, and then the resulting words are similarly

tested for the presence of a suffix.

Once the two prefixes and the suffix have been removed, any words which were not

found in the dictionary may be discarded, and the remainder returned to the calling

program.

13.23

Ideally, if the affix rules and the dictionary entries are optimal, only one word will result

from this process, however, this is extremely unlikely. There may be no words, one

word, or a large number of words returned.

Clearly, using this approach causes words to be produced which are incorrect for the

particular sentence being parsed. The parser rejects any which are syntactically incorrect.

In line with the philosophy of generating all possible parses of the sentence, it is felt that

it is better to produce too many candidate words than to miss the one which will enable

parsing to succeed. If more than one correct sentence results, then other means using

semantic and/or pragmatic analysis, will have to be used to make the final choice.

Alternatively, all of the syntactically correct sentences might be accepted, perhaps with

different weight placed on their veracity. They may yield additional insight into resolving

ambiguities and deciding on the meaning of the text.

With a suitably fast processor, such as an Intel i486, the extra processing time appears to

be acceptable. The memory required for the word candidate data structures is more of a

problem, sometimes causing stack overflow with the present arrangement of passing

them as function parameters. This was overcome by placing the data in heap memory and

passing pointers to it.

13.3 Semantic Information Storage

The semantic information incorporated into the present dictionary is only rudimentary -

sufficient to provide a test bed for the development of ideas. Five avenues have been

provided for the storage of semantic information in the dictionary, three directly in the

dictionary entry, while the last two are indirect methods.

13.24

13.3.1 Auxiliary Verbs

Auxiliary verbs have inherent semantic information. Each such verb has a field labelled

form which can take the values be, can, do, have, may, must, shall and will.

13.3.2 Affix Transforms

The second method has already been described above: the incorporation of word

transforms for handling suffixes and prefixes. Many of these transforms specifically

include information about the meaning of the resulting word. The meaning of the word

can be deduced by combining the meaning of its root, obtained from the dictionary, with

the effect of the transform.

For example, the transformation

AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation

as well as transforming an adjective, noun, prefix or verb into either an adjective or a

noun, also shows that the meaning of the resulting word is that of a function, location or

relation, depending on the original word and the particular suffix removed. This

transform is illustrated by the +ary transformation shown in Table 13.8.

Some of the transforms have a very clear semantic interpretation. For example,

AdjAdvNounVerb_Noun_Proficiency

reduces the original word to a noun which describes the action at which the original

word indicated a degree of proficiency. As an example, application of the transform

13.25

+smanship to the word gamesmanship, as shown in Table 13.9, results in the noun

game, and the transform AdjAdvNounVerb_Noun_Proficiency shows that the original

noun indicates a proficiency in games.

Suffix

+ary

-e+ary

-eer+ary

-ant+ary

-ample+emplary

-our+orary

-ain+anary

-an+ary

-nial+ary

-ate+ary

Example

diction -> dictionary

prime -> primary

volunteer -> voluntary

militant -> military

example -> exemplary

honour -> honorary

grain -> granary

apian -> apiary

centennial -> centenary

arbitrate -> arbitrary

primate -> primary

actuate -> actuary

Transformation

[n -> adj.n]

[adj -> adj]

[n,v -> adj]

[adj -> adj.n]

[n •> adj]

[n -> adj]

[n->n]

[adj -> n]

[adj -> n]

[v -> adj]

[n -> adj] .

[v->n]

Table 13.8 Examples of the +ary Transformation

Suffix

+smanship

Example

game -> gamesmanship

Transformation

[n -> n]

Table 13.9 Example of the +smanship Transformation

Similarly,

NounPfxNounJVIeasuringlnstrument

clearly indicates that the original noun or prefix described an instrument for the

13.26

measuring of the particular quantity indicated by the root noun or word prefix. As an

example, consider the +meter suffix, shown in Table 13.10.

Suffix Example Transformation

+meter alti- -> altimeter [pfx -> n]
baro- -> barometer [pfx -> n]
water -> watermeter [n -> n]
gas -> gasmeter [n -> n]

+ometer gas -> gasometer [n -> n]
-p+C+meter amp -> ammeter [n -> n]

Table 13.10 Examples of the +meter Transformation

13.3.3 Meaning Field

The third method provides a specific meaning field for the dictionary entry. The range of

values which this field may take is the subject of a considerable research effort at present.

The significance of this field is described in Section 14.1 when canonical primitive acts

are discussed.

13.3.4 Inter-word Links

A link field with each entry is provided to cross-reference synonyms in the dictionary. If

such a link is encountered it can be assumed that whatever semantic information is

provided for the word in the link field can be used for the current word. This information

may take any of the other forms, including another link.

13.27

13.3.5 Semantic Reference Field

The fifth way in which semantic information has been incorporated into the dictionary is

via a semantic reference field which may be appended to each entry. This field consists of

an index into a separate file of semantic strings. These strings take the form of a textual

description of the meaning, or meanings, of the word. In this way detailed, and even

vague or ambiguous, descriptions can be accommodated. Such information might be

difficult to codify in any more precise form. It is left up to the application programmer to

decide what use might be made of such information.

13.4 Dictionary Files

13.4.1 Dictionary File Format

Figure 13.9 shows a sample of dictionary entries. A few of the entries have been given

tentative semantic descriptors.

The entries are contained in a text file, in the compact format shown in Figure 13.10,

which has the advantage of being only 5 3 % of the size of a crude text file while retaining

the convenience of being able to be edited with any text editor.

13.28

Features

tense:pres transitivity:trans,intrans

number:sing

tense:pres transitivity:trans,intrans
tense:pres transitivity:trans,intrans
number.sing
tense:pres transitivity:trans,intrans
kind:aux person:first number:sing form:be tense:pres moodrindic
number:sing mean:obj,phys,nonlive,nat,simp,gas

tense:pres transitivity:trans meamshow
number:sing
number:sing meamobj,abs,symb,letter

Figure 13.9 Dictionary entries

agree/verb/tns:pres/trans:trns,intrns/
agri/elt/
agro/elt/
ah/intrj/
ahead/advb/
ahem/intrj/
ahoy/in trj/
aid/noun/num:sing/
aid/verb/tns:pres/trans:trns,intrns/
ail/verb/tns:pres/trans:trns,intrns/
aim/noun/num:sing/
aim/verb/tns:pres/trans:trns,intrns/
ain't/verb/kind^ux/pers.-frst/num^ing/formibe/tnsipres/moodMndictv/
air/noun/num:sing/mean:obj,phys,nonlive,nat,simp,gas/
air/elt/
air/verb/tns:pres/trans:trns/mean:show/
aisle/noun/num.sing/
aitch/noun/num:sing/mean:obj,abs,symb,letter/

Figure 13.10 Dictionary entries in compact format

13.29

Word

agree
agri
agro
ah
ahead
ahem
ahoy

aid
aid
ail
aim
aim
ain't

air
air
air
aisle
aitch

Type

verb
element
element
interjection
adverb
interjection
interjection
noun
verb
verb
noun
verb
verb
noun
element
verb
noun
noun

13.4.2 Compiling the Dictionary

The dictionary is a large file, and it takes longer to load when the system is started than

might be desired. Consequently it was decided to compile the dictionary into an even

more compact format.

A compiler was written which reads the compact form of the dictionary, removes all of

the separators, and replaces each word type, feature type, and feature value with a

unique single character token. These tokens were chosen from those which would never

appear in a dictionary word entry to simplify the task of recognising them when the

compiled dictionary is read into memory during initialisation of the language

understanding system.

After compilation a 4009 entry dictionary, which in its expanded form occupied 174538

bytes, and in its compact form occupied 92851 bytes of disk space, was reduced to only

41721 bytes. This is a reduction to 2 4 % of its former expanded size, and to 4 5 % of the

compact form. The resulting file loads in considerably less time.

A complementary decompiler was written so that compiled dictionary files could be

expanded to their less compact form to facilitate editing and debugging. This also

provided a useful integrity check for the compiled dictionary. If a dictionary was

compiled and then decompiled, and the result was identical to the original, then it can be

said with some confidence that the compiled dictionary is a true representation of the

original, and that it also obeys the syntax rules of the dictionary format.

13.30

14. SEMANTIC ANALYSIS AND KNOWLEDGE

REPRESENTATION

In order to test a natural language understanding system in any realistic context it is

necessary to give consideration to the provision of some form of semantic analysis.

Semantic analysis is the subject of a great deal of the research effort in computational

linguistics at present. Only a rudimentary implementation of some form of meaning

analysis was provided for the purpose of testing the current system and defining future

research goals.

14.1 Canonical Primitives

14.1.1 Verbs

One of the forms of semantic information provided in the dictionary is the semantic field.

The system used is an adaptation of Yorick Wines' 'primitives' [WILK73] [WILK75] and

Roger Schank's canonical primitive acts [SCHA73][SCHA84][WILK72][WINS84].

These acts provide a concise way of describing the actions carried out by verbs.

Schank's primitives consisted of the following:

MOVE-BODY-PART H E A R

MOVE-OBJECT SMELL

EXPEL FEEL

INGEST MOVE-POSSESSION

PROPEL M O V E - C O N C E P T

SPEAK THINK-ABOUT

SEE CONCLUDE

14-1

They provide a basic set of meanings for verbs, and can describe acts in the physical,

perceptual, mental and social worlds.

The original idea for these primitives came from the developers of Basic English

[OGDE68]. They proposed that people could communicate effectively with a vocabulary

of only about 1000 words by relying on the verbs:

COME PUT

GET TAKE

GIVE HAVE

GO SAY

KEEP SEE

LET SEND

MAKE

It is likely that the verbs of English can be expressed by a surprisingly small number of

combinations of these and similar primitives. The definition of auxiliary verbs already

described is a similar concept to that of primitive acts.

14.1.2 Nouns and Adjectives

There is a need now to extend this set of primitives to include other types of words apart

from verbs. The child's game Animal, Vegetable and Mineral points toward a way of

incorporating nouns and adjectives into the scheme. Figure 14.1 shows the beginning of a

tree of descriptors for objects. This is similar in style to the type hierarchies described by

James Allen [ALLE87]. A combination of such descriptors is able to delineate the

meaning of many nouns and adjectives.

14-2

One of the difficulties associated with defining a set of semantic descriptors results from

the different world views by which people live their lives. For example, those who

believe that a human is merely a higher animal may prefer to rearrange the tree as per

Figure 14.2, but m y life experiences, coupled with the common language usage of the

largest proportion of earth's population compel m e to the choice of Figure 14.1. It must

be borne in mind in a field such as computational linguistics, it is language usage of the

target population, not just the world-view of an individual, which is of overriding

importance in any semantic choices that must be made. If the alternative semantic tree is

adopted then concepts relating to things of the spirit might most naturally be

incorporated into the Abstract-Object sub-tree. O f course, then the concept of the human

spirit may become difficult to accommodate, because a human being is clearly a

Concrete-Object.

Semantic-Object

Concrete-Object

Living

/l\
\

Non-Living

/ \
Animate Spiritual Vegetative Natural Artifact

/l\/\/l\ / \/l\
Human Spirit-Being

A / l \
Male Female

/l\/l\

Compound Simple

/ I X / I \
Solid Liquid Gas

Abstract-Object

^<^7
Number Time Concept

/iy\/i\

/ \ ^ > \

Symbol Location Quality

/i\/iy/| \
Relative Absolute Character Picture Shape Colour Texture

l\\ / W l \ /l\/l\/l\/l\
Period Date Time-Of-Day

/ I N / i \
Year Month Day

/l\/l\/l\

Figure 14.1 Semantic Descriptor Tree for Nouns and Adjectives

14-3

Semantic-Object

Concrete-Object

Living

A Animate Vegetative

/\/l\
Animal Human

/.y\
Male Female

/l\/i\

Non-Living

/ \

*»

Figure 14.2 Alternative Treatment for Concrete Objects

Such anomalies are bound to occur all through any attempt to classify the complexity of

reality in such a simple structure. For the present purposes of this project it was decided

to follow a pragmatic approach - whatever works is right.

14.2 Object Oriented Semantic Actions and Descriptors

The above figures, when compared with the object hierarchies for object oriented

programming libraries, provide the motivation for a compact and efficient approach to

implementing in a program the data structures and action code required for a specific

application using such semantic descriptors. This approach is to implement the

descriptors and actions as the data fields and methods of a hierarchy of program objects

in an object oriented language. The language chosen, for compatibility with the code

already developed for this project, was Turbo Pascal with Objects [BORL92].

14-4

More specifically, the noun and adjective descriptors become the data fields of an object

instance, while the actions carried out by the verbs are implemented as methods

(functions) in the object. The property of inheritance can be used to build a hierarchy of

such semantic objects in a library. The top of the tree, a Semantic-Object in Figure 14.1,

would contain descriptors and methods basic to all other semantic objects, and each

semantic object further down the tree would be based on alterations and additions to the

properties of its parent object. Figure 14.3 illustrates the top level of such a library.

When a sentence is parsed, a register structure is produced, and values placed in the

registers to describe the properties of the constituent parts of the sentence. The register

structure produced is identical to that used by Winograd [WIN083], and an example

taken from Winograd is shown in Figure 14.4. This illustrates the final register structure

for the sentence: "We have been given a firm deadline by the secretary".

In the present system the semantic objects are added to the register structure after

parsing is complete. It is an advantage to construct these objects as parsing proceeds, so

that the information can be made available to guide the disambiguation of sentences.

Once a set of semantic objects has been constructed from a sentence, it is a fairly simple

matter to carry out the indicated actions on the objects described. For testing purposes,

each object can be passed a message which causes it to describe itself. In this way a

simple and concise description of the meaning of the sentence can be quickly displayed.

14-5

Type
SemanticObject = Object

{ Descriptors (Data Fields) }
Name: NameString;
Position: Coordinate;

II II

II II

{Actions (Methods)}
Procedure DescribeObject;

n 11

n «i

Function IsConcrete: Boolean;
Function Is Abstract: Boolean;
Procedure MoveBodyPart(Part: SemanticObject; Distance: Number;

Direction: Vector);
Procedure MoveObject(Distance: Number; Direction: Vector);
Procedure Expel(ObjectToExpel: SemanticObject);

•i n

•i n

End;

ConcreteObject = SemanticObject
{Descriptors }

n 11

•• II

{ Actions }
Function IsLiving: Boolean;
Function IsNonLiving: Boolean;

II n

n n

End;

AbstractObject = SemanticObject
{Descriptors }
Value: AbstractValue;

•i II

II II

{Actions }
Function IsNumber: Boolean;
Function IsTime: Boolean;
Function IsConcept: Boolean;
Function IsSymbol: Boolean;
Function IsLocation: Boolean;
Function IsQuality: Boolean;

•• II

II •>

End;

if II

n II

Figure 14.3 Semantic Object Library Implementation

14-6

s We... secretary

Mood: Declarative
Voice: Passive

St bject: ,

Al xiiianes: ,

M« ain Verb: .

In direct Object: .

Di rect Object: # ,

1

NP 1 the secretary

Number: Singular
Person: Third

Detern

Head:

liner: .

Verb given

Form: Past-Part
Type: Non-Aux
Trans: Bitransitive

NP| we

Number: Plural
Person: First

Head:

NP 1 a firm deadline

Number: Singular
Person: Third

Detern

Descri

Head:

niner: ,

hers: ,

l

Determiner 1 the

Number: _.. ,
Plural

Noun 1 secretary

Number: Singular

Verb I have

Form: Present
Type: have
Trans: Transitive

Verb 1 been

Form: Past-Part
Type: Be
Trans: Transitive

Pronoun 1 we

Number: Plural
Person: First

Determiner 1 a

Number: Singular

Adjective 1 firm

Noun 1 deadline

Number: Singular

Figure 14.4 Register Structure for a Sample Sentence

For the purposes of controlling the SAR-10 system, the actions of the objects discovered

can include code to load the most appropriate vocabulary for the context in which those

objects normally operate.

14-7

The method chosen to augment such a structure with semantic information was to add a

field to each of the resulting constituents of the main sentence register. These added

fields contain the index number of a semantic object which defines the entity and the

actions which it can perform or which may be performed on it. The register structure for

the sample sentence, augmented by its semantic objects, can be seen in Figure 14.5.

S We... secretary

Mood: Declarative
Voice: Passive

Si

OL

hjent: .

lierit: Person

Al nmianes: ,

M<

01

lin Verh: .

jject: Transfer

In iirent Object: # ,

Object: Collection

Di rect Ohjertr ,

Object: Time

NP 1 the secretary

Number: Singular
Person: Third

Determiner: »

Head: .

'

Verb j given

Form: Past-Part
Type: Non-Aux
Trans: Bitransitive

N P | we

Number: Plural
Person: First

Hparl- ,

NP 1 a firm deadline

Number: Singular
Person: Third

Determiner: m

Describers: •

Head- . 1

Determiner 1 the

Number: f"*u}ar

Plural

Noun 1 secretary

Number: Singular

Verb 1 have

Form: Present
Type: have
Trans: Transitive

Verb 1 been

Form: Past-Part
Type: Be
Trans: Transitive

Pronoun 1 w e

Number: Plural
Person: First

Determiner J a

Number: Singular

i -... .. i
| AQjecuve | nrm j

Noun 1 deadline

Number: Singular

Figure 14.5 Register Structure Augmented by Semantic Objects

14-8

When the parser is being constructed, a list of names of the semantic objects is included

with the grammar. During generation of the parser, a lookup table indexed by the

numbers associated with the semantic object names, is constructed. Pointers to the actual

semantic objects are placed in the table. B y this means each register structure has access

to the semantic object which describes the entity represented by the register.

Each semantic object can point to further semantic objects. For example, the indirect

object of this sentence, we, is a Collection object. This will need to be further defined in

terms of what objects the collection consists of (Person), and the number of such objects

in the collection (IndefinitePluralNumber). Further information on the objects can also

be gleaned from the syntactic information stored in the register structure.

14-9

Part III

Conclusion

15. FINDINGS AND FUTURE DIRECTIONS

15.1 Summary of the Final Results

The results of this project take two forms. The first is the information and experience

gained in applying a relatively simple example of speech control and audio response

systems to the kind of tasks most computer users require, and in incorporating natural

language understanding capabilities into the system in an attempt to enhance its

performance and user friendliness. In particular, the use of voice control as an aid to

physically disabled users, or other users whose ability to use a keyboard is constrained by

environmental factors, has been investigated, and found to be beneficial to such a user.

On the other hand, little advantage was gained for able-bodied or physically

unconstrained users because of the tedious nature of such ways of working. Many ideas

for future work have been generated, and some of the pitfalls, and even dangers

particularly in the use of speech control with robots, identified.

The second outcome of the project is the production of a set of tools which allow for the

relatively easy incorporation of speech control and natural language understanding into

existing and new applications. These fall into two areas. The first area relates to speech

control:

• Utilities to control the SAR-10 Speech Control and Audio Output system,

• The VOICEDOS extensions to the D O S operating system to allow for voice control,

• The SARLIB library of speech control and audio output routines to use in new

application programs.

15-1

The second relates to natural language understanding:

• An efficient dictionary,

• A parallel parser for natural language applications,

• Improved techniques for using the L A L R compiler generator in context sensitive

applications,

• The beginning of a promising approach to the handling of semantic information using

object oriented techniques,

• Tools to facilitate the construction and testing of natural language understanding

systems.

A prototype system has been constructed, consisting of a general purpose computer with

the SAR-10 speech control and audio response system, a M I D I interface and music

synthesiser, and an interface to a Rhino robot. It is equipped with software for carrying

out general tasks such as word processing, spreadsheet calculations and database

operations, as well as more specialised music composition and performance programs

and a voice controlled programming environment. Some of this software consists of well

known commercial packages, while some is built specifically with speech control and

audio response in mind. In addition, this computer contains the growing computational

linguists toolkit, which allows experimentation and development work to be carried out

on voice control and natural language understanding, much of it under voice control.

Multi media equipment is currently being installed in the system. Testing with disabled

users is in its very early stages yet, but the author has gained considerable experience and

insight using it, which should assist its application to this more specialised area.

15-2

15.2 Future Enhancements

There are several areas in which this system can be improved. The most obvious is to

replace the SAR-10 isolated phrase recognition system with a continuous speech

recognition system. This would provide a more natural voice command system, and

would greatly improve the performance of the system in applications requiring a large

amount of text entry. It is envisaged that this will be possible in the near future, as such

systems are just beginning to become available at reasonable cost to microcomputer

users.

The relatively new field of neural networks, with its promise of adaptable pattern

recognition, shows promise for speech recognition, either by using networks simulated in

software, or by producing neural network chips dedicated to the task.

The recent explosion of interest in multimedia computing has made available high

performance and low cost audio input and output hardware in the form of sound cards,

such as the Sound Blaster 16 ASP, made by Creative Labs. Software for speech

recognition using these cards, such as Voice Assist, is available for use in Windows 3.1

systems. Development of a system based on these would overcome the limitations of the

present system based on the SAR-10.

An attractive approach to attacking the task of continuous speech recognition would be

to use a highly parallel system comprising processing paths which simultaneously perform

acoustic, syntactic and semantic analysis, and at all times sharing and correcting the

knowledge obtained at each stage. Modern digital signal processing and floating point

transputers might make a low cost continuous speech recogniser based on this model

feasible. The available parallelism could be used to process the incoming speech

simultaneously through a large number of identical analysers, all in parallel but separated

15-3

slightly in time. Cross correlation of the extracted speech parameters while the analysis

proceeds might provide sufficient information to allow identification of individual words

in a continuous speech stream.

The entire source code for the system is presently being translated into an object oriented

language - Borland Pascal with Objects [BORL92b], enabling each component of the

system to become an object in a class library, similar to that used for the semantic objects

(see Chapter 14). This translation is being carried out with the aid of L A L R , for which a

Turbo Pascal with Objects template is being produced.

In parallel with the production of an object oriented version is its transformation into a

Windows 3.1 application. This will allow for a far more powerful user interface, but

requires the SARLIB library to become a Dynamic Link Library (DLL) and a Windows

device driver to be constructed for the SAR-10 to replace the V O I C E D O S driver. Once

this is done it will be a relatively simple matter to incorporate speech control and a

natural language interface into Windows applications.

VOICEDOS may be enhanced by incorporating some of the frequently used utilities, such

as a calculator, calendar, editor or notepad, m o d e m controller and file transfer facility,

particularly as it is unlikely that standard utilities will be optimised for use with a speech

control system. Incorporating these into V O I C E D O S would make use of the system

easier, especially for a disabled user.

The performance of the dictionary may be improved, particularly in the processing of

affixes. Little effort has been put into optimisation of the order of application of the affix

rules, but it is believed that some improvement in processing speed could be gained if this

were done.

15-4

The design of suitable prefix rules presents little difficulty. They are simply appended to

existing words and so can be as easily removed. However, there may be a case for more

complex prefix rules. For example, at is equivalent to ad before a t, as in: attend ->

(at) tend. This could be expressed as the rule +at?t, meaning add at if next letter is t.

It would be removed by checking if the first three letters are att and if so removing the

at.

A possible aid to the process of filtering out incorrect words produced by the application

of suffix rules would be to make a reject table of words generated by the rules which are

wrong, for example ad from adding via the rule +C+ing. The overheads involved in

this would mean it would be best to restrict its use to overcoming intractable cases

involving important words, and then only if the problem cannot be resolved by reordering

the rule applications or rearranging the partitioning of the rules.

Although the parallel parser was implemented on a single processor machine, its design

lends itself naturally to implementation on a parallel processor. As the desirability of

using such technology for natural language understanding systems has already been

mentioned, this only reinforces the idea that such a concept should be explored. If

enough processors were available, it would be a natural approach to use hierachical

processor allocation, i.e. allocate a processor to each partial parse as it commences,

releasing the processors for reuse when any of these parses fails. A single processor

could be used to control the scanning of the input, the allocation of resources during

parsing, and the presentation of the resulting parses to the next stage of processing.

Parsing based on parallel processors would provide a natural complement to the parallel

speech analysis system described above

15-5

15.3 Construction of Natural Language Programming Tools

The system as described so far in effect forms a set of relatively independent resources

which could be used to add speech control and/or natural language understanding

capabilities to almost any application program. In order to test the feasibility of using the

various components of this system in an integrated form, a suitable application was

needed.

As the author's major interest in applying these techniques is in the development of more

powerful natural language interfaces, the next logical step is to construct a speech

control and natural language programming toolkit and testbench. Such a system forms

the next stage in this research project. It might best be described as a computational

linguist's assistant.

The facilities provided by the toolkit and workbench will include:

• speech analysis,

• speech control and audio response vocabulary production and testing,

• dictionary construction and testing,

• natural language scanner and parser construction and testing.

It will run in Windows 3.1 and be controlled as far as possible using speech input and

output. Graphical displays of speech waveforms, parse trees and semantic trees will be

provided. Device drivers for various speech input, output and control devices will be

included, with the ability to add drivers for new hardware as it becomes available.

A parser generator similar to LALR, but adapted to handle context sensitive grammars

with embedded semantic descriptors and produce an object oriented scanner and parallel

parser capable of accessing semantic information as it carries out syntax analysis, is being

developed and will be incorporated in the toolkit. This parser generator will be able to

15-6

take, as input, a grammar containing syntactic augmentations, semantic descriptors and

semantic object references in a more convenient form than that adopted at present.

In addition, as mentioned in Chapter 11, a recursive descent parser generator might be

provided, based on the use of user supplied skeleton code which will be filled out from

an augmented grammar, similar to the way the LALR(l) generator works. The

readability of the code of such a parser is useful for teaching purposes.

A feature of multimedia computer systems is the CD-ROM drive. This makes available

excellent voice analysis software tools, and also extensive dictionaries which may assist

in the production of natural language systems. The next step in this project will be to

construct a machine readable dictionary, based on the Complete Oxford Dictionary on

C D - R O M . This dictionary package has tools which enable the user to extract information

in various forms. Using the existing natural language system to interpret this information,

and the dictionary building tools already produced, it is felt that a more complex machine

readable dictionary than the present one can be produced. The existing system will, in

effect, bootstrap the next generation system.

15.4 Conclusions

This work has demonstrated that development of voice controlled aids to assist a

disabled person to use a computer, and hence any equipment which can be controlled by

that computer, is feasible. Only limited usability is available with present low cost speech

recognition systems, but as continuous speech recognition becomes available this

situation will improve.

15-7

There are dangers inherent in applying speech control to moving mechanical devices such

as robot arms if those devices are to operate in close proximity to a handicapped user,

and in such a way that safe operation depends on accurate response to the user's voice

commands.

The reliability and ease of use of speech recognition systems is enhanced by the provision

of suitable training, optimising and operating utilities, especially if these are also capable

of being used under speech control.

The provision of operating system extensions and a library of routines designed to

interface with the speech recognition system makes it possible to incorporate voice

control and audio response into both existing and new application software.

The efficient and convenient use of low cost speech recognition systems can be enhanced

considerably by using natural language understanding techniques to free the user from

some of the constraints imposed by the language requirements of the speech interface.

Unconventional use of tools and techniques designed primarily for development of

context-free computer language parsers makes possible their use for the production of

context-sensitive natural language parsers, and provides a basis from which grammars

and parser generators specifically designed for natural languages may be produced.

The success of the music performance and composition system described in Chapter 5

adequately demonstrates some of the possibilities voice control of suitable software can

provide to a disabled user - possibilities perhaps unachievable in any other way. The

potential of such a system opens up a large number of employment and enjoyment

opportunities to a disabled person. In addition to music composition, such areas as film,

video and audio production and editing, using modern largely automatic equipment, could

be considered.

