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An Investigation into the Parallel Implementation 
of J P E G for Image Compression 

Abstract 

This research develops a parallel algorithm to implement the JPEG standard for 
continuous tone still picture compression to be run on a group of transputers. The 
processor-farm paradigm is adopted. This research shows this to be the best paradigm for 
use with the J P E G baseline algorithm on the measured component times within the 
algorithm. The speedup of the parallel algorithm is investigated and measured against a 
single processor version. A n optimal distribution of JPEG components on the processors 
within the processor farm is established. 

The research focuses on the investigation of the optimal number of processors, which can 
be used effectively for a JPEG implementation adopting the processor-farm paradigm. 
This optimal number is termed the saturation point. Once the saturation point has been 
reached, it is shown that the parallel algorithm's speedup cannot be improved without the 
redistribution of tasks in the farm, regardless of h o w many extra processors are used. 
Further distributions of processing tasks are investigated with the aim of extending the 
saturation point. It is shown that the saturation point can be extended, and the 
distributions of tasks to achieve this are demonstrated. It is also shown that while the 
saturation point can be increased, the gains are minimal and m a y not be worth the cost of 
the extra processor. In fact, the algorithm speedup diminishes after the addition of the 
third processor, up to saturation point. 

A simulation algorithm is devised using Java, which takes advantage of the multi­
threaded nature of the language. A technique is developed for simulating the processor-
farm paradigm. This technique uses the concept of the Java threadgroup as a basis for a 
simulated processor, and a Java thread allocated to that group, as a process belonging to 
this processor. A process scheduling scheme is refined which allows the simulated 
parallel system to be monitored over simulated scheduling rounds. A scheme is also 
shown that simulates the message passing of the transputer. 

This simulated system allows the investigation of the saturation point regardless of the 
number of processors physically available. Further data on the saturation point supports 
the hypothesis that the saturation point is around seven processors. The hypothesis is 
based on the extrapolation of the results obtained using a limited number of processors. 
Using the simulation, the behaviour of a parallel system can be observed with an arbitrary 
number of processors. Since this simulation is written in Java, it is also platform 
independent, and defines an algorithm suitable for a distributed system. 
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Chapter 1 - Introduction 

CHAPTER 1 

INTRODUCTION 

The use of digital images dates back to the early 1920s when digitized pictures of 

world news events were first transmitted by submarine cable between N e w York and 

London [28]. It was not until the mid to late 1960s that the use of digital images 

became more wide spread. Then the computing power, speed and storage capacity in 

third generation computers were such that practical applications involving the use of 

digital images became feasible, for example, the storage and transmission of satellite 

images. 

It soon became apparent that in dealing with images, computer systems would have to 

cope with huge amounts of data. Image compression was recognized as an important 

problem. For example, a small image of 640 x 480 pixels using 8 bit V G A colour 

mode requires about 2.4 x IO6 bits. If 24-bit true colour is used then the image 

requires three times that amount. Digital images from Landsat satellites are taken 

using multispectral scanners in four spectral bands, and some images are in excess of 

300 megabytes. It is not only professionals in these specialist fields that are affected 

by image size. The average Internet user today is well aware of the time it takes to 

download the large graphics embedded in web pages. 

In 1992, the JPEG standard was adopted as the International Standard for continuous 

tone still picture image compression. The driving force behind JPEG was to deliver a 

standard for the coded representation of compressed image data, for interchange 

between telecommunication applications. The JPEG standard provides specifications 

for multiple modes of operation, but the most popular mode, allowing the most 

compression, is the expanded lossy DCT-based mode of operation. This mode of 
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Chapter 1 - Introduction 

operation loses some information that is not detectable by the human eye thus 

allowing far higher compressions. It is based on the Discrete Cosine Transform 

(DCT). B y using the D C T , the image is first transformed into its frequency domain 

resulting in less correlated coefficients that make the quantization and coding more 

effective. JPEG has almost become a household word, with users of the internet 

familiar with the term due to the 'jpg' format images available on the web. Most 

image manipulation software tools also support the JPEG format, which has become a 

format of choice for people providing large images via the Internet. 

The DCT is a computationally intensive task requiring a reasonable amount of 

computing power in order to code images in an acceptable time. For this reason, 

many implementations of JPEG are realized through hardware solutions, or JPEG 

chips, to achieve higher speed. However, as more demands are placed for faster 

implementations for real time applications, traditional serial processors have begun to 

encounter physical limitations which inhibit further speed increases [40]. For 

example, no signal can travel faster than the speed of light, which indicates an upper 

limit to the speed at which algorithms can be processed. To overcome this, 

components are being made smaller which limits the distance that signals are 

transmitted during processing, but then heat dissipation becomes a problem. 

One strategy used to overcome these limits is parallel processing. In a parallel 

system, multiple processors are connected and the processing is distributed to the 

processors so the various tasks can be executed simultaneously. The aim of parallel 

processing is that if a problem takes T time units to process on a single processor 

system, then on an TV processor system it will take T/N time units. This theoretical 

speedup is of course never reached due to practical considerations like communication 

delays between processors, and the overhead associated with the overall management 

of the network of processors. However, considerable speed advantages can be gained 

by application of a parallel programming paradigm to a suitable problem. 

There are a number of parallel programming paradigms, and image compression is a 

good candidate for parallelization. In fact, image coding, particularly using the JPEG 

standard is well suited for placement on a multiprocessor system, since an appropriate 

paradigm can take advantage of the data parallelization inherent in the image as well 
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as any possible algorithmic parallelization. With the transform coding approach of 

JPEG, the image is broken into fixed sized sub-sections called blocks, and these are 

processed independently of each other. It is this independent processing of the blocks 

that suggest a possible data parallel approach. A n algorithm parallelization is also 

possible, as J P E G involves a number of distinct steps that must be applied to each 

block. 

The purpose of this research is to investigate the application of parallel programming 

techniques to the JPEG international standard using a suitable parallel programming 

paradigm. This research initially uses a transputer based network of processors for 

the hardware platform. A single processor algorithm, implementing the JPEG 

baseline sequential mode is constructed for use as a benchmark. A simple parallel 

version using two processors is then developed for initial testing, and finally a general 

parallel algorithm implementing the processor-farm paradigm is constructed. 

Run time data is then gathered, and an optimal placement of processor tasks is shown 

for the network of processors. From the data obtainable, an extrapolation of speedup 

calculations indicated unexpected results, and from this, a hypothesis was formed that 

indicated a limit to the number of processors that could be effectively used by the 

processor-farm paradigm implementing JPEG. This limit on the number of 

processors is called the saturation point. This number was initially calculated at 7 

processors. Further, a hypothesis is made that indicates this number m a y be extended 

by redistribution of tasks among the processors once the initial saturation point has 

been reached. 

In order to test these hypotheses a simulation algorithm is constructed which runs on a 

Pentium 200 M H z processor. The simulation algorithm is implemented using Java 

and takes advantage of the multi-threaded nature of the language. A technique for 

developing a simulation of the processor-farm paradigm is shown. This technique 

uses the concept of the Java threadgroup as a basis for a simulated processor, and a 

Java thread allocated to that group as a process belonging to this processor. A process 

scheduling scheme is devised which allows the simulated parallel system to be 

monitored over simulated scheduling rounds. A scheme is also shown which 

simulates the message passing of the transputer. 
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This simulation allows the behaviour of the processor-farm paradigm to be observed 

when more processors are added, regardless of the number of physical processors 

available. The simulation is then used to obtain further results on the parallel JPEG 

implementation to test the hypothesis. The results collected support the original 

hypothesis concerning the saturation point and the estimate for its number at 7 

processors. Further, it is shown with data collected from the simulation, that once 

reached, the saturation point can be extended by redistribution of the tasks among the 

processors. Optimal configurations for this extension are shown. 

The Java simulation is platform independent due to the nature of Java, and thus 

capable of running on any platform which provides a Java Virtual Machine (VM). 

This results in another outcome of this research, being an algorithm, which is suitable 

for a distributed system. 

A number of papers resulted from this research. These are: 

• "Parallel Implementation of the JPEG Still Picture Compression Algorithm", 

Darbyshire, Pleasants and W a n g [21], presented at the Australian Pattern 

Recognition Society Student Conference in 1996. 

• "Using Java to Simulate Multi-processor Systems", Darbyshire P [20], in print 

with Department of Information Systems working paper series, Victoria 

University of Technology. 

• "Implementation of a Parallel Image Compression Algorithm Using Java", 

Darbyshire and W a n g [22], presented at the 1997 D I C T A conference at 

Massey University, Auckland as a Technical Keynote Presentation. 

Chapter 2 of this thesis investigates the development of image compression 

techniques over the last 30 years. This culminates in the adoption of the JPEG 

standard, as the international standard for still picture compression. Research has 

continued since, and two of the more promising recent developments are highlighted. 
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Chapter 3 provides an in depth look at the JPEG standard, and covers the operation of 

the baseline sequential mode of operation. The D C T technique, which is at the heart 

of the JPEG algorithms, is discussed and a fast version of this is presented. The JPEG 

algorithms highlighted in this chapter are used in the construction of the research 

parallel algorithms. This chapter also investigates the development of parallel 

architectures, and the parallel paradigms commonly used to build software for multi­

processor systems. The selection of a suitable paradigm for application to JPEG is 

discussed. 

In Chapter 4, a parallel implementation of JPEG is constructed in two different stages, 

and data collected from trial runs of these algorithms are compared with those of a 

JPEG algorithm constructed for a single processor system. Using the data obtained, 

the parallel system overhead is investigated and the results used to develop an optimal 

placement of tasks on processors, which maximizes parallelism. The concept of a 

limit to the number of processors that can be effectively used is investigated. 

In Chapter 5, a simulation program that implements the JPEG parallel algorithm of 

Chapter 4 is constructed in the J A V A programming language. This simulation 

program exploits the multi-threaded nature of J A V A and allows the behaviour of the 

parallel algorithm constructed in Chapter 4 to be investigated with a varying number 

of processors. B y using J A V A , this simulation is platform independent and can be 

run on any system providing a J A V A V M . The concept of the processor limit 

developed in Chapter 4 is further investigated using this simulation program. 

The final chapter presents the conclusions of the research carried out in Chapters 4 

and 5 and discusses associated aspects. A critical appraisal of the research in this 

thesis is given, and some areas for future research are presented. 
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Chapter 2 - A Survey of Image Compression Techniques 

CHAPTER 2 

A SURVEY OF IMAGE COMPRESSION TECHNIQUES 

2.1 Introduction 

Image compression is needed to both reduce the storage requirements of an image and 

the transmission time in telecommunication applications. The goal of research into 

image compression techniques is to produce schemes that give high compression 

ratios, run efficiently, and result in a high quality reconstructed image. Image 

compression can be regarded as a particular instance of general data compression 

except that it takes advantage of characteristics unique to images and the way our 

visual system views them. All compression aims to minimize the number of 

information carrying units in the signal that represents the image [48]. 

There are two phases to compression, and these are the encoding and decoding 

processes. In some circumstances the reconstructed data must be identical with the 

original, for example, in textual documents distortion is unacceptable, and in medical 

images where patient safety is of paramount importance. W h e n a perfect 

reconstruction of an image is required, compression is constrained by the entropy of 

the image. To increase image compression, techniques were developed that rely on 

some degradation to the image that is not detectable to the human eye. 

In order to achieve better compression ratios for images, different techniques are used 

to exploit various image properties. Predictive coders are supported by a statistical 

model of the image elements, to reduce redundancy before coding with an entropy 

coder. For example, they store the most frequently occurring elements using codes 

having the least number of bits. In this form, predictive coding compresses without 
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loss. Adding quantization to this process increases compression at the expense of 

some loss of information and hence image quality. Transform coding first maps the 

image into a domain where it becomes far more amenable to compression, before 

quantization and entropy coding. Transform coding allows more compression to take 

place before serious image degradation. Vector quantization is another effective 

image coding technique. 

To enable the transmission and exchange of images in telecommunication 

applications, there was a requirement for some standard for the storage and 

compression of photographic images. This was the driving force behind the 

development of the JPEG1 International Standard. Research has not waned since the 

acceptance of this standard, and since then other techniques proposing higher 

compression while retaining image quality have attracted interest. The most notable 

are Wavelet and Fractal Image compression. 

This chapter outlines the main areas of image compression. It starts by discussing the 

theoretical basis to compression. It gives an overview of the main image compression 

techniques, but concentrates on those that form part of the JPEG standard. T w o of the 

more recent techniques are discussed and then compared to JPEG. 

2.2 Image Representation 

It is useful to first describe how images are represented digitally. The representation 

will depend on whether the image is greyscale or colour. This thesis is concerned 

only with greyscale images, hence only these are described here. 

A digital image is a computer representation of a continuous tone still picture. The 

digital image is obtained by analog to digital conversion, which is analogous to 

dividing the continuous image into a number of evenly spaced discrete scan lines and 

taking a set number of evenly spaced samples along each scan line. This is depicted 

in Figure 2.1. The result is a two dimensional array of discrete samples. These 

1 Joint Photographic Expert Group 
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samples are then represented as numerical values for digital storage. In a greyscale 

image such as Figure 2.1, each sample value represents a luminance figure from a 

scale that normally ranges from 0-255, with 8-bit samples. Each sample's luminance 

value is set independent of its neighbours. 

Figure 2.1 Construction of digital image 

The sampling process naturally loses information, but if the samples along each scan 

line are close enough, a reasonable representation of a continuous tone image is 

obtained. A sampling rate that will obtain good quality images is 400 dots per inch 

(dpi). Each image sample is called a,pixel (or pel), short for picture element. In the 8-

bit digital image shown in Figure 2.1, the white outlined square represents a block of 

8x8 pixels, whose pixel values are shown in Table 2.1. A value of zero is used for 

black, and 255 for white. All other values are varying shades of grey. 

Table 2.1 8-bit grey scale values for block in Figure 2.1 

162 

168 

171 

178 

182 

194 

193 

199 

162 

168 

171 

177 

178 

191 

189 

196 

163 

168 

170 

176 

177 

188 

189 

194 

164 

168 

170 

175 

177 

186 

189 

192 

164 

168 

170 

175 

177 

186 

187 

189 

164 

168 

170 

175 

178 

185 

184 

186 

165 

169 

172 

176 

178 

184 

185 

185 

166 

169 

174 

176 

178 

183 

186 

186 

A relatively small image of 512 x 512 pixels using 8-bit greyscale takes exactly 

262,144 bytes of computer storage space. 
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2.3 Entropy 

Compression techniques exploit redundancy in the data source. Redundancy was 

explored in detail in a landmark paper by C.E. Shannon [78], while at Bell2 

Laboratories. In this paper, Shannon investigates the transmission of information over 

a communication channel, and the coding process the transmitter uses to change the 

information into a form suitable for transmission. 

Shannon investigated the difference between the information rate and the data rate of 

a data source. In a digital system, the bit rate is the product of the sampling rate and 

the number of bits in each sample, and is usually constant. However, Shannon 

observed the difference between the bit rate and the information rate of a real signal. 

This difference is the redundancy of the data source. Shannon used the term entropy 

to describe the information content of a data source. 

Messages from most data sources have a degree of redundancy built into them. 

Where an information source produces messages by selectively selecting symbols 

from a discrete alphabet, the probabilities of choosing some symbols are dependent on 

previous choices. For example, in the English language words beginning with the 

letter q are followed by the letter u, so the placement of the letter u is governed by the 

statistics of the information source, not by any freedom of choice within the message. 

Statistically speaking the letter u is redundant and need not be stored or transmitted. 

One way to measure the redundancy of a signal is to exploit the statistical 

predictability of the signal. The information content or entropy of a data source is a 

function of h o w different it is from the predicted value. According to Shannon's 

theory, any signal that is completely predictable carries no information [90]. For 

example, a sine wave is highly predictable because it is periodic. At the opposite 

extreme, noise is completely unpredictable. 

Entropy is a term borrowed from thermodynamics, and then used as a measure of 

information in a random signal by Hartley [37]. Entropy is a quantification of the 

2 Bell Systems Inc. 
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information content of the symbols in a message from a given data source. With the 

entropy quantified, the redundancy rate is then known and a coding algorithm can be 

devised to remove this redundancy. The relationship between entropy and 

redundancy in a source is depicted in Figure 2.2. If the signal level and frequency of a 

transmission are used to denote an area, this sets a limit on the information capacity. 

As in Figure 2.2, most real signals occupy only a part of that area. The entropy is the 

actual area occupied by the signal, and is the area that must be transmitted [90]. 

Signal 
level 

Frequency 

Figure 2.2 Depiction of entropy vs. redundancy in a data source [90] 

2.3.1 Measuring Entropy 

To calculate the entropy of a source we need to calculate the probabilities of the 

occurrence of the elements of the source [79], If an arbitrary element s\ of source S, 

occurs with probability pt, then the information content I, contained within that 

occurrence is: 

I(st) = -logPi bits. (2.1) 

When the base of the logarithm in (2.1) is 2 then I(s>) is expressed in bits. It is the 

minimum number of bits with which this symbol can be represented. The information 

per symbol I(SJ) averaged for all elements over the whole alphabet of S, is the entropy 

H(S) of the source. Then 

Redundancy 
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M M 

H(S) = 2p,I(3i) = -YxPt^iPi ^ 
1=1 /=i 

where M is the number of elements in S. In an image, the entropy is defined in terms 

of the probability of occurrences of the various pixel values. The entropy defined in 

(2.2) is the first-order entropy of the source. It takes into account only the relative 

probabilities of the M possible input values, and no consideration is given to the fact 

that a particular input may have statistical dependence on previous inputs [28] [48] 

[33]. If successive inputs are independent, then the first-order entropy Hj(S) from 

(2.2) forms a lower bound on the average number of bits per input required to code a 

sequence of inputs from S [28]. 

If successive inputs of S are dependent, then higher-order entropies that give a better 

lower bound for a source can be calculated as: 

M M 

H2(S) = - £ £ p(wtxWj)log2 pfwt.wj) (2.3) 
t=i j=i 

In (2.3), H2(S) represents the second-order entropy of S and the function p(wit wj) is 

the joint probability density function of the two random variables wt and Wj. Third 

and higher order entropies can be similarly defined if the inputs have a statistical 

dependence on the previous two or more inputs. These higher order entropies Hn(S) 

then become the lower bound on the number of bits required to code the sequence. It 

can be shown [28], that H. (S) > H2 (S) > ... > Hn (S). 

Higher order entropies are usually not pursued, as the cost in computation to obtain 

them is prohibitive. However, for 6-bit raw image data it has been estimated [75] that 

the first, second and third-order entropies are approximately 4.4, 1.9 and 1.5 bits per 

pixel respectively. 

According to Shannon's noiseless coding theorem [78] [79], a source can be losslessly 

encoded to an average bit rate arbitrarily close to but not less than the entropy of the 

source [25]. The efficiency of coders referred to above can then be measured by how 
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much redundancy is removed. That is, by how close to the entropy of the source the 

coders can get. The maximum achievable lossless compression C, is defined by: 

average bit rate of original raw data n 

entropy of the source data H(S) 

2.4 Entropy Coders 

The coding process removes some redundancy from the data stream by storing the 

symbols in fewer bits than is used in the original source. The decoding process 

reverses the coding by adding the redundancy back in, resulting in the restoration of 

the original data stream. Coders that lose no information during this process are 

termed lossless, while those that do are known as lossy coders. 

Entropy coders aim to remove the maximum redundancy while remaining lossless. 

They aim to operate at the entropy bit-rate level and thus achieve near to the 

theoretical maximum compression in (2.4). Thus, the entropy of a source forms the 

dividing line between lossy and lossless coders. The best known entropy coders are 

the Huffman coder and the arithmetic coder. Both of these coders are used by the 

JPEG standard. 

2.4.1 Huffman Coding 

Huffman coding was devised by D.A.Huffman in 1952 [42]. Huffman compression 

takes advantage of the statistics of the data source by assigning variable length codes 

to elements of this data source. If all elements of a source were equally probable then 

fixed-length block coding would be an optimal strategy. In practice, different source 

symbols have different probabilities of occurrence [25]. 

The representation of a symbol that is stored by the coding process is called a 

codeword. Huffman coding assigns small codewords to source symbols with high 
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probabilities of occurrence and longer codewords to lower probability symbols. This 

achieves a smaller average codeword length. The probabilities of the symbols have to 

be known in advance in order to construct the appropriate codewords. Huffman 

coding requires two passes through the data source. O n the first pass, the algorithm 

collects statistics on the frequency of the symbols and builds the codewords. O n the 

second pass, the symbols are assigned variable length codewords using the statistics 

gained during the first pass. 

Once the frequencies are determined, an algorithm implementing Huffman coding 

then builds a tree structure from the frequency array. The tree associates each element 

of the source with a bit string. Each node of the tree contains a data source element, 

its frequency, a pointer to the parent node, and pointers to the left and right child 

nodes. A n explanation of the building of a Huffman tree is provided by [67]. 

Table 2.2 Source symbol frequency distribution 

Symbol 

Frequency 

space 

5 

e 

3 

0 

3 

s 

3 

t 

3 

i 
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1 

symbol freq 

3 3 

t 3 
j 2 

m 2 

c 1 
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v 1 

VI 1 
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5 
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2 

2 

11 

4 

7 

4 

18 
1 

9 1 F 

Figure 2.3 Huffman tree built from frequencies in Table 2.2 

The Huffman tree grows from the leaves up, with elements of the initial frequency 

array forming the leaf nodes. This is done by making successive passes through the 

existing nodes. Each pass searches for the two nodes that do not have a parent node 
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and have the two lowest frequency counts. When these two nodes are located, a new 

node is allocated and assigned as the parent of the two nodes, and is given a frequency 

that is the sum of the frequencies of the two child nodes. The algorithm continues to 

make passes until only one node with no parent remains, and that node becomes the 

root of the tree. As an example, the Huffman tree can be built for the coding of the 

string "now is the time to compress". The frequency table is shown in Table 2.2. 

From this table a Huffman tree is constructed, and is shown in Figure 2.3. 

The Huffman algorithm uses the tree to translate elements in the data source into bit-

strings. B y assigning a zero or one to each left and right node, then a symbol can be 

coded by tracing a path from its leaf node to the root of the tree. By allocating a zero 

or one each time you move up from a left or right child the codeword is constructed. 

There are fewer nodes in the path from the root to the leaves with higher frequencies, 

so these elements are encoded in fewer bits. 

The 'space' symbol in Figure 2.3 has codeword '01', while the V has codeword '1111'. 

The assignment of the zero and one to the left or right branch is completely arbitrary. 