15-8

BIBLIOGRAPHY

[ATNS76] Ainsworth, W.A., "Mechanisms of Speech Recognition", Pergamon Press

1976.

[AH077] Aho, Alfred V. and Ullman, Jeffrey D., "Principles of Compiler Design",

Addison-Wesley 1977.

[ALLE87] Allen, James, "Natural Language Parsing", Benjamin/Cummings 1987.

[ANGE86] Angermeyer, John and Jaeger, Kevin, "MS-DOS Developer's Guide",

Howard W . Sams 1986.

[BEES86] Beesley, K. R. (1986), "Machine Assisted Translation with a Human Face",

Data-processing, vol 28 no 5 June 1986.

[BIBL76] The Bible Societies, "Good News Bible: Today's English Version", The Bible

Societies/Collins/Fontana 1976.

[BIER83] Biermann, A.; Rodman, R.; Ballard, B.; Betancourt, T.; Bilbro, G.; Deas, H;

Fineman, L.; Fink, P.; Gilbert, K.; Gregory, D. and Heidlage, F., "Interactive Natural

Language Problem Solving: A Pragmatic Approach", in Proceedings of the Conference

on Applied Natural Language Processing, ACL, Santa Monica, California 1983.

[BORL85] Borland International, "Superkey Macro Processor, Version 1.03A",

Borland International, Scotts Valley, California 1985.

[BORL88a] Borland International, "Turbo C, Version 2.0", Borland International, Scotts

Valley, California 1988.

Bibliography-1

[BORL88b] Borland International, "Turbo Pascal, Version 5.0", Borland International,

Scotts Valley, California 1988.

[BORL92a] Borland International, "Borland C++, Version 3.1: User's Guide", Borland

International, Scotts Valley, California 1992.

[BORL92b] Borland International, "Turbo Pascal with Objects, Version 7.0: User's

Guide", Borland International, Scotts Valley, California 1992.

[BROD92] Brodtkorb, Jo; TanGaard, Karsten and Blix, Brynjulf, "Musicator GS for

Windows: Owner's Guide", Musicator A/S, Oslo, Norway 1992.

[BROW82] Brown, E.K. and Miller, J.E., "Syntax: Generative Grammar", Hutchinson

1982.

[BUTL85] Butler, Christopher S., "Systemic Linguistics: Theory and Applications",

Batsford Academic and Educational 1985.

[CARL86] Carlson, A. Bruce, "Communication systems: an introduction to signals and

noise in electrical communication", 3ed., p452, McGraw-Hill Book Co, Singapore 1986.

[CATE82] Cater, Arthur William Sebright, "Request Based Parsing with Low Level

Syntactic Recognition", in Sparck Jones and Wilks 1983.

[CHOM56] Chomsky, Noam, "Three Models for the Description of Language", IRE

Trans, on Information Theory 2:3, pp 113-124 1956.

[CHOM57] Chomsky, Noam, "Syntactic Structures", Mouton, The Hague 1957.

Bibliography-2

[CHOM59] Chomsky, Noam, "On Certain Formal Properties of Grammars",

Information and Control 2:2, 137-167 1959.

[CHOM65] Chomsky, Noam, "Aspects of the Theory of Syntax", MIT Press 1965.

[DALE48] Dale, E. and Chale, J.S., "A Formula for Predicting Readability:

Instructions", in Education Research Bulletin, February 18, 1948.

[DERE69] DeRemer, F.L., "Practical Translators for LR(k) Languages", PhD

dissertation, MIT, Cambridge, Mass 1969.

[DEFU89] DeFuria, Steve and Scacciaferro, Joe, "The MIDI Programmer's Handbook",

M&T Publishing Inc., Redwood City, California 1989.

[DERE71] DeRemer, F.L., "Simple LR(k) Grammars", Comm. ACM 14:7, 453-460

1971.

[DOW86] Dow, Malcolm J. and Stevens, Mark, "Adaptive Audio Noise Cancelling

Unit", Footscray Institute of Technology, Department of Electrical and Electronic

Engineering, unpublished project report, Footscray 1986.

[DOW87a] Dow, Malcolm J. and na Ranong, Chula, "An Interrupt Driven Memory

Resident Control Program for a General Purpose Speech Recognition System",

Conference on Computing Systems and Information Technology, The Institution of

Engineers, Australia, Brisbane 1987.

[DOW87b] Dow, Malcolm J. and na Ranong, Chula, "Natural Language Interface for a

Disabled Person's Aid" in Proceedings of the Australian Colleges of Advanced

Bibliography-3

Education 18th Annual Computer Conference, South Australian Institute of Technology,

Adelaide 1987.

[DOW94a] Dow, Malcolm J., "SARLIB: A Library of SAR-10 Speech Recognition and

Audio Response Interface Routines", Technical Report 1, Computer Application

Software and Hardware Group, Department of Electrical and Electronic Engineering,

Victoria University of Technology, Footscray, Victoria 1994.

[DOW94b] Dow, Malcolm J., "A Machine Readable Dictionary for Natural Language

Understanding Systems", Technical Report 2, Computer Application Software and

Hardware Group, Department of Electrical and Electronic Engineering, Victoria

University of Technology, Footscray, Victoria 1994.

[DOW94c] Dow, Malcolm J., "Affix Transforms for a Machine Readable Dictionary for

Natural Language Understanding Systems", Technical Report 3, Computer Application

Software and Hardware Group, Department of Electrical and Electronic Engineering,

Victoria University of Technology, Footscray, Victoria 1994.

[EARL70] Earley, J., "An Efficient Context Free Parsing Algorithm", Communications

of the ACM, August 1970.

[FLAN80] Flanagan, J.L, Levinson, S.E., Rabiner, L.R. and Rosenberg, A.E.,

"Techniques for Expanding the Capabilities of Practical Speech Recognizers", in Trends

in Speech Recognition, ed. Lea W.A., Prentice-Hall, 1980.

[FOWL70] Fowler, H.W. and Fowler, F.G. (eds), "The Concise Oxford Dictionary",

Book Club Associates/Oxford University press, Oxford 1970.

Bibliography-4

[GAZD85] Gazdar, Gerald; Klein, Ewan; Pullum, Geoffrey and Sag, Ivan, "Generalised

Phrase Structure Grammar", Basil Blackwell 1985.

[GOOD84] Goodall, R.; Harrang, J. and Lindsey, D., "Perfect Writer with Perfect

Speller and Perfect Thesaurus", Perfect Software Inc. 1984.

[GRIS86] Grishman, Ralph, "Computational Linguistics: An Introduction", ACL Studies

in Natural Language Processing, Cambridge University Press 1986.

[GUEN78] Guenthner, F. and Guenthner-Reutter, M. (eds.), "Meaning and Translation:

Philosophic and Linguistic Approaches", Duckworth 1978.

[HEND77a] Hendrix, Gary Grant, "The LIFER Manual: A Guide to Building Practical

Natural Language Interfaces", Technical Note 138, Artificial Intelligence Centre, SRI

International, February 1977.

[HEND77b] Hendrix, Gary Grant, "Human Engineering for Applied Natural Language

Research", Proceedings of the 5th International Conference on Artificial Intelligence,

Cambridge, MA, August 1977.

[HIRS87] Hirst, Graeme, "Semantic Interpretation and the Resolution of Ambiguity",

ACL Studies in Natural Language Processing, Cambridge University Press 1987.

[HOEY83] Hoey, Michael, "On the Surface of Discourse", George Allen and Unwin

1983.

[HOPC79] Hopcroft, J. and Ullman, J., "Introduction to Automata Theory, Languages,

and Computation", Addison-Wesley 1979.

Bibliography-5

[HUDS84] Hudson, Richard, "Word Grammar", Basil Blackwell 1984.

[JOHN75] Johnson, S.C, "YACC - Yet Another Compiler Compiler", CSTR 32, Bell

Laboratories, Murray Hill, NJ 1975.

[KTNG83] King, Margaret (ed.), "Parsing Natural Language", Academic Press 1983.

[KNUT65] Knuth, D.E., "On the Translation of Languages from Left to Right",

Information and Control 8:6, 607-639 1965.

[LEA80] Lea, W.A., "Speech Recognition: Past, Present, and Future", in Trends in

Speech Recognition, ed. Lea W.A., Prentice-Hall, 1980.

[LEEC81] Leech, Geoffrey N., "Semantics: The Study of Meaning", Penguin 1981.

[LEEC87] Leech, Geoffrey N., "Meaning and the English Verb", 2 ed., Longman 1987.

[LESK75] Lesk, M.E., "LEX - a Lexical Analyzer Generator", CSTR 39, Bel

Laboratories, Murray Hill, NJ 1975.

[MACQ81] Delbridge, A. (ed.) etal., "The Macquarie Dictionary", Macquarie Library

1981.

[MALL44] Mallery, Richard D., "Grammar, Rhetoric and Composition for Home

Study", Barnes & Noble 1944.

[MANN87] Mann, Paul, "LALR, an LALR(l) Parser Generator", LALR Research,

Burnt Mill, Tustin CA, 1987.

Bibliography-6

[MARK93] Markowitz, Judith, "The power of speech", in Al Expert, Vol 8, No 1, pp29-

33, January 1993

[MART76] Martin, T.B., "Practical Applications of Voice Input to Machines", Proc.

IEEE, Vol. 64, No. 4, pp 487-501, April 1976.

[MELL85] Mellish, C.S., "Computer Interpretation of Natural Language Descriptions",

Ellis Horwood 1985.

[MEYE88] Meyer, Bertrand, "Object-oriented Software Construction", Prentice Hall

1988.

MICR87] Micropro International, "Wordstar Professional Release 4.0", Micropro

International Corporation, 1987.

[MICR83] Microsoft Corporation, "MS-DOS Programmer's Reference", 1983.

[MILL82] Mills, Helen, "Connecting and Combining in Sentence and Paragraph

Writing", Scott Foresman and Company 1982.

[MOOR82] Moore, Terence and Christine Carling, "Understanding Language: Towards

a Post-Chomsky an Linguistics", Macmillan 1982.

[MOYN85] Moyne, John A., "Understanding Language: Man or Machine", Plenum

Press 1985.

[MYER76] Myers, Patricia I. and Hammill, Donald D., "Methods for Learning

Disorders", John Wiley and Sons 1976.

Bibliography-7

[NARA86a] na Ranong, C. and Dow, M.J., "A Voice Controlled Robot", Robots in

Australia's Future Conference, Perth, Western Australia 1986.

[NARA86b] na Ranong, C, "A Robot Control Program", FIT Centre for Automation

Technology Internal Report, Footscray Institute of Technology, Department of Electrical

and Electronic Engineering, Footscray, Victoria 1986.

[NAUR63] Naur, P. (ed), "Revised Report on the Algorithmic Language ALGOL 60",

Comm.ACM6:l, 1-17 1963.

[NEC85] NEC, "Sar-10 Speech and Audio Response Unit, User's Manual". NEC

Corporation 1985.

[OGDE68] Ogden, C.K., "Basic English. International Second Language", Harcourt,

Brace and World, N e w York 1968.

[PARK78] Parker-Rhodes, A.F., "Inferential Semantics", Humanities Press 1978.

[PERR86] Perrault, C.R. & Grosz, B.J., "Natural Language Interfaces", in Annual

review of computer science 1, 47-82, 1986.

[PGMU91] PG Music Inc., "Band-in-a-Box, IBM Version 5: User's Manual", PG Music

Inc., Buffalo, N e w York 1991.

[RHJN82] "Hands On Introduction to Robotics, the Manual for the XR-1", Rhino

Robots Inc., Champaign, Illinois 1982.

[RIES75] Riesbeck, Christopher K, "Conceptual Analysis", in Schank 1975.

Bibliography-8

[RIES78] Riesbeck, Christopher K. and Schank, Roger C , "Comprehension by

Computer: Expectation-based Analysis of Sentences in Context", in Levelt, Willem J.M.

and Flores D'Arcais, Giovanni (eds.), Research Report 78, Department of Computer

Science, Yale University, October 1976.

[ROBI79] Robins, R.H., "A short history of linguistics", Longman, London 1979.

[ROBI80] Robins, R.H., "General linguistics: an introductory survey", Longman,

London 1980.

[ROLA92] Roland Corporation, "Roland JV-30 16 Part Multi Timbral Synthesiser

Owner's Manual", Roland Corporation, Osaka, Japan 1992.

[RUBI86] Rubin, Paul, "Bison Documentation", Free Software Foundation, 1986.

[SAGE81] Sager, N., "Natural Language Information Processing", Addison-Wesley,

Reading, M A 1981.

[SCHA73] Schank, Roger C. and Colby, Kenneth (eds.), "Computer Models of Thought

and Language", W . H. Freeman, San Francisco, C A 1973.

[SCHA75] Schank, Roger C. (ed.), "Conceptual Information Processing", Fundamental

Studies in Computer Science 3, North Holland, Amsterdam 1975.

[SCHA84] Schank, Roger C. and Childers, Peter G., "The Cognitive Computer: On

Language, Learning and Artificial Intelligence", Addison-Wesley, Reading,

Massachusetts 1984.

Bibliography-9

[SILB88] Silberschatz, Abraham and James L. Peterson, "Operating System Concepts",

Addison-Wesley 1988.

[SLOC85] Slocum, J., "A Survey of Machine Translation", in Computational Linguistics

11, 1, 1-17, 1985.

[SMIT80] Smith A.R. and Sambur MR., "Hypothesizing and Verifying Words for

Speech Recognition", in Trends in Speech Recognition, ed. Lea, W.A., Prentice-Hall,

1980.

[SNEL79] Snell, Barbara M., ed., "Translating and the Computer", North Holland,

Amsterdam 1979.

[SOFT85] Software Channels Inc., "Alice: the Personal Pascal", Software Channels Inc.,

Kingswood, Texas 1985.

[SPAR83] Spark Jones, Karen and Wilks, Yorick Alexander (eds.), "Automatic Natural

Language Parsing", Ellis Horwood/John Wiley, Chichester 1983.

[STOC77] Stockwell, Robert P., "Foundations of Syntactic Theory", Prentice-Hall 1977.

[THOM85] Thompson, Beverly and Thompson, William, "MicroExpert", McGraw-Hill,

New York 1985.

[TOMI87] Tomita, Masaru, "An Efficient Augmented-Context-Free Parsing Algorithm",

in Computational Linguistics, Vol. 13 Nos. 1-2 January-June 1987.

Bibliography-10

[TRAC92] Tracy, Tom; Boggia, Jim; Kuldell, Suzanne; McCutcheon, Bill; Senior, John

0. and Whipple, Bill, "ENSONIQ KS-32 Weighted Action MIDI Studio Musician's

Manual, Version 1.0", ENSONIQ Corp, Malvern, Pennsylvania 1992.

[VANR86] van Riemsdijk, Henk and Williams, Edwin, "Introduction to the Theory of

Grammar", The MIT Press 1986.

[WADE84] Wade, Howard H., "Perfect Calc", Perfect Software Inc./Thorn EMI, Costa

Mesa, California 1984.

[WALK87] Walker, Adrian; McCord, Michael; Sowa, John F. and Wilson, Walter G.,

"Knowledge Systems and PROLOG", Addison-Wesley 1987.

[WEAV49] Weaver, Warren, "Translation", in Machine Translation of Languages, W.

Locke & A.D. Booth (eds.), Technology Press of M.I.T. & Wiley and Sons, N e w York

1949.

[WELK72] Wilks, Yorick and Charniak, Eugene, "Grammar, Meaning, and the Machine

Analysis of Language", Routledge and Kegan Paul, London 1972.

[WILK73] Wilks, Yorick, "The Stanford Machine Translation Project", in Natural

Language Processing, Rustin, R. (ed.), Algorithmics Press, New York 1973.

[WILK75] Wilks, Yorick, "Preference Semantics", in Formal Semantics of Natural

Language, Keenan, E. (ed), Cambridge University press, Cambridge 1975.

[WIN072] Winograd, Terry, "Understanding Natural Language", Edinburgh University

Press, Edinburgh 1972.

Bibliography-11

[WIN083] Winograd, Terry, "Language as a Cognitive Process, Volume 1: Syntax",

Addison-Wesley 1983.

[WINS84] Winston, Patrick Henry, "Artificial Intelligence", 2ed., Addison-Wesley,

Reading, Massachusetts 1984.

[WINS92] Winston, Patrick Henry, "Artificial Intelligence", 3ed., Addison-Wesley,

Reading, Massachusetts 1992.

[WINT82] Winter, Eugene O., "Towards a Contextual Grammar of English", George

Allen and Unwin 1982.

[WOOD73] Woods, W.A., "An Experimental Parsing System for Transition Network

Grammars", in Rustin, R. (ed.), Natural Language Processing, Algorithmics Press, New

York 1973.

Bibliography-12

Appendices

Appendix A: Parts of Speech for English

Main Reference: Mallery, Richard D., "Grammar, rhetoric and composition for home
study", Barnes & Noble 1944. [MALL44]

Noun

Classes: common, proper

Groups: abstract, concrete, collective

Properties:
gender:

masculine, feminine, neuter, common
person:

first, second, third
number:

singular, plural

A regular noun forms its plural by adding s to the singular form.
Nouns ending in ch, s, sh, x or z add es.
Some nouns ending in o add es, e.g. hero -> heroes.
Some nouns ending in o add s, e.g. studio -> studios.
Nouns ending in/or/e change/to v and add es.
Nouns ending in y preceded by a consonant or qu change y to / and add
es.

Nouns ending in^ preceded by a vowel add s.

An irregular noun forms its plural by retaining the older plural form of
en or ren, e.g. child -> children, ox -> oxen, or by a vowel change,
e.g. man -> men, foot -> feet.

A few nouns are unchanged in the plural, e.g. sheep, swine, trout, deer.

Some nouns have two plural forms, one regular, one irregular,
e.g. brother -> brothers or brethren, fish -> fishes or fish.

Some nouns are plural in form and singular in meaning, e.g. mathematics,
politics, news.

A noun plural in form may, if used collectively, be treated as singular,
e.g. "Tenyears is a long time."

Most compound nouns form the plural by adding s to the end of the last

word, e.g. high school -> high schools.

If the first member is more important, s may be added to this member,
e.g. father-in-law -> fathers-in-law.

A-1

case:
nominative: denotes the person or thing acting.

possesive: denotes the person or thing posse sing.

objective: denotes the person or thing acted upon.

The possessive case involves a change in the form of the noun.
If the noun is singular apostrophe .s is added.
If the noun is plural an apostrophe is added after the s.
Plural nouns not ending in s, add 's.

Compound nouns, add 's, e.g. sister-in-law -> sister-in- law's.
If the singular ends in s and the word is short, add 's, e.g. Keats's poems.
If the singular ends in an s-sound and the following word begins with an s-
sound, the apostrophe only is added.

English idioms sometimes require a double possessive, e.g. that book of
George's.

Pronoun

Used in place of a noun, to avoid repetition of the noun to which it refers.

Classes of pronoun:

personal:
Stand directly for names of persons, places or things. E.g. I, you, he, she,
it, we, they.

Compound forms are made by adding self, e.g. himself, myself. These are
called reflexive if they are in the predicate of the sentence and refer back
to the subject. E.g. "He injured himself last week".

These are called intensive if they reinforce or give emphasis to another
word in the same part of the sentence. E.g. "The governor himself will be
at the meeting".

relative:
Refer to antecedents and, at the same time, introduce independent clauses.

E.g. who, what, that, which.

Compound relative pronouns are formed by adding ever or soever. E.g.
whoever, whatever, whatsoever, whichever.

interrogative:
Used in asking questions. E.g. who, which, what.

Direct questions: E.g. "Just what do you mean by that?" "Which will you

have?"

A-2

Indirect questions (no question mark): E.g. "I want to know what you
mean by that".

demonstrative:

Point definitely to persons or things to which they refer. E.g. this, that,
these, those. E.g. "This is my plan".

indefinite:
Point out persons or things, but less definitely than demonstratives. E.g.
all, any, anybody, anyone, anything, each, either, everybody, everything,
few, neither, nobody, none, one, several, some. E.g. "Some stayed away
from the meeting".

Properties of pronouns:

person:
first person E.g. /, we
second person E.g. you
third person E.g. he, she, it, they

gender:
Personal pronouns in the third person vary in form to show gender

change.
He is masculine, she is feminine, it is neuter.

number:
singular or plural depending on the number of the antecedent.
E.g. singular: I will work now. plural: We will work now.
singular: You will work now. plural: You will work now.

demonstrative:
plural: these, those.

Indefinite pronouns:
singular: one, someone, each.
plural: few, all, many.

Interrogative and relative pronouns don't change form to indicate a

change in number.

case:
Personal pronouns and a few relative pronouns show change in case by a

change in form.

A-3

Nominative case:

Singular Plural

First person

Second person
Third person

Possessive case:

First person

Second person
Third person

Objective case:

First person
Second person
Third person

you
he, she, it

Singular

m y (mine)
your (yours)
his, her (hers), its

Singular

me
you
him, her, it

we
you
they

Plural

our (ours)
your (yours)
their (theirs)

Plural

us
you
them

Relative pronouns:

Nominative case:

Possessive case:
Objective case:

who, that, which
whose
whom, that, which

Verb

Verbs say or assert something about a person, place or thing.
They may make a statement, ask a question, or give a command.
They may express action, occurence, or mode of being.

Kinds of verbs:

• Verbs are either transitive or intransitive.

Transitive
Require an object.
E.g. Mrs. Jones bakes wonderful pies.

Intransitive:
Don't require an object.
E.g. She walks rather rapidly.

A-4

Some verbs can be both transitive and intransitive. E.g.
The woman ran a bazaar at the fair, (transitive)
The horse ran away, (intransitive)

• Verbs are either principal verbs or auxiliary verbs.

Principal:
Complete in themselves.

Auxiliary:

Joined to the principal verb to express the idea of the principal verb more
fully.

E.g. She speaks, {speaks = principal verb) She will speak, (will = auxiliary
verb)

Most common auxiliary verbs: be, can, do, have, may, must, ought,
should, shall, will, would.

• Verbs are either regular or irregular.

Regular:

Forms past tense and past participle by adding d or ed to the present tense
(or simple form of the verb).

Irregular:
Forms past tense and past participle by some internal change in the word.
All auxiliary verbs are irregular.

Present Past Past participle

Regular
Irregular
Irregular

permit

am
do

permittee

was
did

I permitted
been
done

Properties of verbs:

Voice:
Active:

The subject of the verb performs the action.
E.g. He gave me the money.

Passive:
The subject of the verb is acted upon.
E.g. The money was given to me.

Mood:
Manner in which the state of being or action of the verb is regarded.

A-5

Indicative:
States a fact or asks a question.
E.g. We are uneasy about it. (are = verb)

Are we uneasy about it? They say that we are uneasy about it.
(say, are = verbs)

We are not uneasy about it. (are = verb)

Subjunctive:

Suggests that something is uncertain, imagined, desirable,
undesirable, or contrary to fact.

Generally found in a dependent clause, introduced by a
conjunction such as if though, lest, that, till, or unless.

E.g. If I were you, I should not worry, (were = verb)
It is essential that you be on the alert, (be = verb)

Imperative:

Expresses a request or a command. The subject is usually omitted.

E.g. Introduce me to your friend, (introduce = verb)
Do not slam the door, (do slam = verb)

Tense:

The time of the action indicated.

Present: E.g. She is home.

Past: Eg She was at home yesterday.

Future: E.g She will be at home all next week.

If the action is thought of as completed (perfected) we say the tense is
perfect:

Present-perfect: (or Perfect)
E.g. She has been on her vacation.

Past-perfect: E.g. She had been on her vacation when I saw her
last week.

Future-perfect: E.g. She will have been on her vacation by the

time I see her next.

Person:
A verb must agree with its subject in person.
A verb is said to be in the first, second, or third person depending upon
whether it shows that the action is that of the speaker, the person spoken

to, or the person spoken of.

A-6

Number:
A verb is said to be either singular or plural if the action or state expressed
is that of one person or thing, or that of more than one.

Singular Plural

First person / buy we buy
Second person you buy you buy
Third person he buys they buy

Most English verbs have the same form for all persons except for third
person singular.

Finite & infinite verbs:

Finite verbs:

Possess the properties of voice, mood, tense, person, and number.

Infinite verb-forms:
Infinitive,- participle, and gerund - are not limited as to number, person,
and mood.

Infinitive:
Has properties of both a noun and a verb.
E.g. To see her is to love her. (to see, to love = infinitives)

The word to (originally a preposition) is called the sign of the infinitive. It
sometimes is omitted, usually when an auxiliary verb is used.
E.g. Make him stop, (stop = infinitive)

The infinitive is used in various ways:
As subject: To win is his main desire.
As object: They wanted to linger.
As adjective: This is a point to be noted, (to be noted = inf.)
As adverb: We went yesterday to see him. (to see him = inf.)

Participle:
A "verbal adjective".

The present participle of regular verbs is formed by adding ing to the stem or

root of the verb.

The past participle of regular verbs has the same form as the past indicative.
The past perfect participle consists of the past participle preceded by the word
having.

A-7

Present Past Past Perfect
Stem Participle Participle Participle

look looking looked having looked

measure measuring measured having measured

The participle may be used:

as an adjective to modify a noun:
E.g. Barking dogs seldom bite.
The threatening letter alarmed him.

as a verb-form taking an object:
E.g. Giving him the message, I left at once.

as a verb-form modified by an adverb:
E.g. Muttering incoherently, the old man walked away.

Gerund:
a "verbal noun".

The present tense of a gerund is formed by adding ing to the stem and is thus
identical in spelling with the present participle.

The gerund may be used in the ways a noun is used:

as subject of a verb:
E.g. Walking is good exercise.

as object of a verb:
E.g. He taught swimming.

as predicate noun:
E.g. Seeing is believing, (believing = gerund)

as a verb-form taking an object:
E.g. Answering questions was her job.

The gerund often has a subject, either in the possessive or objective case:

E.g. Alfred's coming to town was unexpected. (Alfred = subject)
Can you picture him winning first prize? (him = subject)

The gerund is often used in a phrase:

E.g. After studying for six hours, he gave up (after studying).

A-8

Auxiliary verbs:

Combine with other verbs and modify the meaning of the verb.

The auxiliary verbs are: be, can, do, have, may, must, shall, will.

Forms of the verb may.
Present:

Past:

may

might

Forms of the verb can:

Present:

he
we J> can
you
they

Past:

he
we > could
you
they

Potential mood of various auxiliary verbs:
Present:

may, can or must work, eat, agree

A-9

Present Perfect:

he
we
you
they

may, can or must have worked, eaten, agreed

Past:

he
we
you
they

might, could, would,or should work, eat, agree

Past perfect:

I
he
we
you
they

might, could, wou!d,or should have worked, eaten, agreed

Forms of the verb do.
D o is used for emphasis, interrogation, or negation.
It is used only in the present and past tenses of the indicative and
subjunctive moods, and in the imperative.

Present indicative:

I do
he does
we do
you do
they do

work

Past indicative:

I did
he did
we did
you did
they did

work

Present and past subjunctive:

(If)

I do
he (does) do
we do
you do
they do

work

A-10

Imperative:

Do work

Forms of the verb have.

Used as an auxiliary to form perfect tenses.