The shape of the Huffman tree depends on the order of the search of the frequency 

array when the tree is initially built. While not unique, the Huffman tree can be 

shown to be optimal in the sense that no other variation will produce better 

compression [79] [78]. 

The decoding process is the reverse. You start at the root of the Huffman tree, and for 

each zero in the code you move to the right child, and for each one you move to the 

left child. W h e n a leaf node is reached the element has been decoded. 

Some Huffman algorithm variations require only one pass [81], and these fall into two 

categories; either adaptive algorithms that adjust the frequencies collected from the 

data source on the fly, or algorithms that take advantage of predetermined frequency 

tables built from analyzing many data sources from the same language. Static 

Huffman coding assumes the frequencies of elements of the data source are known in 

advance. In image compression, static Huffman tables are usually built from 

analyzing the statistics of many images. Tables such as these are provided in the 

JPEG standard. 
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2.4.2 Arithmetic Coding 

Like Huffman coding, arithmetic coding also produces variable length codes 

depending on the frequencies of elements of the source. The credit for the idea of 

arithmetic coding is attributed to Elias [1]. Arithmetic coding generates non-block 

codes. That is, a one to one correspondence between symbols and codewords does 

not exist as it does in Huffman coding [29]. Instead, the entire sequence of source 

symbols is assigned a single arithmetic codeword. 

The codeword defines an interval on a probability line between 0 and 1. As source 

symbols are read in, the interval representing the codeword of the message becomes 

smaller as it is progressively divided into smaller sub-intervals, dictated by the 

probabilities of the source symbols. The final output from an arithmetic coder after 

processing a message is a single number in the range [0,1). For example, the five-

symbol sequence, sj S2 S3 S3 S4, is constructed from a four-symbol source. The 

probabilities of the source symbols are shown in Table 2.3. 

Table 2.3 Source symbols and probabilities 

Symbol 

Probability 

si 

0.2 

S2 

0.2 

S3 

0.4 

s4 

0.2 

Using these probabilities the interval [0,1) can be divided into subintervals, each of 

which represents a source symbol, and its length determined by that symbol's 

probability, see Figure 2.4. Each symbol owns the half-open interval to which it has 

been allocated. The first symbol in the sequence si is allocated the half open interval 

[0, 0.2), and can be represented by any number in that range except the upper limit 

0.2. 

0 0.2 0.4 0.8 1 

Figure 2.4 Initial interval divisions according to probabilities 
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In Figure 2.5, as each new symbol in the sequence is input, the interval remaining 

from the previous input is again divided up according to the probabilities of the 

symbols in the source. So when the second symbol in the sequence s2 is input, the 

interval [0, 0.2) is divided into the segments shown in Figure 2.5 (a). W h e n the third 

symbol in the sequence s3 is input, the interval [0.04, 0.08) is divided as in Figure 2.5 

(b). Finally when the last symbol s4 is input the interval [0.0624, 0.0688) is divided as 

in Figure 2.5 (d). 

0 0.04 0.08 0.16 0 2 

(a) I 1 1 1 1 
Si S2 -3 S4 

,.» 0.04 0.048 0.056 0.072 0.08 

(b) | 1 1 1 1 
Sl S2 -3 S4 

0.056 0.0592 0.0624 0.0688 0072 

1 «, ' 

0.06752 0.0688 

Si s2 -3 s4 

Figure 2.5 Subsequent division of previous symbol intervals 

The entire symbol sequence, sj s2 S3 S3 s4, can then be represented by any number in 

the range [0.06752, 0.0688), e.g. 0.068. This number is then stored in binary form. 

However, the size of the number obtained can get arbitrarily large with the input 

symbol sequence, and there exists no single machine having an infinite precision. 

Consequently, most implementations use a scaling process, and output each leading 

bit as soon as it becomes known. 

The order of the ranges in the probability line is irrelevant provided the coder and 

decoder are consistent in their assignment. The most significant component of an 

arithmetic coded message is due to the first symbol encoded. W h e n encoding the 

above message the first element is 57, so in order for the decoder to work properly the 

final coded message must be a number greater than or equal to zero, and less than 0.2. 

After the first element is coded, the range for the output number is bounded by the 

interval limits. During the rest of the coding process, each new symbol further 

restricts the possible range of the output number. 

\x~J 

0.0624 
W) 
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As the length of the input sequence increases, the resulting arithmetic code 

approaches the bound established by Shannon's noiseless coding theorem, the entropy 

of the source [29]. In practical implementations, the entropy limit is never reached 

because of restrictions placed on the algorithm due to underlying hardware [25]. As 

the number of input symbols increases, the length of the codeword interval decreases, 

and gets difficult to calculate due to finite arithmetic used in the calculations [29] 

[25]. These problems are generally overcome by the use a scaling strategy to magnify 

each interval prior to partitioning. 

The addition of an end-of-message indicator also slightly increases the coding rate 

achievable. Arithmetic coding creates a clear separation between the model for 

representing the data and the actual coding of the data with respect to the model. This 

can result in high compression. In practice the amount of compression achieved by 

arithmetic codes and Huffman codes are comparable, and arithmetic coding is a viable 

alternative to Huffman [81]. 

2.5 Image compression 

The concept behind image compression is the same as for other data sources, to 

remove redundancy in the image and thus reduce the required number of bits for 

storage. The amount of redundancy in an image can be calculated by calculating the 

entropy of the image using (2.2). A s discussed in section 2.3, this will form a lower 

bound on the average bit rate used to code the image in order to affect a perfect 

reconstruction [15]. However, the redundancy in a digital image is generally far less 

than that of other sources. Although the image source data is assumed to be highly 

correlated, many compression techniques are very sensitive to variations in the input 

source, which characterizes most images. 

The redundancy of the English language is approximately 50 percent [79]. However, 

the redundancy within a digital image will depend on a number of factors. Factors 

such as shadings, contrast, complexity (i.e. number of edges), and large areas of the 

same colour, all determine the redundancy level because they determine the statistics 
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of the image. Even within a section of an image that appears the same shade, there 

can be a wide variation in adjacent pixel values used to achieve that shading. This can 

be seen in the section of the image outlined in white in Figure 2.1, and the 

corresponding pixel values in Table 2.1. Consequently, coding algorithms that rely on 

the statistics of the image are less effective when coding digital images. Statistical 

coders like Huffman and arithmetic coding work best when applied to uncorrelated 

data [15]. 

In order to achieve far better compression ratios for images, different techniques are 

used to exploit various aspects of the image properties. This section starts by 

discussing predictive coding in its lossless form. Quantization is introduced to 

increase compression and give a lossy version. There is a range of transforms that 

could be used as transform coders and they are compared. Most compression in the 

transform coders is the result of quantization of the transform coefficients. Finally, 

Vector Quantization, which was also a candidate for the JPEG standard, is described. 

2.5.1 Predictive Coding 

Figure 2.6 Pixel neighbourhood 

Predictive coding is carried out in the data domain, and it is based on the principle of 

removing the mutual redundancy between adjacent pixels, by taking advantage of 

known pixel values from previous inputs. The image data source is assumed to be 

highly correlated, that is, pixels of the image within the same neighbourhood tend to 

have similar values. The value of previous pixels which have already been encoded in 

the same scan line or earlier section of the image can be used to make a prediction for 

the current pixel. For example, Figure 2.6 shows a pixel pm, within a portion of an 
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image and its neighbouring pixels which have preceded it labeled as A, B, C and D. 

These neighbouring pixels can be used to form a prediction forpm. 

Differential Pulse Code Modulation (DPCM) is the most common form of predictive 

coding [25] [48], and is used by JPEG. The original design of D P C M systems was 

developed in 1952 by Culter [19]. In D P C M , the image is encoded one pixel at a 

time, from left to right top to bottom across the scan lines of an image (Figure 2.1). 

W hen encoding pixel pm in Figure 2.6, advantage is taken of the fact that previously 

coded pixels may contain some information about it [48]. Accordingly, a prediction 

em on the value of pm can be made. A linear prediction is defined by 

m-l 

£m = Y.
aiPi (2.5) 

1=0 

where sm is the prediction, the pt are the m previous pixel values, and at represents a 

weighting factor for the corresponding pt [25]. The number of pixels used in the 

prediction is called the order of the predictor. There is usually not much to be gained 

in coding with more than a third-order predictor [34]. A n optimal set of predictor 

coefficients can be computed for a given image. For example, for an image based on 

a first order Markov process with correlation coefficient p, the optimal third-order 

predictor is given by 

em = pA + f?B + pC. (2.6) 

However in practice, simpler predictors are the predictions, 

(first order) em = A (2.7) 

(second order) em = VtA + V_C (2.8) 

(third order) sm = A - B + C. (2.9) 

When the prediction of a pixel's value is based on previous inputs from the same scan 

line, the coder is said to a 1-dimensional D P C M coder. W h e n predictions are based 
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on previous inputs from more than one scan line, the D P C M coder is said to 2-

dimensional. 

After the prediction has been made, the difference between the actual value of the 

pixel and the prediction is then calculated. This quantifies the 'new information' of 

the pixel and eliminates the redundancy. The predicted values sm are significantly less 

correlated than the original pixel values pm. In lossless D P C M , the predictions are 

coded directly using an entropy encoder such as Huffman coding. 

Lossy DPCM is achieved with quantization of the predictions prior to encoding. 

Quantization is discussed in detail in the next section. The D P C M block diagram for 

lossy coding is shown in Figure 2.7. 

.mammirWxW 
• • • ' 

Image >- + Quantizer • — > Symbol >. Compressed 
bata Source 

A 
.*fflttS5SIfl3BJPffi 

:Predictbr< £+ •<-

Encoder Image 

+ 

j 
Figure 2.7 D P C M lossy encoder block diagram 

The data compression depends on the ability to predict pm accurately, and therefore 

the inter-pixel correlation. In a highly correlated data source, the predictions are 

expected to be good on average. Predictive lossy algorithms are capable of 

reproducing images almost indistinguishable from the originals at compression rates 

around 2.5:1 [29] [55]. However, severe distortions are noticeable when coding at bit 

rates less than 3-bits per pixel from original 8-bit source data [28], which represents 

compression rates of about 4:1. Lossless predictive algorithms generally produce 

compression rates between 1.5:1 and 2:1 depending on the image [55]. 

Predictive Coding is easy to implement and gives good reproduction at lower 

compression ratios. However, since predictive coding works by removing 

redundancy between pixels in the spatial domain, it is very sensitive to changes in the 
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input data. For example, it does not perform well in images where there are a lot of 

edges and sharp contrasts. 

2.5.2 Transform Coding 

Transform coding is more complex to implement. The main steps in transform coding 

are shown in Figure 2.8. The technique gets its name from the first step, which is the 

transform stage. 

«mMnwmnaHW 

Transform> jj M Quantization :i >• Compression 

2 3 ? " Uncorrected1 'Quantized** ' " f ^ d 
Transform Transform Transform 
CotfTcZs Coefficients Coefficients 

Figure 2.8 General steps in transform coding 

At its simplest, the transform is a process that maps data from one domain into 

another [90]. The transform coding of 2-dimensional images was introduced by 

Andrews and Pratt [6] [48]. The image is divided into blocks of pixels, a typical 

block being 8 x 8 or 16 x 16 pixels. The transform is then applied to each block, 

which effects a spectral decomposition of the input data, into a set of transform 

coefficients in the frequency domain. Some of the better known transforms used in 

image coding are discussed in following sections. 

The transform itself does not provide any compression. It maps the image into the 

frequency domain where compression can be achieved more effectively. The general 

form of a 2-dimensional transform that maps the pixels xy into transform coefficients 

yki [28] is given by 
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where the symbol aiJki is the forward transformation kernel. The coefficients of the 

transform {yK,} are approximately uncorrelated, which means that most of the 

redundancy in the input data has been removed. A large proportion of the block's 

information is packed into a relatively few transform coefficients. The efficiency of 

the transform will dictate h o w many of the block's transform coefficients are 

significant in representing each block. In general, the more efficient the transform is 

at packing the blocks information into fewer coefficients, the longer it takes. 

Quantization 

The quantization stage reduces the accuracy with which the transform coefficients are 

represented by giving fewer values to the coder. This is an important step as it can 

make many of the transform coefficients zero. Its role is to further prepare the 

coefficients for coding, so the m a x i m u m compression can be gained. However, if the 

quantization scheme is not carefully chosen, it can cause severe image degradation. 

Figure 2.9 Typical I/O characteristics of a quantizer [48] 

Most digital image compression algorithms require a quantizer [48]. In the case of 

transform coding, the quantizer maps the discrete decorrelated coefficients {y«} from 

(2.10) into a smaller set {qh q2, ..., qm} of quantization levels. This mapping is usually 

referred to as a staircase function, and is depicted in Figure 2.9. This works as 
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follows. The set (tu t2, ..., tm} defines a set of increasing transition levels (or decision) 

levels. If transform coefficient yu lies in the interval (t}, tJ+1] then yH is mapped to #, 

where j e fl, ..., mj. The quantity qj} called the reconstruction level, is the quantized 

value of yu and lies in the interval (tj, tJ+}]. During decoding, the quantized value qj is 

assigned a representative value from the interval (tj, tJ+1], which is usually a number 

mid-way in this interval. The quantizer design problem is to determine the optimum 

transition and reconstruction levels given the probability density and optimization 

criterion [48]. 

There are several quantizer designs available that offer various tradeoffs between 

simplicity of implementation and performance. A well-known quantizer design is 

based on the Lloyd-Max algorithm [62,64], that can iteratively develop the quantizer 

based on minimizing a specific distortion (quantization noise) for a particular 

distribution [70]. Quantization of image samples for compression is called Pulse 

Code Modulation, ( P C M ) [48], however it should be noted that when converted from 

an analog format a digital image is already P C M coded. 

Lossy Transform Coding 

Transform coding achieves relatively larger compression ratios than predictive coding 

techniques through quantization, but is essentially a lossy process. Loss is introduced 

into transform coding during the quantization stage, where the transform coefficients 

are mapped into a smaller output range of values. W h e n these quantized values are 

used as coefficients on the inverse transform during transform decoding, error is 

introduced as information has been lost from the original image block. During the 

compression or coding stage, an entropy encoder such as Huffman or arithmetic 

coding is usually used, and these are not a source of loss in themselves. However, the 

coding stage can introduce further loss if not all the quantized coefficients are coded. 

An efficient transform packs much of a block's energy into a few transform 

coefficients. To achieve higher compression ratios many of the least significant 

transform coefficients can be simply dropped off during the encoding. While this is a 
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source of further loss, the least significant transform coefficients represent very high 

frequency information (fine image detail), whose loss from an image block m a y not 

be visually perceived. For example, in an 8 x 8 transformed block of coefficients, 

over half of the 64 transform coefficients can be omitted from the encoding without 

much perceptible loss of visual detail. This, however, is very subjective and depends 

on the application. 

Predictive vs. Transform Coding 

As discussed in section 2.5.1, predictive coding is very sensitive to changes in the 

statistics of the data, for example, at edges where there is usually little correlation 

between elements in the image. Transform coding however, is largely unaffected by 

this and will distribute the energy of each transformed block over the transform 

coefficients. Normally only adaptive predictive techniques achieve the compression 

rates of transform coding. However from an implementation viewpoint, predictive 

coding techniques are less complex. 

Details of some transforms used for image transform coding are provided in the 

following sections. 

2.5.2.1 Fourier Transform 

The Fourier Transform has many applications in science and engineering. It was only 

natural that the Fourier Transform be one of the first applied to image processing, and 

over the years has been successfully used in many aspects of this field. For image 

coding, the Fourier Transform's usefulness lies in its ability to convert a signal from 

the spatial domain to its frequency domain. 

The Fourier Transform is simply a change of coordinates [15]. The original coordinate 

system is called the spatial domain for image functions, and the Fourier Transform 

space is called the frequency domain. Because a digital image is a two-dimensional 
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set of discrete samples, the Discrete Fourier Transform (DFT) is used in digital image 

processing. Its definition [28] is 

F<w) = hxZYxf^y) ei2*(,a+vy)/N (2.n) 

Equation (2.11) is the 2-dimensional DFT, and the value N is the size of the square 

sample block. This is appropriate since an image is a two dimensional object. 

One of the properties of the DFT that makes it particularly useful for image coding is 

its separability. This means that the 2-dimensional transform in (2.11) can be 

calculated by successive application of a 1-dimensional transform. Given an 8 x 8 

image block, the 2-dimensional D F T can be calculated by application of the 1-

dimensional transform (shown in 2.12) across the rows of the block, then down the 

columns of the block. The result is an 8 x 8 array of Fourier transform coefficients 

defined by 

W = ^Y.f(x)ei2mx/N (2-12) 

where N is the number of samples. One of major uses of the separability of the 

transform is in the development of a Fast Fourier Transform, which is used in place 

of a D F T to reduce the processing time involved. This can only be done by reducing 

the number of arithmetic computations. The number of complex multiplications and 

additions of the D F T in (2.11) is 0(N2), where N is the size of the image block [28]. 

In 1965, Cooley and Tukey [18], developed the Fast Fourier Transform (FFT) which 

is a D F T algorithm. The FFT reduces the number of computations to 0(N log2N). 

The FFT algorithm is simplified when N is a power of two, but it is not a requirement. 
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2.5.2.2 Discrete Cosine Transform 

The Discrete Cosine Transform (DCT), was first applied to image compression in 

1974 by Ahmed, Natarajan and Rao [2]. It was demonstrated that the D C T performs 

close to the optimal Karhunen-Loeve Transform (section 2.5.2.3), in producing 

uncorrelated coefficients. Uncorrelated coefficients are important in image coding, 

because it means that during the coding stage, the coefficients can be treated 

independently without any compression degradation. Another feature of the D C T is 

the ability to quantize the coefficients using visually weighted quantization values 

[69]. The 2-dimensional D C T [70] is defined by: 

c/ \ 1 *-</ \n/ iV1 V"1 s/ \ (2x + l)u7T (2y + l)v7T 
F(u,v) = - C(u)C(v)2,2, f(x>y)cos-—77-— c°s ./ (2-13) 

4 x=0 yxO 16 16 

where C(u),C(v) = —== foru,v = 0; C(u),C(v) = 1 otherwise. 
<2 

As for the DFT, the theoretical equation in (2.13) involves many real multiplications 

and additions. The development of efficient algorithms for computation of the D C T 

began soon after Ahmed et al. reported their work in [2], [70]. Many algorithms have 

been reported, but the algorithm developed by Chen, Smith and Fralick [14] is 

regularly used in implementations of the D C T [69]. 

Chen et al. define a method for computation of the DCT by use of sparse matrix 

factorizations [70]. This results in a series of alternating sine/cosine butterfly loops in 

the calculations and results in a significant reduction in real multiplications and 

additions. According to [2] [70], this algorithm requires ^(log2N-l)+2 real 

additions, and N log2 N- ^ + 4 real multiplications, where N is the sample size. 

This FDCT algorithm is discussed and the signal flow diagram is provided in Chapter 

3, section 3.2.3.2. This is a 1-dimensional FDCT. However, since the D C T is a 

separable transform, this can be used as a 2-dimensional FDCT by taking 1-

dimensional transforms across the rows of an image block, and then down the 

columns. This transform is implemented in the research algorithms. 
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In 1985, Haque [35] reported a 2-dimensional recursive F D C T , that operated by 

rearrangement of the input block into a block matrix form [70]. Each block is then 

put through a half-size 2-dimensional F D C T . This method reported the number of 

real multiplications of an N 2 image block as § N2 log2 N
2. 

The energy packing efficiency and performance of the DCT is superior to that of the 

D F T of the previous section, and approaches that of the optimal Karhunen-Loeve 

transform discussed in the next section. For these reasons the D C T has become 

important to image coding, and is integral to the international standard for continuous 

tone still picture image compression [52]. 

2.5.2.3 Karhunen-Loeve Transform 

The Karhunen-Loeve Transform (KLT), was first discussed by Karhunen [54], and 

then later by Loeve [63], [70]. This transform is a series representation of a given 

random function. The K L T is an optimal transform because it displays the following 

properties, [70]: 

• The transformed block's coefficients are completely decorrelated in the 

transform domain. 

• The Mean Square Error (MSE) is minimized in data compression. 

• It packs the most of an image block's energy in the fewest number of 

transform coefficients. 

• It minimizes the total representation entropy of the image block. 

Despite the theoretical superiority of this transform over other transforms, it has 

practical limitations which prohibit its use for applications. First, it is necessary to 

estimate the source block covariance matrix. Next, if the transform is to be optimal, 

this needs to be done for both row and column processing in a 2-dimensional coding 

scheme. Then the eigenvector determination has to be performed to produce the basis 

matrix. All this has to be done before any image coding takes place, and must be 
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done for each block. The basis vectors need to be transmitted along with each coded 

block. 

The KL Transform is the best linear transform in the sense that it leads to uncorrelated 

coefficients (see section 2.5.2.5). It is not often used in practice because of its 

computational load. It does however provide an upper bound of what other 

transforms which are more computationally efficient, should attempt to reach [55]. 

Fast K L Transforms are reported by Jain [48], which decompose the original random 

process into two mutually orthogonal processes with fast K L Transforms. The 

efficiency of this method approaches the original K L Transform efficiency. However, 

the computational effort is still in excess of that needed for other efficient transforms. 

2.5.2.4 Walsh-Hadamard Transform 

In the literature, the term Walsh-Hadamard Transform (WHT) is often used to denote 

either the Walsh Transform, or the Hadamard Transform. When N is a power of two, 

the Discrete Walsh-Hadamard Transform's ( D W H T ) kernel, forms a symmetric 

matrix whose rows and columns are orthogonal. These properties lead to an inverse 

kernel that is identical to the forward kernel except for a constant multiplication factor 

of 1/N. Unlike the Fourier Transform, which is based on trigonometric terms, the 

D W H T consists of a series expansion of basis functions whose values are either +1 or 

-1 [28]. The 2-dimensional D W H T is 

n-l 

1 AMJV-1 ^fb,(x)b,(u)+bl(y)bi(v)] 
H(u>v) = TT Z E f(*.y)(-V" (2-14) 

where bk(z) represents the ith bit in the binary representation of z [28]. 

The WHT kernels are also separable, so the two dimensional transform in (2.14) can 

be computed by successive applications of the 1-dimensional transform. The 

procedure followed is the same as that for the D F T and the D C T . Algorithms used to 
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compute the FFT can easily be modified to compute a Fast DWHT by setting all the 

trigonometric terms to one. 

The WHT is real, and as such, computer algorithms to compute the DWHT generally 

needs less storage space than the Fourier Transform algorithms which are generally 

complex. The W H T is also fast compared to the other separable transforms since its 

computations involve no multiplications [70]. The W H Transform is often used in the 

fast computation of other transforms such as the D C T and the DFT. 

2.5.2.5 S u m m a r y 

This section briefly summarizes the transforms described in the previous sections. 

The KL Transform is optimal on a mean square error basis, but is difficult to 

implement. The calculations involved make it prohibitively time consuming for 

implementation as a real time algorithm. This transform is most useful as a 

benchmark. 

The DFT involves complex variables and its use is recommended only if the 

frequency domain is mandatory such as in visual coding where the source data has to 

pass through the Fourier domain. The D C T performs well for highly correlated data 

(i.e. correlation coefficient > 0.5), such as in digital images. The W H T is useful for 

small block sizes (« 4 x 4). The implementation of this transform is much simpler 

than either the D F T or the D C T . 

The following graphs (Clarke [15]), compare some transforms according to a variety 

of criteria. For digital image coding, the most useful criteria are the energy packing 

ability of the transform, and its ability to decorrelate the transform coefficients. 
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Figure 2.10 Energy packing efficiency as a function of correlation coefficient [15] 

Figure 2.10 shows the energy packing efficiency TJE as a function of the correlation 

coefficient p, with the number of samples N being 8 with 4 coefficients retained. The 

D C T has a slight edge particularly as the inter-element sample correlation increases. 

The D F T has the poorest performance. 
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Figure 2.11 Energy packing efficiency as a function of transform block size [15] 

Figure 2.11 shows the energy packing efficiency, TJE, as a function of the input block 

size. Again, the D C T performs at the optimal level of the K L T . 
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Figure 2.12 Decorrelation efficiency as a function of the correlation coefficient [15] 

Figure 2.12 shows the decorrelation efficiency TJC as a function of the correlation 

coefficient p. The KLT displays the optimal decorrelation of transform coefficients, 

but the DCT performs closer to this than the other transforms. 
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Figure 2.13 Decorrelation efficiency as a function of transform block size [15] 
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Finally, Figure 2.13 shows the decorrelation efficiency as a function of the transform 

block size. The D C T is performing at near optimum performance compared to the 

other transforms. 

The graphs in the four figures from this section are derived from [15], and in many 

cases the scales of the ranges have been expanded to show some detail. This was 

necessary since the area of interest was around 100 percent. 

The conclusion to be drawn is that for practical purposes the DCT of all the 

transforms is best (in that it performs close to the KLT ) , provided the correlation 

coefficient between data samples is high [15]. This is usually the case in image 

processing. 

2.5.3 Vector Quantization 

Vector Quantization (VQ) has raised some considerable interest since, in principle, it 

can nearly achieve optimal rate-distortion performance [3]. V Q is the joint 

quantization of a block of signal values. In V Q , an ̂ -dimensional input vector [xu x2, 

..., xn] denoted by X, whose values represent discrete samples of a signal are mapped, 

or quantized into one of Npossible reconstruction vectors Y{, where * =1, .... N [32]. 

The distortion in approximating the discrete sample X with Yt is denoted by d(X, Y). 

The most common distortion measure is MSE, which is calculated as the square of the 

Euclidean distance between the two vectors, as: 

dMSE(X,Y)--!-±(xi-yi)
2 (2.15) 

n i=, 

The set of quantization vectors Y is often called the reconstruction codebook. The 

quantization process is straightforward, and is based on a minimum distortion rule. 

A n input vector of discrete samples is compared to all the quantization vectors in the 

codebook, and is quantized to the codebook entry that results in the minimum 

distortion. That is, the codebook entry Yk is chosen such that 
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d(X,Yk) < d(X,Yj) for j--\...N. (2.16) 

The only thing that needs to be kept is the index number of the codebook entry used. 

With impossible codebook entries, the output of the vector quantizer can be specified 

with log2 Ambits, and the resulting bit rate per vector component is (log2 N)/n bits [25]. 

A fundamental result of Shannon's rate-distortion theory [79] is that better 

performance (compression) can be achieved by coding vectors instead of scalars, and 

as n -> co the quantizer distortion rate gets arbitrarily close to the rate distortion 

bound, and for codebook of size N, the output entropy approaches log2 N [32]. 

Large values for the input vector size n and large values of N can make searching a 

codebook prohibitive. To help minimize the mean distortion, the temptation is to 

increase the number of quantization vectors, N. However, as N increases, the time to 

search the codebook grows geometrically. Care must be taken to construct the initial 

codebook carefully. The codebook vectors are normally designed in the spatial 

domain by a cluster algorithm named LGB developed by Linde, Buzzo & Gray [61]. 

Between 1980 and 1982 four separate groups developed successful applications of 

V Q techniques to image coding [32]. The only difference between these applications 

and the techniques discussed thus far is that these applications used two-dimensional 

vectors, or blocks from the input image. In [32] example images are coded using 6-bit 

codebook vectors and input block size of 4 x 3 pixels, at a compression ratio 16:1. At 

this rate, the blocky effect of the distortion was severely noticeable. 

Image ^ara™M"^,,*,--m-"°^^: ^ Compressed 
Vector (Block) -^ >* VQ >• Image 

Choose Yk to 
minimize d(X,Y) 

Figure 2.14 Vector quantization block diagram 
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It should also be noted that the algorithm for generation of codebook entries [61], is 

image specific. A V Q technique shows considerable degradation of quality for 

images not included in the codebook design [3]. A block diagram showing the 

generalized process of Vector Quantization is shown in Figure 2.14. 

2.6 Selection of International Standard 

Towards the end of 1986, a group of experts formed the JPEG. Their task was to 

select a high performance universal compression technique for development as an 

international standard [41]. The JPEG conducted subjective image quality evaluations 

on two occasions with a number of image compression techniques in order to select a 

candidate for the international standard. 

The first took place in June 1987 at KTAS . Twelve image compression techniques 

were tested according to a number of criteria, and pre-determined compression rates. 

From these twelve, three finalists were selected for further subjective testing at a later 

meeting of the JPEG [41] [58]. 

Four pictures were tested at compression rates of 0.25 bits/pixel, 0.75 bits/pixel and 

4.0 bits/pixel, the later compression rates providing images "indistinguishable" from 

the original. From this testing three techniques were chosen for further analysis, the 

Adaptive Discrete Cosine Transform (ADCT), the Adaptive Binary Arithmetic Coder 

(ABAC), and the Block Separated Progressive Coding (BSPC). 

The second meeting of the JPEG also held at KTAS, took place in January 1988. The 

purpose of this meeting was to select from the above three techniques, one that would 

be chosen for refinement with the goal of producing an ISO4 standard. The algorithms 

were required to produce progressive stage images coded at 0.08, 0.25, 0.75 and 2.25 

bits/pixel. 

The Copenhagen Telephone Company Research Labs 

4 International Standards Organization 
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The ADCT technique excelled in producing images at all of the above bit-rates. The 

A D C T was selected as the technique for final refinement with the aim of issuing the 

draft standard to ISO bodies during 1989, for final voting in 1990. This technique 

became the International Standard for continuous tone still picture compression in 

1992. 

2.7 Recent Compression Techniques 

Since the acceptance of the JPEG standard as the international standard for continuous 

tone still picture compression, other techniques for compression have gained in 

popularity. T w o of these techniques are Wavelet compression and Fractal 

compression. There are claims that both of these methods offer superior compression 

and quality of compressed images to JPEG, with some skepticism in the international 

community over the case for Fractal compression. 

In the following two sections both of these recent compression techniques are 

discussed, followed by a comparison of the three techniques, JPEG, Wavelet and 

Fractal compression. 

2.7.1 Wavelet Compression 

Wavelet compression involves the use of the Wavelet Transform. The Wavelet 

Transform was not discovered by any one individual but grew from a number of 

similar ideas. The first mention of wavelets appeared in an appendix to the thesis of 

A. Haar in 1909, but they were not given a strong mathematical foundation [23] until 

relatively recently [90]. The Wavelet Transform has a close association to the Fourier 

Transform. Where the Fourier Transform breaks a signal into a series of sine waves 

of different frequency, the Wavelet Transform breaks the signal into wavelets which 

are scaled and shifted versions of the "mother wavelet" [5]. 
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Figure 2.15 Comparison of sine wave and Daubechies wavelet 

Figure 2.15 shows the sine wave in comparison to the Daubechies-5 wavelet. In 

comparison to the sine wave that is periodic and infinite, the Daubechies wavelet is of 

irregular shape and compactly supported. These properties of wavelets make them 

ideal for analysing signals. The irregular shape lends itself to analysing signals with 

discontinuities or sharp changes, which correspond to object edges and contours in 

images. 

0 100 a» m 400 *» 

Figure 2.16 Some well known wavelet families 

There are an infinite set of Wavelet Transforms, but only a few useful ones. Some of 

these can be seen in Figure 2.16. Different sets of wavelet families make different 

trade-offs between how compactly the basis functions are localized in space and how 

smooth they are. The wavelet signal transform procedure is to adopt a wavelet 

prototype function called a "mother wavelet". Temporal and frequency analysis is 

performed using high and low frequency versions of the same wavelet. The original 

signal can be represented in terms of wavelet expansion, using coefficients in a linear 

combination of the wavelet basis functions. Compression can be achieved using these 

coefficients as input to an entropy coder. 
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Where this is different from the D C T is that a set of wavelet basis functions can be 

obtained by simply scaling a single wavelet on the time axis. Each wavelet contains 

the same number of cycles such that, as the frequency reduces, the wavelet gets 

longer. Thus, the frequency discrimination of the Wavelet Transform is a constant 

fraction of the signal frequency. This is depicted in Figure 2.17. 

Fourier Transform Wavelet Transform 

Figure 2.17 Discrete fourier basis functions vs. scaled wavelet basis functions 

For the discrete Wavelet Transform, dilations and translations of the mother function 

0(x) define the wavelet basis [31], as 

-s 

*w(x) = 2J0(2~sx-l) (2.17) 

where variables s and / are integers that scale and dilate the mother function Q(x) to 

generate wavelets. The scale index s indicates the wavelets width, and the location 

index / gives its position. To span the data domain at different resolutions, the mother 

wavelet is used in the scaling equation as 

W(x) = %-l)k ck+10(2x + k) (2.18) 
k=-i 

where W(x) is the scaling function for <P(x), and {ck} are the wavelet coefficients. 

The fundamental idea of wavelets is to analyze according to scale. Wavelet 

algorithms process data at different scales or resolutions. If w e look at a portion of an 

image with a large continuous area, w e notice coarse features, while if w e look at a 
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portion containing smaller areas we notice fine detail. Wavelets analyze images in 

this way, and these areas are known as the trends and outliers in wavelet compression. 

Trends span a wide range and have high spatial correlation. They correspond to the 

slowly varying large parts of an image (e.g. the light grey colour of a person's face). 

Outliers are bursty and have low spatial correlation, and these correspond to the very 

concentrated, and rapidly changing areas of an image (e.g. edges). The wavelet 

transform encodes the trends at low resolution, and the outliers at high resolution [73]. 

That is, high frequencies in an image corresponding to outliers are transformed with 

short basis functions, whereas low frequencies corresponding to trends are 

transformed with long basis functions [90]. 

Figure 2.18 Outliers and trends coefficients 

Therefore, the low resolution areas contain many significant coefficients, but have 

small size, while high resolution areas are made mainly of zeros, with few coefficients 

representing the outliers, as shown in Figure 2.18. The trick of wavelet compression 

is to quantize the transformed image so that many "unnecessary" high resolution 

coefficients are mapped to zero and, to find an efficient way to encode the position of 

the zeros. Run length encoding or Huffman coding is usually used. 

At low bit rate compression, the JPEG DCT introduces a blocky effect into the 

reconstituted image due to the division of the original image into sub-blocks. This 

blocky effect is also responsible for artifacts. Similar low bit rate coding in wavelets 

tends to produce a smearing around edges in the reconstituted images, and the 

artifacts are more difficult to characterize. JPEG artifacts are always in the same 

38 



Chapter 2 - A Survey of Image Compression Techniques 

position of an image since they are caused by the division into blocks. In wavelet 

compression, the errors responsible for artifacts tend to be spread over the entire 

image. 

The work with wavelets for data compression is along a similar theme to earlier work 

[55] [56], with pyramidal encoding and contour-texture techniques. These techniques 

were based on studies of the human visual system and used edge detection and 

contour mapping to code edge areas of the image at a higher rates than other areas. 

Comparing JPEG and wavelet compression reveals a higher image quality for a given 

bit rate with wavelets than for JPEG. 

In 1993, the U.S. Federal Bureau of Investigation (FBI) Criminal Justice Information 

Services Division, developed standards for fingerprint digitization and compression. 

These standards are based on a wavelet compression technique, and were developed 

in cooperation with the U.S. National Institute of Standards and Technology [31]. 

The FBI is using these standards for the coding of their approximately 2,000 terabytes 

of fingerprint data collected from 1924. 

2.7.2 Fractal Compression 

The term fractal was first used in 1977 by Benoit Mandelbrot to describe an iterative 

mathematical technique that generates extremely complex yet natural looking images 

[77]. Fractals have been applied to image compression, and are used to represent the 

structures in images. Fractals can be loosely defined as shapes that are irregular, and 

have the interesting property of self-similarity [25]. A self-similar object is one that 

looks approximately the same regardless of the scale at which it is viewed. 

One of the better known examples of images generated using fractals is that of the 

fern leaf shown in Figure 2.19. The most important property of fractals is the small 

amount of information which can be used to generate a complex image. The fern leaf 

example image can be generated from 12 bytes of data. This is the property that 

makes fractals an ideal tool for image compression. 
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Figure 2.19 Fractal generated fern leaf 

Another example of a fractal is the Sierpinsky Triangle, whose construction can be 

seen in Figure 2.20. The original image is shrunk by half, then pasted to the top, left 

and right corners. The process proceeds in an iterative fashion. Fractals can be 

constructed in this manner [74]. The two properties of importance here are, "the 

further the process goes the more detail is added", and "a different initial image can be 

used to construct the same fractal". It does not make a difference which initial image 

is used, only the process is important. 

Figure 2.20 Sierpinsky's triangle construction 

The fractal can be determined by its transformation process, and the initial image is 

the attractor of the process [74]. Different transformations lead to different fractals. 

In most cases only a limited type of transformation is used, and these do simple things 

such as scaling, moving, rotating or flipping an image. The transformations are affine 

and are written as 

w(x,y) = (ax+by + e,cx+dy + f) (2-19) 
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Storing images like that in Figure 2.20 can be done efficiently by just storing the 

values a, b, c, d, e, and/ which are the coefficients of the transformation needed to 

construct the image. This process seems straight forward, but the inverse problem is 

more difficult. That is, "Given a complex, real-world image h o w do w e arrive at the 

set of transformations that can accurately generate that image". 

A lot of initial interest in fractal based compression is due to the work of Barnsley and 

Sloan [9], [7], [80]. In 1988, Dr Michael Barnsley claimed to have discovered the key 

to the inverse problem. H e invented the fractal transform, and registered the term as a 

trademark, forming a company called Iterated Systems5. Barnsley and Sloan have 

made claims of extremely high compression ratios while supplying only limited 

technical details of the process, supposedly for patent issues [25]. This has raised 

doubts as to the validity of fractal based compression. One criticism is that many of 

the example images supplied were from a very "restricted" class of images. 
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Figure 2.21 Barnsley's photocopy machine 

Iterated Systems, Inc., Atlanta, Georgia, U.S.A. 
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According to Barnsley et.al., there must be a set of basis functions or rules for the 

self-affine transformations to generate an image, and they are in principle 

discoverable [8]. Figure 2.21 shows Barnsley's photocopy machine [72] depicting 

this. This is known as his college theorem, and states that there is a set of mappings 

and probabilities that produce an output identical to the input to any desired degree of 

accuracy. These transforms and probabilities constitute his image compression 

algorithm (U.S. patent 5065447). 

Jacquin, a former student of Barnsley, was the first to quantitively describe how 

fractals can automatically encode images [47]. This process begins by partitioning the 

original image into a set of N non-overlapping range blocks \R, Y_ , where the size of 

each block is 8 x 8 [47]. A domain pool {D,}*. is constructed by partitioning the 

image into a second, coarser set of Mpossibly overlapping blocks [16] [36]. Next, a 

class of contractive block transformations called the transformation pool, T, is 

defined. Each transformation consists of a value component called a massie [47], 

which alters the values of pixels in the block, and a geometery component which 

shuffles the positions of the pixels in the block. A transformation is contractive if and 

only if it brings every two pixels in a block both nearer spatially and closer in value. 

For each image block, Rj, the encoding process searches for the pair (A, 7*) such that 

Tk(Dt) best matches Rj. The quality of the match is determined by the distortion 

measure L2 shown in (2.20). This measure sums the square of the difference between 

corresponding pixels of the two blocks X and Y with dimensions, wxA[16][17]. 

w h 

L2(X,Y) = YY.(X(x,y)-Y(x,y))
2 (2.20) 

x=0 y=0 

One of the main disadvantages of fractal compression is that if is slow. Compression 

and decompression times are asymmetric. That is, it takes much longer to compress 

an image than it does to de-compress one. Figures from [77] based on a 386 P C give 

times of a few seconds for decompression, but up to 5 minutes for the actual 

compression process. It should be noted however, these times are calculated using 

software alone, and are based on outdated processors. 
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2.13 Comparison with J P E G 

It is often difficult to compare the claims of different compression techniques, as so 

much depends on the actual implementation. Compression ratios and times can often 

differ greatly even between different implementations of same technique. Both 

wavelet and fractal compression are lossy methods, and for comparison should both 

be compared to the JPEG baseline sequential method. 

Some compression performance results of the JPEG algorithm are given in [69]. For 

the lossy baseline sequential mode, nine images [69 : Chapter 15] with an average of 

16 bits per pixel, were compressed with the average compression ratio at 20:1. These 

are the same images used in the original selection of the JPEG standard. This 

reported average compression ratio is typical of that reported by JPEG algorithms for 

very good decompressed picture quality. 

The FBI target compression bit rate for fingerprint images discussed earlier, was 0.75 

from original 8 bit data, corresponding to a ratio of 10.6:1. According to [11], 

extremely good quality was being achieved at a ratio of approximately 18:1, and good 

quality for the same images was reported at ratios of 26:1 [31]. The JPEG standard 

coding of these images was unacceptable due to artifacts at a ratio of 12.0:1 [11]. 

For fractal image compression Cochran [16] reported varying results of compression 

ratios depending on range block size. These results ranged from 10.99:1 to 729:1 for 

some medical imaging. The extremely high data compression results in most detail 

being obscured and only the edges being reproduced. Compression times greatly 

increased with compression ratios. 

Randolf Shultz from the Computer Graphics Institute, at Rostock University, 

Denmark [76], provides comparative compression data on the same set of images for 

all three methods, JPEG, wavelets and fractal compression. The algorithms tested for 

comparison were, the JPEG implementation of the IJG (Independent JPEG Group) 

V5, the EPIC wavelet coder by Eero P. Simoncelli, and a fractal compression 
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algorithm called Coder, by Yval Fisher. Details of images at various compression 

rates can be seen in [76], and the results summary is presented here. 

Table 2.4 presents the results from the comparisons of the three compression 

methodologies, and Table 2.5 presents the observed behaviour of the image artifacts 

which appear at higher compression ratios. The performance of compression times in 

Table 2.4 are measured as relative times with JPEG set at 1. 

Table 2.4 Comparison of compression methodologies 

Property 

max compression ratio 

Performance 

Criteria 

good image quality 

mediocre image quality 

poor image quality 

compression time (rel) 

decompression time (rel) 

image dependence 

symmetric 

JPEG 

1:30 

1:70 

1:160 

1 

1 

medium 

yes 

Wavelet 

1:30 

1:90 

1:350 

5 

3 

strong 

no 

Fractal 

1:25 

1:50 

1:375 

20 

5 

very strong 

no 

Table 2.5 Comparison of artifact behaviour of methodologies 

Methodology 

JPEG 

Wavelet 

Fractal 

Appearance (ratio) 

1:119 

1:124 

1:38 

Effects 

Blocking artifacts 

Strong reduction in colours 

Edges destroyed by blocking 

Overall image blurring 

Edges destroyed by excessive blurring 

Blocking artifacts 

Non-uniform overlapping blocks 

Small details disappear at low compression 

It should be noted that the above comparison data is presented as is from [76]. 

However, the general trends are echoed further in the literature as outlined above. 

General results from wavelet compression reports that for the same quality image 
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higher compression than JPEG is available. The blocky features of higher 

compression JPEG images are spread more evenly in a wavelet compressed image, 

which may account for better subjective testing results. For general real-world 

images, the fractal compression seems to perform worse than its JPEG counterpart, 

despite some promising results in the literature. There is a direct dependence on 

fractal compression times with the compression ratio. 

2.8 Summary 

This chapter has discussed the basics of image compression. An overview of 

developments and methodologies leading up to the selection of the JPEG standard for 

continuous tone still picture image compression as the International Standard in 1992 

has been included. There has been much work in the area of image compression since 

the selection of the JPEG standard, with wavelets and fractals being a part of this. 

These two techniques represent the better known recent developments and have been 

covered in detail. 

The next chapter discusses the mechanics of one aspect of the JPEG standard. The 

JPEG sequential baseline mode of operation is then used in the implementation of a 

parallel algorithm in subsequent chapters. 
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CHAPTER 3 

THE JPEG STANDARD AND PARALLEL SYSTEMS 

3.1 Introduction 

The JPEG standard is now the International Standard for the coding of continuous-

tone still images, accepted by the ISO and CCITT. This research therefore, has 

adopted this standard for the implementation of the parallel image compression 

algorithms developed and discussed in Chapters 4 and 5. 

This chapter gives a brief overview of the JPEG standard, and covers those aspects of 

the standard which are used in later chapters. Since a parallel implementation is 

developed, this chapter also provides an introduction to parallel systems and 

paradigms. A n overview of parallel architectures and programming paradigms is 

provided only in enough detail to set the context of the research. Section 3.2 discusses 

the JPEG standard while Section 3.3 discusses parallel systems and paradigms. 

3.2 JPEG Standard 

The JPEG International Standard for image compression is defined in [52], and covers 

all aspects of still picture compression. Not all the standard applies to this research. 

Indeed the standard provides much latitude in some areas, and acts as a guideline to 

successful implementation. M a n y of the annexes provided in [52] are not an integral 

part of the recommendations but are provided as examples. Thus, there can be a wide 

difference between implementations of JPEG in applications said to be conforming to 

the standard. However, they must all satisfy the compliance testing outlined in [53]. 
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The following sections discuss those aspects of the JPEG standard chosen for 

implementation in the development of a parallel algorithm. There were certain 

aspects which needed implementation as directed, but where there is latitude the 

choices made are clearly stated. Only those recommendations required by the 

research were implemented. Those that are required for successful compliance testing 

but not implemented in the research algorithms, are also identified in the following 

sections. 