Present perfect:

I have *\
he has f
we have ^* worked
you have 1
they have }

Past perfect:

I had *\
he had §
we had ^* worked
you had 1 :
they had *

Semi-auxiliary verbs:
Ought and let are called semi-auxiliaries.

Ought is used only in the present indicative and is followed by the infinitive form
of the verb with which it is combined.
E.g. / ought to work.

Let is most often used with the infinitive (without to) and the objective case of
the pronoun.
E.g. Let him work.

Use of shall and will:
To express simple futurity or expectation on the part of the person speaking:

I shall do it We shall do it
You will do it You will do it
He will do it They will do it

To express determination, desire, command, threat, promise, willingness and

intention on the part of the person speaking:

/ will do it We will do it
You shall do it You shall do it
He shall do it They shall do it

Use of should and would:

Similar to shall and will.

A-11

Adjective

Used to modify a noun or pronoun to indicate a quality or condition more exactly.

Classes of adjectives:

Descriptive:

indicate a quality or condition.

E.g. her blue dress
bright colours

the redecorated apartment
his smiling answer

Limiting:

indicate a number or quantity, or point out limits.
The articles the, a and an are also limiting adjectives.

E.g. my only ambition
the ninth inning
ten cents

Proper:
come from proper nouns.

E.g. American soldiers
Bolivian tin
a victrola needle
pasteurised milk

Degree of adjectives:
Express a greater or lesser degree of quality by using comparison.

Positive:
the regular form

E.g. old, simple, likely

Comparative:

E.g. older, simpler, more likely, less likely

Superlative:

E.g. oldest, simplest, most likely, least likely

Words of several syllables and also participles are almost always compared by
using more and most, or less and least, rather than adding er or est.

A-12

Irregular adjectives:
have a fixed form in comparative and superlative:

Positive

bad
far
good (well)
little
many (much)

idjectives cannot

absolute
basic
chief
comparative
complete
contemporary
devoid
empty
entire
essential
eternal
everlasting

Comparative

worse
farther (further)
better
less
more

be compared, e.g.

fatal
final
full
fundamental
harmless
ideal
meaningless
mortal
obvious
omnipotent
perfect
possible

Superlative

worst
farthest (furthest)
best
least
most

primary
replete
simultaneous
ultimate
unanimous
unendurable
unique
universal
whole
worthless

Several adjectives beginning with in- belong in this group, e.g.

inadmissible, inevitable, indestructible, incessant

Numerals:
Numbering adjectives are either cardinals or ordinals.

Cardinals:
indicate number absolutely.

E.g. one, two, three

Ordinals:
indicate a certain relative position in a series.

E.g. first, second, third

Articles:
There are two articles, the word a (or an) called the indefinite article, and the

word the called the definite article. They are limiting adjectives.

The indefinite article a is used before words beginning with a consonant sound:

A-13

E.g. a year, a man, a unit, a history

An is used before words beginning with a vowel sound:

E.g. an umbrella, an hour, an unusual day

The definite article the is separated from the noun by the modifying adjective or
adjectives if there are any:

E.g. the sky, the beautiful sky, the beautiful blue sky

Adverbs

• Adverbs may modify verbs:

E.g. She smiled contentedly (contentedly = adverb)
The news travelled fast (fast = adverb)

• Adverbs may modify adjectives:

E.g. The applicant was under twenty-one (under = adverb)

• Adverbs may modify other adverbs:

E.g. / know that all too well (too = adverb)

• Adverbs that modify a whole clause or sentence are called sentence adverbs:

E.g. Unfortunately, no one saw him do it. (unfortunately = adverb)

• Adverbs are used to tell where, how, when, or to what extent something is done:

E.g. today, simply, here, now, more

Some meanings of adverbs:
Time: now, when, then, finally, never, lately
Place: where, there, here, below, far, downstairs
Manner: well, ill, how, otherwise
Degree: more, less, too, completely, much, equally

Cause or Purpose: why, therefore, wherefore, consequently
Number: firstly, secondly, thirdly

Affirmative adverb:

yes

A-14

Negative adverb:

no, not

Interrogative adverb:

used in asking a direct or indirect question:

E.g. How are you feeling? (how = adverb)
They cannot tell why he did it. (why = adverb)

Relative adverb:

Relates the dependent clause to the independent clause.

E.g. They cannot tell why he did it. (why = adverb)

Conjunctive adverb:
Uses an adverb as a conjunction as well.

E.g. / want to see him before the play begins, (before = adverb)

Comparison:
Adverbs are compared similarly to adjectives.

Using er or est:

Positive Comparative Superlative

tight tighter tightest
hard harder hardest
early earlier earliest
close closer closest

Using more and most or less and least:

Positive Comparative Superlative

slowly more slowly most slowly
often less often least often
eagerly more eagerly most eagerly

A-15

Irregular forms:

Positive

badly

far
late
little
much

near
well

Comparative

worse

farther (further)
later
less
more
nearer
better

Superlative

worst

farthest (furthest)
latest
least
most
nearest (next)
best

Preposition

A preposition is a connective which combines with a noun or pronoun to form a
prepositional phrase. The noun or pronoun is called the object of the preposition. The
preposition shows the relation between this object and other words in the sentence.

E.g. The children scampered down the street, but they were stopped at the corner by
their father who was returning from his office, (down, at, by, from = preposition)

In the phrase at the corner, at shows where they were stopped. The phrase is thus
equivalent to an adverb.

Principal English prepositions:

aboard
about
above
across
after

against
along
amid
among
around
at
before
behind
below
beneath
be side (s)
between
beyond

by

concerning
considering
down
during

for
from
in
inside
into
like

near

of
off
on
onto
outside
over
past

per

regarding
respecting
round
since
through
throughout
till
to
toward(s)
under
underneath
until
unto
up
upon

via
with
within
without

A-16

Words like concerning, considering and regarding are often used with prepositional
force:

E.g. Considering his extreme youth, he has done well indeed.
I spoke to him regarding his future plans.

Sometimes a phrase has the force of a preposition: E.g.

according to because of in view of

ahead of contrary to on account of
apart from due to owing to
as far as in place of
back of in spite of

Conjunction

Conjunctions are used either to connect words, phrases, clauses or sentences, or to show
how one sentence is related to another.

There are three principal groups: coordinating, subordinating and correlative:

coordinating:

Joins two elements of equal grammatical value.

E.g. They had bacon and eggs for breakfast, (two nouns)
E.g. The ball sailed over the wall and into the field, (two prepositional
phrases)
E.g. Our players were ready and the game began, (two independent
clauses)
E.g. When I went to Esther's wedding, I naturally expected to see the
Andersons. And, sure enough, there they were, (two sentences)

Important coordinating conjunctions:

and, but, or, nor, yet, for (when used as the reason is that)

subordinating:
Indicate one element is subordinate to another in a sentence.

E.g. After the door closed, Ruth heaved a sigh of relief.

(after = conj.)

If I reach Flinders Street before one o'clock, I shall be glad to

get it for you. (if= conj.)

Albert wants to get his application in before it is too late.
(before = conj.)

A-17

Subordinating conjunctions may be used to denote such relations as:

reason, time, purpose, condition, result, place, comparison

Important subordinating conjunctions:

after
although
as
as if
as long as
as often as
as soon as
as though
because
before
but that

even if
for the purpose of
how

if
in case
inasmuch as

in order that
in spite of
in that
lest
notwithstanding
now that
provided that
since
so that
so... as (that)
such ...as (that)
than
that
though
till
unless
until

what

whatever
when
whence
whenever
where

wherever
which
whichever
while

whither
who
whoever
why
with a view to

correlative:
Used to connect parallel sentence elements. They are used in pairs or in a
series.

E.g. They replied that they felt neither unusual cold nor unusual warmth.
(neither... nor - conj.)

E.g. Either we must make up our minds at once or we must resign
ourselves to doing without it. (either... or = conj.)

Both Frederick and his cousin became ill during the Christmas vacation.
(both... and= conj.)

Important correlative conjunctions:

not... or
not... nor
not only... but also
though.. yet
whether... or
either ...or

neither... nor
both... and
so... as
if... then
as... as

Conjunctive adverbs:

These words should be regarded as adverbs except when they are used to connect two

independent clauses.

A-18

accordingly
also
besides
consequently

furthermore
hence
however
likewise
moreover

nevertheless
notwithstanding
otherwise
so

still
then
therefore
thus

E.g. We must leave promptly at eight-thirty; otherwise we shall miss the first
part of the ceremony.

The semicolon shows that the word for has been omitted:

We must leave promptly at eight-thirty, for otherwise we shall miss the first part
of the ceremony.

Interjection

A word or a group of words used to voice an exclamation. It is usually independent of
the rest of the sentence; often it serves as an introduction:

E.g. Oh! He's going to fall!
Pshaw! I knew I couldn't do it.
What! Is it possible?

Most parts of speech can be used as interjections:

E.g. Ridiculous! I don't believe it!
My! What a hot day it is!
Helen! This can't be Helen!

A-19

Appendix B: LALR Skeleton for a Parallel Parser

Parser Skeleton:

PAS

Unit @2s;

{ }

{A Turbo Pascal 6.0 L R parser generated by L A L R 3.0}
{ . }

{@0s.@3s + @ls.@4s -> @2s.@5s }

The skeleton which generated this code, @ls.@4s, includes the
following:

* Parsing code.

* Parallel parsing of words with multiple parts of speach.
* All possible parses- are produced.

* Call to input processing routines with none or one string argument

* Call to output processing routines with none or one string argument

Two input processing routines are provided:

* Dictionary search for multiple word types.
* Punctuator check.

If no input processing is specified in the grammar, no code will be
generated for it

Various output processing routines are provided.

If no output processing is specified in the grammar, no code will be
generated for it

If no multiple reductions are present, no code will be generated for them.

Interface

Uses

GlobDefs, Stacks, Strings, MyScan, Dictnary, Dos;

Procedure StampOutput;

Procedure ParserInit(Var ContextP: ContextPtr);
Function Parse: Integer;

Procedure ProduceOutput;

@118!...

Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer): Integer;

Function PunctuatorChcck(ContextP: ContextPtr; TermNo: Integer): Integer;

B-1

@@@118?...
Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer; Arg: String): Integer;

Function PunctuatorCheck(ContextP: ContextPtr; TermNo: Integer; Arg: String): Integer;

Emit(ContextP: ContextPtr): String;

EmitToken(ContextP: ContextPtr): String;

EmitTokenNI(ContextP: ContextPtr): String;
EmitTokenAndArg(ContextP: ContextPtr): String;

EmitArgAndToken(ContextP: ContextPtr): String;

EmitArgAndTokenNI(ContextP: ContextPtr): String;

@158!...

Function

Function
Function

Function

Function
Function

@158?...

Function
Function

Function
Function

Function

Function

Emit(ContextP: ContextPtr; Arg: String): String;

EmitToken(ContextP: ContextPtr; Arg: String): String;

EmitTokenNl(ContextP: ContextPtr; Arg: String): String;
EmitTokenAndArg(ContextP: ContextPtr; Arg: String): String;

EmitArgAndToken(ContextP: ContextPtr; Arg: String): String;

EmitArgAndTokenNI(ContextP: ContextPtr; Arg: String): String;

Implementation

{- -}

{ Number of tokens coming from scanner

{ Number of terminal symbols in grammar
{ Number of heads (nonterminal symbols

{ Number of productions (rules)
{ Number of states in parser

{ Generated parser tables }

{ }

Const

NTOKENS = @17d;
NJTERMS = @10d;
N_HEADS = @20d;
N_PRODS = @54d;
N_STATES = @50d;

Type
IntegerPtr = AInteger;

Const

{Terminal symbols}

TermSymbol: Array[0..@10-ld] of SymString = (

@10.1@'%s'@,@,\n @

);

@m?...
{ Descriptors associated with the terminal symbols }

TermDesc: Array[0..@ll-ld] of SymString = {
@ll.l@'%s'@,@,\n@

);

B-2

{ Non Terminal symbols }

NonTermSymbol: Array[0..@20-ld] of SymString = (

@20.1@'%s'@,@,\n @

);

@121?...

{ Descriptors associated with nonterminal symbols }

NonTermDesc: Array[0..@21-ld] of SymString = (
@21.1@'%s'@,@,\n @

);

@@
{Pointers to terminal transition lists, one pointer }
{for each state. This works with TermTrans[],}

TermTransStart: Array[0..@30-ld] of Integer = (
@30.10@%5d@,@,\n @

);

{ Terminal transitions for each state. This works with TermTransStart[]. }
{ The terminal transition numbers are next state numbers, necessitating }
{the use of Accessor! j, the accessing symbol numbers for each state. }

TermTrans: Array[0..@31-ld] of Integer = (
@31.10@%5d@,@,\n @

);

{Accessing symbols for each state. If the accessing symbol }

{for a particular state is a terminal symbol it is positive. }
{If it is a non terminal symbol, it is negative. }

Accessor: Array[0..@32-ld] of Integer = (

@32.10@%5d@,@,\n @

);

{Pointers to non terminal transition lists, one pointer }

{for each state. This works with NonTermTransfl. }

NonTermTransStart: Array[0..@40-ld] of Integer - (

@40.10@%5d@,@,\n @

);

{ Non terminal transitions for each state. This works with }
{NonTermTransStart!]. The non terminal transition numbers are }

{next state numbers, necessitating the use of Accessor!], the }

{accessing symbol numbers for each state. }

NonTermTrans: Array(0..@41-ld] of Integer = (

@41.10@%5d@,@,\n @

);

B-3

{ Default reduction (production) numbers, one for }

{ each state. A -1 indicates no default reduction. }

{ A zero indicates the goal symbol production. }

DefaultRedn: Arrayl0..@50-ld) of Integer = (

@50.10@%5d@,@,\n @

);

@52?...
{ Pointers to the multiple reduction lists, one pointer for each }

{ state. This works with RednTermSycnb]] and RednNumForTerm[]. }

RednListStart: Array[0..@51-ld] of Integer = (

@51.10@%5d@,@,\n @

);

{ Terminal symbol numbers causing a reduction. This list }
{is indexed by RednListStart]]. The reduction that should }

{take place is given by RednNumForTerm]]. }

RednTermSymb: Array[0..@52-ld] of Integer = (
@52.10@%5d@,@,\n @

);

{ Reduction (production) numbers associated with }
{the terminal symbol numbers in RednTermSymb]]. }

RednNumForTerm: Array[0..@53-ld] of Integer = (
@53.10@%5d@,@,\n @

);

@@
{ Production lengths, right hand side lengths of the productions.}

ProdLength: Array[0..@54-ld] of Byte = (

@54.10@%5d@,@,\n @

);

{ Head symbol numbers, one for each production.}

HeadSymbNum: Array[0..@55-ld] of Integer = (

@55.10@%5d@,@,\n @

);

{ }

{Input processing functions }
{ }

@116?Type
@116!...

@118?Type

@ @
@116? InFunc = Function(ContextP: ContextPtr; TermNo: Integer): Integer;
@118? InFunc = Function(ContextP: ContextPtr; TermNo: Integer; Arg: String): Integer;

B-4

@16?...

Const

{Input processing routine names as specified in the grammar. The }

{ numbers in list InputProc lndex[| are used as pointers into this list }

InputProc: Array[0..@16-ld] of InFunc = (
@16.1@%s@,@,\n @

);

{Input processing routine numbers associated with tokens (coming from }
{the scanner). A number zero would indicate the first input processing }
{ routine as specified in the InputProc]] list. A number of -1 would }
{indicate no input processor for this token symbol. }

InputProcIndex: Array]0..@17-ld] of Integer = (
@17.10@%5d@,@,\n @

);

@@
@118?...

{Input processing routine arguments for the tokens. These strings may }
{ be either alphabetic or numeric, depending on how they were specified }

{in the grammar, but they are always stored internally (in LALR 3.0) }
{ as string type. A -1 would indicate no argument for this token symbol. }

InputProcArg: Array[0..@18-ld] of String = (

@18.1@'%s'@,@,\n @

);

@@
{ }
{ Output processing functions }
{ }

@156?Type
@156L.

@158?Type

@ @
@156? OutFunc = Function(ContextP: ContextPtr): String;
@158? OutFunc = Function(ContextP: ContextPtr; Arg: String): String;

@56?...

Const

{ Output processing routine names. The numbers in list }

{ OutputProcIndex]] are used as pointers to these names. }

OutputProc: Array[0..@56-ld] of OutFunc = (
@56.1@%s@,@,\n @

);

{ Pointers to output processing routines, one for each production. }

1A number zero would indicate the first output processing routine }

{ as specified in the OutputProc list]]. A number of -1 would }

{indicate no output processor for this production. }

OutputProcIndex: Array|0..@57-ld] of Integer = (

@57.10@%5d@,@,\n @

);

B-5

@ @
@158?...

{ Output processing routine arguments for each production. }

{ These strings may be either alphabetic or numeric, depending }

{ on how they were specified in the grammar, but they are }

{ always stored internally (in L A L R 3.0) as string type. A -1 }
{ would indicate no argument for this production. }

OutputProcArg: Array[0..@58-ld] of String = (
@58.1@'%s'@,@,\n @

);

@@

{ 1
{Parser constants}

{ 1

Const
G O A L = 0; { Production number of final goal}

{ }

{ }
{Parser Utilities}

{ }

{ StampOutput - put headings, time and date at top of output file }

Procedure StampOutput;
Const

Days: Array[0..6] of String[9] =

('SundayVMondayVTuesdayVWednesdayVThursdayVFriday', 'Saturday');
Var

Hours, Mins, Sees, Hundredths: Word;
Year, Month, Day, DayOfWeek: Word;

Function LeadingZero(w: Word): String;
Var

s: String;

Begin {LeadingZero}
Str(w:0, s);

If Len gth(s) = 1 then

s := '0' + s;

LeadingZero := s
End; {LeadingZero}

B-6

Begin {StampOutput}
GrammarName := '@0s.@3s';
SkeletonName := '@ls.@4s';
ParserName := '@2s.@5s';

GetTime(Hours, Mins, Sees, Hundredths);
GetDate(Year, Month, Day, DayOfWcek);

Write(OutFile, 'Parser:', ParserName: 12);
Writeln(OutFile,'}');
Write(OutFiIe, 'Grammar:', GrammarName: 12);
Writeln(OutFile,'} Created by L A L R 3.0');
Write(OutFile, 'Skeleton:', SkeletonName: 12);
Writeln(OutFiIe,'}');

WriteLn(OutFile, 'Time :', LeadingZero(Hours),
':',LeadingZero(Mins),':', LeadingZero(Secs));

WriteLn(OutFile, 'Date :', Days[DayOfWeek],',',
Day:0, V, Month:0, V, YeanO);

Writeln(OutFilc);
Writeln(OutFile,' ',

Writeln(OutFile)
End; {StampOutput}

{ }

{Parserlnit — initialise the parser, return pointer to the first context}
Procedure ParserInit(Var ContextP: ContextPtr);
Begin {Parserlnit}

InitContext(ContextP) { Initialise the context stack}
End; {Parserlnit}

{ }

{DoInputProc — call an input processing routine }
Procedure DoInputProc(ContextP: ContextPtr);
Begin { DoInputProc }

With ContextP* do
If InputProcIndex[Terminal] >= 0 then

Terminal := InputProc]InputProcIndex[Terminal]] { Call processor}
@116? (ContextP, Terminal)
@118? (ContextP, Terminal, InputProcArg[Terminal])
End; {DoInputProc }

{ }

{PrintLine — print source line }
Procedure PrintLine(ContextP: ContextPtr);
Var

s: String;
p: CharPtr;

B-7

gin { Printline }
With ContextPA do

Begin
IfLineStartA

Begin
« ._ M.
3 . ,

p := Lii

o E O F then

neStart;

{If not at end of file }

While (pA o C R) and (pA o E O F) do { Collect string up to end of line }
Begin

s:=s + pA;

Longint (p) := Longint (p) + 1
End;

Writeln(OutFiIe, LineNum:6, ", s) { Print the line with its line number}
End

End { With ContextPA do }

End; { PrintLine}

{ }

{PrintMsg — print error message }

Procedure PrintMsg(ContextP: ContextPtr; Msg, Symbol: String);
Var

i, nl, Col, Last LineNum: Integer;
p: CharPtr;

c: Char;

Begin {PrintMsg }
With ContextPA do

Begin

nl := 0;

Col := 0;
LastLineNum := -1;

Writeln(OutFile); { Print the line }

Writeln(OutFile);

PrintLine(ContextP);
LastLineNum := LineNum; { Save line number}

{ Find column number of token causing error message }

For Longint (p) := Longint (LineStart) to Longint (Token) - 1 do

If p A = T A B then

Col := Col + 8 - (Col div 8)
else

Col:=Col + l;

Write(OutFile,'');
For i := 1 to Col do { Write out correct number of dashes }

Write(OutFiIe,'-');

Write(OutFiIe, 'A ' + Msg + Symbol); { Print pointer to erroneous symbol }
{ and the error message. }

Writcln(OutFilc)

End { With ContextPA do }
End; {PrintMsg]

[}

B-8

Procedure Crash(ContextP: ContextPtr; Msg, Symbol: String);
Begin {Crash }

PrintMsg(ContextP, Msg, Symbol);
Close(OutFile);

Halt(l)
End; {Crash}

{ }

{ GetToken — get token from scanner }

Procedure GetToken(ContextP: ContextPtr);
Begin {GetToken}

With ContextPA do

Begin

DictData.NumTypes := 0; {Initialise dictionary return values }
PartsOfSpeech := [];

While true do
Begin

Scan(ContextP); { Call the lexical scanner}
If Terminal<= 0 then

Begin

If Terminal = 0 then {If terminal unrecognised? }
Begin

If OutputOn then {If output turned on? }
Begin

NumErrors := NumErrors + 1;

PrintMsg(ContextP, 'Ignoring token',
StrPtrsToStr(Token, Input))

End
End { If Terminal = 0 then }

else
Begin

If OutputOn then {If output turned on? }

Begin
NumErrors := NumErrors + 1;
PrintMsg(ContextP, 'Invalid token',
StrPtrsToStr(Token, Input))

End;
Terminal := -Terminal; { Make terminal positive and continue }
DoInputProc(ContextP); { Any input processing for this terminal}

End
End { If Terminal <= 0 then }

else
Begin

DoInputProc(ContextP); { Any input processing for this terminal}

Exit

End

End { While true do }
End {With ContextPA do }

End; {GetToken}

{ _ i

B-9

{ GetTokens - get token, check dictionary, spawn new contexts if needed }

Procedure GetTokens(ContextP: ContextPtr);
Var

NewContextP: ContextPtr;
TokenNum: Integer;

Begin { GetTokens}
With ContextPA do

Begin

GetToken(ContextP);

With Diet Data do
Begin

IfNumTypes>Othen
Begin

For TokenNum := 1 to NumTypes do
If TokenNum > 1 then

Begin

CreateContext(ContextP, NewContextP);

NewContextPA.Terminal :=

Ord(TypeData[TokenNum].WordType)
End

else

Terminal := Ord(TypeData[TokenNum].WordType)
End { If NumTypes > 0 then }

End { With DictData do }

End { With ContextPA do }
End; {GetTokens}

{ }

{ }
{LR Parsing Engine }

{ }

{GetNextShiftStates - return possible next states for a state/terminal pair}

Procedure GetNextShiftStates(ContextP: ContextPtr);
Var

TermTransNo: Integer;
Begin {GetNextShiftStates}

With ContextPA do
Begin

NumNextShiftStates := 0;
{ For all terminal transitions in this state }
For TermTransNo := TermTransStart[State] to TermTransStart[State+l] - 1 do

{If accessor of goto state matches incoming terminal symbol? }

H Accessor[TermTrans]TermTransNo]] = Terminal then

Begin
NumNextShiftStates := NumNextShiftStates +1;
NextShiftStates[NumNextShiftStates] := TermTrans]TermTransNo]

End

End { With ContextPA do }
End; {GetNextShiftStates}

{. j

B-10

@56?...
Procedure DoOutputProc(ContextP: ContextPtr);
Var

OPProcMsg: String;
Begin {DoOutputProc}

With ContextPA do
Begin

{ If any action specified for this production? }
If OutputProcIndex[Prodn] >= 0 then

Begin
@158! { Put procedure and token on output stack}
@158? {Put procedure, argument and token on output stack }

OutputStackP := OutputStackP +1;
OutputStack]OutputStackP].ProcNo := OutputProcIndexfProdn];

@158? OutputStack[OutputStackP].ArgNo := Prodn;
OutputStack[OutputStackP].TokenBeg := TokenBeg;
OutputStack[OutputStackP].TokenEnd := TokenEnd;

{ Call the action procedure }
OPProcMsg := OutputProc]OutputProcIndex]Prodn]]

@156? (ContextP);
@158? (ContextP, OutputProcArg[Prodn]);

{If OP error message then print it }
If OPProcMsg o " then

Begin
NumErrors := NumErrors + 1;
PrintMsg(ContextP, OPProcMsg, StrPtrsToStr(TokenBeg, TokenEnd))

End
End

End { With ContextPA do }
End; {DoOutputProc}

{ }

{ DoShift - main code for the shift routine }
Procedure DoShift(ContextP: ContextPtr; NextState: Integer);
Var

RednP: Integer;
OPProcMsg: String;

Begin {DoShift}
With ContextPA do

Begin
@56?...

If OutputOn then {If output turned on? }
Begin

{For all reductions on reduction stack}
RednP := 0;
While RednP < RednStackP do

Begin
RednP := RednP + 1;
Prodn := RednStackfRednPJ.Prodn; { Get the production }

@156? DoOutputProc(ContextP); { Call the action routine }
@158? DoOutputProc(ContextP); { Call the action routine }

End { While RednNo < RednStackP do }
End; {If OutputOn then }

B-11

TokenBeg := Token; { Point at beg & end of}

TokenEnd := Input; {terminal sym accepted.}

RednStackP := 0; { Reset redn stack ptr }

If ParseStackP = MaxStack - 1 then { Parse stack overflow? Crash }

Crash(ContextP, 'Tried to increment past the end of the parse stack.', ") ;

ParseStackP := ParseStackP + 1; { Put cur state on parse stack }
ParseStack]ParseStackP] := State;

State := NextState { Define next state }

End {With ContextPA do}

End; {DoShift}

{ }

! Shift - perform a shift action}

Function Shift(ContextP: ContextPtr): Boolean;

Var
NextState, NextStateNum: Integer;

Begin {Shift}
With ContextPA do

Begin

GetNextShiftStates(ContextP);
{ Find a possible next state for this state/terminal pair }

For NextStateNum := 1 to NumNextShiftStates do

Begin
NextState := NextShiftStates[NextStateNum];

If Accessor [NextState] = Terminal then

Begin
DoShift(ContextP, NextState);
Shift := true; { Return true for shift action }

Exit

End
End;

Shift := false; { Return failure for shift action }

End { With ContextPA do }

End; {Shift}

{ }

{ GetNextRednState - return possible next redn state for state/nonterminal pair}

Procedure GetNextRednState(ContextP: ContextPtr);
Var

NonTermTransNo: Integer;
Begin {GetNextRednState }

With ContextPA do
Begin

Num Next Redn States := 0;
{ For all nonterminal transitions at the origin of this production...}

{ A match for the nonterminal transition is always present}
NonTermTransNo := NonTermTransStart[State];

While true do
Begin

{If the accessor of the goto state matches the head symbol? }

B-12

If Accessor[NonTermTrans[NonTermTransNo]] = Head then
Begin

Nu m Next Red nStates := NumNextRednStates + 1;

NextRednStates[NumNextRcdnStates] :=

NonTermTrans]NonTermTransNo];

End;

NonTermTransNo := NonTermTransNo + 1
End {While true do }

End {With ContextPA do }

End; {GetNextRednState}

{ }

{ DoReduce — main code for Reduce routine }

Function DoReduce(ContextP: ContextPtr): Boolean;
Var

NumSyms, NextState, NextStateNum: Integer;
Begin {DoReduce}

With ContextPA do
Begin

ParseStackP := ParseStackP + 1;

If ParseStackP = MaxStack then { If parse stack overflow, crash }
Crash(ContextP, 'Tried to increment past end of parse stack.', ") ;

{ Save old state on parse stack before replacing with current one }
RednStackP := RednStackP + 1;

RednStack]RednStackP].State := ParseStack[ParseStackP];

RednStack]RednStackP].Prodn := Prodn; { Save this production }

ParseStackfParseStackP] := State; { Put current state on parse stack }

{ Get head symbol for this production. Note that the }

{ accessors for nonterminal transitions are negative }
Head := -HeadSymbNum[Prodn];

{ Reduce parse stack by length of production and get origin state }

ParseStackP := ParseStackP - ProdLength[Prodn];
State := ParseStack[ParseStackP];

{ Find a possible next state for this state/nonterminal pair }
GetNextRednState(ContextP);

If NumNextRednStates > 0 then
Begin

State := NextRednStatesfl]; { Use the first state found }

DoReduce := true; { Return true for shift action }
Exit

End;

DoReduce := false { Return failure for shift action }
End { With ContextPA do }

End; { DoReduce}

{ }

B-13

@52?...