3.2.1 Lossless Vs. Lossy Compression 

The JPEG standard specifies two classes of coding and decoding processes, lossless 

and lossy. The lossy class is based on the Discrete Cosine Transform (DCT) and 

permits considerable compression. The lossless class is based on Differential Pulse 

Code Modulation ( D P C M ) , and is specified to satisfy the needs of those applications 

that may require the original image to be reconstructed exactly. 

Figure 3.1 Structure of lossless encoder [52] 

The structure of the JPEG standard lossless encoder is shown in Figure 3.1. The 

lossless coding process does not use the D C T , but is based upon a prediction using up 

to three neighbouring values a, b, and c to estimate a value for the current sample, x, 

see Figure 3.2 below. The difference between the prediction and the actual value for 

sample x is then coded using an entropy encoder. The lossless compression achieved 
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is not as great as the D C T based processes, and is around 2.5:1 [55] for D P C M 

techniques in general. A compression rate of approximately 2:1 [69] was reported for 

the JPEG version using arithmetic coding. 

Figure 3.2 Prediction of pixel x from 3 neighbours 

The structure of all lossy encoding processes (which are based on the DCT), is shown 

in Figure 3.3. This figure shows all the main procedures used during the lossy 

encoding process. The predictor in Figure 3.1 is replaced by a Forward Discrete 

Cosine Transform (FDCT) and followed by a quantization process. The quantization 

is responsible for most of the loss that occurs, though more may be introduced by 

discarding some of the D C T coefficients during the encoding stage. This is discussed 

later in section 3.2.2. 

• FDCT Quantizer Entropy 
Encoder 

Image Source 

Table 
Specifications 

Compressed Image 

Table 
Specifications 

Figure 3.3 General structure of D C T based encoder 

Most applications use lossy encoding as this provides far more compression, and 

some degree of control over the compression rate is possible. Also, within the lossy 

class of procedures, there are three distinct modes of operation, these are sequential 

DCT-based, progressive DCT-based, and hierarchical. The progressive DCT-based 

mode allows for the quick display of partially decoded coefficients, with progressive 

displays sharpening the image and providing more detail at each iteration. The 
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hierarchical mode also offers a progressive presentation, but is more useful in 

environments that have multi-resolution requirements [52]. The simplest of these is 

the first and is referred to as the baseline sequential process. This mode of operation 

is adequate for most applications. 

This research uses the lossy baseline sequential encoding model of Figure 3.3. The 

specification, of which class of process and which mode within that class was used to 

encode the source image, is supposed to be stored as a marker code within the 

compressed image data. This item is omitted in the parallel implementation, as only 

the baseline sequential mode of operation is implemented. 

3.2.2 DCT-based Compression Overview 

n x n block of samples 

/ 
/ ~— 

Figure 3.4 Image blocks 

As with other transform compression techniques, an image is compressed by first 

breaking it down into smaller nxn pixel blocks (where n is typically 8 or 16), as 

shown in Figure 3.4, and then applying the transform to the blocks. The size of the 

image block specified in [52] is 8 x 8 and the research algorithms implemented use 

this size. All image blocks are now assumed to be 8 x 8 pixels in size unless 

otherwise stated. Each block is compressed separately. It is compressed by first 

converting the image samples, which are the intensities, into their frequency domain 

by application of the D C T . The result is an 8 x 8 block of transform coefficients. 

The DCT maps the image block from its spatial domain to its underlying spatial 

frequency domain (the transform domain). It thus represents the image by using a set 
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of cosine basis functions, each with a particular spatial frequency. The basis functions 

are periodic with progressively higher frequencies. Each transform coefficient in the 

transformed block represents a scaling factor for its particular basis function. The 

complete set of basis functions are then scaled by their respective transform 

coefficients and then summed to give the original image block. 

The number of basis functions (and hence the number of coefficients) depends on the 

dimension of the original block. W h e n the image is divided into 8x8 blocks, the 

D C T can be computed independently for each block, since the cosine basis functions 

do not change. Only the transform coefficients change from one block to another. 

Applying the one-dimensional DCT of (3.1) to a set ofn spatial domain samples gives 

n transform coefficients as in Figure 3.5. O f these, one coefficient tx has special 

meaning. It is termed the DC coefficient, and represents the average frequency of the 

n point sample set. The remaining coefficients are termed the AC coefficients. They 

are coefficients for the basis functions of increasing frequencies. The descriptions D C 

and A C go back to when the D C T was used to analyze electrical currents with both 

Direct and Alternating components. 

one dimensional 
Sj, S2, S3, ..... Sn — > tu t2, t3, ...., t 

forward D C T l * * 

Figure 3.5 Application of one-dimensional D C T 

Of all the transform coefficients, t, contains the most information used by the Inverse 

Discrete Cosine Transform (IDCT) shown in (3.2), in the reconstruction of the n point 

sample set. Coefficient t2 contains the next largest amount of information and so on, 

down to tn, which has the least amount of information of all the coefficients. 

Dividing a digital image into 8x8 blocks gives us two-dimensional data samples. 

Applying a one-dimensional D C T to this two-dimensional data would yield 

coefficients that still display a high degree of correlation. For example, in an 8 x 8 
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block, applying the one-dimensional DCT across each of the eight rows of the block, 

results in an 8 x 8 block of transform coefficients, where the coefficients are 

uncorrelated horizontally across the rows of the block, but not vertically. In 

transforming to the frequency domain, the energy of the block is shifted to the 

coefficients in the first column, with no attention given to the vertical relationships 

between the original samples. 

The two-dimensional DCT in (3.3), when applied to an 8 x 8 image block, produces 

an 8 x 8 block of transform coefficients uncorrelated both horizontally and vertically, 

as shown in Figure 3.6. A two-dimensional D C T is performed by applying a one-

dimensional D C T across the rows of the sample block, and then down the columns of 

the partially transformed block. This removes the correlation in both dimensions. 

SI1 S12 SI3 S18 

S21 S22 S23 S28 

S31 S32 S33 S38 

S81 S82 S83 S88 

Figure 3.6 Application of a two-dimensional D C T 

In Figure 3.6, transform coefficient tn is the DC coefficient, all the other coefficients 

are the A C coefficients. This is shown in Figure 3.7. As in the one-dimensional case, 

the D C coefficient represents the average energy for the block, and the A C 

coefficients represent coefficients for the basis functions of increasing frequency. In 

addition, the D C coefficient contains the most information of all the coefficients when 

used in the two-dimensional IDCT in (3.4), for reconstruction of the original image 

block. The A C coefficients, then contain decreasing amounts of information used by 

the IDCT following a zig-zag pattern, until coefficient f8g which contains the least. 

hi *u hi hs 
two dimensional t . t22 I23 hs 

> 
forward D C T hi U2 hi hs 

hi h2 h3 h 
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, D C coefficient 

• 
/ 

; 

/ 
/ 

* 
AC coefficients 

i all others) 

Figure 3.7 Transformed block coefficients 

The two-dimensional DCT is the most efficient transform, apart from the optimal 

KL T , in energy packing ability. It moves as much of a block's energy into the upper 

left, transform coefficients as possible. The D C T is also very efficient at packing 

most of this energy into the D C coefficient. After transformation, the high frequency 

coefficients correspond to the very fine detail in the image block. They can either be 

coded with the rest, or discarded with little perceptible loss of detail. Quantization 

rounds many of these coefficients to zero. The A C coefficients towards the lower 

right of the compressed block in Figure 3.7 correspond to these higher frequencies. 

The basis functions of the two-dimensional D C T can be seen in Figure 3.8. The finer 

detail, and hence the higher frequencies of the transform can be seen increasing from 

the upper left of the block to the lower right. 

Figure 3.8 Two-dimensional 8x8 D C T basis functions [70] 
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The transform coefficients can be ordered in a linear fashion. The standard ordering 

used with the D C T is shown in Figure 3.9 and is called the zig-zag sequence. The 

order of importance is defined by the amount of information contained in each 

coefficient, and thus the contribution each makes to the JDCT. The sequence of 

Figure 3.9 arranges the coefficients in decreasing order of importance, thus the first 

coefficient (DC) makes the largest contribution to the IDCT. The zig-zag ordering is 

fundamental to the image compression of the JPEG standard and the pattern in Figure 

3.9 approximately orders the two-dimensional cosine basis functions of Figure 3.8, 

from low to high spatial frequencies. 

D C coefficient 

Figure 3.9 Zig-zag sequence for 8x8 block of transform coefficients 

This ordering of the coefficients according to the zig-zag sequence affects the 

statistics of the symbols in the statistical model used by JPEG to encode the 

coefficients. The probability of the coefficients being zero in this ordering is an 

approximately monotonic increasing function of their index within the ordering [69]. 

This can be seen in Figure 3.10. Because of the high probability of coefficients being 

zero towards the end of the sequence, the encoding process can also use run-length 

encoding on these zero-coefficients. See Section 3.2.3.4. 
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.illllliin.. .•••-
0 B 16 24 3 ^ ^ 40 48 5fl 

Figure 3.10 A C coefficient probability in zig-zag index [69] 

The transform coefficients are then quantized. This step divides each frequency 

coefficient by a fixed amount and rounds to an integer. The quantized frequency 

coefficients are then encoded using a suitable entropy encoder. Arithmetic or 

Huffman encoding is recommended by JPEG. 

The compression ratio can be further controlled by omitting some of the later 

coefficients in the sequence. In many cases, their omission results in no perceptible 

loss of image quality, depending on how many are omitted. The research in the 

following chapters does not omit any of these coefficients. All coefficients are 

encoded, with the only loss of data coming from the quantization process. 

3.2.3 JPEG Steps 

Once an image is decomposed into its corresponding 8x8 pixel blocks, four major 

steps in the JPEG algorithm are applied to each block. These are level shift, the DCT, 

quantization, and entropy encoding. Each of these steps are described in the next four 

subsections. Particular detail is given to the D C T step as a fast version of the D C T is 

substituted for the ideal functions presented in Section 3.2.3.2. 
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3.2.3.1 Level Shift 

Before the DCT is applied to each image block, every sample in the block is level 

shifted to a signed representation. The level shift is achieved by subtracting the 

quantity 2P~X where P is the precision of the sample set. For example, in eight bit 

grey scale images, the precision is eight and the intensity ranges between 0 and 255. 

Assuming a random distribution of samples throughout the image, the average 

intensity value is 128. The level shift process subtracts 128 from each of the intensity 

values. This gives a signed representation range of -128 ... 127 with an average of 

zero. 

The level shift reduces the internal precision requirements in the DCT calculations. In 

principle, this level shift affects only the D C coefficient, shifting a neutral grey 

intensity to zero [69]. During image decompression, the reverse process takes place. 

After the Inverse D C T is performed, the value 2P_ 1 is added to each decoded value of 

the IDCT. 

3.2.3.2 D C T 

Next, each block has the two-dimensional DCT applied to it. The mathematical 

definitions for the D C T and I D C T below contain terms that cannot be represented 

with perfect accuracy by any real implementation [52]. The accuracy requirements for 

the D C T and the I D C T are specified in [53]. The function definitions for the 1-

dimensional D C T and 1-dimensional Inverse D C T (IDCT) are 

F(u) = I C(u) £ f(x) cos(2x + 1)U* (3.1) 
2 xTo 16 

f(x) . L i C(u)F(u) cos <^Zx\ (3.2) 
2 Ux0 lo 
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where C(u) = -j=,foru = 0, C(u) = l foru>0. 

42 

The function definition for the 2-dimensional D C T and the 2-dimensional IDCT are 

F(u.v) - I C(u)C(v)2Z >Zf<x.y> <»-(2X*'*" cos(2y + 1)v* (3. 
4 x=0 v=0 16 16 

3) 

f('-y) = 7 1 1 C(u)C(v)F(u,v) cos(l-±l)-- co.Qxx.U__ (3.4) 
4 u_o v=o 16 16 

where C(u),C(v) = -= foru,v = 0; C(u),C(v) = 1 otherwise. 

42 

It should be remembered that in [52], (3.3) and (3.4) are the ideal function definitions. 

These functions do not have to be strictly applied, as long as the functions used in the 

resulting algorithm conform to the compliance testing for accuracy in [53]. A fast 

algorithm implementing the D C T is normally substituted for (3.3) and (3.4) in order to 

improve speed of computation. The ideal functions are computationally intensive. 

For example, the 2-dimensional D C T (3.3) applied to an 8 x 8 block (64 samples), 

requires 1024 real multiplications and 896 real additions [69]. 

Cn/4 

-&Z7C/16 

C7;r/16 

F(0) 

F(4) 

F(2) 

F(6) 

F(l) 

F(5) 

F(3) 

F(7) 

Ci = cos(i) Si = sin(i) 

Figure 3.11 Signal flow graph for fast D C T [14], [70] 
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The research algorithms developed in Chapter 4 implement a fast version of the D C T 

developed by Chen et.al. in [14]. The signal flow graph for this algorithm can be seen 

in Figure 3.11 above. The algorithm implementation of this is listed in Section B3, 

Appendix B. This fast version of the D C T has less than 1/6 of the computational 

steps of the ideal D C T function [14]. While there are faster D C T versions, this 

algorithm is adequate for most implementations, with the only disadvantage being the 

complex index mapping [70]. 

3.2.3.3 Quantization 

Next, the 64 coefficients are quantized. That is, they are divided and then rounded by 

using a corresponding value from an 8 x 8 quantization table as in 

f 
Sqm = round 

S. MV 

\Quv 

Squv is the quantized coefficient, and rounding is to the nearest integer. The 

quantization step allows the transform coefficients to be represented with much less 

accuracy, and hence use less storage space. In the JPEG standard, the values in the 

quantization table, and the resulting quantized transform coefficients are always 

integers. This integer representation is chosen so that with appropriate quantization 

values, the quantized coefficients are represented using less bits of precision than the 

corresponding input samples. This is an important step, as it tends to reduce many of 

the coefficients to zero, especially those representing the high spatial frequencies. 

The JPEG standard does not specify any default values for the quantization table. 

This is left to the particular application in order to customize the table to the 

characteristics of its particular set of images. However, Annex K of [52], "Examples 

and Guidelines", does provide two example quantization tables for luminance and 

chrominance. These tables were arrived at empirically by measuring the visibility of 
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the 8 x 8 DCT basis functions on an image with luminance resolution 720 x 576 and a 

chrominance resolution of 360 x 576 at a viewing distance of six times the screen 

width. Threshold quantization table values were then derived and presented in the 

example tables of Annex K [52]. The quantization table for the luminance values are 

presented in Table 3.1. 

Table 3.1 Luminance quantization table 

16 

12 

14 

14 

18 

24 

49 

72 

11 

12 

13 

17 

22 

35 

64 

92 

10 

14 

16 

22 

37 

55 

78 

95 

16 

19 

24 

29 

56 

64 

87 

98 

24 

26 

40 

51 

68 

81 

103 

112 

40 

58 

57 

87 

109 

104 

121 

100 

51 

60 

69 

80 

103 

113 

120 

103 

61 

55 

56 

62 

77 

92 

101 

99 

The research algorithms use the quantization values in Table 3.1 for this step in the 

JPEG standard. The images used during testing were 8-bit precision grey scale 

(shown in Section A.2 Appendix A ) . Hence the use of the luminance quantization 

table was appropriate. While presented as examples only, the quantization tables in 

Annex K [52] can be used with satisfactory results. However some artifacts are 

noticeable, and it is reported [52], [69], that dividing the values given in Table 3.1 by 

two, will result in reconstructed images indistinguishable from the original. In 

Chapter 4, the quantization table values in Table 3.1 were used as presented, as can be 

observed in Section B.8 Appendix B. 

3.2.3.4 Baseline Coder 

The research algorithms implement the baseline sequential DCT mode of 

compression. The details of the encoder model for this mode of operation is shown in 
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Figure 3.12 [69]. This model shows the separation of the JPEG entropy encoder from 

the other processes, which includes a simple Differential Pulse Code Modulation 

( D P C M ) encoder for the quantized values of the D C coefficients. 

Figure 3.12 Baseline sequential-DCT encoder model 

The D P C M encoder, whose model is shown in Figure 3.13, uses a one-dimensional 

predictor that is the D C coefficient of the previous image block. The previous image 

block is the block before the current one in the left-to right, top-to-bottom ordering of 

the 8 x 8 blocks from the source image. The D P C M encoder then returns the 

difference between these two blocks to be encoded by the JPEG entropy encoder. 

DC coefficient 

1 block 
delay 

-if 

Diff 

Figure 3.13 D P C M model for D C coefficient encoding 

Entropy Coder 

The JPEG standard allows one of two entropy encoding procedures to be used, either 

Huffman encoding or arithmetic encoding. The research algorithms developed in 

Chapter 4 use Huffman encoding. In the JPEG standard, when Huffman encoding is 

used, Huffman table specifications are passed to the encoding routine. The tables 
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contain a list of code lengths and their corresponding values, which are gathered from 

the statistics of the image to be encoded. With these tables, Huffman tables of codes 

and code lengths can be constructed from which the image can then be entropy 

encoded. These table specifications are only constructed if a custom Huffman table 

generation is required for the image. Annex K [52] provides as examples, a set of 

table specifications, consisting of code lengths and their corresponding values, that 

were developed from average statistics of a large set of 8-bit precision images. Tables 

for both luminance and chrominance are provided. The research algorithms use the 

JPEG table specifications for luminance, which are shown in Table 3.2 and Table 3.3. 

Table 3.2 List of luminance code lengths for Huffman tables 

00 02 01 03 03 02 04 03 05 05 04 04 00 00 01 7D 

Table 3.3 Set of luminance code values for corresponding code lengths in Table 3.2 

01 02 03 00 04 11 05 12 21 31 41 06 13 51 61 07 
22 71 14 32 81 91 A1 08 23 42 B1 C1 15 52 D1 F0 
24 
29 
4A 
6A 
8A 
A8 
C6 
E3 
F9 

33 
2A 
53 
73 
92 
A9 
C7 
E4 
FA 

62 
34 
54 
74 
93 
AA 
C8 
E5 

72 
35 
55 
75 
94 
B2 
C9 
E6 

82 
36 
56 
76 
95 
B3 
CA 
E7 

09 
37 
57 
77 
96 
B4 
D2 
E8 

0A 
38 
58 
78 
97 
B5 
D3 
E9 

16 
39 
59 
79 
98 
B6 
D4 
EA 

17 
3A 
5A 
7A 
99 
B7 
D5 
F1 

18 
43 
63 
83 
9A 
B8 
D6 
F2 

19 
44 
64 
84 
A2 
B9 
D7 
F3 

1A 
45 
65 
85 
A3 
BA 
D8 
F4 

25 
46 
66 
86 
A4 
C2 
D9 
F5 

26 
47 
67 
87 
A5 
C3 
DA 
F6 

27 
48 
68 
88 
A6 
C4 
E1 
F7 

28 
49 
69 
89 
A7 
C5 
E2 
F8 

With the above Huffman table specifications, the Huffman code tables can then be 

constructed. The code tables are constructed using the procedure diagrams in Annex 

C [52]. These procedure diagrams are included in Section A.4 Appendix A. Once the 

Huffman code tables have been constructed, each of the 64 transform coefficients 

from the 8 x 8 transformed block are then arranged according to the zig-zag pattern in 

section 3.2.2 and encoded. 

Each non-zero coefficient is described by an 8-bit composite value RS of the form 

RS = 'RRRRSSSS' (3.5) 
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The four least significant bits 'SSSS represent the category for the amplitude of the 

next non-zero coefficient. The categories of amplitudes are shown in Table 3.4. The 

value 'RRRR' represents the number of zero-coefficients preceding this coefficient. In 

this way, the Huffman entropy encoder in the JPEG standard incorporates run-length 

encoding for runs of zero-coefficients. Since 'RRRR' is only four bits, runs of zero-

coefficients are grouped into runs of 15, with 15 zero-coefficients encoded with zero 

amplitude for the 'SSSS component. 

Table 3.4 Amplitude categories for coefficients 

SSSS 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

AC Coefficient 

-1,1 
-3 , -2, 2, 3 

-7, ...-4,4, ...7 
-15, ...8, 8, ...15 

-31, ...-16,16, ...31 
-63, ...-32,32, ...63 

-127, ...-64,64, ...127 
-255, ...-128,128, ...255 
-511, ...256,256, ...511 
-1023, ...512, 512, ...1023 

The code table is represented by a pair of tables, one containing the code bits and 

another containing the length of each code in bits. Both of these tables are indexed by 

the composite value of RS in (3.5). Using these tables and the RS coefficient 

representation, the A C coefficients are then Huffman encoded. The encoding 

procedure diagrams for the Huffman encoding are specified in Annex F [52] and 

included in Section A.4 Appendix A. 

There is also a similar set of tables and procedures specified in the appropriate 

Annexes of [52] for the separate Huffman encoding of the D C coefficients. The 

research algorithms have combined the encoding of the D C and A C coefficients into 

one set of procedures by slight extension of the procedures of the A C coefficient 

encoding. This just involves extension of the index on the program loops to include 

the D C coefficient. These changes can be seen in the Huffman encoding functions in 

Appendix B, section B.3. 
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The initial reasoning being, that with parallel execution of JPEG components on 

different processors, the Huffman encoding on one processor may not be aware of the 

value of the D C coefficient of the previous block. This block may have been 

processed on a different processor. Thus, the D C coefficient would not be able to be 

D P C M encoded. Thus for research purposes, the D C coefficient was encoded using 

the A C coefficient procedures. The only effect of this alteration to the encoding 

procedures is to slightly increase the size of the compressed image, as the D C 

coefficient would not be encoded as efficiently as possible. This is discussed further 

in Chapter 4 where a method for overcoming it is presented. 

3.2.4 Compressed Data Formats 

Annex B [52] describes the complete compressed image file data formats, which must 

be provided for successful compliance testing in [53]. This includes compressed 

image header and trailer information, frame headers and scan headers for different 

operational modes. These compressed file format headers and markers are required 

for complete implementation and interchange between different products 

implementing the JPEG standard. The research algorithms do not implement these 

compressed data formats as described in the Annex. They are required for operational 

products implementing JPEG, and were not of significance for the research. 