Procedure GetMultipleRedns(ContextP: ContextPtr);
Var

TermSymNo: Integer;

Begin { GetMultiplcRedns}
With ContextPA do

Begin

NumMultipIeRcdns := 0;

{ For all multiple reductions in this state }

For TermSymNo := RednListStart[State] to RednListStart[State+l] - 1 do
Begin

{If there is a reduction specified for the incoming terminal? }
If RednTermSymb[TermSymNo] = Terminal then

Begin

NumMultipIeRedns := NumMultipIeRedns + 1;
{ Define the production }

MultipleRedns[NumMultipIeRedns] := RednNumForTerm [TermSymNo]
End

End { For TermSymNo := RednListStartfState] to RednListStart[State+l] - 1 do }
End { With ContextPA do }

End; {GetMultipleRedns}

{ }

{Reduce — perform a reduce action }

Function Reduce(ContextP: ContextPtr): Boolean;
Begin { Reduce}

With ContextPA do
Begin

@52?...

{ Get all multiple reductions for this state/terminal pair }
GetMultipIeRedns(ContextP);

If NumMultipIeRedns > 0 then {If multiple redns, use the first}
Begin

Prodn := MultipleRedns[l]; { Define the production }

If DoReduce(ContextP) then {And go do the reduction }

Begin

Reduce := true;
Exit

End
End;

{If no default reduction for this state return failure to reduce }

Prodn := DefaultRedn[State];
If Prodn < = 0 then

Begin

Reduce := false;
Exit

End;
Reduce := DoReduce(ContextP)

End { With ContextPA do }
End;{Reduce}

{ ,

B-14

Procedure DoParse(ContextP: ContextPtr);
Var

NextAction: ActionType;

WordTypeNum: Integer;
Begin { DoParse}

With ContextPA do
Begin

Finished := false;

Parsing := true;

NextAction := ShiftAction;

While not Finished do
Begin

Case NextAction of

NoAction:
Begin

Finished := true;
Parsing := false

End;
ShiftAction:

Begin

If Shift(ContextP) then

NextAction := GetNextTokens
else

NextAction := ReduceAction
End;

ReduceAction:

Begin

If Reduce(ContextP) then
NextAction := ShiftAction

else
NextAction := NoAction

End;
GetNextTokens:

Begin

GetTokens(ContextP);
NextAction := ShiftAction

End
End; { Case NextAction of}

End; { While not Finished do }

If Prodn = GOAL then {Is this the goal production }
Begin

With ContextHead do
NumSuccessfulParses := NumSuccessfulParses + 1;

Exit
End

else
Begin

DelcteContext(ContextP);

Exit
End;

End { With ContcxtPA do }
End; {DoParse}

{ }

B-15

{Parse — find all possible L R parses }

Function Parse: Integer;

Var
ContextP: ContextPtr;

AIIDone: Boolean;
Begin {Parse}

With ContextHead do

Begin

ParserInit(ContextP); {Initialise the parser}
GetTokens(ContextP); { Call scanner, get first terminal}

Repeat
AIIDone := true; { Tell parser it is finished }

ContextP := ContextStackTop; { Step through the contexts }

While ContextP o nil do

Begin
DoParse(ContextP); {Perform the parse }
If not ContextPA.Finished then {If any parse is not finished }

AIIDone := false; {tell the parser.}
ContextP := ContextPA.NextContext

End

Until AIIDone; { Parsing is finished }

Parse := NumSuccessfulParses
End { With ContextHead do }

End; { Parse}

{ }

B-16

{ }

{Input processing functions }

1 }

{WordTypeCheck - check types of a word in dictionary }
@118!...

Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer): Integer;

@ @
@118?...

Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer; Arg: String): Integer;

@ @
Var

i: Integer;

s: SymString;

Begin { WordTypeCheck}

With ContextPA do
Begin

s := StrPtrsToStr(Token, Input); { Put token into string}
If RetrieveWord(s, PartsOfSpeech, DictData) then

WordTypeCheck := TermNo { Return the original terminal number }
else

WordTypeCheck := -TermNo { Else return error code for this terminal}
End { With ContextPA do }

End; {WordTypeCheck }

{ }

{PunctuatorCheck - check a punctuation symbol}
@118!...

Function PunctuatorCheck(ContextP: ContextPtr; TermNo: Integer): Integer;

@@
@118?...
Function PunctuatorCheck(ContextP: ContextPtr; TermNo: Integer; Arg: String): Integer;

@ @
Begin { PunctuatorCheck}

With ContextPA do
Begin

{ This routine is a dummy at present}

PunctuatorCheck := TermNo { Return original number passed as argument}
End {With ContextPA do }

End; { PunctuatorCheck }

{ }

B-17

{ ,

{ Output processing functions }
{ }

{ Emit — write out a string argument}
@158!...

Function Emit(ContextP: ContextPtr): String;

@ @
@158?...

Function Emit(ContextP: ContextPtr; Arg: String): String;

@ @
Var

EscPos: Byte;
s: String;

Begin { Emit}

With ContextPA do

Begin

If Parsing then
Begin

Emit := " { No error }
End

else

Begin
@158?...

If Arg o V T then { If there is an argument? }
Begin

Repeat

EscPos := Pos('\n\ Arg); { Search for newline escape sequence }
If EscPos > 0 then

Begin

s := Copy(Arg, 1, EscPos - 1);
Delete(Arg, 1, EscPos + 1);

Writeln(OutFile, s); { Writeln parts of string up to newline}
End

Until EscPos = 0;

Write(OutFile, Arg) { Write remainder of string }
End;

<m
Emit := " { No error }

End { If not Parsing then }
End {With ContextPA do}

End; {Emit}

{ }

B-18

{ EmitToken — write out the current token }
@158!...

Function EmitToken(ContextP: ContextPtr): String;

@ @
@158?...
Function EmitToken(ContextP: ContextPtr; Arg: String): String;

@ @
Begin {EmitToken }

With ContextPA do

Begin

If Parsing then

Begin
EmitToken := "

End

else
Begin

Write(OutFile, StrPtrsToStr(TokenBeg, TokenEnd));
EmitToken := "

End { If not Parsing then }

End { With ContextPA do }
End; {EmitToken}

{ }

{EmitTokenNl — write out the current token & newline}

@158!...
Function EmitTokenNI(ContextP: ContextPtr): String;

@ @
@158?...
Function EmitTokenNl(ContextP: ContextPtr; Arg: String): String;

@ @
Begin {EmitTokenNl}

With ContextPA do
Begin

If Parsing then

Begin
EmitTokenNl := " { No error}

End

else
Begin

Writeln(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)); { Print token }

EmitTokenNl := " { No error }

End {If not Parsing then }

End {With ContextPA do }
End; {EmitTokenNl}

{ }

{No error}

{Print token}
{No error }

B-19

{ EmitTokenAndArg - write out a token followed by the string argument}
@158!...

Function EmitTokenAndArg(ContextP: ContextPtr): String;

@ @
@158?...

Function EmitTokenAndArg(ContextP: ContextPtr; Arg: String): String;

@ @
Begin {EmitTokenAndArg}

With ContextPA do
Begin

If Parsing then

Begin

@158!...

EmitTokenAndArg := Emit(ContextP) { No error if " }

@ @
@158?...

EmitTokenAndArg := Emit(ContextP, Arg) { No error if " }

@ @
End

else

Begin

Write(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)); { Print token }
@158!...

EmitTokenAndArg := Emit(ContextP) { No error if " }

@ @
@158?...

EmitTokenAndArg := Emit(ContextP, Arg) { No error if " }

@ @
End {If not Parsing then }

End { With ContextPA do }
End; {EmitTokenAndArg}

{ j

{ EmitArgAndToken — write out the string argument followed by current token }
@158!...

Function EmitArgAndToken(ContextP: ContextPtr): String;

@ @
@158?...

Function EmitArgAndToken(ContextP: ContextPtr; Arg: String): String;

®@
Begin { EmitArgAndToken}

With ContextPA do
Begin

If Parsing then

Begin
@158!...

EmitArgAndToken := Emit(ContextP); { No error if " }

@ @
@158?...

EmitArgAndToken := Emit(ContextP, Arg); { No error if " }

@ @
End

else

Begin
@158L.

EmitArgAndToken := Emit(ContextP); { No error if " }

B-20

@158?...

EmitArgAndToken := Emit(ContextP, Arg); { No error if " }

@ @
Write(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)) { Print token }

End { If not Parsing then }
End { With ContextPA do }

End; { EmitArgAndToken}

{ ,

{ EmitArgAndTokenNl - write out the string argument, current token & newline }
@158!...

Function EmitArgAndTokenNl(ContextP: ContextPtr): String;

@ @
@158?...

Function EmitArgAndTokenNl(ContextP: ContextPtr; Arg: String): String;

@ @
Begin {EmitArgAndTokenNl}

With ContextPA do
Begin

If Parsing then

Begin
@158!...

EmitArgAndTokenNl := Emit(ContextP); { No error if " }

@ @
@158?...

EmitArgAndTokenNl := Emit(ContextP, Arg); { No error if " }

@ @
End

else
Begin

@158!...

EmitArgAndTokenNl := Emit(ContextP); { No error if " }

@ @
@158?...

EmitArgAndTokenNl := Emit(ContextP, Arg); { No error if " }
@ @

Writeln(OutFiIe, StrPtrsToStr(TokenBeg, TokenEnd)) { Print token }
End { If not Parsing then }

End { With ContextPA do }
End; {EmitArgAndTokenNl}

{ }

B-21

{ . }

{ Output Production Routines }
{ }

{DoContextOutput - generate output from a context's output stack}

Procedure DoContextOutput(ContextP: ContextPtr);
Var

p: Integer;

OPProcMsg: String;

Begin {DoContextOutput}

With ContextPA do
Begin

p:=0;

While p < OutputStackP do
Begin

p:=p + l;

TokenBeg := OutputStack[p].TokenBeg;

TokenEnd := OutputStack[p].TokenEnd;

OPProcMsg := OutputProc[OutputStack[p].ProcNo] { Call action routine }
@156? (ContextP);

@158? (ContextP, OutputProcArg[OutputStack[p].ArgNo]);

If OPProcMsg o " then { If OP error msg then print it}
Begin

NumErrors := NumErrors + 1;

PrintMsg(ContextP, OPProcMsg, StrPtrsToStr(TokenBeg, TokenEnd))
End

End

End { With ContextPA do }
End; {DoContextOutput}

{ }

{ProduceOutput - generate output from all successful parses }

Procedure ProduceOutput;
Var

ContextP: ContextPtr;

Begin { ProduceOutput}

With ContextHead do
Begin

ContextP := ContextStackTop;

While ContextP o nil do
Begin

With ContextPA do

Begin
WriteIn(OutFile, 'Context:', ContextId:4);

Writeln(OutFiIe,' ');
DoContextOutput(ContextP);

Writeln(OutFile)
End; {With ContextPA do }

ContextP := ContextPA.NextContext

End { While ContextP o nil}

End {With ContextHead do }
End; {ProduceOutput}

{ }

End. {Unit@2s}

B-22

Appendix C: LALR Generated Parallel Parser for an English
Language Subset

The parser described in this appendix was produced by LALR using as input the
following very simple English subset grammar, designed to test the operation of the
parallel parser:

A Very Simple English Subset grammar

/* Terminals */

/* The scanner returns only tokens of type <Error>, <Wordstr>, <Number>,
/* <Punctuator>, <EndOfSentence> and <EndOfFile>. Most tokens will be of
/* type <WordStr>. These are checked by the input routine WordTypeCheck
/* to see if they are in the dictionary, and if so, whether they are of
/* the terminal type specified in the current production. If so, the
/* token for that type will be substituted for <WordStr>, otherwise
/* <Error> will be returned. <Punctuators> are checked to see whether
I* they represent an <SApostrophe> or an <ApostropheS>.

<Error>
<WordStr> => WordTypeCheck
<Number>
<Punctuator> => PunctuatorCheck
<EndOfSentence>
<EndOfFile>

<Adjective>
<Adverb>
<ApostropheS>
<Binder>
<Complementizer>
<CompTo>
<Conjunction>
<Determiner>
<Interjection>
<Noun>
<Particle>
<Prefix>
<PrepFor>
<Preposition>
<Pronoun>
<Proper>
<Relative>
<SApostrophe>
<Send>
<Verb>
<WordElement>

C-1

/* Text production */

Text

-> Sentences <EndOfFile>

Sentences

-> S

-> S Sentences

/* Sentence Network */

S

-> NP VP <EndOfSentence> => Emit "Found a sentence\n\n"

NP
-> Determiner NP2
-> NP2

=>Emit "Found a NP\n"
=> Emit "Found a NP\n"

NP2
-> Noun

-> Pronoun

-> ProperNoun

-> AdjectiveList NP2
-> NP2PP

=> Emit "Found a NP2\n"
=> Emit "Found a NP2\n"

=> Emit "Found a NP2\n"
=> Emit "Found a NP2\n"
=> Emit "Found a NP2\n"

PP
Preposition NP

VP

-> Verb Adverb NP
-> Verb

-> Verb Adverb
-> Verb NP

-> VP NP

AdjectiveList

-> Adjective

-> Adjective AdjectiveList

Noun

Verb

-> <Noun>

-> <Verb>

Preposition

-> <Preposition>

Adjective

<Adjective>

=> Emit "FoundaPPui"

=> Emit "FoundaVPVn"
=> Emit "Found a VP\n"

=> Emit "FoundaVPVn"
=> Emit "FoundaVP\n"

=> Emit "FoundaVPVn"

=> Emit "Found an adjective Iist\n"

=> Emit "Found an adjective list\n"

=> EmitTokenAndArg " <Noun>\n"

=> EmitTokenAndArg " <Verb>\n"

=> EmitTokenAndArg " <Preposition>\n"

=> EmitTokenAndArg " <Adjective>\n"

C-2

Pronoun
-> <Pronoun> => EmitTokenAndArg " <Pronoun>\n"

ProperNoun
-> <Proper> => EmitTokenAndArg " <Proper>\n"

Determiner
-> <Determiner> => EmitTokenAndArg " <Determiner>\n"

C-3

Source Code of an LALR Parallel Parser for an English Language Subset

Unit M Y P A R S E R ;

{ }
{A Turbo Pascal 6.0 L R parser generated by L A L R 3.0 }
{ }

{SIMPSENT.GRM + MYPARSERSKL -> MYPARSERPAS }

The skeleton which generated this code, MYPARSERSKX, includes the
following:

* Parsing code.
* Parallel parsing of words with multiple parts of speach.
* All possible parses are produced.
* Call to input processing routines with none or one string argument.
* Call to output processing routines with none or one string argument

Two input processing routines are provided:

* Dictionary search for multiple word types.
* Punctuator check.

If no input processing is specified in the grammar, no code will be
generated for it

Various output processing routines are provided.

If no output processing is specified in the grammar, no code will be
generated for it

If no multiple reductions are present, no code will be generated for them.

Interface

Uses
GlobDefs, Stacks, Strings, MyScan, Dictnary, Dos;

Procedure StampOutput;
Procedure ParserInit(Var ContextP: ContextPtr);
Function Parse: Integer;
Procedure ProduceOutput;

Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer): Integer;
Function PunctuatorCheck(ContextP: ContextPtr; TermNo: Integer): Integer;

C-4

Function Emit(ContextP: ContextPtr; Arg: String): String;
Function EmitToken(ContextP: ContextPtr; Arg: String): String;
Function EmitTokenNl(ContextP: ContextPtr; Arg: String): String;
Function EmitTokenAndArg(ContextP: ContextPtr; Arg: String): String;
Function EmitArgAndToken(ContextP: ContextPtr; Arg: String): String;
Function EmitArgAndTokenNI(ContextP: ContextPtr; Arg: String): String;

{ j

Implementation

{ }
{Generated parser tables }

{ 1

Const
N_TOICENS = 27; { Number of tokens coming from scanner
N _ T E R M S = 28; { Number of terminal symbols in grammar
N H E A D S = 15; { Number of heads (nonterminal symbols
N_PRODS = 26; { Number of productions (rules)
NJSTATES = 33; { Number of states in parser

Type
IntegerPtr = AInteger;

Const
{ Terminal symbols}

TermSy mbol: Array[0..27] of SymString = (
'<Error>\
'<WordStr>',
'<Number>',
•<Punctuator>',
'<EndOfSentence>',
•<EndOfFile>',
'<Adjective>',
'<Adverb>\
'<ApostropheS>',
'<Binder>',
'<CompIementizer>',
'<CompTo>',
'<Conjunction>',
'<Determiner>',
'<Interjection>',
'<Noun>',
'<Particle>',
'<Prefix>',
'<PrepFor>',
'<Preposition>',
'<Pronoun>',
'<Proper>',
'<Relative>',
'<SApostrophc>',
'<Send>',
'<Verb>',
'<WordElement>',
'Adverb'

);

C-5

{ Non Terminal symbols }

NonTermSymbol: Array[0.. 14] of SymString = (
'Text',

'Sentences',

•s\
•NP',
'NP2',
•PP',
'VP',
'AdjectiveList',
'Noun',

'Verb',

'Preposition',

'Adjective',

'Pronoun',
'ProperNoun',

'Determiner'

);

{Pointers to terminal transition lists, one pointer }

{for each state. This works with TermTransfl. }

TermTransStart: Array[0..33] of Integer = (
0, 5, 5, 5, 5, 5, 5, 6, 11, 12,

16, 17, 17, 17, 17, 21, 22, 22, 22, 22,
28, 34, 35, 35, 35, 40, 41, 41, 41, 41,
46, 46, 46, 46

);

{Terminal transitions for each state. This works with TermTransStart]].

{ The terminal transition numbers are next state numbers, necessitating
{the use of Accessor[], the accessing symbol numbers for each state.

un 11 a

1,
5,
5,
2,
22,

us; t\i i aj

2,
18,
5,
3,
1,

3,
2,
27,
4,
2,

1 1UI*

4,
3,
1,
5,
3,

);

Accessor: Array[0..32] of Integer =

-1, 13, 15, 20, 21,
-4, -8, -12, -13, -7,

-9, -4, 19, -5, -10,
-3, -3, -3

= (
5, 16, 1, 2, 3,

It) *?9 4, 3} ZtJ<)

ml*^ JL, Xr, «5j ^ 9

4, 5

{Accessing symbols for each state. If the accessing symbol }

{for a particular state is a terminal symbol it is positive. }
{If it is a non terminal symbol, it is negative. }

If the accessing symbol }

symbol it is
negative.

(
6, -1,

-11, 5,
-4, -7,

positive.

-2,
-1,
4,

-3,
25,
-3,

}
}

-14,

-6,
27,

C-6

{ Pointers to non terminal transition lists, one pointer }

{for each state. This works with NonTermTrans]]. }

NonTermTransStart: Array[0..33] of Integer = (

0, 10, 10, 10, 10, 10, 10, 10, 20, 22,

28, 30, 30, 30, 30, 36, 38, 38, 38, 38,

46, 54, 56, 56, 56, 64, 66, 66, 66, 66,

74, 74, 74, 74

);

{ Non terminal transitions for each state. This works with }

{NonTermTransStart]]. The non terminal transition numbers are }
{next state numbers, necessitating the use of Accessor)], the }

{accessing symbol numbers for each state. }

NonTermTrans: Array[0..73] of Integer = (

6,
17,
19,
25,
10,
12,
12,
12,

7,
7,
20,
11,
H,
13,
13,
13,

8,
8,
21,
12,
12,
14,
14,
14,

9,
9,
11,
13,
13,
15,
15,
15

J j UK III

10,
10,
12,
14,
14,
23,
23,

lllsgVl

11,

11,
13,
15,
15,
24,
24,

12,
12,
14,
26,
30,
31,
32,

13,
13,
15,
15,
9,
9,
9,

14,
14,
23,
28,
10,
10,
10,

15,
15,
24,
9,
H,
11,
H,

);

{Default reduction (production) numbers, one for }

{each state. A -1 indicates no default reduction. }
{A zero indicates the goal symbol production. }

DefaultRedn: Array[0..32] of Integer = (
-1, 25, 19, 23, 24, 22, -1, 1,
5, 6, 7, 8, -1, 17, 0, 2,

13, 4, 21, 10, -1, 9, 18, 3,

15, 11, 12

);

{Production lengths, right hand side lengths of the productions.}

ProdLength; Array[0..25] of Byte = (
2, 1, 2, 3, 2, 1, 1, 1, 1, 2,
2, 2, 3, 1, 2, 2, 2, 1, 2, 1,

1, 1, 1, 1, 1, 1

{Head symbol numbers, one for each production.}

HeadSymbNum: Array[0..25] of Integer = (
0, 1, 1, 2, 3, 3, 4, 4, 4, 4,

4, 5, 6, 6, 6, 6, 6, 7, 7, 8,

9, 10, 11, 12, 13, 14

-1, -1,
20, -1,

16, 14,

C-7

{ }

{Input processing functions }

{ 1

Type

InFunc = Function(ContextP: ContextPtr; TermNo: Integer): Integer;

Const

{Input processing routine names as specified in the grammar. The }

{ numbers in list InputProcIndex]] are used as pointers into this list }

InputProc: Array[0..1] of InFunc = (
WordTypeCheck,

PunctuatorCheck

);

{Input processing routine numbers associated with tokens (coming from }
{the scanner). A number zero would indicate the first input processing }

{ routine as specified in the InputProc]] list A number of -1 would }
{indicate no input processor for this token symbol. }

InputProcIndex: Array[0..26] of Integer = (
-1, 0, -1, 1, -1, -1, -1, -1, -1, -1,

-1, -1, -1, -1, -1, -1, -1, -1,- 1, -1,
-1, -1, -1, -1, -1, -1, -1

);

{ }
{ Output processing functions }

{ }

Type
OutFunc = Function(ContextP: ContextPtr; Arg: String): String;

Const

{ Output processing routine names. The numbers in list}

{OutputProcIndex]] are used as pointers to these names.}

OutputProc: Array[0..1] of OutFunc = (

Emit,
EmitTokenAndArg

);

{Pointers to output processing routines, one for each production. }

{A number zero would indicate the first output processing routine }

{ as specified in the OutputProc list[]. A number of-1 would }
{indicate no output processor for this production. }

OutputProcIndex: Array[0..25] of Integer = (
-1, -1, -1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1
);

C-8

{ Output processing routine arguments for each production.

{ These strings may be either alphabetic or numeric, depending

{ on how they were specified in the grammar, but they are
{ always stored internally (in LALR 3.0) as string type. A -1

{ would indicate no argument for this production.