3.3 Parallel Systems and Processing 

Demands for faster processing speed and processor capacity have been occurring over 

the last three decades as the range of computer applications increases. The complexity 

of problems tackled has also increased as well as the sophistication of our problem 

solving techniques. While the increase in power and capability of computer systems 

has had definite gains over the last few decades, there are physical laws which will 

eventually become obstacles. For instance, no signal can travel faster than the speed 
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of light, which indicates that there is a definite upper limit to the speed of processing 

that w e can expect from a single processor in the future. 

The continual reduction in size of computer components has helped to shorten 

processor communication path lengths and thus reduce signal transmission times, but 

again limits are being encountered with respect to size. A recent example of this was 

the later than expected introduction of the Pentium1 processor due to efforts to 

dissipate excess heat. While this problem was successfully overcome, physical size 

limitations will eventually slow development efforts. One strategy to overcome the 

speed limitations of serial processing is parallel processing. 

Parallel processing is the utilization of multiple processors, simultaneously working 

on one problem [39]. The construction of parallel computers began over 30 years ago 

with the Burroughs2 D825 computer using four processors. Parallel systems 

architecture and programming techniques have been evolving ever since. The initial 

hope was that if a single processor could generate say X floating point operations per 

second (FLOPS), then 10 processors would generate 10X F L O P S , and so on. While 

this is theoretically possible, the reality is that practical considerations such as 

arrangements of processors, interconnection, synchronization and speed of 

connections all play a part in reducing this theoretical maximum speed increase. 

While there are speed gains, it is not a linear gain when mapped against the number of 

processors. 

The range of applications for parallel processing has proven to be much broader than 

expected, and the following general categories of applications for parallel processing 

are listed [39], [59], [40]: 

• General 

• Numeric 

• Signal Processing 

1 Pentium is a trademark of the Intel Corporation 

2 Burroughs Corporation 
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• Image Processing 

• Graphics 

• Database Processing 

• Artificial Intelligence 

• Simulation 

• Optimization 

The results of a survey [59] showing the distribution of parallel processors among 

various applications listed above are shown in Figure 3.14. The areas of image 

processing, graphics and signal processing, which are closely related, constitute a 

large slice of these applications. 

Artificial Intelligence (36) 

Database (14) 

Graphics (11) 

General (131) 

(^* ] 

Image Processing (46) 

Signal Processing (16) 

Numeric (66) 

Figure 3.14 Distribution of parallel systems among applications 

The use of parallel processing techniques in image processing, for a reduction in 

execution time, is not new. However, current literature reveals little on the 

application of parallel paradigms to the J P E G standard. O n e of the most recent papers 

with direct relevance to this research is [85]. However this is not concerned with the 

J P E G standard, but rather a particular programming paradigm, called the processor-

farm, that is discussed in a later section. 
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The following sections explore the architecture of parallel systems and their specific 

applications, and the programming techniques and paradigms used to program these 

applications. These sections provide background for the research and algorithms 

developed in Chapters 4 and 5. 

3.3.1 Supporting Architecture 

Despite many attempts to classify the architectures of parallel computers, the 

classification scheme of parallel systems used by Flynn [26] is best known and still 

widely used. This scheme identifies two characteristics, instruction flow and data 

flow, and divides parallel systems into those that possess single flow or multiple flows 

of these characteristics. The classification scheme is shown in Table 3.5. Any system 

which has at least one multiple stream is classed as a parallel processor. However, 

according to Lerman and Rudolph [59], no system designed to date matches the 

Multiple Instruction Single Data (MISD) definition. A s a consequence, most papers 

and books use the broad categories of Multiple Instruction Multiple Data ( M I M D ) , 

and Single Instruction Multiple Data (SIMD), to classify parallel processing systems. 

These classifications are discussed in the following sections. 

Table 3.5 Flynn's parallel systems classification scheme 

Instructions 
Single Stream 

Multiple Streams 

Data 

Single Stream 

SISD 

M I S D 

Multiple Streams 

SIMD 

MIMD 

3.3.1.1 MIMD vs. SIMD 

In MIMD parallel systems, there are several processors, each processing their own 

instructions and working autonomously. W h e n used to run parallel programs, the 

processors in these machines work simultaneously on different parts of the problem. 
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Thus the term, multiple instruction multiple data. This is regarded as a decentralized, 

control driven architecture. 

In SIMD parallel systems, there are many processors all performing the same 

instruction on different data sets. Hence, single instruction multiple data. The parallel 

programs that run on these machines are programs for applications where large sets of 

data must all have the same processing performed on them. M a n y image processing 

applications fall into this class. Parallel processors with this architecture generally 

have more centralized control. 

A mixed mode architecture concept, PASM (Partitionable-SIMD/MIMD) architecture, 

is being developed at Purdue3 University [92]. This is a design for a large scale 

dynamically reconfigurable parallel processing system based on commodity 

microprocessors. Each processor can independently perform mixed-mode parallelism. 

The decentralized control of the MIMD architecture offers far greater flexibility. It 

has the ability to run different streams of control, as opposed to only one in the S I M D 

architecture. However, the flexibility gained is diminished by other problems. In 

M I M D systems where the flow of control and process synchronization are specified 

by the program, scalability of the system can be a problem. Also when there are 

sections of program code which require each processor to be programmed 

individually, then the maximum number of processors which can be used is limited. 

This limitation is usually caused by a programmer's inability to effectively track the 

many operations being performed concurrently on many processors. 

By contrast, the more centralized control of SIMD systems means that process 

communication and synchronization is usually done automatically. This helps 

provide for better scalability. However, the relative rigidity of these systems limits 

their uses. 

3 Purdue University - West Lafayette, Indiana, U S A 
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3.3.1.2 M e m o r y Organization 

Another major distinction between the MIMD and SIMD architectures is whether they 

employ shared or distributed memory. W h e n using shared memory, all processors in 

the system must have access to all parts of memory. W h e n using distributed memory, 

each processor has its own local memory. Typically, M I M D parallel processors share 

memory, while S I M D parallel processors employ distributed memory [40]. The type 

of memory, (i.e. distributed or shared), also dictates the data exchange mechanism 

between processors. 

Parallel processors using shared memory communicate by manipulating data values in 

memory accessible to all processors. Synchronization and locking mechanisms must 

be employed to ensure fair and consistent access for all processors to the shared 

memory. W h e n distributed memory is used, processors must communicate by 

transmitting and receiving data over communication channels connecting the 

processors. This mechanism is called message passing. 

Message passing is a simpler concept to handle from an engineering viewpoint, and 

offers an advantage in terms of data rates achieved since overhead can be amortized 

by the use of longer messages. However, shared memory offers greater flexibility as 

message passing can also be implemented in the software, by the use of message 

buffers and access routines. The drawback is the cost of communications, as access to 

all shared data must be regulated by use of locking and semaphores. These systems 

are more complex from an engineering viewpoint, as all processors must have access 

to all shared memory components which increases the communication network 

involved as more processors are added. 

The type of memory access also plays a role in determining the connectivity of the 

parallel system. For example, Figure 3.15 shows some examples of distributed 

memory architectures, and Figure 3.16 shows some examples of shared memory 

architectures [39]. As can be seen in Figure 3.16, in all shared memory architectures, 

67 



Chapter 3 - The JPEG Standard and Parallel Systems 

all processors must somehow be linked to all memory elements, whereas with 

message passing, a wider variety of connection architectures can be employed. W h e n 

two processors that communicate using message passing are not directly linked, other 

processors need to route messages. 

^ ^ 

RIM-:; 1-UL.i.V 

l-tr.FERCUHJ: 

Ii l l — i i 

THX*: 

ME 3'ft 

Figure 3.15 Some distributed memory architectures 

According to studies by Lerman and Rudolph [59], message passing architectures 

have become more dominant with time. In the pre-1975 period, message passing was 

only associated with S I M D parallel processors, and these systems only comprised a 

small percentage of the parallel systems. Since 1985, message passing has become 

the more popular mechanism for both architectures. 

Processors 

JHH 

Processors 

cr 

memory banks 

n n n 

Bus 

memory banks 
D 

processors 

memory banks 

Figure 3.16 Some shared memory architectures 
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There are a number of factors for the emerging dominance of message passing, even 

among the M I M D architecture systems. Many of the original problems of message 

passing related more to software and were not addressed until after the work of Hoare 

in his article "Communicating Sequential Processes" [38]. This was a landmark on 

the treatment of the problems particularly facing M I M D type architectures at that 

time. Another reason for message passing gaining in popularity is related to 

scalability. As more processors are added to a system, more complex communication 

networks must be used to maintain connectivity. Message passing architectures are 

more amenable to scaling since this model contains almost no inherent contention for 

shared resources. 

During the 70s the construction of message passing computers lagged behind that of 

the shared memory parallel systems. The situation has now been reversed somewhat, 

mainly due to the introduction of the Transputer in the early 1980s [59]. 

3.3.1.3 The Transputer 

In the early 1980s the Transputer was introduced by Inmos4 as a new concept in VLSI 

architecture. It is a single circuit containing a processor, local R A M and four 

input/output ports [84], This circuit was a computer by definition, containing the 

processor, some memory to store code and data and several I/O channels for 

exchanging data. However, these circuits were designed so that they could be 

connected together with the same simplicity that transistors could be. In fact, the 

name transputer is combination of the words transistor and computer. A diagram 

showing the main features of the transputer can be seen in Figure 3.17. 

4 Inmos is a trademark of the INMOS group of companies 
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Link 

< • Link Processor R ^ ^ Link < • 

Link 

I 
Figure 3.17 Generalized diagram of a transputer 

The transputer was an important innovation. Although combining these elements onto 

a single chip did not represent a technological breakthrough, it was the novelty of the 

combination and its implications that aroused interest. A number of factors combined 

to make this innovation a milestone for parallel systems development. The 

introduction of the occam5 programming language, which enabled an algorithm to be 

described as a collection of concurrent processes which communicate through 

channels, was one factor. One of the design objectives of occam was to use the same 

concurrent programming techniques for a single processor system, as for a multi­

processor system. The second factor was the ease with which transputers could be 

connected together. The four I/O ports were designed to interface directly to other 

transputers, so they could be stacked, or placed closely together, enabling several 

transputers to fit together on a small footprint. Boards were constructed to hold many 

transputers, which could be added into a P C as an add-in board. Thus, the transputer 

became a parallel system, building block. 

The general form of a transputer system connected to a P C via an add-in board is 

shown in Figure 3.18. The add-in board contains a network of inter-connected 

transputer modules of which one is called the root transputer. The root transputer is 

connected to the P C host, which in turn controls all the peripheral devices that the 

1 occam is a trademark of the INMOS group of companies 
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transputer will ultimately use. The host runs an afserver task that initially loads the 

transputer system with the software to be run, and then accepts instructions from the 

root transputer. The root transputer has a filter task that facilitates communication 

between the root and the host. All I/O is passed through the root and then ultimately 

to the host. 

afserver 

Root 
Transputer 

filter 

(S~ Network of 
Transputers 

> 

V 

Figure 3.18 General form of transputer system connected to PC host 

Transputers communicate via the use of high speed serial links. As can be seen in 

Figure 3.17, each transputer can have a m a x i m u m of four physical links. The small 

number of wires and the network protocols used makes networking the transputers 

relatively easy. In most cases, the configuration is user-configurable. Some 

transputer configurations can be seen in Figure 3.19; often the linear chain (a) is used 

as it is the simplest to implement. 

Figure 3.19 Some examples of transputer topologies 
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To help overcome the limited connectivity imposed by the 4-links per processor, the 

networking software allows the creation of a virtual channel between two processors. 

A virtual channel is a logical link between two processors where no physical link 

exists, but a path can be found using intermediate processors. Therefore, even if they 

are not connected, two processors can be logically treated by the programmer as if an 

I/O channel exists between them, and the routing software manages message delivery. 

It is transparent to the programmer. A program can create as many virtual channels 

from a processor as needed. This virtual connectivity is specified in a configuration 

file. 

The T4xx and T8xx series of transputers are both 32-bit processors. The main 

difference is the amount of on-board memory, and whether they contain floating point 

processors. The T8xx series has more memory and contains floating point processors, 

while the T4xx series does not and must rely on software emulation of floating point 

arithmetic. While these series of processors are now quite old, Inmos announced early 

1993 the introduction of the T9000 transputer. At the time, the T9000 was the world's 

fastest single chip computer, and is still quite a sophisticated system. Today the 

transputer has become a generic term, with many manufacturers providing T R A M S 

(transputer modules) to standard sizes. For example, Texas Instruments6 

manufactures a T M S 3 2 0 C 4 0 chip, which is like a T9000 transputer but has other 

features, including 6 serial I/O channels. Alta7 manufactures C T R A M S , which follow 

the mechanical and electrical standards for size-1, size-2 and size-5 T R A M S and are 

compatible with Inmos and other transputers. 

3.3.2 Parallel Processing Software Paradigms 

Despite the underlying architecture of the parallel computer, parallel programs must 

successfully coordinate two or more program tasks to ensure correctness and higher 

6 Texas Instruments Corporation, http://www.ti.com/ 

7 A L T A Technology Corporation, http://www.altatech.com/ 
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speed. Exactly h o w parallelism is controlled is largely determined by the paradigm 

used by the programmer. M a n y paradigms can be found in papers and articles, and 

there tends to be general agreement [10] [60] [13] [65], that these fall into two broad 

categories, homogeneous and heterogeneous parallelization, terms taken from [10]. 

The corresponding terms generally found in the literature are data-parallel and 

control-parallel. The former terminology is the author's preference. 

The philosophy behind these two categories is discussed in the following sections. 

3.3.2.1 Homogeneous Parallelization 

Homogeneous parallelization is possible when the work to be done by the program 

can be partitioned into identical (homogeneous) sub-tasks to be performed on different 

parts of the original problem. These can then be run on different processors in the 

system. For instance, if each element in a large set of data has to have the same 

operations performed, then different elements of the input data set can be processed by 

identical sub-tasks on different processors. This situation is depicted in Figure 3.20. 

Figure 3.20 Homogeneous parallelization [10] 

This is also known as data-parallel, as the inherent parallelism is determined by the 

data. The data source is broken into smaller subsets and exactly the same processing 

performed on each subset. This is the same philosophy underlying the architecture of 

the S I M D parallel systems. However, this parallel paradigm can also be applied to a 

general purpose message passing M I M D system, such as a transputer. A well known 
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example of this type of paradigm is the processor-farm paradigm, which is discussed 

in a following section. 

Many image processing tasks are well suited to this parallel paradigm, since quite 

often the same processing is applied to different parts of the image. The JPEG 

compression standard is a prime example, as the image is decomposed into 8x8 

blocks, and each block is transformed and encoded independently of the other blocks. 

As part of the research, a parallel algorithm is developed for the JPEG standard using 

this paradigm. 

3.3.2.2 Heterogeneous Parallelization 

Heterogeneous parallelization is possible when the work to be performed can be 

separated into different subtasks. These different subtasks can then be placed on 

different processors and run in parallel. This type of processing is depicted in Figure 

3.21. The only requirement placed on code within each block is that it must be data-

independent of the others. A loop, prevented from homogeneous parallelization 

because of internal dependence relationships between data, may be suitable for this 

type of parallelization [10]. 

••:•• .A .A A 

A J B | C | D 

Figure 3.21 Heterogeneous parallelization [10] 

Some variations on this general paradigm are referred to as the result, specialist and 

agenda paradigms in [13], and these seem to correspond to some paradigms proposed 

by other authors. A well known example of the specialist type of parallelization is 

that of the pipeline. A pipeline can be employed where a task is to be performed 
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repeatedly on a sequence of data elements, and this task can be broken into subtasks. 

Parallelization can then be introduced by placing the subtasks on separate processors, 

and passing the results of one processor on to the next as in an assembly line. 

Because of the nature of the JPEG baseline algorithm, a pipeline approach can also be 

used to introduce parallelization into any algorithm implementing the standard. 

However, because of the type of processing involved this approach would not be 

optimal. The reasons for this are explained in section 4.7.1 of Chapter 4. 

3.3.2.3 Processor F a r m Paradigm 

The distinction between homogeneous and heterogeneous parallelization is clear. 

Homogeneous parallelization describes the distribution of repetitive work over a 

number of processors. Heterogeneous parallelization describes the distribution of 

independent components of an algorithm over multiple processors [10]. Usually the 

case for homogeneous parallelization is easily recognizable by the presence of distinct 

repetitive code blocks. 

One technique that implements homogeneous parallelization is the processor-farm 

method. It involves two or more processors. One processor becomes the master 

processor, and all other processors become the worker processors. The repetitive task 

to be performed on all data elements is identified and a copy of this task is sent to all 

worker processors in the farm. The master processor reads the input data and divides 

this into the discrete work packets. The master processor then has two major tasks to 

perform: scattering the work packets to the farm, then gathering the results of the 

worker processors for collation and storage. The job of the worker processors is to 

receive a work packet, perform the repetitive task, send the processed work packet 

back to the master processor and wait for more work. This is depicted in Figure 3.22. 
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Figure 3.22 Processor farm methodology 

The networking software that comes with the transputer allows for the easy 

specification of a processor farm configuration. W h e n implemented correctly, the 

processor farm is very good at achieving a good load balance on the processors in the 

farm. This is important for the reduction of overall execution time of the algorithm. 

Quite often when a processor-farm type algorithm can be employed, a pipeline can 

also be considered. It was mentioned above that either a processor-farm or a pipeline 

methodology could be used to gain parallelization in the J P E G standard. The 

following is a brief comparison of the two techniques [44]: 

• The throughput of a pipeline is limited by the throughput of the slowest part. That 

is, in an n-stage pipeline 

pipe processing time = n x max(St(i)) (i = l, ... n), 

where 8t(i) is the time taken for stage i of the pipeline. The processing time of the 

equivalent sequential implementation is 

n 

sequential processing time = 2_j $-(-) • 
/=i 

There will be some extra processing time in passing messages between processors 

in a pipeline. Equivalent equations for the processor-farm method are developed 

in Chapter 4. 
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• The amount of code required in each stage of a pipeline will be smaller than the 

amount of code needed in each processor-farm. This could be important if 

memory capacity is limited. 

• There may be sequential dependencies in the data that would make it difficult to 

use the processor-farm methodology. 

The research algorithms implement a parallel JPEG version using the processor-farm 

paradigm on a transputer. 

3.3.3 Performance 

As always, the question of performance is an important one in parallel processing. 

The reason behind parallel programming is to gain speed advantages over the 

corresponding sequential algorithm. Performance really depends on both the 

underlying architecture and the software paradigm used. However, there are some 

models of performance that can be generally discussed. 

Performance is generally measured in terms of speedup, which is a comparison of the 

execution time of the sequential algorithm running on one processor to the parallel 

version running on n processors, [60] [84]. Thus 

St 
speedup = —-. (3.6) 

St 

Efficiency (E) is a measure of how well the parallel processors are utilized and can be 

measured by 

E = speedup ^ 

n 
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The ultimate goal is to increase the number of processors n, keeping the efficiency at 

or near one. However, this is not a practical expectation, as the speedup is limited by 

Amdahl's law (3.8) [60]. This law states that the scaling performance of a parallel 

algorithm is limited by the fraction of inherently sequential code in that algorithm 

[92]. Therefore, if an algorithm contains a fraction/of work that must be performed 

sequentially, then the speedup possible on a machine with n processors is: 

Speed"P = [/+(!-/)/„] (3-8) 

While Amdahl's law might accurately model algorithms based on the heterogeneous 

paradigm, it does not properly model algorithms based on a homogeneous paradigm. 

This is because it ignores the parallelism that might be exploited in the data to be 

processed. It overlooks the possibilities of S I M D type computation where potential 

parallelism increases with the number of available processors. Amdahl's law is 

pessimistic for this type of parallelism. For homogeneous parallelization, (3.8) can be 

modified according to [60], to arrive at the Gustafson-Barsis law. 

speedup = n-{n-.)f (3.9) 

Homogeneous paradigms or data-parallel methods are more efficient. They 

maximally utilize all processors and can achieve a speedup proportional to the size of 

the data. That is according to the above laws. Figure 3.23 shows a comparison of 

Amdahl's law and the Gustafson-Barsis law as a function of the sequential fraction/of 

a program. Both of these laws omit one important thing, and that is communication 

overhead, which increases as the number of processors in the parallel system 

increases. 
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Sequential fraction f 

Figure 3.23 Amdahl's law vs. Gustafson-Barsis law 

As an example of these limitations, [84] provides data showing the execution times 

for a program which displays the Mandelbrot set on a V G A screen at resolution 640 x 

480 pixels. The details of the algorithm can be referred to in [84]. The data in Table 

3.6 shows the execution times of a parallel algorithm used to display this Mandelbrot 

set using from 1 to 6 transputers. 

Table 3.6 Execution times for displaying Mandelbrot set 

Number of Execution time 
Transputers (seconds) 

1 
2 
3 
4 
5 
6 

99.230769 

60.274725 
49.285714 
43.681319 
40.714286 
41.978022 

The line graph displayed in Figure 3.24 shows the speedup curve for the parallel 

algorithm whose execution times are given in Table 3.6. The top straight line shows 

the upper bound for speedup assuming the fraction of sequential code is zero. The 

bottom curve represents the actual speedup observed by using the value of 99.230769 

seconds for St. in (3.6). 
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Figure 3.24 Speedup curve for Mandelbrot data from Table 3.6 

As can be seen from Figure 3.24, the speedup peaks at five transputers, and actually 

decreases when another transputer is used. The underlying topology for this example 

was a linear chain [84] (see Figure 3.19). Thus a limit is reached in the number of 

useful processors, and once this limit is passed, communication overhead increases 

caused by excessive message passing from the extra processors at the end of the chain. 

This results in a drop in the speedup. 

1 iteration/frame 396 iterations/frame 1 iteration/frame 

Initialization Iterative Cleanup 

Functions k Functions 

previous picture feedback 

Functions 
. 

Figure 3.25 Simplified representation of H.261 encoding execution 

Another example from [92] uses a processor farm paradigm to implement a parallel 

algorithm for the CCITT H.261 coding algorithm. A simplified representation of the 

encoder execution is shown in Figure 3.25, details are available in [92]. A group of 

functions which were executed 396 times per frame were chosen as the worker task to 
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be farmed out to the processor farm, and the initialization and cleanup functions were 

placed on the master processor. 

The performance of the H.261 parallel algorithm can be seen in Figure 3.26, shown 

against an increasing number of processors. Again, as in the previous example 

(Figure 3.24), the performance increases with the number of processors to a plateau, 

then degrades as more processors are added. This is due to the increasing overhead 

associated with an increasing number of processors. The plateau in this case is 

reached at approximately nine processors. 

ti 4 - 1 f——\ r - — H 1 1 +" i * 1 1 H 
^ l 3 4 5 6 7 & 9 10 M 12 "13 M 

Number of Processors 

Figure 3.26 Idealized vs. actual performance for the H.261 encoder [92] 

The work in this example supports the research conducted in Chapter 4 and 5. 

Recent research [85] has produced performance models for the processor farm 

paradigm run on a number of underlying architectures. The model depends on many 

factors, such as underlying topology, local speed of processors, number of tasks, 

execution time related to receiving and forwarding messages, and task execution time. 

It is suggested [85] that a breadth first spanning tree topology is the most efficient 
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topology for the processors. However, the CPU overhead for a processor in 

forwarding, receiving and re-routing messages (J3J), limits the performance of the 

model and ultimately the number of effective processors which can be utilized [85]. 

This is further investigated in Chapter 4 and 5. It is also suggested that for problems 

which fit the processor-farm paradigm, there is possibly no need to consider more 

elaborate parallelization techniques as this paradigm gives good performance. 

3.4 Summary 

The JPEG standard, which is now the international standard for still picture 

compression, has been discussed in detail in section 3.2. Section 3.3 discussed 

parallelization and parallel paradigms in detail. In Chapter 4 and Chapter 5 a parallel 

implementation of the JPEG is shown, and its behaviour using a number of processors 

is explored. As noted in 3.3.2.3 the JPEG algorithm is a perfect candidate for the 

processor-farm paradigm, and this is used to implement the parallel versions. 

The parallel JPEG algorithm was then executed on a transputer. Details on the 

transputer used for testing are given in Chapter 4. The idea of a limit on the number 

of effective processors, which can be used in a parallelization of the JPEG standard, is 

also explored in the following chapters. 
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CHAPTER 4 

PARALLEL JPEG IMPLEMENTATION 

4.1 Introduction 

In the previous chapters, the concepts of image compression and parallel computing 

were discussed, and the development of the JPEG standard for still picture image 

compression was outlined. With the development of the JPEG standard, much effort 

has been concentrated on the application of this standard. JPEG compression is often 

implemented in hardware where high speed compression is required, and this can be 

seen from the many "JPEG chips", implementing the JPEG codecs that are available, 

for example the L64702 from LsiLogic1 and the ZR36060 from Zoran2. Lossy 

compression in JPEG is based on the D C T transform, which is computationally 

intensive and presents the biggest obstacle to fast performance. The research in this 

chapter develops a software based parallel JPEG algorithm and investigates the 

optimal paradigm, the distribution of processes for best performance and the limit on 

the number of useable processors. 

A parallel implementation of the JPEG standard using two processors is developed 

and implemented in software to be run on a transputer. The performance of this 

algorithm is measured against the single processor version and the results presented. 

From the measurements of speed taken on a general ̂ -processor system, an algorithm 

is designed using the processor farm paradigm discussed in Chapter 3, and an optimal 

configuration developed. A s the number of processors available for testing is limited, 

results are extrapolated from those obtained on available processors. 

1 LSI Logic Corporation 
2 Zoran Corporation 
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The work performed in this chapter forms the basis for the simulations developed in 

the next, where simulated parallel runs allow the behaviour of the parallel algorithm 

to be investigated without being limited by the availability of physical processors. 

The aim of these simulated tests is to test the hypothesis from the results obtained in 

this chapter using actual multiple processors. From the general algorithm developed, 

it is shown there is a limit to the number of processors that such an algorithm can 

effectively use, called its saturation point. This concept is investigated in depth. The 

effects of the saturation point and its impact on the structure of the parallel algorithm 

are explored and the results presented. 

4.2 Methodology 

The methodology used to conduct this research is as follows. 

Firstly, a sequential program, SV1, designed to run on a single processor was 

developed. This program implements the baseline sequential DCT-based algorithm, 

as specified in Annex F of the JPEG standard [52]. The implementation of this 

algorithm was tested and timed for overall performance. Performance here refers to 

speed of operation. The major components of this algorithm were then identified, so 

each could be separately timed. 

The timing of the algorithm's components was performed on an image containing 

4096 8x8 pixel blocks; then the timing for each component calculated on a block-by-

block basis. All times used in calculations are averages computed from five timing 

runs of each measurement. It is expected that variations in measured times will be 

minor, and m a y only be significant when a measured component performs disk I/O, 

which is affected by operating system disk caching and background updates. 

A parallel algorithm was then designed to run on multiple processors. Concurrency 

was introduced by off-loading some of SVl's components to run in parallel on 
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different processors. The programs were then timed and the results compared with 

those of the sequential algorithm SV1. 

All timing data is obtained by function calls, which reference a hardware clock. All 

the timing function calls are also made from threads running at the same priority (low 

priority). As the clock has a resolution of 64//s, all timing data is presented in the 

form of clock ticks, where there are 15,625 clock ticks (cts) per second. Increasing all 

thread priorities to high would give a finer resolution of the clock (approximately 1 

million cts per second), but the low priority values are sufficiently accurate for this 

research. 

4.3 Parallel Processing Environment 

The parallel processing hardware on which this research was conducted consists of a 

transputer system connected to an I B M P C compatible host. There was a choice of 

two parallel programming languages, Occam 2 and a 3L3 parallel C compiler. All 

programs implementing the algorithms developed in this chapter and running on the 

transputer system were programmed in parallel C. This version of parallel C followed 

the ANSI 4 standard for C very closely, thus its code is relatively portable. 

The host to which the transputer system was connected was an IBM PC compatible 

with Intel 486 D X 2 CPU, running at 66 M H z . This P C was equipped with an Inmos5 

IMS B008 add-in board. The B008 board has slots for up to 10 T R A M s . T R A M 

stands for Transputer Module and three IMS T800 T R A M s were available. The T800 

transputer module incorporates a 32 bit processor, four serial communication links, 

4Kbytes of R A M (expandable to 4 gigabytes) and a floating point unit (FPU) on a 

single chip. The F P U is a coprocessor integrated on the same chip as the 32 bit 

processor, operates concurrently with the processor and performs 32 and 64 bit 

3 3 L ® is the registered trademark of 3L Limited, Scotland 

4 American National Standards institute 

5 Inmos is a Trademark of the I N M O S Group of companies 
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floating point arithmetic, to the IEEE6 754 standard. The configuration of T R A M s on 

the B008 board used is shown in Figure 4.1. 

Transputer 

Host 
Processor 

LinkO Link 2 

TRAMO Linkl TRAM1 

Link 2 

Linkl 

TRAM2 

Figure 4.1 Physical transputer configuration with three processors 

Although each transputer module can have up to four serial links, the transputer 

modules in the actual configuration were connected to just one other transputer 

module in serial fashion as shown in Figure 4.1. Each one of these serial links 

between two T R A M s consists of two uni-directional signal lines capable of operating 

at speeds up to 20 Mbits per second [43], [46], [45]. Logical links can be defined 

between two T R A M s using a configuration file, regardless of the underlying physical 

configuration. 

TRAM 0, in the actual configuration in Figure 4.1, which is connected directly to the 

host processor, is referred to as the root transputer. This T R A M is regarded as 

special, since it runs the afserver software and thus all transputer I/O must be routed 

through this processor. This situation is described in Chapter 3 Section 3.3.1.3 and 

depicted in Figure 3.19. 

1 Institute of Electrical and Electronic Engineers 
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4.4 Sequential Algorithm 

The SV1 algorithm implements the JPEG baseline DCT algorithm as specified in the 

International Standard [52], with some minor changes for implementation expediency. 

SV1 was initially coded to test the correctness and accuracy of the author's 

interpretation of the International Standard in [52], and then used as a basis for 

comparison of the subsequent parallel versions in time trial experiments. The 

transputer configuration file used to compile this program can be seen in Section B.2 

Appendix B, while the parallel C code for SV1 is in Section B.3 Appendix B. 

Program SV1 uses only the root processor ( T R A M 0) of the transputer system 

configuration in Figure 4.1. 

A partial flowchart showing the major components of algorithm SV1 is shown in 

Figure 4.2. This compression algorithm consists of a number of basic steps. After the 

initialization routines and the initial building of the Huffman code tables, there are six 

repetitive steps, which are performed for each block in the digital image. They are: 

Figure 4.2 Sequential algorithm SV1 main components 

1. Get Image Block : This component decomposes the digital image into 8x8 pixel 

blocks (i.e. uses n - 8, where n is the block size). It could be easily extended to other 

values of n, though the value 8 is used in the JPEG standard [52]. 
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2. Level Shift : A level shift is then performed on each sample in the block by 

subtracting 2P~J where P is the precision of the sample. In this case, 8-bit precision is 

used (that is, samples are in the range from 0 to 255); therefore the value 128 is 

subtracted to shift the samples to a signed representation with value range from -128 

to 127. This effectively centres the samples around the value zero. This is specified 

in Annex A of [52]. 

3. Forward DCT : A Forward Discrete Cosine Transform (FDCT) algorithm is then 

applied to the level shifted image block. This is the fast algorithm version of the D C T 

proposed by Chen [14], and the signal flow diagram for this algorithm can be found in 

Rao [70] and Chapter 3 Section 3.2. 

4. Quantization : The transformed block is then quantized by application of a uniform 

quantization table and algorithm as specified in Annex K of [52]. This is the 

Luminance Quantization Table K.l used for 8-bit grey scale digital images. Here, 

loss of information is introduced into the compression process. 

5. Coding : The quantized block is then coded using an entropy encoder. The coding 

process used applies the Huffman coding algorithm and tables are specified in Annex 

F of [52]. The Huffman tables were generated from a standard set of variable length 

code words supplied in [52]. This provides a more efficient way of compression than 

the construction of a Huffman coding tree for each application. 

6. Block Storage : The resulting compressed image block is then stored back to disk. 

The blocks must be stored in the correct order, as the coding algorithm in step 5 above 

codes the D C coefficient in the quantized block as the difference between it and the 

D C coefficient of the previous block. 

For testing, the algorithm was run using a number of images, which are shown in 

Appendix A Section A.2. Performance over all the images was similar, so the image 

"George " was used for obtaining most of the test runs' data. It is the most intricate 

because of the nature of the source, [Appendix A]. All images were resampled at 512 

x 512 pixels so they contain exactly 4096 image blocks. 
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The overall timing results for this algorithm implementation are shown in Table 4.1. 

These times are measured in clock ticks (cts). 

Table 4.1 Overall timing for algorithm SV1 

Trial 1 

1,474,320 

Trial 2 

1,474,242 

Trial 3 

1,474,307 

Trial 4 

1,474,231 

Trial 5 

1,474,314 

Average 1,474,283 

cts 

cts 

The algorithm SV1 was then modified to obtain timing data for the six major block 

processing components in the iterative loop in Figure 4.2. Only the components to be 

parallelised, which are those inside the iterative loop, are timed. The timing data will 

be used to decide on the structure of the parallel algorithm and the allocation of 

processes. Timing data for each of these six components is presented in Table A.l 

Section A.3 of Appendix A. This shows timing data for the six components over five 

time trials with average clock ticks over all image blocks, and per image block. 

Table 4.2 Time trial averages for SV1 components 

Component Overall Average Block Average 

(cts) (cts) 

Get Block 

Level Shift 

F D C T 

Quantization 

Huffman Coding 

Block Storage 

Totals 

41,655.4 

24,794.0 

1,286,885.4 

75,587.8 

26,170.6 

17,635.2 

1,472,728.4 

10.1698 

6.0532 

314.1810 

18.4541 

6.3893 

4.3055 

359.5528 

Table 4.2 is a synthesis of the data from Table A. 1 showing the averages of clock 

ticks for each component, over all five time-trials. The average processing times for 

each of the six components per image block are also represented pictorially in Figure 

4.3. 
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Figure 4.3 Average processing times per image block 

If we take the average of the overall timing for SV1, that is 1,474,282.8 clock ticks 

from Table 4.1, and compare this to the sum of the averages of the six major 

algorithm components, 1,472,728.4 clock ticks, from Table 4.2, it can be seen that the 

sum of the six major components represents 99.9% (rounded to one decimal place) of 

the entire overall processing time for SV1. Thus the sum of the times for the six 

major components in Table 4.2 is a good indication for the overall timing of SV1. 

4.5 Parallel Algorithm 

Simple parallelism was next introduced by adding one extra processor upon which to 

place one or more of the algorithm's components. B y observing the behaviour using 

one extra processor, experience can be gained with multi-processor behaviour before 

proceeding to the general case of n processors. In designing the parallel algorithm, 

PV1, the first question was what would be the optimal distribution of the SV1 

components on two processors in order to minimize total processing time. 

Figure 4.4 shows a representation of two communicating processors, Po and Pj both 

involved in the processing of an algorithm, with multiple tasks running on each 
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processor. A task is the term used by 3L7 for an independent process. Task U(j) 

represents tasky on processor i. The total processing times required for processor P0 

and Pi to complete their part of the algorithm are represented by AP0 and APi 

respectively. 

Processor P0 

t0(l) 

t0 (2) 

• 

t0(n) *^^ 

AP0 

Processor Pt 

t,(l) 

h (2) 

tM 
• 
• 

t,(m) 

AP, 

Figure 4.4 Total processing times per processor 

The times APo and AP] are equal to the sums of the total processing time of the tasks 

on each of the processors Po and Pj respectively. That is 

n m 

A / > 0 = 2 > o ( 0 and LxP.x-J^St.U) , (4.1) 
,=1 7=1 

where the quantity Sti(j) in (4.1) is the total processing time of task U(j). Similarly, if 

U(j) itself contains a number of components, then &$) is the sum of the processing 

times of those components. 

When two independent processors, each containing a number of tasks are both 

working on parts of the same problem and transmitting their results, as in Figure 4.4, 

7 3LLtd. Edinburgh software house. 
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sequencing and placements of tasks is crucial. The times AP0 and /IP; in (4.1), 

include any idle time when a task (or sequence of tasks) is idle as one processor waits 

for communication from the other. Any such idle time will affect the overall 

processing time of the algorithm. The term AP is used to represent the total 

processing time of an algorithm, such as that in Figure 4.4 using processors P0 and Pj. 

If the processing times for these processors are calculated, as in (4.1), then AP is 

constrained by the time of the processor that takes the longest time to complete its part 

of the algorithm. This is stated more formally as 

min imum (A P) > maximum (AP0, AP,) (4.2) 

To minimize the total processing time for the overall algorithm, the tasks 

t0(l) ••• t0(n) and t,(l) ••• t,(m) must be placed so that AP is minimized. This 

involves minimizing the times AP0 and APh Any idle time is eliminated where 

possible, which may involve re-arranging the tasks on the processors. 

From Figure 4.3, it can be seen that the component which takes most processing time 

per block in SV1 is the F D C T (Forward D C T ) component. This component takes 

approximately 87.38% of each block's total processing time, and consequently that of 

the entire processing time per image. The entire processing time can be no faster than 

the processing time of the F D C T . The F D C T task itself could be split and placed on 

different processors. However, because of the cohesion of the elements in this task, 

any such implementation becomes less portable. Thus, this research considers the 

F D C T as a single task. 

If we are looking for an optimal configuration of the image processing tasks from 

SV1 on two processors, then the F D C T processing component must be placed in a 

task on a processor by itself. That is, if the F D C T task is placed on processor Pi and 

all other components are placed in a task on processor Po, then using Table 4.2 it can 

be seen that 

AP0 * 185,841 clock ticks 

and APj « 1,286,885 clock ticks. 
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Thus, moving any other of the image processing tasks of SV1 to processor Pi would 

only increase APi. 

Table 4.3 Processing task symbols 

Component I Symbol 

Get Block 

Level Shift 

F D C T 

Quantization 

Coding 

Block Storage 

T 
gblock 

Tlshift 

'dot 

T 
quant 

*code 

T 
1 store 

To help state this more formally, the six major components from algorithm SV1 

identified in Figure 4.2 are represented with the symbols shown in Table 4.3. Then 

from Table 4.2 it can be seen that 

STdct > STgblock + STuhift + STquant + STcode + STstore (4.3) 

where 5Tcomponent represents the time it takes for component Tcomponent to process per 

image block. These times are shown in Table 4.2. Therefore an optimal placement of 

components on processors Po and Pi, which minimizes AP in (4.2), is 

Tdct -> Pi and Tgu0ck, TkMfl, Tquant, Tcode. Tst0re -> Po (4.4) 

where the symbol "-»", is used to mean, "is allocated to". Thus, 

APo « B(STgMock + STIMfl + STquant + STcode + STstore) = 185,841 cts (4.5) 

zlP; « B(STda)= 1,286,885 cts 

where B is the number of image blocks, and this was 4096. The above calculations 

ignore for the moment the communication times between processors P0 and Pi. 

93 



Chapter 4 - Parallel JPEG Implementation 

If the components from SV1 are placed as in (4.4), then apart from the first block, 

while each subsequent block is being processed by Tda on Ph then the previous block 

can have the Tqmm Tcode, Tstore performed in parallel, followed by the Tgblock and TlMft of the 

next block on P0. W h e n processor Pj passes the transformed block back to P0, P0 can 

then pass the next block to be transformed to Pi, and then continue processing the 

block just received. This would give the maximum degree of parallelism with these 

tasks on a two processor system. 

Parallel algorithm PV1 was developed from SV1 and was designed to the 

configuration just described. It runs with the Tdcl block processing component on one 

processor Pi and all other components on the processor P0. The structure of algorithm 

PV1 is shown Figure 4.5 . The implementation of PV1 uses T R A M 0 and T R A M 1 of 

the transputer in Figure 4.1. Processor P0 is the representation of T R A M 0 (root 

transputer), and processor Pi is the representation of T R A M 1. The configuration file 

for the program is in section B.4, while program code can be seen in section B.5. 

Processor Pn Processor Pj 

Initialization 

T 
gblock 

^Ishift 
Transmit Block 

T 
gblock 

^Ishift 
Receive Block 
Transmit Block 

T 
quant 

T 
code 

T 
store 

Block 

TBlock 

Receive Block -̂ -| 

^dct 

Transmit Block • 

Figure 4.5 Structure of parallel algorithm PV1 

The structure of the algorithm PV1 in Figure 4.5 is such that the relationship between 

the processes on Po and Pi is essentially a master /slave configuration, with only one 

slave processor. The only process placed on Pi was the T^. All other components, 

Tgbiock, Tmfi, Tqm„„ Tcode and Tslore are placed on the processor P0. As Tda is the most 
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computationally intensive task (4.3), this algorithm PV1 has introduced only a limited 

degree of parallelism. 

In Figure 4.5, the image blocks (denoted by Block) are passed to Pj and the 

transformed blocks (denoted by TBlock) are passed back to P0 as fixed length 

messages. There is no common memory or sharing of common address space on a 

transputer. The purpose of this algorithm PV1, was to see if the expected gain from 

simple parallelism could be achieved and hence calculated with some degree of 

accuracy. From the previous discussion and (4.2), w e would expect the overall run 

time of algorithm PV1 (AP) to be approximately that of AP], that is, AP « AP}. 

Due to the essentially sequential nature of this algorithm, the only time savings can be 

that of the processing time for the tasks TgblocK Tbhifit Tqumti Tcode, and Tstore. These tasks are 

running on processor Po, in parallel with task Tdcl which is running on Pi, The 

expected time saving of PV1 over SV1 is approximately APQ, that is 185,841 clock 

ticks or, expressed as a percentage, 

Percentage time saving = 
APQ 

ASV1 
xlOO (4.6) 

where ASV1 is the total processing time of SV1, from Table 4.2. Substituting the 

values from Table 4.2 into (4.6) results in an expected saving of approximately 12.6% 

of ASV1. The overall timing results from the time trials of algorithm PV1 are shown 

below in Table 4.4. 

Table 4.4 Overall timing results for PV1 

Trial Times 
(cts) 

1 
2 
3 
4 
5 

Average 

1,132,467 
1,125,338 
1,125,395 
1,125,486 
1,125,336 

1,126,804 
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Using the actual figures obtained from Table 4.2 and Table 4.4 a time saving of 

345,924 clock ticks or 23.5% over algorithm SV1 was recorded. The results were 

better than expected. However, the discrepancy is sufficient to warrant further 

investigation into its cause. 

4.6 Component Timing Issues and Communication 

Because of the unexpected timing results of the previous section, the behaviour of all 

the processors in the transputer system of Figure 4.1 is now investigated. This is 

crucial to the accuracy of any calculations involving the times of the JPEG processes 

within a parallel algorithm running on the transputer system of Figure 4.1, and any 

hypothesis made from those results. The timing of message transmission between the 

processors must also be investigated since any parallel system, which relies on 

message passing for processor communication, suffers delays while data transmission 

is in progress. These delays in processor communication must be measured in order 

to evaluate any impact on the design of a general parallel JPEG algorithm. 

4.6.1 Component Timing 

It must be realized that an unstated assumption was underlying the calculations in 

Section 4.5. That was, if task t on processor Pt took x clock ticks to process, then task 

t on processor Pj would take the same time. That is, the execution time of all 

components was constant over all processors in the system. The running times of 

components placed on these processors depend on both the hardware and the software 

environment. 

4.6.1.1 Hardware Issues 

The platform described in section 4.3 that was used in this research possessed three 

processors. The four non I/O components from algorithm SV1, Tishift, Tdct, Tqmnt, Tcode, 
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were individually timed on each of the processors, T R A M 0, T R A M 1, and T R A M 2. 

These processors will be referred to henceforth as processors P0, Pi and P2 

respectively. All three of these processors were eventually used. The timing results 

are shown in Appendix A Table A.2, which is summarized below in Table 4.5 on a 

per block basis. The timing results of these components on P0, have already been 

shown in Table 4.2, but are now compared to those of the other processors. 

Table 4.5 Comparison timing data per block of non I/O processes on all processors 

Processor 

Po 

Pi 

P2 

FDCT 

(cts) 

314.181 

267.176 

213.327 

Level Shift 
(cts) 

6.053 

5.259 

4.206 

Quantization 

(cts) 

18.454 

16.031 

12.805 

Coding 
(cts) 

6.389 

5.136 

4.074 

The values in Table 4.5 are rounded to three decimal places, and represent the average 

processing times per image block. The corresponding values for Po are then taken 

from the second column of Table 4.2. The results of Table 4.5 are also shown 

graphically in Figure 4.6. As can be seen, all processing times of these components 

are different on all three processors. 

Figure 4.6 Comparative chart representation of Table 4.5 
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Further investigation into the underlying hardware revealed that processor P2 ( T R A M 

2), was purchased some years later. This processor runs at a higher clock speed than 

Po or Pi, therefore a lower value for ST dot, or any of the other components, would be 

expected on P2. However, a lower value for all components was also recorded on Pi, 

which runs at the same clock speed as Po. This difference in component processing 

times on processors Po, Pi, P2 explains the better than expected performance of 

algorithm PV1. 