OutputProcArg: Array[0..25] of String = (

'-1',

'-1',

'-1',
'Found a sentence\n\n',
'Found a NP\n\

'Found a NP\n',

'Found a NP2\n',

'Found a NP2\n\

'Found a NP2W,

'Found a NP2\n',
'Found a NP2\n\
'Found a PP\n\
'Found a VPW,

'Found a VPW,

'Found a VP\n',

'Found a VP\n',
'Found a VPW,

'Found an adjective IistW,

'Found an adjective IistW,
' <Noun>W,

' <Verb>W,

' <Preposition>W,

' <Adjective>W,
' <Pronoun>W,
• <Proper>W,

' <Determiner>W

);

{ }
{Parser constants }
{ }

Const

G O A L = 0; { Production number of final goal}

{ }

C-9

{ }
{Parser Utilities }
{ }

{StampOutput - put headings, time and date at top of output file }
Procedure StampOutput;
Const

Days: Array[0..6] of String[9] =

('Sunday','Monday','Tuesday','Wednesday','Thursday','Friday','Saturday');
Var

Hours, Mins, Sees, Hundredths: Word;
Year, Month, Day, DayOfWeek: Word;

Function LeadingZero(w: Word): String;
Var

s: String;
Begin { LeadingZero}

Str(w:0, s);
If Length(s) = 1 then

s := '0' + s;
LeadingZero := s

End; {LeadingZero}

Begin {StampOutput}
GrammarName := 'SIMPSENT.GRM';
SkeletonName := 'MYPARSERSKL';
ParserName := 'MYPARSERPAS';

GetTime(Hours, Mins, Sees, Hundredths);
GetDatefYear, Month, Day, DayOfWeek);

Write(OutFile, 'Parser :', ParserName: 12);
WriteIn(OutFile,'}');
Write(OutFiIe, 'Grammar:', GrammarName: 12);
Writeln(OutFile,'} Created by L A L R 3.0');
Write(OutFile, 'Skeleton:\ SkeletonName: 12);
Writeln(OutFiIe,'}');

WriteLn(OutFiIe, 'Time :', LeadingZero(Hours),
':',LeadingZero(Mins),':', LeadingZero(Secs));

WriteLn(OutFile, 'Date: \ Days]DayOfWeek],', \
Day:0, V, Month:0, V, YeanO);

Writeln(OutFile);
Writeln(OutFile,' ',

+ • ');
Writeln(OutFile)

End; {StampOutput}

{ }

{Parserlnit — initialise the parser, return pointer to the first context}
Procedure ParserInit(Var ContextP: ContextPtr);
Begin {Parserlnit}

InitContext(ContextP) {Initialise the context stack }
End; {Parserlnit}

[}

C-10

{DoInputProc — call an input processing routine }

Procedure DoInputProc(ContextP: ContextPtr);
Begin {DoInputProc}

With ContextPA do

If InputProcIndex[Terminal] >= 0 then

Terminal := InputProc[InputProcIndex[Terminal]] { Call processor }
(ContextP, Terminal)

End; {DoInputProc}

{ }

{PrintLine — print source line }

Procedure PrintLine(ContextP: ContextPtr);

Var
s: String;
p: CharPtr;

Begin {PrintLine}

With ContextPA do
Begin

If LineStartA o EOF then {If not at end of file }

Begin
«•= "•

p := LineStart;

While (pA o CR) and (pA o EOF) do { Collect string up to end of line }
Begin

s :=s + pA;
Longint (p) := Longint (p) + 1

End;

WriteIn(OutFiIe, LineNum:6,'', s) { Print the line with its line number}

End
End { With ContextPA do }

End; {PrintLine }

{ }

{PrintMsg — print error message }
Procedure PrintMsg(ContextP: ContextPtr; Msg, Symbol: String);
Var

i, nl, Col, LastLineNum: Integer;

p: CharPtr;
c: Char;

Begin { PrintMsg}

With ContextPA do
Begin

nl := 0;

Col := 0;
LastLineNum := -1;

Writeln(OutFile); { Print the line }

Writeln(OutFile);

PrintLine(ContextP);
LastLineNum := LineNum; { Save line number }

C-11

{ Find column number of token causing error message }
For Longint (p) := Longint (LineStart) to Longint (Token) - 1 do

If p A = T A B then
Col := Col + 8 - (Col div 8)

else
Col := Col + 1;

Write(OutFile,'');
For i := 1 to Col do { Write out correct number of dashes }

Write(OutFile,'-');

Write(OutFiIe, *A ' + Msg + Symbol);

Writeln(OutFile)
End { With ContextPA do }

End; {PrintMsg}

{

{Print pointer to erroneous symbol}
{ and the error message.}

}

Procedure Crash(ContextP: ContextPtr; Msg, Symbol: String);
Begin {Crash}

PrintMsg(ContextP, Msg, Symbol);
Close(OutFile);
Halt(l)

End; {Crash}

{

{ GetToken — get token from scanner}
Procedure GetToken(ContextP: ContextPtr);
Begin { GetToken}

With ContextPA do
Begin

DictData.NumTypes := 0;
PartsOfSpeech :=]];

}

{Initialise dictionary return values }

While true do
Begin

Scan(ContextP);
If Terminal <=0 then

Begin
If Terminal = 0 then

Begin
If OutputOn then

Begin
NumErrors := NumErrors + 1;
PrintMsg(ContextP, 'Ignoring token',
StrPtrsToStr(Token, Input))

End
End {If Terminal = 0 then }

{ Call the lexical scanner}

{If terminal unrecognised? }

{ If output turned on? }

C-12

else
Begin

If OutputOn then {If output turned on? }
Begin

NumErrors := NumErrors + 1;
PrintMsg(ContextP, 'Invalid token',
StrPtrsToStr(Token, Input))

End;
Terminal := -Terminal; { Make terminal positive and continue

}
DoInputProc(ContextP); { Any input processing for this terminal}

End
End {If Terminal <= 0 then }

else
Begin

DoInputProc(ContextP); { Any input processing for this terminal}
Exit

End
End {While true do }

End { With ContextPA do }
End; {GetToken }

{ }

{ GetTokens - get token, check dictionary, spawn new contexts if needed }
Procedure GetTokens(ContextP: ContextPtr);
Var

NewContextP: ContextPtr;
TokenNum: Integer;

Begin {GetTokens}
With ContextPA do

Begin
GetToken(ContextP);
With DictData do

Begin
K NumTypes > 0 then

Begin
For TokenNum := 1 to NumTypes do

If TokenNum > 1 then
Begin

CreateContext(ContextP, NewContextP);
NewContextPA.Terminal :=
Ord(TypeData]TokenNum].WordType)

End
else

Terminal := Ord(TypeData[TokenNum].WordType)
End {If NumTypes > 0 then }

End { With DictData do }
End { With ContcxtPA do }

End; {GetTokens}

{ }

C-13

{• }

J I

{ GetNextShiftStates - return possible next states for a state/terminal pair }
Procedure GetNextShiftStates(ContextP: ContextPtr);

Var

TermTransNo: Integer;

Begin {GetNextShiftStates}
With ContextPA do

Begin

NumNextShiftStates := 0;
{ For all terminal transitions in this state }

For TermTransNo := TermTransStart[State] to TermTransStart[State+l] - 1 do

{If accessor of goto state matches incoming terminal symbol? }
If Accessor[TermTrans[TermTransNo]] = Terminal then

Begin

NumNextShiftStates := NumNextShiftStates + 1;

NextShiftStates[NumNextShiftStates] := TermTrans[TermTransNo]
End

End { With ContextPA do }
End; {GetNextShiftStates }

{ }

Procedure DoOutputProc(ContextP: ContextPtr);

Var
OPProcMsg: String;

Begin { DoOutputProc}

With ContextPA do

Begin
{If any action specified for this production? }
If OutputProcIndex[Prodn] >= 0 then

Begin
{ Put procedure, argument and token on output stack }
OutputStackP := OutputStackP +1;
OutputStack[OutputStackP].ProcNo := OutputProcIndex[Prodn];

OutputStack[OutputStackP].ArgNo := Prodn;

OutputStack[OutputStackP].TokenBeg := TokenBeg;
OutputStack[OutputStackP].TokenEnd := TokenEnd;

{ Call the action procedure }
OPProcMsg := OutputProc[OutputProcIndex[Prodn]]

(ContextP, OutputProcArg[Prodn]);

{If OP error message then print it}

If OPProcMsg o " then

Begin
NumErrors := NumErrors + 1;
PrintMsg(ContextP, OPProcMsg, StrPtrsToStr(TokenBeg, TokenEnd))

End
End

End {With ContextPA do }
End; {DoOutputProc}

{ }

C-14

{ DoShift - main code for the shift routine }

Procedure DoShift(ContextP: ContextPtr; NextState: Integer);
Var

RednP: Integer;

OPProcMsg: String;
Begin {DoShift}

With ContextPA do
Begin

If OutputOn then {if output turned on? }
Begin

{ For all reductions on reduction stack}
RednP := 0;

While RednP < RednStackP do
Begin

RednP := RednP + 1;

Prodn := RednStack[RednP].Prodn; { Get the production }

DoOutputProc(ContextP); { Call the action routine }
End { While RednNo < RednStackP do }

End; { If OutputOn then }

TokenBeg := Token; { Point at beg & end of }
TokenEnd := Input; {terminal sym accepted.}
RednStackP := 0; { Reset redn stack ptr }

If ParseStackP = MaxStack - 1 then { Parse stack overflow? Crash }

Crash(ContextP, 'Tried to increment past the end of the parse stack.', ") ;
ParseStackP := ParseStackP + 1; { Put cur state on parse stack}
ParseStack[ParseStackP] := State;

State := NextState { Define next state }
End {With ContextPA do }

End; { DoShift}

{ _,

{ Shift — perform a shift action }

Function Shift(ContextP: ContextPtr): Boolean;
Var

NextState, NextStateNum: Integer;
Begin {Shift}

With ContextPA do

Begin

GetNextShiftStates(ContextP);
{ Find a possible next state for this state/terminal pair}
For NextStateNum := 1 to NumNextShiftStates do

Begin

NextState := NextShiftStates [NextStateNum];

If Accessor [NextState | = Terminal then

Begin
DoShift(ContextP, NextState);
Shift := true; { Return true for shift action }

Exit

End
End;

Shift := false; { Return failure for shift action }

End {With ContextPA do }
End; {Shift}

{ }

C-15

{ GetNextRednState - return possible next redn state for state/nonterminal pair}
Procedure GetNextRednState(ContextP: ContextPtr);
Var

NonTermTransNo: Integer;

Begin {GetNextRednState}
With ContextPA do

Begin

NumNextRednStates := 0;

{ For all nonterminal transitions at the origin of this production ...}

{ A match for the nonterminal transition is always present}

NonTermTransNo := NonTermTransStart[State];
While true do

Begin

{If the accessor of the goto state matches the head symbol? }

If Accessor[NonTermTrans[NonTermTransNo]] = Head then
Begin

NumNextRednStates := NumNextRednStates + 1;
NextRednStates[NumNextRednStates] :=
NonTermTrans[NonTermTransNo];

Exit
End;

NonTermTransNo := NonTermTransNo + 1

End { While true do }
End { With ContextPA do }

End; {GetNextRednState }

{ }

{DoReduce — main code for Reduce routine }
Function DoReduce(ContextP: ContextPtr): Boolean;

Var

NumSyms, NextState, NextStateNum: Integer;

Begin {DoReduce}

With ContextPA do
Begin

ParseStackP := ParseStackP + 1;
If ParseStackP = MaxStack then { If parse stack overflow, crash }

Crash(ContextP, 'Tried to increment past end of parse stack.',");

{ Save old state on parse stack before replacing with current one }

RednStackP := RednStackP + 1;
RednStack[RednStackP].State := ParseStackfParseStackP];

RednStack[RednStackP].Prodn := Prodn; { Save this production }

ParseStack[ParseStackP] := State; {Put current state on parse stack}

{ Get head symbol for this production. Note that the }

{ accessory for nonterminal transitions are negative }

Head := -HeadSymbNum[Prodn];

{ Reduce parse stack by length of production and get origin state }

ParseStackP := ParseStackP - ProdLength(Prodn];

State := ParscStack[ParseStackP];

C-16

{ Find a possible next state for this state/nonterminal pair }
GetNextRcdnState(ContextP);

If NumNextRednStates > 0 then
Begin

State := NextRednStates]l];
DoReduce := true;

Exit
End;

DoReduce := false
End {With ContextPA do }

End; {DoReduce }

{ Use the first state found }

{ Return true for shift action }

{ Return failure for shift action }

{• >

{Reduce — perform a reduce action }

Function Reduce(ContextP: ContextPtr): Boolean;
Begin {Reduce}

With ContextPA do
Begin

{If no default reduction for this state return failure to reduce }
Prodn := DefaultRedn[State];
If Prodn < = 0 then

Begin

Reduce := false;

Exit
End;

Reduce := DoReduce(ContextP)
End { With ContextPA do }

End;{Reduce }

{ }

Procedure DoParse(ContextP: ContextPtr);
Var

NextAction: ActionType;
WordTypeNum: Integer;

Begin { DoParse }
With ContextPA do

Begin

Finished := false;
Parsing := true;

NextAction := ShiftAction;
While not Finished do

Begin

Case NextAction of
NoAction:

Begin

Finished := true;
Parsing := false

End;
ShiftAction:

Begin
IfShift(ContextP)then

NextAction := GetNextTokens

else
NextAction := ReduceAction

End;

C-17

ReduceAction:

Begin

If Rcduce(ContextP) then

NextAction := ShiftAction
else

NextAction := NoAction
End;

GetNextTokens:
Begin

GetTokens(ContextP);
NextAction := ShiftAction

End

End; { Case NextAction of}

End; { While not Finished do }

If Prodn = GOAL then { Is this the goal production }
Begin

With ContextHead do

NumSuccessfulParses := NumSuccessfulParses + 1;
Exit

End
else

Begin

DeleteContext(ContextP);
Exit

End;

End { With ContextPA do }
End; {DoParse }

{ — }

{Parse - find all possible L R parses }
Function Parse: Integer;
Var

ContextP: ContextPtr;
AIIDone: Boolean;

Begin {Parse}

With ContextHead do
Begin

Parserlnit(ContextP);

GetTokens(ContextP);
Repeat

AIIDone := true;

ContextP := ContextStackTop;
While ContextP o nil do

Begin

DoParse(ContextP);

If not ContextPA.Finished then
AIIDone := false;

ContextP := ContextPA.NextContext
End

{Initialise the parser}

{ Call scanner, get first terminal}

{ Tell parser it is finished }

{ Step through the contexts}

{ Perform the parse }

{If any parse is not finished }
{tell the parser.}

Until AIIDone;

Parse := NumSuccessfulParses
End { With ContextHead do }

End; {Parse}

{ Parsing is finished }

C-18

{ }

{ }
{Input processing functions }
(}

{WordTypeCheck — check types of a word in dictionary }
Function WordTypeCheck(ContextP: ContextPtr; TermNo: Integer): Integer;
Var

i: Integer;
s: SymString;

Begin { WordTypeCheck}
With ContextPA do

Begin
s := StrPtrsToStr(Token, Input); { Put token into string }
If RetrieveWord(s, PartsOfSpeech, DictData) then

WordTypeCheck := TermNo { Return the original terminal number}
else

WordTypeCheck := -TermNo { Else return error code for this terminal}
End {With ContextPA do }

End; {WordTypeCheck}

{_ : }

{PunctuatorCheck — check a punctuation symbol}
Function PunctuatorCheck(ContextP: ContextPtr; TermNo: Integer): Integer;
Begin { PunctuatorCheck}

With ContextPA do
Begin

{ This routine is a dummy at present}

PunctuatorCheck := TermNo { Return original number passed as argument}
End {With ContextPA do }

End; {PunctuatorCheck }

{ }

C-19

{ ,

{ Output processing functions }
{ }

{ Emit — write out a string argument}

Function Emit(ContextP: ContextPtr; Arg: String): String;
Var

EscPos: Byte;

s: String;
Begin {Emit}

With ContextPA do
Begin

If Parsing then

Begin

Emit := " { No error }
End

else

Begin

If Arg o '-1' then {If there is an argument? }
Begin

Repeat

EscPos := Pos('W, Arg); { Search for newline escape sequence }
If EscPos > 0 then

Begin

s := Copy(Arg, 1, EscPos - 1);
DeIete(Arg, 1, EscPos + 1);

Writeln(OutFile, s); { Writeln parts of string up to newline }
End

Until EscPos = 0;

Write(OutFile, Arg) { Write remainder of string}
End;

Emit := " { No error }

End { If not Parsing then }

End { With ContextPA do }
End; { Emit}

{ ,

{EmitToken — write out the current token }

Function EmitToken(ContextP: ContextPtr; Arg: String): String;
Begin { EmitToken }

With ContextPA do
Begin

If Parsing then

Begin

EmitToken := " { No error}
End

else

Begin

Write(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)); {Print token }

EmitToken := " { No error}

End {If not Parsing then }

End {With ContextPA do }
End; {EmitToken }

{ }

C-20

{ EmitTokenNl - write out the current token & newline }

Function EmitTokenNl(ContextP: ContextPtr; Arg: String): String;
Begin {EmitTokenNl}

With ContextPA do
Begin

If Parsing then
Begin

EmitTokenNl := " { No error }
End

else

Begin

Writeln(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)); { Print token }
EmitTokenNl := " { No error }

End {If not Parsing then }
End { With ContextPA do }

End; {EmitTokenNl}

{ }

{ EmitTokenAndArg — write out a token followed by the string argument}
Function EmitTokenAndArg(ContextP: ContextPtr; Arg: String): String;
Begin {EmitTokenAndArg}

With ContextPA do
Begin

If Parsing then
Begin

EmitTokenAndArg := Emit(ContextP, Arg) { No error if " }
End

else

Begin

Write(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)); { Print token }
EmitTokenAndArg := Emit(ContextP, Arg) { No error if " }

End { If not Parsing then }

End { With ContextPA do }
End; {EmitTokenAndArg }

{ ,

{EmitArgAndToken — write out the string argument followed by current token }
Function EmitArgAndToken(ContextP: ContextPtr; Arg: String): String;
Begin {EmitArgAndToken }

With ContextPA do
Begin

If Parsing then

Begin

EmitArgAndToken := Emit(ContextP, Arg); { No error if " }
End

else

Begin

EmitArgAndToken := Emit(ContextP, Arg); { No error if " }

Write(OutFiIe, StrPtrsToStr(TokenBeg, TokenEnd)) { Print token }

End {If not Parsing then }
End { With ContextPA do }

End; { EmitArgAndToken }

{ >

C-21

{ EmitArgAndTokenNl — write out the string argument, current token & newline }
Function EmitArgAndTokenNl(ContextP: ContextPtr; Arg: String): String;

Begin { EmitArgAndTokenNl}
With ContextPA do

Begin

If Parsing then

Begin

EmitArgAndTokenNl := Emit(ContextP, Arg); { No error if " }
End

else

Begin

EmitArgAndTokenNl := Emit(ContextP, Arg); { No error if " }
Writeln(OutFile, StrPtrsToStr(TokenBeg, TokenEnd)) {Print token }

End {If not Parsing then }

End { With ContextPA do }

End; {EmitArgAndTokenNl}

{ }

{ }
{ Output Production Routines }

{ }

{DoContextOutput - generate output from a context's output stack }
Procedure DoContextOutput(ContextP: ContextPtr);
Var

p: Integer;

OPProcMsg: String;
Begin { DoContextOutput}

With ContextPA do
Begin

p:=0;
While p < OutputStackP do

Begin

p:=p + l;
TokenBeg := OutputStack[p].TokenBeg;
TokenEnd := OutputStack[p].TokenEnd;
OPProcMsg := OutputProc[OutputStack[p].ProcNo] { Call action routine }
(ContextP, OutputProcArg[OutputStack[p].ArgNo]);

If OPProcMsg o " then { If OP error msg then print it}

Begin
NumErrors := NumErrors + 1;
PrintMsg(ContextP, OPProcMsg, StrPtrsToStr(TokenBeg, TokenEnd))

End

End
End {With ContextPA do }

End; { DoContextOutput}

{ }

C-22

{ ProduceOutput - generate output from all successful parses }
Procedure ProduceOutput;
Var

ContextP: ContextPtr;
Begin {ProduceOutput}

With ContextHead do
Begin

ContextP := ContextStackTop;
While ContextP o nil do

Begin
With ContextPA do

Begin
WriteIn(OutFiIe, 'Context: ', ContextId:4);
WriteIn(OutFile,' ');
DoContextOutput(ContextP);
Writeln(OutFile)

End; { With ContextPA do }
ContextP := ContextPA.NextContext

End {While ContextP o nil}
End { With ContextHead do }

End; { ProduceOutput}

{ : j

End. {Unit MYPARSER}

C-23

Appendix D: - An ATN Grammar

Reference: Winograd, Terry, "Language as a cognitive process, volume 1: syntax",
Addison-Wesley 1983.

The A T N description makes use of a number of abbreviations, as follows:

Referencing:

C.R
R.last
COPY
dummy X(xxx)

Initialisations:

R1<-\R2

Actions:

RK-R2
R1<=R2

Conditions:

CR = X
C.R != X
R = 0
R!=0
R = xxx
(R1 + R2) @ Diet

In the above, R stands for
C for a constituent; Xfor
recursive call was made.

The R of C
The last member of R
A copy based on A

A d u m m y X with word = xxx

Initialise R1 to the R2 of A

Set R1 to R2
Append R2 to R1

The R of C is X
The R of C is not X
R is empty
R is not empty
The word in R is xxx
R1 and R2 share a dictionary entry

a register (possibly *, the ATN node most recently parsed);
a feature or constituent; and A for the node from which a

The S Network:

Roles:
• Subject

• Direct-Object
• Indirect-Object

• Main-Verb
• Binder

• Auxiliaries
• Modifiers

• Question-Element.

D-1

Feature Dimensions:

• Voice: Active, Passive; default Active.
• Mood: Declarative, Interogative, Imperative,

Bound, Relative, WhRel; default Decl.

Augmentations

alb C: f.Ques = No; *.Case = Subj; Mood != Int]
A:[Subj<-*]

b2c C: f.Type = Modal or *.Form = Past
or (".Form = 3rd-Sing and Subj.Num = Sing and Subj.Pers = 3rd)
or (* .Form = Inf and Subj.Num = Plural)
or (*.Form = Inf and Subj.Pers != 3rd)]

A:[MV<-*]
c3c C: [If (MV.Type = Modal or MV.Type = Do) then \Form = Inf;

If MV.Type = Be then \Form = Pres-Part;
If MV.Type = Have then \Form = Past-Part;
If MV.Type = Non-Aux then fail]

A:[Auxs<=MV;MV<-*]
c4d C: f.Form = Past-Part; MV.Type = Be]

A: [Voice <- Passive; Auxs <= MV; MV <- *; DO <- Subj; Subj <- dummy NP]
c5d C: [".Case = Obj]

A: [DO <- *]

D-2

file:///Form
file:///Form
file:///Form

Auamentations (continued)

d6e

d7e
d8e
e9e
e10e

e11e

e12

x13y
y14z

z15c

a16b
c17e

d18e

a19q

q20c

a21b

a22a

r24a
r25b
c26c

d27d

e28e

a29c

t30a

C: [\Case = Obj]
A: [IO <- DO; D O <- *]

No initialisations, conditions or actions
No initialisations, conditions or actions
A: [Mods <= *]

C: [*.Prep = by; Voice = Pasive; Subj = d u m m y NP]
A: [Subj <- *.PrepObj]
C: [\Prep = to or *.Prep = for; IO = 0]
A:[IO<-*.PrepObj]
C: [If (Mood = Int or Mood = WhRel) then Hold = 0;

If IO != 0 then MV.Transitivity = Bitransitive;
If (IO = 0 and D O != 0) then MV.Transitivity = Transitive;
If (DO = 0 and IO = 0) then MV.Transitivity = Intransitive]

C: [* = for]
C: [\Case = Obj]
A: [Subj <- *]
C:[» = to]
A: [MV <- d u m m y Verb; MV.Type = Modal]
A: [Subj <- *]
I: [Subj <- A.Subj]
A: [DO <- *]
l:[Subj<-A.DO]
A: [IO <- DO; D O <- *]
C: [".Type != Non-Aux; Mood = Decl or Mood = Int]
A: [MV<-*; Mood <-Int]
C: [*.Ques = No; *.Case = Subj;

MV.Type = Modal or MV.Form = Past
or (MV.Form = 3rd-Sing and *.Num = Sing and *.Pers = 3rd)
or (MV.Form = Inf and *.Num = Plural)
or (MV.Form = Inf and *.Pers != 3rd)]

A:[Subj<-*]
C: [*.Ques = Yes; *.Case = Subj; Mood = Decl]
A: [Subj <- *; Q E <- *]
C: [*.Ques = Yes; Mood = Decl]
A: [QE <- *; Hold <- *; Mood <- Int]
No initialisations, conditions or actions
A: [Subj <- *]
C: [(MV + *) @Dict]
A: [MV <- Diet]
C: [(MV + *) @Dict]
A: [MV <- Diet]
C: [(MV + \Prep) ©Diet; D O = 0]
A: [MV <- Diet; D O <- *.PrepObj]
C: [*.Form = Inf; Mood = Decl]
A: [Subj <- d u m m y NP; Subj.Head <- you; M V <- *; Mood <- Imper]
A: [Binder <- *; Mood <- Bound]

The N P Network:

Roles:

• Determiner

• Head

• Describers

• Qualifiers

D-3

file:///Case
file:///Prep
file:///Case
file:///Prep

Feature Dimensions:
• Number: Singular, Plural;
• Person: First, Second, Third;

• Question: Yes, No;
• Case: Subjective, Objective, Possessive;

default Empty.
default Third.

default No.
default Empty.

The NP Network ^Pr^.n

6:Proper —»» 17:Send
^ - " ^ - \ 8:Send y^

>̂ 1:Det ^ v — ^ X
/ 2:Jump ... \ /r J

/ 15:NP 4=Noun\ / 1 6 : f s] / ^ \

/^\ /*"N iT^y^^'-^^
C f 1 I g J 1 h I v J10'810 ^ ^ ^ / V ^ ^ J L X^^X ̂ ^-^11 ;S/r

T^^N 3:Adjective
V \^_y 12: Number
V 13:Verb
^y^^ 14: Noun

~~*" 9:Send

Augmentations

fig
f2g
g3g
g4h

f5h
f6h
h7h
h8
f9

h10h

h11h

gi2g
gi3g

gi4g

f15g

h16p

p17

A: [Num <- *.Num; Ques <-*.Ques; Det <- *]
No initialisations, conditions or actions
A: [Desc <= *J
C: [*.Num = Num or Num = 0]
A: [Num <- *.Num; Head <- *]
A: [Num <- *.Num; Per <- *.Per; Ques <-\Ques; Head <-*]
A: [Num <- *.Num; Head <- *]
A: [Qual <= *]
A: [Case <- Head.Case]
C: [Hold = NP]
A: [Hold <- Empty; Return Hold]
I: [Subj <- *COPY*; Mood <- Rel; MV <- dummy Verb; MV.Type <- Be]

A: [Qual <= *]
I: [Hold <-*COPY*; Mood <-WhRel]
A: [Qual <= *]
A: [Desc <= *]
C: f.Form = Pres-Part or \Form = Past-Part]

A: [Desc <= *]
C: [*.Num = Sing]
A: [Desc <= *]
C: [*.Case=Poss]
A:[Det<-*]
C: [Head.Cat != Pronoun]
A: [Case <- Poss]

D-4

file:///Ques
file:///Form

The P P Network:

Roles:

• Preposition

• PrepObj.