4.6.1.2 Software Issues 

An explanation of the discrepancy between P0 and Pj lies in the architecture of the 

underlying hardware and the software configuration used to support this multi­

processor activity. As can be seen in Section 3.3.1.3 Figure 3.19, the root processor 

(Po) on the transputer contains & filter task which facilitates communication between 

tasks on processor Po and the afserver task on the transputer host processor. Being a 

separate executable task placed on processor P0, filter is scheduled for computer time 

along with all other tasks placed on P0. Processes Tgm0ck and rstorethat perform all I/O 

processing are also resident on Po and must, by necessity, make use of the filter task 

indirectly. Thus throughout the lifetime of the algorithm, filter uses scheduled 

processor time facilitating this communication between Po and the transputer host. 

Any scheduled processor time for filter during a time quantum St means less time for 

other tasks being measured in St. These other tasks then take longer to run in real 

time. 

When component Tdct (or any other component), is placed on the non-root processor 

Pi, it is no longer sharing scheduled processor time with the filter process. Therefore 

in a given time quantum, it would be expected that STdct on Po, would be greater than 

5Tdct on Pt (i * 0). This can be stated more formally as 

SPo(Tdct) > SPiTdct) (
4-7) 

where clock speed Po ^ clock speed Pi. 
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This is borne out in the results presented in Table 4.5 above. If the clock speed of Po 

is greater than that of Pi, the inequality in (4.7) may still hold true, but that is not the 

situation being described here. B y examining the ratios of the times for each process 

in Table 4.5 on processors Po and Pi, it can be seen from Table 4.6, that the ratio 

average of 0.8478 is similar to the ratios of the individual components. This means 

that the impact of the filter process is consistent across all processes on Po. 

Table 4.6 Ratios of component processing times of P, I P0 

Component Ratio 

P1/P0 

Tdct 

Tishift 

' quant 

' code 

average 

0.8503 

0.8687 

0.8687 

0.8038 

0.8478 

4.6.1.3 Expected Time Savings of PV1 

Given this, the expected time savings of PV1 in Section 4.5 can now be recalculated 

to allow for the speed difference of processor P/. The percentage time saving of PV1 

in (4.6) is obtained directly by calculating AP0 as a percentage of the benchmark time 

ASV1. This calculation is correct, from (4.2)-(4.5), if both processors run under 

identical conditions. Since they effectively do not, because of the filter task, then the 

percentage can be calculated from the expected running time of the algorithm, zlP 

(&AP}), as a percentage of ASV1. This allows us to use the known processing times 

on Pi from Table 4.5. So the measured time saving in (4.6) is more accurately 

calculated by (4.8), which allows for the time difference of the Tdct component on Pi. 

Percentage time saving = 1 -
AP 

ASV1 
x 100 (4.8) 

From Figure 4.6 and (4.4), it can be seen that the value of APj is still much greater 

than APQ. B y using the more accurate values from Table 4.5, then from (4.1) and 
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(4.2), we can derive a value for AP of 1,094,352.9 clock ticks. It must be remembered 

that the values in Table 4.5 are per image block, and must be multiplied by 4096 to 

get total component processing times. Using this figure in (4.8) yields a new expected 

time saving for PV1 of 25.7%. This is close to the observed time savings of 23.5% 

calculated in section 4.5 and much better than the 12.6% originally calculated. These 

calculations do not yet take into account the timing of the message passing between 

processors, which when accounted for, should bring the expected time savings even 

closer to that observed. 

4.6.2 Communication Timing 

While the inter-processor communication times may be small compared to the 

processing times of the tasks, they contribute to the overall times for the algorithm. 

The processor communication times are influenced by a number of factors including 

the length of the message passed, and the topology of the network of processors. The 

topology of the transputer system used is shown in Figure 4.1. Communication times 

were found between processors Po - Pi, and Po - P2, for varying message lengths. 

The communication timing was done by timing the transmission and receipt of 4096 

8x8 blocks (or arrays) of elements between processors Po - Pi, Po - P2- Four runs 

were performed with different size block elements. Block communication was done 

with elements of one byte, four bytes, eight bytes, and finally by transmitting a block 

of four byte elements but receiving a block of eight byte elements. The final test was 

performed, as this type of communication is essentially what happens in algorithm 

PV1. A n 8x8 block of 32 bit integers is transmitted to processor Pi which performs 

the F D C T , and then transmits back a transformed 8x8 block of 64 bit double precision 

floating point numbers. The results of the communication timing can be seen in 

Tables A.3 - A.6 in Appendix A, and are summarized in Table 4.7 below. Note that 

all times are again in clock ticks and represent the total time taken to transmit and 

receive all 4096 blocks. 
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Table 4.7 Communication timing summary between P0 and P}, P2 

Bytes per element Processor P, Processor P 2 

(cts) (cts) 
1 
4 
8 

4/8 

5,192.2 
19,020.2 
37,441.2 
28,236.0 

10,373.8 
38,494.4 
75,961.4 

56,922.8 

The data in Table 4.7 can also be represented as a comparison bar chart in Figure 4.7 

where the communication timing between processors Po - Pi, Po - P2 can clearly be 

seen. From Table 4.7 w e can see that the communication times are doubled when 

communicating between P2 and Po- This is due to the configuration of the underlying 

hardware shown in Figure 4.1. In this configuration, Po can only communicate with 

P2 via message routing through P/. 

1 Byte elements 4 Byte elements 8 Byte elements 4 Byte transmit 
8 Byte receive 

Figure 4.7 Comparison of communication timing between different processors 

The net effect is that the communication times for messages between P0 and P2 is the 

sum of the communication times between the two sets of adjacent processors. This 

implies that communication times are a function of distance between processors. This 

also suggests that distance be measured not by the actual distance apart, but by the 

number of receiving processors involved in the message routing. Therefore, in Figure 

4.1, the distance between Po and P/ is one, while the distance between Po and P2 is 

two. 
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Before discussion of the impact of these communication times, w e also need to 

consider the model by which w e are viewing the communication process. Shown in 

Figure 4.8 are three models for viewing communication between processors. Model 

A suggests that the communication process is an event whose time duration is shared 

by each of the communicating processors and ignores the physical medium by which 

actual communication takes place. Model B is an opposing view, and places the 

communication event solely in the domain of the physical medium. This assumes the 

communicating processors take no part in the communication process, and hence are 

not directly affected by the communication times. In this model each processor can 

view the communication delay as something apart from itself. Model C combines 

both A and B. In this model, the communication process has three components. 

There is a component at each processor end, which involves calling the 

communication functions, which prepare the data, and copy it to and from supplied 

program data structures and the communication buffers and physical ports. There is 

also the actual transmission component, which involves time associated with the 

actual transmission of the data over the physical medium. 

Pi Pi 

Model A Model B 

Figure 4.8 Inter-processor communication models 

Evidence from Table 4.7 suggests that Model C is the one w e should use when 

considering the effects of communication times. From Table 4.7, 4096 blocks of 64 

single byte elements are passed to and from processors P0 and P; in 5,192.2 clock 

ticks, this equals 0.3323 seconds. Thus it takes approximately 4.0564x10"5 seconds to 

transmit one such block (512 bits), one way. From section 4.3, the speed of the 

communication link between processors in the transputer system is approximately 20 

Mbits/sec, thus requiring 2.4414x10"5 seconds to transmit 512 bits. This difference 

from the measured figure above of 4.0564x10"5 seconds must be the time taken by the 
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processors at each end to initiate and finalize the communication. Thus, 

approximately 4 0 % of the measured communication time between processors involve 

the sending and receiving processors P0 and P/. 

When similar calculations are performed for the larger block communications in 

Table 4.7, the difference between the measured communication time and the physical 

time required to transmit via the communication line becomes slightly less. This can 

be observed in Table 4.8 as the percentage of processor involvement measured against 

the required time, assuming 20 Mbits/second communication speed. This drop-off in 

processor involvement is due to the transmission line speed remaining constant, and 

the efficiency of processors in handling higher volumes of data compared with 

smaller ones. It is reasonable to assume that the percentage of processor involvement 

time can be shared equally between the sending and receiving processors. 

Table 4.8 Processor involvement in communication 

Size of Transmission Measured Time Required Time Processor 

(Bits) (cts) (cts) Involvement % 

512 
2048 
4096 

0.6338 
2.3218 
4.5705 

0.3815 
1.5259 
3.0517 

39.8 
34.3 
33.2 

It should be noted that the values in Table 4.8 are based on those obtained by adjacent 

communicating processors Po and Pj from Table 4.7. Based on measured results, 

times for communication between non-adjacent processors can be obtained by using a 

linear distance function, as discussed previously in this section. 

The effects of the communication times can now be included into some of the 

previously constructed equations based on the results measured in the previous tables. 

Let SC represent the total communication time involved in the processing of one 

image block between adjacent processors. Then from Table 4.8 it can be separated 

into two components 

oL = SCproc + SCfmit- (4-9) 
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The quantity 5Cproc represents the communication processing time required by both 

sending and receiving processors for the processing of one image block. The quantity 

SCtmu represents the time that data is physically in transit between sending and 

receiving processors during the processing of one image block. Figure 4.9 is an 

update of Figure 4.4, with allowance made for communication times. 

Processor P0 
Physical 
Transmission Processor P, 

Figure 4.9 Sum of processing times with communication allowance 

The equations in (4.1) can be updated to allow for these communication times, giving 

AP0=Y_StQ(i)-v-YSCProc 
i=l ^ blocks 

m j 

APJ = 2 > / y ; + - Y_8cproc 

(4.10) 

J-I blocks 

where zlPo, APi and Stt(j) are as before. The difference in (4.10) is the addition to the 

quantity /IP, of its share of the processor involvement component of the 

communication times, measured over all blocks processed. Equation (4.2) can now be 

rewritten as 

tmit 

where 

min imum (AP) > max imun (AP0, AP,) + ACmh 

n 

ACtmit = Yudi^tmit . 

(4.11) 

i=l 
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di is the distance involved in the communication of each block, and n is the number of 

image blocks. In the simple case of PV1 from section 4.5, the two communicating 

processors P0 and Pi are adjacent thus the quantity d is one. To minimize the total 

processing time zlP, w e need an optimal placement of processor tasks whose 

combination also minimizes ACtmU. Since there is a special relationship between the 

two components SCproc and SCtmU shown in (4.9) and Table 4.8, minimizing the SCtmit 

component of (4.9) will also minimize the SCproc component of (4.10). 

In (4.11) the total processing time of the processor which takes the longest time, zlP,, 

is calculated from the sum of its component times. Once AP{ is identified as the 

maximum, then the quantity ACtmu has to be added to this to arrive at a lower bound 

for AP. This is because the time that messages are in transit is independent of the 

processing time on Pt, and represents time when the components of P, are waiting for 

data. This idle time is not included in (4.1) and arises solely from the discussion of 

communication times in this section. 

4.6.2.1 Expected Time Savings of PV1 Recalculated 

Given the discussion in the previous section, the calculation for the expected time 

savings of algorithm PV1 from section 4.6.1 can now be recalculated, taking into 

account the measured communication times. B y doing this it is expected that the 

value calculated should be closer to the observed figure of 23.5%, in section 4.5, than 

the value of 25.7% calculated from taking into account variations in processor speed 

in section 4.6.1. 

In PV1 from Figure 4.5, the task on processor Po transmits to Pi, 8x8 blocks (64 

elements) of level shifted integers. Each integer is four bytes in length. The task on 

Pi then transmits back 64 element blocks of double precision floating point F D C T 

transformed numbers. Each double precision floating point number is eight bytes in 

length. Using the appropriate figures from Table 4.7 and Table 4.8, the following 

values are calculated 
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ACtmu = 18,753.5 clock ticks 

ACProc = 9,411.2 clock ticks. 

Substituting these values of ACtmit and ACproc into (4.10) and (4.11) a value of 

1,117,845 clock ticks for 4 P can be calculated. Using this in (4.8) the new, expected 

time savings of algorithm PV1 compared to SV1, taking into account communication 

times and processor speed is 24.17%. This has taken our expected result in time 

savings much closer to the measured savings of 23.5%. This is close enough to be 

confident that hypothesis proposed later can be made with an acceptable error margin. 

4.6.2.2 Impact of Communication Times on Optimal Placement 

We now need to ascertain whether taking into account the communication timing 

between processors Po and P; will produce a different optimal configuration of 

components allocated to these processors in algorithm PV1. W h e n seeking to 

minimize the communication time and hence zlP, the order of the overall tasks to be 

performed, as shown in Figure 4.2, must be considered. Although multiple processors 

are being used and a parallel algorithm is being developed, the order of the tasks to be 

performed for each image block is essentially sequential. Therefore when selecting 

tasks to move to the second processor, the tasks should be a block of one or more 

adjacent tasks from Figure 4.2. If two non-adjacent tasks are selected from Figure 4.2 

for processor Pi, then the amount of communication would double as processors Po 

and Pi would then require four bursts of data communication in order to process one 

block. 

If the initial optimal placement of processor tasks shown in (4.4) is considered, then 

task T^t will be placed by itself on processor Pj. This requires that the output of task 

Tishtft (64-element block, 32 bits/element) on Po be transmitted to Tdct on Pi, which in 

turn transmits its output of a transformed image block (64-element block, 64 

bits/element) back to task Tqmnt on P0. W e can now update (4.5) using (4.10) and data 

from Table 4.7 and Table 4.8, 
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^o * Z K * * +STlsMfi +5Tqmnt +STcode +STslore +\SCproc) = 190,682.6 cts (4.12) 
blocks 

^ . - X f e + i ^ J =1,291,726.6 cts 
blocks 

SCtmit « 18,547.6 cts 

zlC« 28,230.7 cts. 

From (4.11) minimum(AP) « 1,310,274.2. 

In order to try to minimize zlC in (4.12), a different placement of tasks is considered 

Tishift, Tda -.-Pi and Tgbiock,Tquant,TCOde,Tstore ->Po. (4.13) 

Because task Tuhtfi is moved to Pi, Po now only needs transmit a 64-element block 

with 8 bits/element to P/. The transmission from P/ to Po remains the same. Using 

the same procedure as in (4.12) gives: 

^o - S(«W +#Tqua„t +STcode +STstore +±SCproc) = 164,774.2 cts (4.14) 
blocks 

AP, * X(^W +flr* + i * 0 * U15,406.2 ̂s 
fr/oc&s 

<5C,„„, * 13,862.3 cts 

4 C « 21,316.7 cts 

Again from (4.11) minimum(AP) « 1,329,268.5. 

While in (4.14) the quantity zlC representing the total communication is less than in 

(4.12), the difference is more than offset by the increase in APi due to placing TlsMft on 

Pi. This results in an increase to the overall time zlP. Task Thhif, is the smallest task, 

therefore moving any other task to processor P/ would result in a larger increase to 

AP. This would be more than enough to offset any reduction in communication times. 

While the communications times do affect the timing of the overall algorithm, when 

only the two processors Po and Pj are involved the amounts are not enough to change 
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the optimal placement of tasks discussed in section 4.5. The issue of communications 

will again be discussed in the next section when the optimal distribution of tasks on 

more than two processors is considered. 

4.7 Development of a General Parallel Algorithm 

The algorithm developed in section 4.5 now needs to be extended to allow for 

processing on a general N-processor system. Ideally, w e need to construct a parallel 

algorithm consisting of a number of tasks, and distribute these tasks in such a manner 

as to make efficient use of the processors, while minimizing communication times. A s 

discussed in section 4.6.2.2, reducing communication times will not necessarily 

reduce the execution time of the overall algorithm. The problem of distributing tasks 

in an optimal manner for a general homogeneous Af-processor system is NP-hard even 

for small values such asN=3 [57]. 

From section 3.3.2, there are two general approaches to be taken when designing a 

parallel implementation of the JPEG algorithm. Homogeneous parallelization where 

repetitive work is distributed over multiple processors, or heterogeneous 

parallelization where independent algorithm components are distributed over multiple 

processors. Each of these two categories are fairly broad, and there are many ways to 

structure an algorithm within each. The structure is dictated to some extent by the 

problem at hand. The sequential nature of the JPEG algorithm is restrictive to some 

extent here. 

4.7.1 Pipeline Implementation 

If we consider heterogeneous parallelization, we can try to distribute the independent 

components of algorithm SV1 over multiple processors. W e have already seen from 

section 4.5 that if there are two processors, Po and P/ then the optimal distribution of 

tasks is given in (4.4). The question then arises of how to distribute the tasks under 

heterogeneous parallelization if there are, for instance, three processors. A c o m m o n 
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implementation of heterogeneous parallelization is that of a pipeline, section 3.3.2.2. 

W e investigate the use of a pipeline to implement SV1. 

Figure 4.10 shows a pipeline implementation of SV1 using three processors. This is 

one possible implementation of a pipeline. With more processors, some of the 

components sharing a processor could be moved onto processors by themselves. 

However, the configuration in Figure 4.10 will suffice for illustration purposes. The 

JPEG algorithm is sequential in nature as all components must be applied in sequence. 

The measurements in Table 4.2, illustrate an inherent weakness in the pipeline 

approach to the JPEG algorithm. 

Figure 4.11 Calculated processing times of processors in pipeline 

A large process can easily cause a bottleneck slowing the operation of the entire 

pipeline. Using values in Table 4.2, a bar chart representation of the expected 

processing times on the three processors in Figure 4.10 is displayed in Figure 4.11. 

As can be seen from this, processor P/ containing the Tdct component becomes the 
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bottleneck in the pipeline. Adding more processors to this pipeline to separate the 

other components would not help; the existing bottleneck still remains. 

With the processing times shown in Figure 4.11, the pipeline configuration of Figure 

4.10 using three processors has the same performance as the parallel algorithm PV1, 

which uses only two processors. As adding more processors with this approach is of 

no benefit, a more efficient method making use of the extra processors is sought. 

4.7.2 Processor Farm Implementation 

We can construct a parallel algorithm that takes advantage of the parallelism inherent 

in the geometry of the image. In the lossy compression algorithms of the JPEG 

standard [52], each block of the source image is compressed independently of other 

blocks. Thus parallelism can be introduced by distributing the blocks among the 

processors for either partial or full processing. In fact, if w e perform the same 

processing, on different blocks on different processors simultaneously, then w e are in 

effect performing homogeneous parallelization. The processor farm method 

described in section 3.3.2.3 provides us with a paradigm well suited for application to 

image compression as described in [52]. The application of the processor farm 

approach to JPEG image compression is depicted in Figure 4.12. 

compressed image file 

Master Process Farm Worker Processes 

Scatter 

Gather 

Work 
Packets 

Result 
Packets 

_____-____mk____\ 

Figure 4.12 Application of processor farm technique to image compression 
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Algorithm SV1, implementing the JPEG baseline D C T algorithm, fits the processor 

farm paradigm perfectly. This algorithm breaks an image into blocks and then 

performs the same processing on each block independently. Algorithm SV1 can 

easily be reorganised into a master and farm worker task scenario, with the master 

task decomposing the image into blocks, and the farm worker tasks processing the 

blocks of the image. The image blocks become the work packets of Figure 4.12, 

while the processed blocks being returned become the result packets. In fact, a 

processor farm type implementation requires only slight modification to algorithm 

PV1. 

4.7.3 Development of Processor Farm Algorithm 

The transputer system provides built in support in the configuration software for the 

construction of processor farm algorithms. The master and worker tasks must be 

constructed, and then specified as master and worker tasks of a processor farm in a 

configuration file (see Appendix B.6). The application is then compiled with the 

configuration file. W h e n run on the transputer, the afserver software running on the 

host C P U automatically places the master task on the root processor (P0). A copy of 

the worker task is placed on all remaining processors (Pi ... P„), which are configured 

as the processor farm. Communication is facilitated to and from the farm by the use 

of net jsendQ and net_receive() function calls. The message routing for work packets 

is automatically handled by the network software, as is the receiving of result packets 

from the farm. 

From the six components, Tgu0Ck, Tunyi* Tdct, Tquant, Tcode and Tstore, a master task needs 

to be constructed, to be placed on the master processor (P0), and a worker task 

(tworker), which is placed on the processor farm processors (Pi ... P„). The 

components need to be placed optimally to minimize total processing time of the 

processor farm. 

It is only during the image block decomposition (Tgbi0Ck) and the block storage (Tstore) 

tasks of Figure 4.2 that the algorithm must process blocks in a particular order. In 

many multi-processor systems, the I/O devices are accessible from one processor 
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only. For these reasons, the tasks T^iock and Tst0re are placed on the master processor 

P0. That is 

Tgblock , Tstore ~» Po • (4.15) 

The worker task, tworker, is constructed from the remaining components, and placed on 

the processor farm. That is 

tworker ~+ P] ...Pn • (4.16) 

Figure 4.3 and the development of PV1 in Section 4.5, shows that the maximum 

degree of parallelism is gained from placing the component with the largest 

processing time (Tdct) on as many worker processes as possible. What is not clear at 

this point is, whether with n processors (n > 2) unlike in PV1, Tdct should be the only 

component placed in the worker task. This will depend on the number of processors 

in the farm, as the following discussion shows. 

Note : The following discussions assume that given a network of processors Po ... P« 

on which the processor farm will be implemented, the speed of the processors is 

uniform across the network. 

The Tdct component of Figure 4.2 is assigned to tworker- That is 

Tdct ~~* tworker • (4". *• ') 

The remaining non I/O components are assigned to the master processor, with Tguock 

and Tstore already assigned in (4.15). That is 

Tlshift , Tqmnt, Tcode ~> Po • (4-18) 

The five components assigned to P0 are organized into two concurrent, running 

threads tsnd, trec (see section 5.2 for explanation of threads), which together make up 

the master task. The purpose of the two separate threads is so that the master task can 
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independently send and receive work packets to and from the processor farm, which 

contains multiple copies of tworker (4.16). The thread tsnd is responsible for breaking 

the source image into blocks and passing them on over the processor farm network to 

the tWOrker tasks. Since the tWOrker task only contains the Tdct component (4.17), then w e 

have 

Tgblock , Tlshift -» tsnd- (4.19) 

The trec thread receives processed work packets from the processor farm and stores the 

results in the compressed image file. Thus 

-tquant , J-code , -tstore ~~^ trec- v*-*-v) 

With the configuration of tasks as described in (4.17, 4.19, 4.20), the tsnd component 

of the master task can contain a loop to prepare image blocks for processing by the 

farm. Since it is running independently from the rest of the master task, when the 

farm is saturated with work, (i.e. there are no free worker processors), this thread will 

become idle and not use any processor time. The trec thread accepts processed blocks 

from the processor farm, performs some processing of its own and stores the 

compressed blocks to disk. W h e n there are no processed blocks to accept from the 

farm, (i.e. the worker processors are busy), then this thread will become idle and not 

use any processor time. These two master task threads work in harmony in the 

processor farm paradigm. 