The PP Network
1:Preposition 2:NP

3:Send

4:Send

Augmentations

i1j A: [Prep <- *]
j2k C: [*.Case = Obj]

A: [PrepObj <- *]
k3 No initialisations, conditions or actions
i4 C: [Hold = PP]

A: [Hold <- Empty; Return Hold]

D-5

Appendix E: Augmented Grammar for an English Language
Subset

/* Augmented Context-free Grammar */

/* Goal */

Sentence -> S <eof>

/* Sentence Network Alternative Entry Points */

S-c -> SI

S-r -> Sra S
-> Srb Sbc SI

S-t -> Sta S

S-x -> Sxy Syz SI

S-z -> Szc SI

/* Sentence Network */

S -> Sac SI
-> Saa Sab Sbc SI
-> Saq Sqc SI

SI -> Sec Scd Sdd Sde See Se
-> See See Se

Saa

Sab

Sac

Saq

Sbc

->

-> Sa22a
-> Sa23a

-> Salb
-> Sal6b
-> Sa21b

-> Sa29c

-> Sal9q

-> Sb2c

E-1

Sec ->

-> Sec Sc3c

-> Sec Sc26c

Scd -> Sc4d
-> Sc5d

See -> Sc8e
-> Scl7e

Sdd ->
-> Sdd Sd27d

Sde -> Sd6e

-> Sd7e
-> Sdl8e

Se -> Sel2

See ->
-> See Se9e
-> See SelOe
-> See Selle
-> See Se28e

Sqc -> Sq20c

Sra -> Sr24a

Srb -> Sr25b

Sta -> St30a

Sxy -> Sxl3y

Syz -> Syl4z

Szc -> Szl5c

Salb

"C:[*.Ques=No; *.Case=Subj; Mood!=Int] A:[Subj<-*]"
->NP

Sb2c

"C:[*.Type=Modal or *.Form=Past
or (*.Form=3rd-Sing and Subj.Num=Sing and Subj.Pers=3rd)

or (*.Form=Inf and Subj.Num=Plural) or (*.Form=Inf and Subj.Pers!=3rd)]
A:[MV<-*]"

-> Verb

E-2

Sc3c
"C:[If (MV.Type=Modal or MV.Type=Do) then *.Form=Inf;
If MV.Type=Be then *.Form=Pres-Part;
If MV.Type=Have then *.Form=Past=Part;
If MV.Type=Non-Auxthen fail] A:[Auxs<=MV; MV<-*]"
-> Verb

Sc4d
"C:[*.Form=Past-Part; MV.Type=Be]
A:[Voice<-Passive; Auxs<=MV; MV<-*; DO<-Subj; Subj<-dummy NP]
-> Verb

Sc5d
"C:[*.Form=Past-Part; MV.Type=Be]
A:[Voice<-Passive; Auxs<=MV; MV<-*; DO<-Subj; Subj<-dummy NP]
-> N P

Sd6e
"C:[*.Case=Obj] A:[IO<-DO; DO<-*]"
-> N P

Sd7e
-> Jump

Sc8e
-> Jump

Se9e
"A:[Mods<=*]"
-> PP

SelOe
"C:[*.Prep=by; Voice=Passive; Subj=dummy NP] A:[Subj<-*.PrepObj]"
-> PP

Selle
"C:[*.Prep=to or *.Prep=for; IO=0] A:[IO<-*.PrepObj]"
-> PP

Sel2
"C:[If (Mood=Int or Mood=WhRel) then Hold=0;
If IO!=0 then MV.Transitivity=Bitransitive;
If (IO=0 and DO!=0) then MV.Transitivity=Transitive;
If (DO=0 and IO=0) then MV.Transitivity=Intransitive]H

-> Send

Sxl3y
"C:[*=for]M

-> Prep-for

E-3

Syl4z
HC:[*.Case=Obj] A:[Subk<-*]"
-> N P

Szl5c
"C:[*=to] A:[MV<-dummy Verb; MV.Type=Modal]"
-> Comp-to

Sal6b
"A:[Subj<-*]"
-> S-x

Scl7e
"I:[Subj<-ASubj] A:[DO<-*]"
-> S-z

Sdl8e
"I:[Subj<-ADO] A:[IO<-DO; DO<-*]"
-> S-z

Sal9q
"C:[*.Type!=Non-Aux; Mood=Decl or Mood=Int] A:[MV<-*; Mood<-Int]H

-> Verb

Sq20c
"C:[*.Ques=No; *.Case=Subj; MV.Type=Modal or MV.Form=Past
or (MV.Form=3rd-Sing and *.Num=Sing and *.Pers=3rd)
or (MV.Form=Inf and *.Num=Plural) or (MV.Form=Inf and *.Pers!=3rd)]
A:[Subj<-*]"
-> NP

Sa21b
"C:[*.Ques=Yes; *.Case=Subj; Mood=Decl] A:[Subj<-*; QE<-*]"
-> NP

Sa22a
"C:[*.Ques=Yes; Mood=Decl] A:[QE<-*; Hold<-*; Mood<-Int]"
-> NP

Sa23a
"C: [*.PrepObj.Ques=Yes; Mood=Decl]
A:[QE<-*.PrepObj; Hold<-*; Mood<-Int]H

-> PP

Sr24a
-> Rel

E-4

Sr25b
"A:[Subj<-*]"
-> NP

Sc26c
"C:[(MV+*)@Dict] A:[MV<-Dict]"
-> Particle

Sd27d
"C:[(MV+*)@Dict] A:[MV<-Dict]H

-> Particle

Se28e
"C:[(MV+*.Prep)@Dict; DO=0] A:[MV<-Dict; DO<-*.PrepObj]"
-> PP

Sa29c
"C:[*.Form=Inf; Mood=Decl] A:[Subj<-dummy NP; Subj.Head<-you; MV<-*;
Mood<-Imper]"
-> Verb

St30a
"A:[Binder<-*; Mood<-Bound]"
-> Binder

/* Noun Phrase Network */

NP -> NPf
-> NPfg NPgg NPgh NPhh NPh
-> NPfg NPgg NPgh NPhh NPhp NPp
-> NPfh NPhh NPh
-> NPfh NPhh NPhp NPp

NPf -> NPf9

NPfg -> NPflg
-> NPf2g
-> NPfl5g

NPfh -> NPf5h
-> NPf6h

NPgg ->
-> NPgg NPg3g
-> NPgg NPgl2g
-> NPgg NPgl3g
-> NPgg NPgHg

E-5

NPgh -> NPg4h

NPh -> NPh8

NPhh ->
-> NPhh NPh7h
-> NPhh NPhlOh
-> NPhh NPhllh

NPhp -> NPhl6p

NPp -> NPpl7

NPflg
HA:[Num<-*.Num; Ques<-*.Ques; Det<-*]"
-> Det

NPf2g
-> Jump

NPg3g
"A:[Desc<=*]"
-> Adjective

NPg4h
"C:[*.Num=Num or Num=0] A:[Num<-*.Num; Head<-*]"
-> Noun

NPf5h
"A:[Num<-*.Num; Pers<-*.Pers; Ques<-*.Ques; Head<-*]"
-> Pronoun

NPf6h
"A:[Num<-*.Num; Head<-*]"
-> Proper

NPh7h
"A:[Qual<=*]"
-> PP

NPh8
"A:[Case<-Head.Case]M

-> Send

NPf9
"C:[Hold=NP] A:[Hold<-Empty; Return Hold]"
-> Send

E-6

NPhlOh

"I:[Subj<=*COPY*; Mood<-Rel; MV<-dummy Verb; MV.Type<-Be]
A:[Qual<=*]"
-> S-c

NPhllh

"I:[Hold<-*COPY*; Mood<-WhRel] A:[Qual<=*]"
-> S-r

NPgl2g
"A:[Desc<=*]"
-> Number

NPgl3g

"C:[*.Form=Pres-Part or *.Form=Past-Part] A:[Desc<=*]"
-> Verb

NPgl4g

"C:[*.Num=Sing] A:[Desc<=*]"
-> Noun

NPfl5g

"C:[*.Case=Poss] A:[Det<-*]"
-> NP

NPhl6p
MC:[Head.Cat!=Pron]M

-> Apostrophe-s

NPpl7

"A:[Case<-Poss]M

-> Send

/* Preposition Phrase Network */

PP -> PPi
-> PPij PPjk PPk

PPi -> PPi4

PPij -> PPilj

PPjk -> PPj2k

PPk -> PPk3

E-7

PPilj
"A:[Prep<-*]"
> Preposition

PPj2k

"C:[*.Case=Obj] A:[PrepObK-*]'
-> N P

PPk3

-> Send

PPi4

"C:[HoId=PP] A:[Hold<-Empty; Return Holdl"
-> Send J

E-8

Appendix F: Grammar for Augmentation Language

/* Terminals */

<error>

(

)
*

+

'0'
j

<-

<=

\"

]
A

A:[
AdjClass
AdjDegree
AdjKind
AdjType
Adjective
AdvDegree
AdvKind
AdvMeaning
AdvType
Adverb

C:[
C O P Y

ConjGroup
Conjunction
Determiner
Diet
Dictionary
Hold

I:[
If
Interjection
NP

NPCase
NPNumber
NPPerson
NPQuestion
Noun

NounCase

F-1

NounClass
NounGender
NounGroup
NounNumber
NounPerson
NPDescribers

NPDeterminer

NPHead
NPQualifiers

PP
Preposition

PPPrep
PPPrepObj
ProductionNumber

PronCase
PronClass
PronGender
PronNumber
PronPerson
Pronoun
Return

S
SMood
SVoice
SAuxiliaries
SBinder
SDirectObject
SIndirectObject
SMainVerb
SModifiers
SSubject
Verb
VerbForm
VerbKind
VerbMood
VerbNumber
VerbPerson

VerbTense
VerbTrans
VerbVoice
abstract
abs

active

affirmative
affirm
and

article
auxiliary
aux

F-2

be
bitransitive
bitrans
bound

by
can

cardinal
card
cause
collective
collctv
c o m m o n

comparative
comprtv
comparison
comprsn
comptv
concrete

concrt
conjunctive
conjtv
coordinating
coord
correlative
correl
declarative
decl
definite
def

degree
demonstrative
demonstv
descriptive
descptv
do
d u m m y
fail

feminine
fem
first
for

future-perfect
future-perf

fiit-perfect
fut-perf
have

imperative
imper
in

F-3

indefinite
indef
indicative
indctv
infinitive

inf
interrogative
interr
intransitive
intrans
irregular

irreg
last
limiting
lim
manner
masculine
masc
may
modal
must
negative
neg
neuter
neut
no

nominative
nomntve

non-comparable
non-comp
number

numeral
objective
objctv
or

ordinal
ord

passive
past

past-participle
past-part

past-perfect
past-perf

perfect
perf

personal

pers
place

plural

plur

positive
pos

possessive
poss

present
pres

principal
prncpl
proper

purpose
regular
reg

relative
rel
second
shall
singular
sing

subjunctive
subjnctv
subordinating
subord

superlative
super
then
third
time
to

transitive
trans

wh-relative
wh-rel
will
yes
you

<number>
<eof>

/* Augmentation */

AugmentationGrammar

-> AugmentationFile <eof>

AugmentationFile

-> AugmentationEntries

AugmentationEntries
-> AugmentationEntry

-> AugmentationEntries AugmentationEntry

AugmentationEntry

-> ProductionNumber AugmentationString

ProductionNumber

-> <number> => StoreProdnNumber

AugmentationString
-> \" Entries \"

Entries
-> Entry

-> Entries Entry

Entry

-> Conditions
-> Actions
-> Initialisations

/* Words */

Word

-> by
-> for

-> to
-> you

F-6

/* Features */

Feature

-> SentenceFeature
-> NounPhraseFeature

-> NounFeature
-> PronounFeature
-> VerbFeature
-> AdjectiveFeature
-> AdverbFeature
-> ConjunctionFeature

SentenceFeature
-> SMood
-> SVoice

NounPhraseFeature
-> NPNumber
-> NPPerson
-> NPQuestion

-> NPCase

NounFeature
-> NounClass
-> NounGroup
-> NounPerson
-> NounNumber
-> NounGender
-> NounCase

PronounFeature
-> PronClass
-> PronPerson

-> PronNumber
-> PronGender
-> PronCase

VerbFeature
-> VerbKind
-> VerbTrans
-> VerbVoice
-> VerbMood
-> VerbTense
-> VerbPerson
-> VerbNumber
-> VerbForm

AdjectiveFeature
-> AdjClass
-> AdjKind
-> AdjDegree
-> AdjType

AdverbFeature
-> AdvMeaning
-> AdvType
-> AdvKind
-> AdvDegree

ConjunctionFeature
-> ConjGroup

/* Feature Dimensions */

FeatureDim
-> SentenceFeatureDim
-> NounPhraseFeatureDim
-> NounFeatureDim
-> PronounFeatureDim

-> VerbFeatureDim
-> AdjectiveFeatureDim
-> AdverbFeatureDim
-> ConjunctionFeatureDim

SentenceFeatureDim
-> SentenceMoodDim
-> SentenceVoiceDim

NounPhraseFeatureDim
-> NounPhraseNumberDim
-> NounPhrasePersonDim
-> NounPhraseQuestionDim

-> NounPhraseCaseDim

NounFeatureDim
-> NounClassDim
-> NounGroupDim
-> NounPersonDim
-> NounNumberDim
-> NounGenderDim
-> NounCaseDim

F-8

PronounFeatureDim

-> PronounClassDim

-> PronounPersonDim
-> PronounNumberDim
-> PronounGenderDim
-> PronounCaseDim

VerbFeatureDim

-> VerbKindDim

-> VerbTransitivityDim
-> VerbVoiceDim
-> VerbMoodDim
-> VerbTenseDim

-> VerbPersonDim
-> VerbNumberDim
-> VerbFormDim

AdjectiveFeatureDim

-> AdjectiveClassDim
-> AdjectiveKindDim
-> AdjectiveDegreeDim
-> AdjectiveTypeDim

AdverbFeatureDim
-> AdverbMeaningDim
-> AdverbTypeDim
-> AdverbKindDim
-> AdverbDegreeDim

ConjunctionFeatureDim
-> ConjunctionGroupDim

/* Sentence Feature Dimensions */

SentenceMoodDim
-> declarative
-> decl

-> interrogative
-> interr

-> imperative
-> imper

-> bound
-> relative
-> rel

-> wh-relative
-> wh-rel

F-9

SentenceVoiceDim

-> active
-> passive

/* Noun Phrase Feature Dimensions */

NounPhraseNumberDim

-> singular
-> sing
-> plural
-> plur

NounPhrasePersonDim
-> first
-> second
-> third

NounPhraseQuestionDim
-> yes
-> no

NounPhraseCaseDim
-> nominative
-> nomntv
-> possessive
-> possv
-> objective
-> objctv

/* Noun Feature Dimensions */

NounClassDim
-> common

-> proper

NounGroupDim
-> abstract
-> abs
-> concrete
-> cncrt
-> collective
-> collctv

F-10

NounPersonDim

-> first
-> second
-> third

NounNumberDim
-> singular
-> sing

-> plural
-> plur

NounGenderDim

-> masculine
-> masc
-> feminine
-> fern
-> neuter
-> neut
-> common

NounCaseDim
-> nominative
-> nomntv
-> possessive
-> possv
-> objective
-> objctv

/* Pronoun Feature Dimensions */

PronounClassDim
-> personal
-> pers
-> relative

-> rel
-> interrogative

-> interr
-> demonstrative
-> demonstv
-> indefinite
> indef

PronounPersonDim

-> first
-> second
-> third

F-11

PronounNumberDim
-> singular
-> sing

-> plural
-> plur

PronounGenderDim
-> masculine
-> masc
-> feminine
-> fern
-> neuter
-> neut
-> common

PronounCaseDim
-> nominative
-> nomntv
-> possessive
-> possv
-> objective
-> objctv

/* Verb Feature Dimensions */

VerbKindDim
-> principal
-> prncpl
-> auxiliary
-> aux
-> regular

-> reg
-> irregular
-> irreg
-> modal
-> infinitive
-> inf

VerbTransitivityDim
-> transitive
-> trans
-> intransitive
-> intrans
-> bitransitive

-> bitrans

F-12

VerbVoiceDim

-> active
-> passive

VerbMoodDim

-> indicative
-> indctv

-> subjunctive
-> subj net v

-> imperative
-> impertv

VerbTenseDim

-> present
-> pres
-> past

-> past-participle
-> past-part
-> perfect
-> perf

-> past-perfect
-> past-perf

-> future-perfect
-> future-perf
-> flit-perfect
-> fut-perf

VerbPersonDim
-> first
-> second
-> third

VerbNumberDim
-> singular
-> sing
-> plural
-> plur

VerbFormDim
-> be
-> can

-> do
-> have
-> may
-> must
-> shall
-> will

F-13

/* Adjective Feature Dimensions */

AdjectiveClassDim
-> descriptive
-> descptv
-> limiting
-> lim
-> proper

AdjectiveKindDim
-> regular
-> reg
-> irregular

-> irreg
-> numeral
-> article

AdjectiveDegreeDim

-> positive
-> pos
-> comparative
-> comprtv

-> superlative
-> super
-> non-comparable
-> non-comp

AdjectiveTypeDim
-> cardinal
-> card
-> ordinal

-> ord
-> definite
-> def
-> indefinite
-> indef

F-14

/* Adverb Feature Dimensions */

AdverbMeaningDim
-> time

-> place
-> manner
-> degree
-> cause
-> purpose
-> number

AdverbTypeDim

-> affirmative
-> affirm
-> negative
-> neg

-> interrogative
-> interr

-> relative
-> rel

-> conjunctive
-> conjtv

-> comparison
> comprsn

AdverbKindDim

-> regular
-> reg

-> irregular
-> irreg

AdverbDegreeDim
-> positive
-> postv

-> comparative
-> comptv

-> superlative
-> super

-> non-comparable
-> non-comp

F-15

/* Conjunction Feature Dimensions */

ConjunctionGroupDim
-> coordinating
-> coord

-> subordinating
-> subord

-> correlative
-> correl

/* Roles */

Role

-> SentenceRole

-> NounPhraseRole
-> PrepositionPhraseRole

SentenceRole

-> SSubject
-> SAuxiliaries
-> SMainVerb
-> SIndirectObject
-> SDirectObject
-> SBinder

-> SModifiers

NounPhraseRole
-> NPDeterminer
-> NPHead

-> NPDescribers
-> NPQualifiers

PrepositionPhraseRole
-> PPPrep
-> PPPrepObj

/* Registers */

RegisterRef
-> Register
-> Register . RegisterRef
-> * . RegisterRef
-> A . RegisterRef
-> A

-> *

-> RegisterRef . last
-> RegisterRef . first

RoleRef
-> Role
-> Role . FeatureRef

RegisterOrRoleRef
-> RegisterRef
-> RoleRef

FeatureRef
-> Feature
-> RegisterRef . Feature
-> RoleRef . Feature

Register
-> S
-> N P
-> PP
-> Verb
-> Determiner
-> Noun
-> Pronoun
-> Adjective
-> Adverb
-> Preposition
-> Conjunction
-> Interjection
-> Hold
-> Diet

F-17

/* Conditions */

Conditions
-> ConditionStart ConditionList ConditionEnd => StartCondition

ConditionStart
-> C:[= > StartCondition

ConditionEnd
->] => EndCondition

ConditionList
-> ConditionExp
-> ConditionList ; ConditionExp

ConditionExp
-> RegisterOrRoleRef = Register
-> RegisterOrRoleRef != Register

-> RegisterOrRoleRef = '0'
-> RegisterOrRoleRef != * 0'
-> RegisterOrRoleRef = Word
-> (RegisterOrRoleRef + RegisterOrRoleRef) in Dictionary

-> FeatureRef = Feature
-> FeatureRef != Feature
-> FeatureRef = '0'
-> FeatureRef != *0'
-> (ConditionExp)
-> ConditionExp or ConditionExp
-> ConditionExp and ConditionExp
-> If ConditionExp then ActionExp

-> If ConditionExp then fail

F-18

/* Actions */

Actions

-> A:[ActionList]

ActionStart

-> A:[=> StartAction

ActionEnd

->] => EndAction

ActionList
-> ActionExp

-> ActionList ; ActionExp

ActionExp

-> RegisterOrRoleRef <- RegisterOrRoleRef
-> FeatureRef <- FeatureRef
-> FeatureRef <- FeatureDim
-> RegisterOrRoleRef <- d u m m y Register
-> RoleRef <= RegisterOrRoleRef
-> RegisterOrRoleRef <- '0'
-> Return RegisterOrRoleRef

/* Initialisations */

Initialisations
->I:[InitialisationList]

InitialisationList
-> InitialisationExp
-> InitialisationList ; InitialisationExp

InitialisationExp
-> RegisterOrRoleRef <- RegisterOrRoleRef

-> FeatureRef <- FeatureRef
-> FeatureRef <- FeatureDim
-> RegisterOrRoleRef <- d u m m y Register
-> RegisterOrRoleRef <- C O P Y

F-19

Appendix G: Prefixes

Prefixes are in alphabetical order.

a
ab
abs
ac
acri
aero

ad
aer
aero

«/
after

"g
agri

agro

air
al
all
alio

alt
alti
alto
ambi
amphi

an
ana
angelo
Anglo

ant
ante
antho
anihropo

and
ap
aph
apo
aqua

ar
arch
aristo

as
astro
at
otto
audio
out
auto
back
baro
batho
be
bed
bene
bi
biblio
bin
bio

birth
black
blood
blow
blue
brain
broad
bronch
broncho
by
bye
caec
caeco
caeno
caino
calli
cardi
cardio
earn
carni

cat
cata
cath
cent
centen
centi
centr
centri
centro
chem
chemo
China
choreo
Christo
chrom
chromo
chron
chrono
cine
circum
CO

col
com
con
contr
contra
cor
cosm
cosmo
counter
cred
credo
cross
cruci
cut
de

dead
dec
deca
deci

dek
deka
dem
demo
dendr
dendro

di
dia
dicho
dino
dipt
diplo

dis
dodec
dodeca
door
down
duo
dyna
dynam
dynamo
dys
e
ec
eco
ef
electr
electro
em
en
ep
eph
epi
equi
ethno

eu
ex
exa
exo
extra
extro
femto
ferri
ferro
fire
fluor
fluoro

fly
foot

for
fore
forti

free

fug
fuge
gastero
gastr
gastro
gen
geno
geo
gig"
Graec
Graeco
grand
graph
grapho
great
Grec
Greco
green
gyro
hair
half
hand
hard
head
heart
heet
hecto
hekto
hell
helio
hemi
hept
hepta
herb
herbi
here
heter
hetero

hex
hexa
hier
hiero
high
hippo
holo
horn
home
homeo
homo
homoeo
homoio
horo

hot
house
hydr

G-1

hydro

hyper

ice
ideo
idio

il
ill
im
in
infra
inter
intra

intro

ir
iron

is
ISO

kilo
king
klept
klepto
land
laryng
laryngo
lati
left
life
light
lith
litho
logo
long
love

low
lumin
macr

macro

magni
mal
mar
mare
matri
mechan
mechano

meg
mega
megalo
melon
melano
meta
metr
metri
metro
micr
micro
mid
milli
mini

mis
mole
mon

mono
morph
morpho
motor
multi
mytho

nano

neo
neur
neuro
news
night

non
nor
nudi
nulli

o
ob
oc
oct
octa
octo

of
off
ole
oleo
omni
one
onto
op
ortho
oste
osteo
out
over
palae
palaeo
pale
paleo

pan
panto
par
para
patho
patri

ped
pedati
pedi
pent
penta
per
peri
peta
phil
philo
phleb
phlebo
phon
phono
photo
phylo

physio
pico
plan
plani
piano
play
pleisto
pluto

poly
post
pre
preter
pro
prot
proto
pseud
pseudo
psych
psycho
quadr
quadri
quasi
quin
radio
ram
re
rect
recti
red
retro
road
rock
Russo
sacro
sand
saw
se
sea
self
semi
sept
septe
septem
septi
sesqui
sex
short
side
small
snow
socio
soli
south
space
steno
step
stere
stereo
steth
stetho
stock

stop
su
sub
subter
sue
suf
sug
sui
sum
sun
sup
super
supra
sur

sy
syl
sym
syn
sys
tauto
taxe
taxi
taxo
techn
techno
tel
tele
tera
tetra
the
theo
there
therm
thermo
time
top
topo
trans
tri
tubercul
tuberculo
turbo
two
ultra
un
under
uni
up
vice
water
wave
well
where
wind
with
work
xyl
xylo
yester

G-2

Appendix H: Suffixes

Suffixes are in reverse

+'
+»•
+ia
-iac+ia

-ic+ia

-e+ia
-ical+ia

-y+ia
-ary+ia
+mania

+omania

+opia
-ia+iana
-e+iana

-ian+iana

+ac
-ia+iac

-y+iac

+ic
-ia+ic

+C+ic
-e+ic

-o+ic
-y+ic
-y+fic

-d+ific
-ijy+ific
+pathic

Hie
-sis+tic

-y+tic
+atic

-ar+atic

-y+etic
+istic
-a+istic

-ic+istic
-e+istic

+ualistic

Hytic

-lysis+lytic

+'d
+d
-t+d

+ad
+head

+ed
+C+ed

-e+ed

+/-headed

-y+ied
+red

-e+red
+ised

alphabetic order -

+ualised

-e+ated

+ized
dualized

+oid

-e+oid

+fold
+end

-two+second

+hood

-y+ihood
+ard

+C+ard

+ward
-ree+ird

-t+ce

-ny+ce
+ice

-e+ice

-y+ice
+ance
+C+ance

-ate+ance
-ant+ance
-y+iance
+ulance

-ty+ulance

+ence
+C+ence
-e+ence

-ent+ence

+escence
-esce+escence

-ept+ipience
-us+ulence

+esce

+ade
-e+ade
-h+cade

+grade

+cide
+ode

•Hude

+ee
+C+ee
-e+ee

-eal+ellee

+age

-e+age
+fuge

+ie
+C+ie
-e+ie
Hike

- last character to first character

+able
+C+able

-e+able

-ate+able

-y+iable

•disable

+izable

Hble
+C+ible

-e+ible
-ge+sible
-t+sible

+acle
-ate+acle
-e+ile

+phile
-e+ule
+cule
+uncule
+drome

+chrome

+some
-an+ane

+cene
+ine
+C+ine

-e+ine
+phone

+scape
+scope

+trope
Hype
+'re

+ware
+sphere

+osphere
+where
+metre

+litre
+ure

-e+ure
-ed+dure

-ce+se

-rt+se

+ese

+ise

+C+ise

-e+ise
-ice+ise

-y+ise

-t+dise
+ualise

•hvise

+ose

-e+ose
-ke+cose

Hose
-lysis+lyse

-a+ate

-e+ate
-eal+ellate

+uate
+ite

-e+ite
-re+site

+ette

Hyte
+agogue
+esque
-e+esque

+'ve
-fe+ve

-f+ve
+ive

-e+ive
-de+sive

+ative
-ate+ative
-y+ative

+itive
-e+itive

+ize
+C+ize

-e+ize
-ice+ize

-y+ize
-t+dize

dualize
-lysis+lyze
-ve+f

+proof
+ing

+C+ing
-e+ing

+ling
Hsing
+ualising
-e+ating

+izing
•dualizing

+arch
+graph

+morph

+ish

+CHsh

-e+ish

+th
-ve+th

H-1

+path

-e+opath

+eth
+C+eth

-e+eth
-y+ieth
-ve+fth

-ong+ength
+lith
+with
-ep+pth
+speak
+ock

+al
-a+al

-e+al

-us+al
+ical
-e+ical
-y+ical
-r+tical

-cy+tical
+atical

+istical

-a+istical
-e+istical

+C+ial

-ary+C+ial

-is+ial

-y+ial
-e+ential

+ional
-ed+dural

+ual

+eval
-e+rel

+erel

+phil
+'U
+ful
-y+iful
-ve+tful

+gram

+dom

+form
-e+iasm
+ism

-ic+ism

-e+ism

-ise+ism
-ive+ism

-ize+ism

-ist+ism

-y+ism

+ualism

-e+atism

+endum

+an

-a+an

+ian
-ia+ian

-e+ian

-y+ian

+bian
+ician

-ic+ician
-y+ician
-e+arian

-y+arian

-ary+arian
-ory+orian
+sman
+en
+C+en

-e+en

-er+en
+teen

-t+teen
+ren

-other+ethren
+/-in
+kin

+gon
+ion
-e+ion

-ite+ion

-ect+icion
-d+sion

-ce+sion
-de+sion

-ge+sion
-se+sion

-t+sion
-e+ision

-el+ulsion

-ine+ension
-it+ission
+tion

-e+tion

-l+tion
+ation

-a+ation

-e+ation

-y+ication

-fy+fication
-e+ification

-ify+ification

+isation

-e+isation

-ise+isation

+uation
+ization

-e+ization
-ize+ization
-fy+faction

-ear+arition

-ive+ption

-ve+ution
+hedron

+person
+ton

+ern
+ship

-th+ship

+manship

+smanship
+up
+/-up

+ar
+C+ar
-e+ar

-al+lar

-le+ular
-ule+ular
+er
+C+er

-e+C+er
-e+er
-y+er

-ry+er
+der
+eer

-e+eer
-e+ifer
+ier

-e+ier
-y+ier

-ry+ier
+erer

-ry+erer
+ater
+olater

-ol+olater
+meter

-p+C+meter
-y+imeter
+ometer

+ster
+aster

+yer

+or
+C+or

-e+or
-ate+or

-y+or

+C+ior

-ire+eror

-e+ator

+ceptor

+saur

+our

-e+our

-e+iour
+'s

+s
+mas

+ics

-e+ics

-o+ics
-y+ics

-y+tics

-a+atics

-ar+atics
+es
-e+es

-is+es

-ex+ices
-ix+ices
-y+ies
-fe+ves

-f+ves
+polis
+osis

+biosis
+gnosis
+lysis
+itis
+ess

+C+ess
-e+ess
-er+ess
-or+ess
-y+ess
+less

-y+iless
+ness

-e+ableness
+ibleness
+iveness
-y+iness

-ve+fullness
-ire+ress

-eror+ress
-ter+tress

-tor+tress
+stress

-ulate+ulus

-cule+culus
+unculus
+OUS

-e+ous
-ar+ous

-y+ous

-ety+ous

-ity+ous

-arity+ous
+eous

-y+eous
+C+ious

-ion+ious

-io+ious

-y+ious

H-2

-iety+ious
-ity+ious

-iosity+ious

-acy+acious
-acity+acious

-ocity+ocious

-ite+itious

-ition+itious
+philous

+ulous

-ke+ulous
+gamous

-er+rous

+erous
+iferous

-ic+iferous

-e+iferous

+pterous
-our+orous
+vorous

+ways

+n't
-ll+n't

-n+n't
-Ul+on't

-d+t
-se+t

-ve+t
-cy+t

+crat ,
+stat

+sect
+et
-e+et

+let
+tight

+ant
-e+ant

-ance+ant

-ate+ant

-eal+ellant
-ty+ulant
+ent
-e+ent

-ence+ent
-ate+ent

-ency+ent
+escent

-esce+escent
+ulent

-us+ulent
+ment

-ept+ipent
-ear+arent

-ve+pt
-ive+pt

+C+art
+ast
-ary+ast

-e+iast
+est

+C+est

-e+est
+fest

-y+iest
+ist

-a+ist

-e+ist

-ise+ist
-ize+ist
-ism+ist

-y+ist
+ualist

+nist
+ionist
+tist

+most
-one+first

-e+trix
-or+trix

+y
+C+y
-e+y

+cy
-tic+cy

-ce+cy
-te+cy
-t+cy
-atic+acy

-e+acy
-ate+acy

-at+acy
+cracy

+ancy
-e+ancy
-ant+ancy

-y+ancy
-ty+ulancy

-e+ency
-us+ulency

+ey
-id+efy

+ify
-ific+ify

-e+ify
-iful+ify

-y+ify
+logy
+ology

+inology
+urgy

+archy
+graphy

+sophy

+pathy

+fy
-e+ly

-le+ly
+ably
-e+ably

-able+ably

+ibly
-ible+ibly
+ively
-e+ingly
-y+ily

-ial+ially
-y+ially
+ually

-ual+ually
-ve+tfully
+/-ply

+gamy
+nomy

+tomy

-ix+ectomy
+thermy
+phany
+geny
+gony

+phony
+mony

+scopy

+ry
-l+ry
-er+ry

+ary
-e+ary

-ate+ary
-nial+ary

-an+ary

-eer+ary

-ant+ary
-ample+emplary

-ain+anary

-our+orary

+ery

+C+ery

-e+ery
-er+ery
-ler+ery

+ory

-e+ory
-el+ulsory

-e+atory

+atry
+iatry

+olatry
-ol+olatry

+metry

+ty
-te+ty

-al+ty
-ive+ifty
+ity
-e+ity

-acious+acity
-ocious+ocity
-e+ility
-ice+ility
-le+ility

-ble+ility
-ile+ility
-il+ility
-ble+bility

+ability
-e+ability

-able+ability
-ate+ability

+ibility
-ible+ibility
-emy+mity

+osity
-ose+osity

-us+osity

-ous+osity
+iosity

-iose+iosity
+evity

+ivity
-e+ivity

-ive+ivity

-wo+wenty
-ree+irty

-our+orty

H-3

Appendix I: Suffix Transforms and their Effects:

Adj_Adj

Adj_Adj_Causing

Adj_Adj_FuHOf

Adj_Adj_Number

Adj_Adj_Producing

Adj_Adj_Superlative

Adj_Adj_Superlative__Adv_Adv_Superlative

Adj_AdjAdv_Number
Adj_Noun

Adj_Noun_Ability

Adj_Noun_ActionOrCondition
Adj_Noun_Actor

Adj_Noun_Collection

Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ImperfectResemblance
Adj_Noun_Language
Adj_Noun_Person
Adj_Noun_Ply

Adj_Noun_QuaIityOrStateOfBeing
Adj_Noun_State

Adj_Noun_StateOrOuality
Adj_Noun_Ware

Adj_Noun_Where
Adj_Verb_Past

AdjAdv_Noun_State

AdjAdvNounVerb_Noun_Proficiency
AdjAdvVerb_Noun_State

AdjNoun_Adj

AdjNoun_Adj_Direction
AdjNoun_Noun

AdjNoun_Noun_ActionOrCondition
AdjNounNounConditionOrRank

AdjNoun_Noun_Hypocoristic
AdjNoun_Noun_StateOrCondition

AdjNoun_Verb
AdjNoun_Verb_Action

AdjNoun_Verb_CauseToBe

AdjNounPrep_Adj_Like

AdjNounVerb_Adj_CharacterisedBy
AdjNdunVerb_Adj_Pertaining

AdjNounVerb_Adv
AdjNounVerb_Noun

AdjNounVerb_Noun_ActionOrCondition

adj -> adj

adj -> adj (causing)
adj -> adj (full of)

adj -> adj (number)

adj -> adj (producing)

adj -> adj (superlative)
adj -> adj (superlative)/

adv -> adv (superlative)
adj -> adj,adv (number)
adj -> noun

adj -> noun (ability)

adj -> noun (action or condition)
adj -> noun (actor)

adj -> noun (collection)

adj -> noun (condition or characteristics)
adj -> noun (imperfect resemblance)
adj -> noun (language)
adj -> noun (person)
adj -> noun (ply)

adj -> noun (quality or state of being)
adj -> noun (state)

adj -> noun (state or quality)
adj -> noun (ware)

adj -> noun (where)
adj -> verb (past,pastpart)

adj,adv -> noun (state)

adj,adv,noun,verb -> noun (proficiency)
adj,adv,verb -> noun (state)

adj,noun -> adj

adj,noun -> adj (direction)
adj,noun -> noun

adj,noun -> noun (action or condition)
adj,noun -> noun (condition or rank)

adj,noun -> noun (hypocoristic)
adj,noun -> noun (state or condition)
adj,noun -> verb

adj,noun -> verb (action)

adj,noun -> verb (cause to be)

ad j,noun,prep -> adj (like)

adj,noun,verb -> adj (characterised by)

adj,noun,verb -> adj (pertaining)

adj,noun,verb -> adv
adj,noun,verb -> noun

ad j,noun,verb -> noun (action or condition)

AdjNounPfxVerb_Adj_Tendency adj,noun,pfx,verb -> adj (tendency)
AdjNounPfxVerb_AdjNoun_FunctionLocationRelation

adj,noun,pfx,verb -> adj,noun

(function, location or relation)

AdjNounPfxVerb_Noun State adj,noun,pfx,verb -> noun (state)

1-1

AdjNounVerb_Noun

AdjNounVerb_Noun_ConditionOrPractice
AdjNounVerb_Noun_Identification

AdjNounVerb_Noun_Object
AdjNounVerb_Noun_Practitioner

AdjNounVerb_Noun_StateOrQuality
AdjNounVerb_Verb

AdjPfx_Adj_Moving

AdjPrep_Adj_Superlative

AdjPrep_AdjAdy_Direction

Adv_Adv_Conjunction

NounAdj

Noun_Adj_AboundingIn

Noun_Adj_FullOf
NounAdjImperviousTo

NounAdjLike
Noun_Adj_Manner

Noun_Adj_Pertaining
Noun_Adj_Pertaining Verb_Noun_Agent

Noun_Adj_Place
NounAdjProducing

NounAdvJDirection
Noun_Adv_Manner

Noun_Noun
Noun_Noun_ActionOrCondition

Noun_Noun_Agent
Noun_Noun_Collection

Noun_Noun_Condition

Noun_Noun_Diminutive
Noun_Noun_DomainOrCondition

NounNounJExpert
Noun_Noun_FeastOrHoliday
Noun_Noun_FeminineAgent

Noun_Noun_FemOrDim

Noun_Noun_Festivity
Noun_Noun_Identification

Noun_Noun_Passion

Noun_Noun_Person
Noun_Noun_Plural
Noun_Noun_Plur__Verb_Verb_3PersActive

NounNounJPossessive
Noun_Noun_Producing

Noun_Noun_ScienceOrArt

Noun_Noun_State

Noun_Noun_StateOrQuality
NounNounJSuffering

Noun_Noun_View
Noun_Noun_WorshiperOf

Noun_Verb
Noun Verb Past

adj,noun,verb -> noun

(condition or characteristics)

adj,noun,verb -> noun (condition or practice)

adj,noun,verb -> noun (identification)

adj,noun,verb -> noun (object)
adj,noun,verb -> noun (practitioner)

adj,noun,verb -> noun (state or quality)
adj,noun,verb -> verb

adj,pfx -> adj (moving)

adj,prep -> adj (superlative)

adj,prep -> adj,adv (direction)

adv -> adv (conjunction)

noun -> adj

noun -> adj (abounding in)

noun -> adj (full of)
noun -> adj (impervious to)

noun -> adj (like)
noun -> adj (manner)

noun -> adj (pertaining)
noun -> adj (pertaining) / verb -> adj (agent)

noun -> adj (place)
noun -> adj (producing)

noun -> adv (direction)
noun -> adv (manner)
noun -> noun
noun -> noun (action or condition)

noun -> noun (agent)
noun -> noun (collection)

noun -> noun (condition)

noun -> noun (diminutive)
noun -> noun (domain or condition)

noun -> noun (expert)
noun -> noun (feast or holiday)
noun -> noun (feminine agent)
noun -> noun (feminine or diminutive)

noun -> noun (festivity)
noun -> noun (identification)

noun -> noun (passion)

noun -> noun (person)
noun -> noun (plural)

noun -> noun (plural) / verb -> verb
(3rd pers sing indictv active)

noun -> noun (possessive)
noun -> noun (producing)

noun -> noun (science or art)

noun -> noun (state)

noun -> noun (state or quality)

noun -> noun (suffering)

noun -> noun (view)
noun -> noun (worshiper of)

noun -> verb
noun -> verb (past,pastpart)

1-2

NounPfx_Adj

NounPfx_Adj_BeingOrBecoming
NounPfx_AdjNoun_Action

NounPfx_AdjNoun_Belonging

NounPfx_AdjNoun_Expert
NounPfx_Noun_Abstract

NounPfx_Noun_ActionOrCondition
NounPfx_Noun_Actor

NounPfx_Noun_Chief

NounPfx_Noun_City

NounPfx_Noun_Collection

NounPfx_Noun_ConditionOrResult
NounPfx_Noun_Cutting

NounPfx_Noun_Decomposition

NounPfx_Noun_Diminutive
NounPfx_Noun_Distribution

NounPfx_Noun_Drawn
NounPfx_Noun_Drawing

NounPfx_Noun_Flight
NounPfx_Noun_Form

NounPfx_Noun_GeometricaIShape
NounPfx_Noun_GeometricaISolid
NounPfx_Noun_Government
NounPfx_Noun_Graph
NounPfx_Noun_Heat

NounPfx_Noun_ImperfectResembIance
NounPfx_Noun_Inflammation

NounPfx_Noun_KnowIedge
NounPfx_Noun_Leading

NounPfx_Noun_Like

NounPfx_Noun_Litre
NounPfx_Noun_Lizard
NounPfx_Noun_Lover

NounPfx_Noun_Manifestation

NounPfx_Noun_Marriage
NounPfx_Noun_Measuring

NounPfx_Noun_MeasuringInstrument

NounPfx_Noun_MedicaICare

NounPfx_Noun_Metre
NounPfx_Noun_New
NounPfx_Noun_Origin

NounPfx_Noun_Origination

NounPfx_Noun_Passion

NounPfx_Noun_Process
NounPfx_Noun_Recognition
NounPfx_Noun_Ruler

NounPfx_Noun_Running

NounPfx_Noun_See

NounPfx_Noun_Seeing

NounPfx_Noun_Sight

NounPfx_Noun_Sound

NounPfx_Noun_Spherc
NounPfx_Noun_State
NounPfx_Noun_Stationary

NounPfx_Noun_Stone
NounPfx_Noun_Suffering
NounPfx_Noun_Technology
NounPfx_Noun_ThoughtSystcm

noun,pfx

noun,pfx

noun,pfx

noun,pfx

noun,pfx

noun,pfx

noun,pfx
noun,pfx

noun,pfx

noun,pfx
noun, pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx

noun,pfx
noun,pfx
noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx
noun,pfx

noun,pfx
noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx
noun,pfx

noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx

noun,pfx
noun,pfx

noun,pfx
noun,pfx

noun,pfx

noun,pfx

noun,pfx

noun,pfx
noun,pfx

noun,pfx

->

->

->
->

->

->
->

->
->

->
->

->

->

->

->
->

->
->

->
->
->

->
->

->
->
->

->
->

->
->
->

->
->
->

->

->
->

->
->
->

->
->

->
->

->

->
->

->

->

->

->

->

->

->

->

->

->

->

adj
adj (being or becoming)

adj,noun (action)

ad j,noun (belonging)

adj,noun (expert)
noun (abstract)

noun (action or condition)
noun (actor)

noun (chief)
noun (city)

noun (collection)
noun (condition or result)

noun (cutting)
noun (decomposition)

noun (diminutive)
noun (distribution)

noun (drawn)
noun (drawing)

noun (flight)
noun (form)

noun (geometrical shape)
noun (geometrical solid)
noun (government)
noun (graph)
noun (heat)
noun (imperfect resemblance)

noun (inflammation)
noun (knowledge)

noun (leading)
noun (like)
noun (litre)
noun (lizard)

noun (lover)
noun (manifestation)

noun (marriage)
noun (measuring)

noun (measuring instrument)
noun (medical care)

noun (metre)
noun (new)
noun (origin)
noun (origination)

noun (passion)

noun (process)
noun (recognition)
noun (ruler)

noun (running)
noun (see)

noun (seeing)

noun (sight)

noun (sound)
noun (sphere)

noun (state)

noun (stationary)

noun (stone)

noun (suffering)

noun (technology)

noun (thought system)

1-3

NounPfx_Noun_ToKiIl
NounPfx_Noun_Turning
NounPfx_Noun_Type

NounPfx_Noun_WayOfLife

NounPfx_Verb_Become

NounPfxVerb_Adj_Fonn

NounPfxVerb_Adj_Pertaining
NounPfxVerb_Noun_Action

NounPlur_Noun_PlurPossessive

NounPrepVerb_Noun_DiminOrPerjor

NounSing_Noun_PIurPossessive

NounVerb_Adj

NounVerb_Adj_Ability

NounVerb_Adj_FullOf
NounVerb_Adj_Pertaining

NounVerb_Adj_Tendency

NounVerb_Adj_TendingTo
NounVerb_Adj_Without

NounVerb_AdjNoun_ActivityIntensity
NounVerb_AdjNoun_FuIIOf

NounVerb_AdjVerb_PresPart
NounVerb_Noun

tounVerb_Noun_Actt7mOrCondition

NounVerb_Noun_Actor

NounVerb_Noun_ConditionOrCharacteristics

NounVerb_Noun_Feminine
NounVerb_Noun_Identification

NounVerb_Noun_Identity

Pfx_Adj
Pfx_Adj_Colour

Pfx_Adj_Eating
Pfx_Adj_Loving

Pfx_Adj_Marriage
Pfx_Adj_Pertaining
Pfx_Adj_Suffering

Pfa_Adj_TendingTo

Pfr_Adj_Winged

Pfx_Verb_Cut

Prep_Noun_End

PersPron_PersPron_Are

PersPron_PcrsPronJDid

PersPron_PersPron_Have

PersPron_PersPron_Will

noun,pfx -> noun (to kill)

noun,pfx -> noun (turning)
noun,pfx -> noun (type)

noun,pfx -> noun (way of life)

noun,pfx -> verb (become)

noun,pfx,verb -> adj (form)

noun,pfx,verb -> adj (pertaining)
noun,pfx,verb -> noun (action)

noun (plural) -> noun (plural possessive)

noun,prep,verb -> noun

(diminutive or perforative)

noun (singular) -> noun (plural possessive)

noun,verb -> adj

noun,verb -> adj (ability)
noun,verb -> adj (full of)
noun,verb -> adj (pertaining)

noun,verb -> adj (tendency)
noun,verb -> adj (tending to)
noun,verb -> adj (without)
noun,verb -> adj,noun (activity intensity)
noun,verb -> adj,noun (full of)
noun,verb -> adj,verb (prespart)

noun,verb -> noun
noun,verb -> noun (action or condition)

noun,verb -> noun (actor)
noun,verb -> noun

(condition or characteristics)
noun,verb -> noun (feminine)
noun,verb -> noun (identification)

noun,verb -> noun (identity)

pfx -> adj

pfx -> adj (colour)
pfx -> adj (eating)
pfx -> adj (loving)

pfx -> adj (marriage)
pfx -> adj (pertaining)

pfx -> adj (suffering)

pfx -> adj (tending to)

pfx -> adj (winged)

pfx -> verb (cut)

prep -> noun (end)

pron (personal) -> pron (personal) + 'are'

eg. we're, they're
pron (personal) -> pron (personal) + 'did'

eg. I'd, he'd
pron (personal) -> pron (personal) + 'have'

eg. we've, they've
pron (personal) -> pron (personal) + 'will'

eg. I'll, they'll

1-4

Verb_Adj
Verb_Adj_BeingOrBecoming
Verb_Adj_Capability
Verb_Adj_Causing
Verb_Adj_FullOf
Verb_AdjNoun_Agency
Verb_AdjNoun_FunctionEffectOrPurpose
Verb_Noun
Verb_Noun_ActionOrCondition
Verb_Noun_ActionOrState
Verb_Noun_Actor
Verb_Noun_Agent
Verb_Noun_CommunalActivity
Verb_Noun_Diminutive
Verb_Noun_FeminineAgent
Verb_Noun_ImperfectResemblance
Verb_Noun_State
Verb_Noun_StateOrCondition
Verb_Noun_StateOrQuality
Verb_Verb_Archaic
Verb_Verb_Not
Verb_Verb_Past
Verb_Verb_Past__Noun_Adj
Verb_Verb_PastPart
Verb_Verb_PIural

verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb
verb

->

->

->

->
->

->

->
->
->

->
->
->

->

->
->
->

->
->

->

->
->

->
->

->
->

adj
adj (being or becoming)
adj (capability)
adj (causing)
adj (full of)
ad j,noun (agency)
adj,noun (function, effect or place)
noun
noun (action or condition)
noun (action or state)
noun (actor)
noun (agent)
noun (communal activity)
noun (diminutive)
noun (feminine agent)
noun (imperfect resemblance)
noun (state)
noun (state or condition)
noun (state or quality)
verb (archaic)
verb (verb + 'not')
verb (past, pastpart)
verb (past, pastpart) / noun -> adj
verb (pastpart)
verb (plural)

1-5

Appendix J: Suffix Rules and Associated Transforms:

Suffix rules are in reverse alphabetic order - last character to first character

+'
+s'
+ia
-iac+ia
-ic+ia
-e+ia
-ical+ia
-y+ia
-ary+ia
+mania
+omania
+opia
-ia+iana
-e+iana
-ian+iana
+ac
-ia+iac
-y+iac
+ic
-ia+ic
+C+ic
-e+ic
-o+ic
-y+ic
-y+fic
-d+ific
-ify+ific
+pathic
+tic
-sis+tic
-y+tic
+atic
-ar+atic
-y+etic
+istic
-a+istic
-ic+istic
-e+istic
-Hialistic
+lytic
-lysis+lytic
+'d
+d
-t+d
+ad
+head
+ed
+C+ed
-e+ed
+/-headed
-y+ied
+red

NounPlur_Noun_PlurPossessive
NounSing_Noun_PlurPossessive
Noun_Noun
Noun_Noun
Adj_Noun
Noun_Noun
Adj_Noun
Noun_Noun
AdjNoun->Noun
NounPfx_Noun_Passion
NounJNounJPassion
NounPfx_Noun_Sight
Noun_Noun_CoIIection
Noun_Noun_Collection
Adj_Noun_Collection
Pfx_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
NounAdjJPertaining
NounVerb_Adj_Pertaining
Verb_Adj_Causing
Adj_Adj_Causing
Verb_Adj_Causing
Pfx_Adj_Suffering
Pfx_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj_Pertaining
Noun_Adj
AdjNoun_Adj
Noun_Adj
Noun_Adj
AdjNoun_Adj
Noun Adj
Pfx_Adj
Noun_Adj
PersPron_PersPron_Did
Verb_Verb_Past
Noun_Verb
NounPfx_Noun_ColIection
AdjNoun_Noun
Verb_Verb_Past&Noun_Adj
Verb_Verb_Past
Verb Verb Past
Adj_Adj
VerbJVcrbJPast
Noun_Noun_Condition

J-1

-e+red
+ised

-Hualised
-e+ated

+ized

+ualized
4oid

-e+oid

+fold

+end

-two+second
+hood
-y+ihood

+ard

+C+ard
+ward

-ree+ird

-t-H;e
-ny+ce
+ice

-e+ice

-y+ice
+ance
+C+ance

-ate+ance

-ant+ance
-y+iance
+ulance

-ty+ulance
+ence

+C+ence
-e+eoce

-ent+ence

+escence

-esce+escence
-ept-Hpience
-us+ulence
+esce
+ade

-e+ade

-h+cade
+grade

+cide
+ode

+tude

+ee
+C+ee

-e+ee

-eal4ellee

+age
-e+age
+fuge

+ie
+€+ie

-e+ie

+like

+able

+C+ablc

Noun_Noun_Condition
Adj_Verb_Past

Noun_Verb_Past
Adj_Verb_Past

Adj_Verb_Past

Noun_Verb_Past

NounAdjLike

Noun_Adj_Like

Adj_AdjAdv_Number
Prep Noun End

Adj_Adj

NounNounState

AdjAdv_Noun_State

AdjNounVerb_Noun

AdjNounVerb_Noun

AdjPrep_AdjAdv_Direction
Adj_Adj_Number
Adj_Noun

AdjNoun_Noun

AdjNounPfxVerb_Noun_State

AdjNounPfxVerb_Noun_State
AdjNounPfxVerb_Noun_State
AdjAdvVerb_Noun_State
AdjAdvVerb_Noun_State
AdjNounState
Adj_Noun_State

Verb_Noun_State
Noun_Noun_State
AdjLNoun_State

Verb_Noun_State
Verb_Noun_State
Verb_Noun_State

AdjNounState

NounPfx_Noun_State
Verb_Noun_State

NounNounState

Noun_Noun_State

NounPfx_Verb_Become

NounPfxVerb_Noun_Action
NounPfxVerb_Noun_Action

NounPfxVerb_Noun_Action
AdjPfx_Adj_Moving

NounPfx_Noun_ToKiIl

NounPfx_Noun_Like

NounPfx_Noun_Abstract

AdjNounVerb_Noun_Object

AdjNounVerb_Noun_Object

AdjNounVerb_Noun_Object

AdjNounVerb_Noun_Object
NounVerb_Noun

NounVerb_Noun

NounPfx_Noun_FIight

AdjNounNounHypocoristic

AdjNoun_Noun_Hypocoristic

AdjNounNounHypocoristic
Noun_Adj_Like

NounVerb_Adj_Ability

NounVerb_Adj_Ability

J-2

-e+able

-ate+able

-y+iable
+isable

+izable
+ible

+C+ible

-e+ible

-ge+sible
-t+sible
+acle
-ate+acle

-e+ile

+phile

-e+ule
+cule

+uncule
+drome

+chrome

+some
-an+ane

+cene
+ine
+C+ine
-e+ine

+phone

+scape
+scope

+trope
+type
+'re

+ware
+sphere
+osphere

+where
+metre
+litre
+ure

-e+ure
-ed+dure

-ce+se
-rt+se

+ese
+ise

+C+ise
-e+ise

-ice+ise

-y+ise

-t+dise

+ualise
+wise
+ose

-e+ose

-ke+cosc
+iose

-lysis+lyse

-a+ate
-e+ate

NounVerb_Adj_Ability

NounVerb_Adj_Ability

NounVerb_Adj_Ability
Adj_Noun_Ability

Adj_Noun_AbiIity

NounVerb_Adj_Ability
NounVerbAdjAbility

NounVerb_Adj_Ability

NounVerb_Adj_Ability
NounVerb_Adj_Ability
Noun_Noun
Verb_Noun

Verb_Adj_Capability
NounPfxNounLover

NounPfx_Noun_Diminutive
NounPfx_Noun_Diminutive
NounPfx_Noun_Diminutive
NounPfx_Noun_Running

Pfx_Adj_Colour

AdjNounPfxVerb Adj Tendency
Adj_Adj
NounPfx_Noun_New
NounPfx_AdjNoun_Action
NounPfx_AdjNoun_Action
NounPfx_AdjNoun_Action

NounPfx_Noun_Sound

Noun_Noun_View
NounPfx_Noun_See
NounPfx_Noun_Turning

NounPfx_Noun_Type
PersPron_PersPron_Are

Adj_Noun_Ware
NounPfx_Noun_Sphere

NounPfx_Noun_Sphere
Adj_Noun_Where
NounPfx_Noun_Metre
NounPfx_Noun_Litre
NounVerb_Noun_Action
NounVerb_Noun_Action

NounVerb_Noun_Action

NounJVerb
Verb_Noun

Noun_Adj_Place
AdjNoun_Verb_Action

AdjNoun_Verb_Action

AdjNoun_Verb_Action
AdjNoun_Verb_Action

AdjNoun_Verb_Action
AdjNoun_Verb_Action

AdjNoun_Verb_Action
Noun Adv_Direction

Noun Adj_FuIIOf

Noun Adj FullOf

Noun_Adj_FuIIOf

Noun_Adj_FullOf
Adj Noun_Verb_Action

AdjNoun_Verb_Action

AdjNoun_Verb_Action

J-3

-eal+ellate

+uate
+ite

-e+ite

-re+site

•fette

+lyte

+agogue

+esque

-e+esque
+'ve

-fe+ve
-f+ve

+ive
-e+ive

-de+sive
+ative

-ate+ative

-y+ative

+itive
-e+itive

+ize

+C+ize
-e+ize

-ice+ize
-y+ize

-t+dize

-Hialize
-lysis+lyze
-ve+f

+proof
+ing

+C+ing

-e+ing
+ling

+ising
-Kialising

-e+ating
+izing

+ualizing
+arch

+graph

+morph
+ish

+C+ish
-e+ish

+th
-ve+th

+path

-e+opath
+eth

+C+eth
-e+*th

-y+ieth

-ve+fth
-ong+ength

+lith

+with

NounVerb_Adj_Pertaining
AdjNoun_Verb_Action

NounVerb_Noun_Identity

NounVerb_Noun_Identity

NounVerb_Noun_Identity

N o u n N o u n FeminineOrDiminutivc
NounPfx_Noun_Process
NounPfx_Noun_Leading

Noun_Adj_Manner
Noun_Adj_Manner

PersPronPersPronHave
Noun_Verb
Noun_Verb

NounVerb_Adj_Tendency

NounVerb_Adj_Tendency
NounVerb_Adj_Tendency
NounVerb_Adj_Tendency

NounVerb_Adj_Tendency
NounVerb_Adj_Tendency
NounVerb_Adj_Tendency
NounVerb_Adj_Tendency
AdjNoun_Verb_Action
AdjNoun_Verb_Action
AdjNoun_Verb_Action
AdjNoun_Verb_Action

AdjNoun_Verb_Action
AdjNoun_Verb_Action

AdjNoun_Verb_Action
AdjNoun_Verb_Action

Verb_Noun
Noun_Adj_ImperviousTo
NounVerb_AdjVerb_PresPart
NounVerb_AdjVerb_PresPart

NounVerb_AdjVerb_PresPart
NounPrepVerb_Noun_DiminOrPerj

Adj_AdjVerb_PresPart

Noun_AdjVerb_PresPart

Adj_AdjVerb_PresPart
Adj_AdjVerb_PresPart

Noun_AdjVerb_PresPart

NounPfx_Noun_Chief
NounPfx_Noun_Graph
NounPfx_Noun_Form

AdjNounPrep_Adj_Like

AdjNounPrep_Adj_Like
AdjNounPrep_Adj_Like

Adj_Adj_Number

Adj_Adj_Number

NounPfx_Noun_Suffering

NounNounSuffering

Verb_Verb_Archaic

Verb_Verb_Archaic

Verb_Verb_Archaic

Adj_Adj_Number

Adj_Adj_Number
Adj_Noun

NounPfx_Noun_Stone
Adv_Adv_Conjunction

J-4

-ep+pth

+speak

+ock

+al
-a+al

-e+al
-us+al
+ical

-e+ical

-y+ical

-r+tical

-cy+tical

+atical
+istical

-a+istical
-e+istical

+C+ial

-ary+C+ial

-is+ial
-y+ial

-e+ential

+ional

-ed+dural

+ual
+eval

-e+rel
+erel

+phil

+'11
+ful
-y+iful

-ve+tful
+gram

+dom

+form
-e+iasm

+ism
-ic+ism
-e+ism

-ise+ism

-ive+ism
-ize+ism

-ist+ism
-y+ism

+ualism
-e+atism

+endum
+an
-a+an
+ian

-ia+ian
-e+ian

-y+ian
+bian

+ician

-ic+ician

-y+ician

-e+arian

AdjNoun

AdjNounLanguage

Noun_Noun_Diminutive

AdjNounVerb_Adj_Pertaining

AdjNoun Verb_Adj_Pertaining

AdjNounVerbAdjPertaining
AdjNounVerb Adj Pertaining
NounPfx_Adj

NounPfx_Adj
NounPfxAdj

NounPfx_Adj

NounPfx_Adj

NounPfx_Adj
NounPfxAdj

NounPfx_Adj
NounPfxAdj

NounPfxVerb_Adj_Pertaining

NounPfxVerb_Adj_Pertaining

NounPfxVerb_Adj_Pertaining
NounPfxVerb_Adj_Pertaining

NounPfxVerb_Adj_Pertaining
NounPfxVerb_Adj_Pertaining
NounPfxVerb_Adj_Pertaining
NounPfxVerb_Adj_Pertaining
AdjNoun Verb_Adj_Pertaining
NounPrepVerb_Noun_DiminOrPerjor
NounPrepVerb_Noun_DiminOrPerjor
NounPfx_Noun_Lover

PersPron_PersPron_Will
NounVerb_AdjNoun_FullOf

NounVerb_AdjNoun_FullOf
NounVerb_AdjNoun_FullOf
NounPfx_Noun_Drawn

Noun_Noun_DomainOrCondition
NounPfxVerb_Adj_Form
VerbJNoun
AdjNoun_Noun_ActionOrCondition

Adj_Noun_ActionOrCondition
AdjNoun_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

Adj_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
Noun_Noun_ActionOrCondition
AdjNoun_Noun_ActionOrCondition

Noun_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition

Verb_Noun
NounPfxAdjNounBelonging

NounPfx_AdjNoun_Belonging

NounPfx_AdjNoun_Belonging

NounPfx_AdjNoun_Belonging

NounPfx_AdjNoun_Belonging

NounPfxAdjNounBelonging

NounPfx_AdjNoun_BeIonging

NounPfx_AdjNoun_Expert

NounPfx_AdjNoun_Expert

NounPfx_AdjNoun_Expert
NounPfx_AdjNoun_Belonging

J-5

-y+arian

-ary+arian
-ory+orian
+sman

+en
+C+en

-e+en
-er+en

+teen
-t+teen

+ren

-other+ethren

+/-in

+kin

+gon

+ion
-e+ion

-ite+ion

-ect+icion

-d+sion
-ce+sion

-de+sion

-ge+sion

-se+sion
-t+sion

-e+ision
-el+ulsion

-ine+ension
-it+ission

+tion
-e+tion
-1+tion

+ation

-a+ation

-e+ation

-y+ication

-fy+fication
-e+ification

-ify+ification
+isation

-e+isation

-ise+isation
+uation
-Hzation

-e+ization

-ize+ization
-fy+faction

-ear+arition
-ive+ption

-ve+ution

+hedron

+person

+ton

+ern

+ship

-th+ship

+manship
+smanship

NounPfxAdjNounBelonging
NounPfxAdjNounBelonging

NounPfx_AdjNoun_Expert
Noun_Noun_Expert

AdjNoun_Verb

AdjNoun_Verb

Verb_Verb_PastPart
AdjNounJVerb
Adj_Adj_Number
Adj_Adj_Number

Verb_Verb_PIuraI
Verb_Verb_Plural

Verb_Noun_CommunalActivity
Noun_Noun_Diminutive

NounPfx_Noun_GeometricalShape
NounVerb_Noun_ActionOrCondition
AdjNoun Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
VerbNounActionOrCondition

Verb_Noun_ActionOrCondition
NounVerb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition

AdjNounVerb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition
AdjNounVerb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
Adj_Noun_ActionOrCondition
AdjNoun Verb_Noun_ActionOrCondition

NounVerb_Noun_ActionOrCondition
NounVerb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
Adj_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition

Adj_Noun_ActionOrCondition
Adj_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
NounVerb_Noun_ActionOrCondition

Adj_Noun_ActionOrCondition

Adj_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition
Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

Verb_Noun_ActionOrCondition

NounPfx_Noun_GcometricalSolid

Noun_Noun_Person

Adj_Nou n_Person

AdjNoun_Adj_Di rection

AdjNoun_Noun_StateOrCondition

AdjNoun_Noun_StateOrCondition

AdjAdvNounVerb_Noun_Proficiency

AdjAdvNounVerb_Noun_Proficiency

J-6

+up
+/-up

+ar
+C+ar

-e+ar
-al+lar

-le+ular
-ule+ular

+er
+C+er
-e+C+er

-e+er

-y+er

-ry+er
+der

+eer
-e+eer

-e+ifer

+ier

-e+ier
-y+ier

-ry+ier
+erer
-ry+erer

+ater

+olater
-ol+olater

+meter
-p+C+meter
-y+imeter
+ometer

+ster
+aster

+yer

+or
+C+or
-e+or

-ate+or
-y+or

+C+ior
-ire+eror

-e+ator

+ceptor
+saur
+our

-e+our

-e+iour

+'s
+s
+mas

+ics

-e+ics

-o+ics

-y+ics

-y+tics

-a+atics
-ar+atics

+es

NounVerb_AdjNoun_ActivityIntensity

NounVerb_AdjNoun_ActivityIntensity

Noun_Adj_Pertaining&Verb_Noun_Agent
Noun_Adj_Pertaining&Verb_Noun_Agent
Noun_Adj_Pertaining&Verb_Noun_Agent

Noun_Adj_Pertaining&Verb_Noun_Agent

Noun_Adj_Pertaining&Verb_Noun_Agent
Noun_Adj_Pertaining&Verb_Noun_Agent
AdjNoun Verb_Noun_Identification
AdjNoun Verb_Noun_Identification

AdjNounVerb_Noun_Identification
AdjNoun Verb_Noun_Identification

AdjNounVerb_Noun_Identification
AdjNoun Verb_Noun_Identification
AdjNounVerb_Noun_Identification

Noun_Noun_Identification
Noun_Noun_Identification
Noun_Noun_Producing

NounVerb_Noun_Identification
NounVerb_Noun_Identification
NounVerb_Noun_Identification

NounVerb_Noun_Identification
AdjNounVerb_Noun_Identification
AdjNoun Verb_Noun_Identification

Noun_Noun_Identification
Noun_Noun_WorshiperOf

Noun_Noun_WorshiperOf
NounPfx_Noun_MeasuringInstrument
NounPfx_Noun_MeasuringInstrument
NounPfx_Noun_MeasuringInstrument
NounPfx_Noun_MeasuringInstrument
AdjNounVerb_Noun_Identification

NounPfx_Noun_ImperfectResembIance
NounVerb_Noun_Identification

NounVerb_Noun_Actor
NounVerb_Noun_Actor
NounVerb_Noun_Actor

Verb_Noun_Actor
NounVerb_Noun_Actor

NounVerb_Noun_Actor

NounVerb_Noun_Actor

Adj_Noun_Actor
NounPfx_Noun_Actor

NounPfx_Noun_Lizard
Verb_Noun_StateOrCondition

Verb_Noun_StateOrCondition
Verb_Noun_StateOrCondition

Noun_Noun_Possessive
Noun_Noun_PIural__Verb_Verb_3PersActive

Noun_Noun_FeastOrHoIiday

Noun_Noun_ScienceOrArt

Noun_Noun_ScienceOrArt

Noun_Noun_ScienceO rArt

Noun_Noun_ScienceOrArt
Noun_Noun_ScienceOrArt

Noun_Noun_ScienceOrArt
Noun_Noun_ScienceOrArt

Noun Noun Plural Verb Verb 3PersActivc

J-7

-e+es

-is+es
-ex+ices
-ix+ices

-y+ies

-fe+ves

-f+ves
+po!is
+osis

+biosis

+gnosis
+Iysis

+itis
+ess
+C+ess

-e+ess

-er+ess
-or+ess

-y+ess

+Iess

-y+iless
+ness

-e+ableness
+ibleness

-Kveness
-y+iness
-ve+fullness

-ire+ress

-eror+ress
-ter+tress
-tor+tress
+stress
-ulate+ulus

-cule+culus

+unculus
+0US

-e+ous

-ar+ous
-y+ous

-ety+ous

-ity+ous

-arity+ous
+eous

-y+eous

+C+ious

-ion+ious
-io+ious

-y+ious

-iety+ious
-ity+ious

-iosity+ious

-acy+acious

-acity+acious
-ocity+ocious

-ite+itious

-ition+itious
+philous

+ulous

Noun_Noun_PIural_Verb_Verb_3PersActive
Noun_Noun_Plural
NounNounPIural

NounNounPlural

Noun_Noun_PIural_Verb_Verb_3PersActive

Noun_Noun_Plural_Verb_Verb_3PersActive
Noun_Noun_PluraI_Verb Verb 3PersActive
NounPfx_Noun_City

NounPfx_Noun_ActionOrCondition
NounPfx_Noun_WayOfLife
NounPfx_Noun_Recognition
NounPfx Noun Decomposition

NounPfx_Noun_Inflammation

NounVerb_Noun_Feminine
NounVerb_Noun_Feminine

NounVerb_Noun_Feminine
NounVerb_Noun_Feminine
NounVerb_Noun_Feminine
NounVerb_Noun_Feminine
NounVerb_Adj_Without
NounVerb_Adj_Without

Adj_Noun_StateOrQuality

Verb_Noun_StateOrQuality
NounNounStateOrQuality
NounNounStateOrQuality
Adj_Noun_StateOrQuality
Verb_Noun_StateOrQuality

NounVerb_Noun_Feminine
NounVerb_Noun_Feminine

NounVerb_Noun_Feminine
NounVerb_Noun_Feminine
NounVerb_Noun_Feminine
Verb_Noun_Diminutive

Noun_Noun_Diminutive
NounPfx Noun Diminutive

Noun_Adj_FullOf
NounAdj FullOf

Adj_Adj_FulIOf

Noun_Adj_FuIIOf
Noun_Adj_FuIIOf

Noun_Adj_FullOf

Noun_Adj_FullOf
Noun Adj FullOf

Noun_Adj_FullOf
Noun_Adj FullOf

Noun_Adj_FullOf
Noun_Adj_FullOf

NounVerb_Adj_FullOf

Noun_Adj_FuIIOf
Noun_Adj FullOf

Noun_Adj_FulIOf
Noun_Adj FullOf

Noun_Adj_FulIOf

Noun_Adj_FulIOf

Verb_Adj_FullOf

Noun_Adj_FuI10f
PfxAdjLoving

Pfx_Adj TcndingTo

J-8

-ke+ulous
+gamous

-er+rous
+erous

+iferous

-ic+iferous

-e+iferous
+pterous
-our+orous

+vorous
+ways

+n't
-11+n't

-n+n't

-ill+on't

-d+t
-se+t

-ve+t
-cy+t

+crat
+stat

+sect

+et
-e+et

+let
+tight

+ant
-e+ant

-ance+ant
-ate+ant
-eal+ellant

-ty+ulant

+ent
-e+ent

-ence+ent

-ate+ent

-ency+ent
+escent
-esce+escent

+ulent

-us+ulent
+ment

-ept+ipent
-ear+arent
-ve+pt

-ive+pt

+C+art

+ast

-ary+ast

-e+iast

+est

+C+est
-e+cst

+fcst

-y+iest

+ist
-a+ist

-e+ist

NounVerb_Adj_TendingTo
Pfx_Adj_Marriage
Noun_Adj_FullOf

Noun_Adj_FullOf
NounAdjProducing

Adj_Adj_Producing
Noun Adj Producing

Pfx_Adj_Winged
Noun_Adj_FuHOf
Pfx_Adj_Eating

Noun_Adv_Manner

Verb_Verb_Not
Verb_Verb_Not

Verb_Verb_Not
Verb_Verb_Not

Verb_Verb_Past

AdjNounVerb_Verb
Verb_Noun

Noun_Adj
NounPfx_Noun_Ruler
NounPfx_Noun_Stationary

Pfx_Verb_Cut
Noun_Noun_Diminutive

Noun_Noun_Diminutive
Noun_Noun_Diminutive

Noun_Adj_ImperviousTo
Verb_AdjNoun_Agency
Verb_AdjNoun_Agency

Noun_Adj
Verb_AdjNoun_Agency
Verb AdjNoun Agency

Adj_Adj
Verb_AdjNoun_Agency

Verb_AdjNoun_Agency
Verb_AdjNoun_Agency

Verb_AdjNoun_Agency

Verb_AdjNoun_Agency
NounPfx_Adj_BeingOrBecoming
Verb_Adj_BeingOrBecoming

Noun_Adj_AboundingIn

Noun_Adj_AboundingIn
Verb_Noun_ActionOrState

Noun_Noun_Agent
Verb_Adj_BeingOrBecoming

Verb_Noun

Verb_Noun

Verb_Noun
NounPfx_Noun_ImperfectResembIance

Adj_Noun_ImperfectResemblance

Verb_Noun_ImperfectResembIance

Adj_Adj_Superlative

Adj_Adj_Superlative

Adj_Adj_Superlative
Noun_Noun_Festivity
Adj_Adj_Superlative&Adv_Adv_Superlative

AdjNounVerb_Noun_Practitioner

AdjNounVerb_Noun_Practitioncr

AdjNounVerb_Noun_Practitioner

J-9

-ise+ist

-ize+ist
-ism+ist

-y+ist

+ualist

+nist

+ionist

+tist

+most

-one+first
-e+trix

-or+trix

+y
+C+y

-e+y

+cy
-tic+cy
-ce+cy

-te+cy
-t+cy
-atic+acy

-e+acy

-ate+acy

-at+acy
+cracy
+ancy

-e+ancy
-ant+ancy

-y+ancy
-ty+ulancy
-e+ency
-us+ulency

+ey
-id+efy

+ify
-ific+ify

-e+ify
-iful+ify

-y+ify
+Iogy

+oIogy

-Hnology
+urgy

+archy

+graphy
+sophy
+pathy

+«y
-e+ly

-le+ly
+ably

-e+ably

-able+ably
+ibly

-ible+ibly
+ivcly

-c+ingly
-y+ily

AdjNounVerb_Noun_Practitioner
AdjNounVerb_Noun_Practitioner

AdjNounVerb_Noun_Practitioner
AdjNounVerb_Noun_Practitioner

AdjNoun Verb_Noun_Practitioner
AdjNoun Verb_Noun_Practitioner

AdjNounVerb_Noun_Practitioner
AdjNounVerb_Noun_Practitioner
AdjPrep_Adj_Superlative
Adj_Adj_Number

Verb_Noun_FeminineAgent
Noun_Noun_FeminineAgent

AdjNounVerb_Adj_CharacterisedBy
AdjNounVerb_Adj_CharacterisedBy
AdjNounVerb_Adj_CharacterisedBy
AdjNoun_Noun_ConditionOrRank
AdjNoun_Noun_ConditionOrRank
AdjNoun_Noun_ConditionOrRank
AdjNoun_Noun_ConditionOrRank
AdjNoun_Noun_ConditionOrRank

AdjNounVerb_Noun_StateOrQuality
AdjNounVerb_Noun_StateOrQuality
AdjNounVerb_Noun_StateOrQuaIity
AdjNounVerb_Noun_StateOrQuality
NounPfx_Noun_Government
AdjNounVerb_Noun_StateOrQuality
Verb_Noun_StateOrQuaIity
Adj_Noun_StateOrQuality
Verb_Noun_StateOrQuality
Adj_Noun_StateOrQuality
Verb_Noun_StateOrQuaIity
Noun_Noun_StateOrQuality
AdjNounVerb_Adj_CharacterisedBy

AdjNoun_Verb_CauseToBe
AdjNoun_Verb_CauseToBe
AdjNoun_Verb_CauseToBe
AdjNoun_Verb_CauseToBe
AdjNoun_Verb_CauseToBe

AdjNoun_Verb_CauseToBe
NounPfx_Noun_Knowledge

NounPfx_Noun_Knowledge
NounPfx_Noun_Knowledge

NounPfx_Noun_Technology
NounPfx_Noun_Government

NounPfx_Noun_Drawing
NounPfx_Noun_ThoughtSystem

NounPfx_Noun_Suffering

AdjNoun Verb_Adv

AdjNounVerb_Adv

AdjNounVerb_Adv

AdjNounVerb_Adv

AdjNoun Verb_Adv

AdjNounVerb_Adv
AdjNounVerb_Adv

AdjNounVerb_Adv

AdjNounVerb_Adv

Adj Noun Verb_Adv

AdjNounVerb_Adv

J-10

-ial+ially
-y+ially

+ually

-ual+ually

-ve+tfully

+/-ply
+gamy
+nomy

+tomy

-ix+ectomy

+thenny
+phany

+geny

+gony
+phony

+mony

+scopy

+ry
-l+ry
-er+ry

+ary
-e+ary

-ate+ary
-nial+ary
-an+ary

-eer+ary
-ant+ary
-ample+emplary

-ain+anary
-our+orary

+ery
+C+ery
-e+ery

-er+ery

-ler+ery
+ory
-e+ory

-el+ulsory
-e+atory
+atry

+iatry
+o!atry

-ol+olatry
+metry

+ty
-te+ty

-al+ty

-ive+ifty

+ity

-e+ity

-acious+acity
-ocious+ocity
-e+ility

-ice+ility
-le+ility

-ble+ility

-ile+ility
-il+ility

AdjNounVerb_Adv
AdjNoun Verb_Adv
AdjNounVerb_Adv

AdjNoun Verb_Adv

AdjNounVerb_Adv
Adj_AdjNoun_Ply

NounPfx_Noun_Marriage
NounPfx_Noun_Distribution
NounPfx_Noun_Cutting
NounPfx_Noun_Cutting
NounPfx_Noun_Heat

NounPfx_Noun_Manifestation
NounPfx_Noun_0 rigin

NounPfxNounOrigination
NounPfx_Noun_Sound

NounPfx_Noun_ConditionO r Result
NounPfx_Noun_Seeing

AdjNounVerb_Noun_ConditionOrPractice
AdjNounVerb_Noun_ConditionOrPractice
AdjNoun Verb_Noun_ConditionOrPractice

AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrReIation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrReIation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation

AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrReIation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounPfxVerb_AdjNoun_FunctionLocationOrRelation
AdjNounVerb_Noun
AdjNounVerb_Noun

AdjNounVerb_Noun
AdjNounVerb_Noun

AdjNounVerb_Noun
Verb_AdjNoun_FunctionEffectOrPIace

Verb_AdjNoun_FunctionEffectOrPlace

Verb_AdjNoun_FunctionEffectOrPlace
Verb_AdjNoun_FunctionEffectOrPlace

Noun_Noun_WorshipOf
NounPfx_Noun_MedicalCare

Noun_Noun_WorshipOf

Noun_Noun_WorshipOf
NounPfx_Noun_Measuring

Adj_Adj_Number

Verb_Noun_StateOrQuality

Adj_Noun_StateOrQuaIity

Adj_Adj_Number
Adj_Noun_ConditionOrCharacteristics

Adj_Noun_ConditionOrCharacteristics

Adj_Noun_QualityOrStateOfBeing

Adj_Noun_QualityOrStatcOfBeing

NounVerb_Noun_ConditionOrCharacteristics
NounVerb_Noun_ConditionOrCharacteristics

Adj_Noun_ConditionOrCharacteristics

Adj_Noun_ConditionOrCharactcristics

Adj_Noun_ConditionOrCharactcristics

Adj_Noun_ConditionOrCharacteristics

J-11

-ble+bility
+ability
-e+ability
-able+ability
-ate+ability
+ibility
-ible+ibility
-emy+mity
+osity
-ose+osity
-us+osity
-ous+osity
+iosity
-iose+iosity
+evity
+ivity
-e+ivity
-ive+ivity
-wo+wenty
-ree+irty
-our+orty

Adj_Noun_ConditionOrCharacteristics
NounVerb_Noun_ConditionOrCharacteristics
NounVerb_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacferistics
NounVerb_Noun_ConditionOrCharacteristics
NounVerb_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Noun_Noun_StateOrQuality
NounVerb_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
AdjNounVerb_Noun_ConditionOrCharacteristics
AdjNounVerb_Noun_ConditionOrCharacteristics
Adj_Noun_ConditionOrCharacteristics
Adj_Adj_Number
Adj_Adj_Number
Adj_Adj_Number

J-12

A P P E N D I X K: S A R L I B Library Routines and Error C o d e s

The SARLIB library consists of a Turbo Pascal unit called SAR 10, containing routines
to carry out the functions shown in Table K. 1:

Train a speech recognition pattern
Update a speech recognition pattern
Digitise or record an audio response
Output an audio response
Perform speech recognition
Change recognition cluster
Change reject threshold
Delete speech recognition or audio response patterns
Upload speech recognition or audio response patterns
Download speech recognition or audio response patterns
Download a speech recognition vocabulary
Set or inquire about parameters or flags
Inquire about speech recognition or audio response status
Inquire about error status
Various control and memory housekeeping functions

Table K.l Facilities Provided by S A R L I B

These routines may be grouped into three categories as follows:

• Control and test routines, listed in Table K.2,

• Speech recognition routines, listed in Table K.3,

• Audio response routines, listed in Table K.4.

SarErrorStatus - obtain error code from SAR-10
SarSetRespFormatFlag - set SAR-10 response format flag
SarGetRespFormatFlag - return SAR-10 response format flag
SarChangeMemory - change contents of SAR-10 memory
SarDumpMemory - dump contents of SAR-10 memory
SarTestWorkMem - test SAR-10 work memory
SarTestSRRefPatMem - test SAR-10 SR reference pattern memory
SarTestARSpeechPatMem - test SAR-10 AR speech pattern memory
Sarlnrtialise - initialise the SAR-10
SarCancel - quit SAR-10 command execution
SarPause - stop transmitting pattern data from SAR-10 to PC
SarResum - resume transmitting pattern data from SAR-10 to PC
SarBeep - cause SAR-10 speaker to beep

Table K.2 Control and Test Routines

K-1

SarTrain - train SAR-10 for speech recognition

SarUpdate - update specified speech recognition reference pattern
SarRecogOne - recognise first reference pattern candidate
SarRecogTwo - recognise first & second reference pattern candidates
SarRecogOneAIICIust - recognise first reference pattern candidate (all clusters)
SarRecogTwoAIICIust - recognise first & second reference pattern candidates (all dust.)
SarRecogOneZeroClust - recognise first reference pattern candidate (cluster 0)
SarRecogTwoZeroClust - recognise first & second reference pattern candidates (dust 0)
SarStartRecog - put SAR-10 into recognition mode
SarStartRecogAIICIust - put SAR-10 into recognition mode (all clusters)
SarStartRecogZeroClust - put SAR-10 into recognition mode (cluster 0)
SarSetRecogClusters - set SAR-10 recognition clusters
SarSetAIIRecogClusters - set all SAR-10 recognition clusters
SarSetWordRejectThresh - set recognition reject threshold for a word
SarSetAIIRejectThresh - set recognition reject threshold for all words
SarGetAIIRejectThresh - return recognition reject threshold for all words
SarDeleteAIISRPatterns - delete all SR reference patterns
SarDeleteSRWordPatterns - delete SR reference patterns for a word
SarDeleteSRWordLastPattern - delete last SR reference pattern for a word
SarDeleteSRWordNthPattern - delete Nth SR reference pattern for a word
SarUploadSRPattern - upload one SR word vocab entry & reference pattern
SarUploadAIISRPatterns - upload all SR vocab entries & reference patterns
SarDownloadSRPattern - download one SR word vocab entry & reference pattern
SarDownloadAIISRPatterns - download all SR vocab entries & reference patterns
SarDownloadAIISRVocab - download all SR vocab entries to SAR-10
SarSetSRParameters - set SAR-10 recognition parameters
SarGetSRParameters - return SAR-10 recognition parameters
SarSetRecogFlags - set SAR-10 recognition flags
SarGetRecogFlags - return SAR-10 recognition flags
SarGetSRStatus - return SAR-10 SR status

Table K.3 Speech Recognition Routines

SarDigitise - digitise speech for SAR-10 audio output
SarRecord - record speech for SAR-10 audio output
SarAROutputOneWord - produce one word of SAR-10 audio output
SarAROutputOneMacro - produce one macro of SAR-10 audio output
SarAROutputOnePause - produce one pause in mSec in SAR-10 audio output
SarAROutputWordArray - produce a word array of SAR-10 audio output
SarAROutputMacroArray - produce a macro array of SAR-10 audio output

SarARDefine Macro - define a SAR-10 audio output macro
SarGetARMacro - return a SAR-10 audio output macro
SarDeleteARMacros - delete all SAR-10 audio output macros
SarDeleteOneARPattern - delete one SAR-10 AR speech pattern
SarDeleteAIIARPatterns - delete all SAR-10 AR speech patterns
SarUploadARPattems - upload one AR speech pattern
SarUploadAIIARPattems - upload all AR speeach patterns
SarDown load AR Pattern - download one AR speech pattern
SarDownloadAIIARPattems - download all AR speech patterns

SarSetARParameters - set SAR-10 AR parameters
SarGetARParameters - return SAR-10 AR parameters
SarGetARStatus - return SAR-10 AR status

Table K.4 Audio Response Routines

K-2

Error conditions cause the error codes shown in Table K.5 to be returned.

SAR-10 Errors:

000 - No error
001 - Command error - illegal command format error
002 - Command parameter error - parameter out of range
010 - Training error - SR reference pattern/AR speech pattern not trained
020 - Memory full error - SR reference pattern/AR speech pattern memory full
022 - Memory full error - SR output code memory full
030 - Load data error - SR reference pattern/AR speech pattern load data error
040 - Memory write error - memory write inhibited
050 - Memory test error - bad memory
060 - Response macro error - macro not defined

System Errors:

100 — Unknown error
101 — Wrong response from upload

Table K.5 S A R L I B Error Codes

K-3