Parallel algorithm PV2 was developed from SV1 and designed for the configuration 

just described. Using the basic components of SV1, it implements the master task as 

two threads, a send and receive thread, and a worker task containing the F D C T 

component of SV1 only. The structure of P V 2 is shown in Figure 4.13. The master 

task is located on processor P0 ( T R A M 0) of the actual transputer in Figure 4.1, while 

the worker tasks are allocated to all other processors P/ ... P„ in the transputer. The 

transputer configuration file can be seen in section B.6, while the corresponding 

program code for the two tasks can be seen in section B.7. 
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Processor P0 

Master Task 

fsnd 

Processor 
Farm 

Figure 4.13 Structure of parallel algorithm PV2 

We will now show that when implementing the JPEG algorithm using the processor 

farm paradigm with a specific configuration, as in Figure 4.13, there are a maximum 

number of processors which can be effectively used in the farm. This number of 

processors is called the saturation point, and its value is denoted with the symbol sp. 

Also, the configuration of the processor farm in Figure 4.13 is optimal, with regard to 

the placement of components, up to saturation point. Once this point has been 

reached, a re-arrangement of the components over the tasks of the processor farm may 

help to extend the saturation point. 

4.7.3.1 Saturation Point 

We can generalize (4.2) to represent the total processing time (AP) of the processor 

farm algorithm in Figure 4.13 as 

min imum (AP) > maximum \APi }"=0 (4.21) 

where n is the total number of processors. Thus Po represents the master processor, 

and Pi ... P„ are the worker processors. As before AP( is the total processing time on 
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processor P„ Inequality (4.21) is similar to (4.2) except that it allows for the general 

case ofn processors in the farm. It should also be noted that this equation is ignoring 

communication times for the present. From algorithm P V 2 (Figure 4.13), and (4.21) 

w e can set a minimum value for total processing time on the processors in the farm as 

follows 

APo -± B(STgblock , STishjfi STquant , STc0de , STstore) (4.22) 

APt > kiSTdct 0 * 0 ) . 

In (4.22), B represents the number of blocks in the image, and &,• is the number of 

times tworker on Pi was invoked, (i.e. the number of blocks processed by P,). O n a 

network of processors where the speed of the processors is uniform, it is fair to 

assume that over the compression of the entire image, a processor farm scheduler will 

load balancing with respect to the activities of the farm. That is, the scheduler will 

uniformly distribute the block processing over all processors P/ ... P„ in the farm. 

The transputer system does attempt to achieve this, [46] [45]. 

This implies that kt«(B/n). Thus 

APt^-ST^ (i*0). (4.23) 
n 

So, from (4.22) and (4.23) there must exist a value, sp, for the number of processors 

(n) in the farm such that 

{AP0<APt {nx-sp-x) 

{AP0>AP. (n=sp) 

This value for n is the saturation point sp and is the point when the total processing on 

the master processor P0 becomes greater than that of the worker processors Pi ... P„. 

Thus, AP0 then becomes the lower bound for the minimization of zlP in (4.21). This 

is plotted using a comparison bar chart shown in Figure 4.14. 
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Figure 4.14 Comparison of overall processing times of P0 vs V. 

From the algorithm P V 2 and (4.22), zlP0 remains constant, regardless of how many 

processors are added to the farm. This figure is compared to zlP, (i * 0) from the 

farm, derived from the values of Table 4.2 and (4.23), using an image with 4096 

blocks. From observation of the comparisons in Figure 4.14, the value sp appears to 

be seven. 

The values used in Figure 4.14 are those from the original timing results of SV1 on 

Po- For a processor farm implemented on the transputer system in Figure 4.1, the 

chart in Figure 4.14, does not take into account the varying processor times measured 

in section 4.6.1, nor the communication times as measured in section 4.6.2. These 

two factors will be considered when evaluating estimated processor farm times to be 

compared to actual measured times. The above chart assumes component processing 

times as measured in Table 4.2 remain uniform over all processors in the farm. It is 

expected that when accounting for variations in processor speed and communication 

times, the impact would be a reduction in the processing times of P, in Figure 4.14, 

possibly resulting in a smaller value of sp. 

The value of sp observed in Figure 4.14, can also be arrived at in a different manner. 

If the concept of a saturation point is correct, then the same value of sp should be 

derived by considering the measured idle time of processor Po over a given time 
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quantum. In the chart in Figure 4.14, the time AP0 remains constant for all values of 

n, the number of processors in the farm. However, as the value n increases, the 

average time of zlP, decreases, as there are more processors in the farm to share the 

total load over the entire image of tworker-

Figure 4.14 shows the effect when considering times over the entire image, but not the 

impact on P0 when studied on smaller time quantums. Since all processors in the 

farm are working independently once they have their data, then the effect of a larger n 

is that in a given time period, the farm will produce more work packets for P0 to 

process. Consequently, P0 must do more work over the same time period to provide 

more image blocks to the farm, and to process those blocks received. The effect on P0 

is that the idle time decreases as n increases. Thus when the idle time on P0 reaches 

zero, the processor farm has reached a point where the master processor cannot keep 

up with the rate at which the farm workers are producing and requiring work packets. 

This point should correspond to the saturation point observed in Figure 4.14. 

Figure 4.15 Expected idle time on P0 

Idle time on a processor over a given time period cannot be measured in itself, but can 

be derived by measuring or estimating the expected processor activity time over the 

same time period. Figure 4.15 plots the expected idle time on Po against the number 
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of processors n, in the farm. This graph is based on values from Table 4.2, and is 

derived from the expected activity on P0 over the time quantum equivalent to Starker-

Since w e are assuming uniform processor speed in the processor farm, this is the time 

it will take the farm to produce n worker packets for P0 to process. Once these 

packets are available for P0, the master processor then sends the next n prepared 

blocks to the farm. In the next Stworker time quantum, P0 must then process these n 

transformed blocks, store them and prepare the next n image blocks for transfer. This 

is based on expected behaviour of algorithm PV2. 

When n is small, from Figure 4.3, P0 will have idle time when waiting for the farm to 

send work packets. As n increases, this idle time decreases as shown in Figure 4.15. 

This represents the extra activity P0 must perform, associated with the extra 

processors, in order to keep up with the output from the processor farm. As in Figure 

4.15, when n gets large enough, the output from the farm is too great for P0 to process 

within the Stworker time quantum. This point is represented in Figure 4.15 by the point 

where the graph crosses the zero-Idle time line. This is the saturation point, and in 

Figure 4.15 occurs at (n = 7). This agrees with the figure observed in Figure 4.14. 

In Figure 4.15, the graph is approximately linear. This is to be expected, as for each 

new processor, there is an extra amount of work to do. From Table 4.2, this should 

increase as a simple multiple of the amount of work expected from one processor. 

The continuation of the graph after saturation point indicates negative idle time. 

Negative idle time in reality does not exist, but does represent the rate at which 

processing on Po falls behind that of the rest of the farm. This negative idle time on 

Po can also be viewed as the increase in idle time on the processor farm, resulting 

from Po's inability to keep pace with the farm. This is explored further in Chapter 5. 

4.7.3.2 Expected vs Measured times of PV2 

We now need to compare the estimate for the processor farm timing against measured 

results in order to gauge the accuracy of predicted results for the saturation point 

above. To do this, some of the equations developed in section 4.6.2 need to be 
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enhanced to cater for a processor farm with n independent processors. Taking into 

account (4.23), (4.10) becomes 

AP0 = t*t0(i) + L Y_SCproc (4.25) 
/=/ ^ blocks 

n Ln blocks 

where 5 is the number of blocks processed by the farm, p is the number of tasks on 

P0, and n is the number of processors in the farm. In (4.25), calculation of P0 is the 

same, indicating that one half the processor involvement of communication is 

allocated to Po. The other half is allocated to the farm processors. However, in the 

calculation of P„ since there are n processors in the farm, this half of the processor 

communication involvement allocated to the farm is shared between all processors of 

the farm. This assumes a uniform distribution of image blocks to the farm processors. 

When calculating zlP, the ACtmit component of the communication must also be taken 

into account, but it will depend on which quantity APo or APt, is the greater as to how 

ACtmit is distributed. For instance, since all blocks are communicated to and from the 

farm, if AP0 is the greater, then when calculating zlP the ACtmit component can be seen 

as time when Po is waiting for communication from the farm, and thus should be 

added to A P Q , as in section 4.6.2. However, if zlP, is the larger, then since on average 

B/n blocks are processed by P„ then P, will only have been waiting for AQmi/n. Thus, 

the ACtmit component is shared between the processors of the farm. Considering this, 

we can revise (4.11) for the processor farm to give 

( AC A 
min imum (AP) > maximum] AP0 -^AC^, APi +—— 

\ n ) 

(4.26) 

W h e n calculating an expected figure for AP, since from section 4.6.1 the processors 

of the farm run at different speeds, the average time of ST da on P/ and P2 from Table 

4.5 of 240.251 clock ticks will be used. In the actual transputer configuration of 
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Figure 4.1 there are 2 processors to use in the farm, and one processor for the master. 

Given the configuration of P V 2 in Figure 4.13, w e can calculate 

ACtmit = 187,53.5 cts 

ACproc = 94,772 cts. 

Using the above and values (n=2) and (B=4096) in (4.25) and (4.26) we get AP is 

503,780 cts. 

The actual measured running times for PV2 was gained as an average of five trial runs 

as shown in Table 4.9. Using this average figure w e see that our actual measured 

running time is 86.4% of the estimated running time of 503,780cts. Again, this is a 

better than expected actual running time, even taking into account the different 

processor speeds and communication times of the actual transputer in Figure 4.1. 

Table 4.9 Overall timing results for PV2 

Trial 1 Trial 2 Trial 3 Trial 4 Trials 
(cts) (cts) (cts) (cts) (cts) 

439,694 433,439 434,546 433,797 

average 

435,275 

435,350.2 

Further investigation into the implementation of the processor farm paradigm on the 

transputer [68] reveals that during placement of the worker tasks tworker -> Pi • • • P«, a 

copy of tWorker is also placed on P0. This copy of tworker is run when there is idle time 

on P0. Using the idle times calculated in section 4.7.3.1, it is estimated that with two 

processors in the farm, there is enough idle time on P0 to process approximately 780 

image blocks using the STdct on Po time from Table 4.5. Since the tworker task on P0 

has no communication times then w e can now calculate 

ACtmu = 15,118.262 

ACProc = 7,640.ll3. 
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Using the above and values (n=2) and (B=3316) in (4.25) and (4.26) we get AP is 

407,805 clock ticks. This is 93.7% of the measured time. 

However, while the result is much more accurate, the distance factor in the 

communication times has been ignored. This implies that all distances are one, and 

thus the processor farm topology is the star configuration shown in Figure 4.16, with 

Pi ... P„ a distance of one away from P0. This is clearly not the case in the actual 

transputer configuration of Figure 4.1. If these extra transmission times are taken into 

account, then it is expected that the accuracy figure above would improve slightly. A 

preliminary figure for this was calculated at 95.8%. This figure was gained by adding 

to the 407,805cts above, the extra transmission and processing times of 7590cts and 

3838cts respectively, in sending one half of the 3316 blocks processed on to a further 

node in the transputer network. This is an estimate of the behaviour of tworker on P0. 

Figure 4.16 Assumed configuration of processor farm 

4.7.3.3 Impact of Saturation Point on Optimal Task Placement 

If communication times are ignored, and the star configuration of Figure 4.16 is 

assumed for the processor farm on which P V 2 is implemented, then the effects which 

the saturation point, sp, has on the task placement in (4.17), (4.19) and (4.20), can be 

more easily investigated. 
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Figure 4.17 shows the comparison of overall processing times of P0 vs P, given a 

number of different component placements on task tworker- Figure 4.17(a) is the same 

as Figure 4.14. It shows the comparison with the configuration of tworker as in (4.17). 

This shows the saturation point sp, as in section 4.7.3.1, to be seven. Figure 4.17(b) is 

derived from the same values, except the configuration of tworker is 

•I Ishift. -I dct ~-* tworker- (4.27) 

As can be seen in the comparison bar chart, by this rearrangement of components on 

the tWorker task, the saturation point has been increased to nine. However, it can also be 

seen that when the processor farm has the same or fewer processors than the 

saturation point value in part (a), the time of SPi has increased thereby increasing the 

time of zlP. 
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Figure 4.17 Comparison of saturation points with different task configurations 
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Similarly, Figure 4.17(c) is the chart representing the tworker configuration of (4.28), 

while Figure 4.17(d) is the chart representing the tworker configuration of (4.29). While 

in each case the saturation point has increased, to 17 processors in (c) and 24 

processors in (d), the corresponding value of SPt in each of the charts and hence that 

of zlP increases, up to and including the saturation point of the previous chart. 

J-lshift > Idct, 1 quant ~~** tworker (4.28) 

•I Ishift • J-dct , -I quant , -I code ~^ tworker (4.29) 

Thus, the original configuration of components of P V 2 in section 4.7.3 is optimal up 

to the saturation point of the number of processors in the farm. As stated before, the 

saturation point is the number of processors that the processor farm can effectively 

use. Once reached, the saturation point can be increased somewhat by placing more 

work components on the tworker task to be distributed to all processors in the farm. 

However, the actual gain in processing times must be looked at carefully and weighed 

against the expense of the extra processing power. 
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Figure 4.18 Progressive algorithm time savings vs number of processors 
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Figure 4.18 shows the progressive time savings gained at each step by adding another 

processor, from algorithm SV1. The savings gained for the number of processors of 

two and three in Figure 4.18 are based on the actual time savings of PV1 and PV2. 

All other values are estimated from timing values obtained from the different 

processors, assuming a uniform processor speed and ignoring communication times. 

The effect of those factors would be to decrease slightly the savings for processor 

numbers from 4 to 10. However, the difference would be insignificant. 

As expected, adding the first two worker processors gives the most gain in time 

savings. There is a dramatic decrease in the time savings gained when adding the 

fourth processor, and savings continue to decrease up to the saturation point. W h e n 

the saturation point is increased by allocation of more components to tworker, the time 

savings continue to decrease up to the new saturation point. As the number of 

processors in the processor farm gets larger, the cost of incurring the expense of 

another processor must be weighed against the ever decreasing time savings. 

4.8 Conclusion 

There are benefits in time savings to be gained in implementing the JPEG standard as 

a parallel algorithm. These savings have been quantified throughout this chapter. 

However, in order to gain the most from parallelism, care must be taken in the 

paradigm used, and the algorithm design or "split up" on a multiprocessor system. If 

the wrong approach is taken, as with the pipeline method in 4.7.1, bottlenecks can 

develop which slow the algorithm and erode the main advantage of parallelism. 

The processor farm paradigm seems well suited to image compression as outlined by 

the JPEG standard. One of the main advantages of this paradigm is that it is general, 

and more processors can be added without having to re-design the algorithm. 

However, the allocation of algorithm components to the worker task, as shown in 

sections 4.5 and 4.7 is very important. Allocating the wrong components to the 

worker task results in very little gain in the parallel algorithm over the single 

processor version. 
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There is a saturation point in the number of processors that can be effectively used in 

the processor farm paradigm. The saturation point is also irrespective of the image 

size. That is because the saturation point measures the m a x i m u m rate of work packets 

arriving from the farm against the rate at which the master processor can process the 

work. A s shown in section 4.7.3.1 and 4.7.3.3, there is an optimal allocation of 

components to the farm, up to saturation point. Once this point has been reached, a 

reallocation of components can extend the saturation point, but at very little gain in 

overall performance. This is quantified in section 4.7.3.3. 

The algorithm developed in section 4.7.3 was tested and run on the transputer system 

in section 4.3. This system had three processors, thus the data collected and measured 

from running the processor farm on available hardware could only be verified up to 

and including two processors in the farm. Results for more than that were obtained by 

extrapolating the measured times on the existing three processors. In order to validate 

these results, a method for simulating a processor farm is developed in Chapter 5, 

using the Java language, and the results of the simulation compared with initial results 

obtained in this chapter. 

An area for further study arising from the work in this chapter would be to extend the 

algorithm P V 2 for self-configuration. If the algorithm could detect the number of 

processors on initiation, then components could be allocated to the processor farm or 

the master processor to optimally configure itself. If more processors were available 

for the farm than the saturation number, then other components could be configured 

on the worker task to make better use of available processing power. 
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CHAPTER 5 

PARALLEL JPEG SIMULATION USING JAVA 

5.1 Introduction 

The previous chapter presents a number of conclusions based on extrapolation of 

results obtained by the implementation of a parallel JPEG algorithm PV2, using three 

processors. It indicates a saturation point for the number of useful processors. To test 

the validity of the saturation point, the P V 2 algorithm was simulated using Java. 

Experimental testing requires at least eight transputers, more than was actually 

available. 

Java is a new programming language making in-roads into many areas of computing, 

particularly the Internet. O f the many features of Java, one of the least known is its 

multi-threaded capability. B y exploiting Java's multi-threaded features, a simulation 

algorithm was developed which exploits the computing potential of the underlying 

platform, regardless of whether is single or multi-processor powered. The closeness 

of Java's association to the Internet, the ease of network programming that is provided 

by the language, and its platform independence suggests the potential for such an 

algorithm to use distributed processors. This would then be a JPEG distributed 

compression algorithm that is portable. 

The simulation algorithm, JVS1, was implemented to mimic the processor farm based 

parallel algorithm PV2. A method was devised to measure the saturation point, and 

the results running JVS1 using a number of simulated processors are presented. To 

measure when the saturation point had been reached, the simulated message queues 

were monitored at the equivalent of 30 millisecond intervals on a multi-processor 
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system. The amount of accumulated messages in the queues was then used as a 

measure to indicate the proximity to the saturation point sp. 

The main requirement of a good simulation is that it enables the production of 

phenomena likely to occur in operational circumstances, under test conditions. In 

simulating P V 2 , the main requirements are that of processor load and communication 

timing between the processors. In chapter four, it was seen that the communication 

times played an important role, but if the number of processors was small, the main 

consideration was that of processor load. The simulation JVS1, concentrates mainly 

on simulating processor load of the processor farm paradigm for the extension of PV2. 

However, a technique is discussed for the inclusion of communication times. 

Sections 5.2 and 5.3 provides some preliminary work on implementation of the tasks 

of P V 2 as Java threads and their scheduling in the Java Virtual Machine; this 

constitutes the heart of the Java simulation JVS1. Section 5.4 discusses the complete 

development of JVS1, and some of the problems encountered in the simulation are 

presented in 5.5. The simulation results and discussion are presented in section 5.6. 

5.2 Implementation of Tasks as Java Threads 

The processor farm paradigm is relatively easy to simulate in Java, since the worker 

tasks residing on processors P.... Pn are identical. The master processor P0 is 

different, as indicated in Figure 4.13. The master task on P0 is implemented as three 

independent Java threads, corresponding to the three parallel C tasks on the transputer, 

so each can run independently in the simulation. The first step in constructing the 

parallel simulation JVS1 was to therefore implement each transputer task as a Java 

thread. Threads were chosen rather than functions since they are relatively 

inexpensive to create in Java, and once instantiated they become separate entities. 
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The actual implementation of the tasks in Java was relatively straightforward. The 

transputer programs were written in a version of Parallel C [68], based on ANSI 1 C, 

and Java itself is based on the C/C++ language. Java is however a fully object-

oriented language, so most of the transputer code could be used as is, but it had to be 

encapsulated within Java classes. Java classes extending the thread class were 

constructed to implement the four tasks identified above, and within the simulation, 

these classes were instantiated as Java objects. The thread class is a standard Java 

class. A constant n was uses to indicate the number of worker processors P,...Pn, 

and the simulation simply created the n worker thread objects as required. The Java 

simulation code is included in Appendix C. 

A thread, in general, is not the same as an operating system process, or a process that 

can be created in some programming languages, such as with the execQ function in C. 

A thread has its own execution path but shares memory with the process that created. 

It is therefore sometimes referred to as a lightweight process. A multi-threaded 

operating system allows each process to be divided into several components, which 

are called threads. The idea of threads is not a new one, especially the concept of a 

single thread, but multiple threads in a single program performing different tasks all 

executing at the same time has not yet become common. 

Figure 5.1 Java thread structure 

1 American National Standards Institute 
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A Java thread is a lightweight process that has its own execution stack, but shares 

memory and variables with the process that created it, as shown in Figure 5.1. 

Transputer processes communicate by passing messages, and do not share memory. 

Since Java threads all share the same memory space, this has implications for the 

simulation of the communication aspects of the processor farm, when considering 

these communication aspects of a multi-processor system. A good simulation has to 

incorporate the delays due to processor communication. This component of the 

simulation is covered in more detail in a later section. 

5.3 Thread Scheduling in Java 

Once the four tasks identified in Section 5.2 are coded and instantiated as thread 

objects in Java, the threads need to be scheduled and run in a manner consistent with a 

correct simulation. O n the transputer, low priority processes (including threads) are 

time-sliced to provide an even distribution of processor time between the processes 

[44]. If there are n processes, then the maximum latency between a process's time-

slices is 2n-2 with the timeslice period approximately 1ms. The scheduling of threads 

in Java needs to be investigated in order to devise a correct approach to the simulation 

of the processor farm. The following two sections investigate the possible states of 

thread objects in Java, and their scheduling in the Java Virtual Machine (Java V M ) . 

5.3.1 Thread states in Java 

The states that a Java thread can be in are shown in Figure 5.2. Once a new thread 

object has been created (that is, its class instantiated), the Java thread is initially 

placed in the New Thread state. In order to be instantiated (as a thread), the thread 

must implement the public void run() method. This is equivalent to a C program's 

mainQ function. It is the point where the thread begins execution. 
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Figure 5.2 Java thread states 

To place the thread in a Runnable state, that is the state where it will be scheduled for 

execution, the thread's startQ method is invoked. From a Runnable state, a thread can 

move to a Not Runnable state when it becomes blocked on Input/Output (I/O) or a 

synchronized method; it has invoked its sleepQ method; or it has been suspended by 

another thread. A thread dies when its stopQ method is invoked or its run() method 

finishes execution. 

A Java thread can control another Java thread (providing it has the security to do so), 

by invoking its suspendQ and resumeQ methods. This will essentially move a thread 

to the Not Runnable state and back to the Runnable state. While these methods 

provide only limited control, they are flexible enough to allow the construction of a 

simulation algorithm. 

When a thread is in a Runnable state, it is scheduled for execution along with all the 

other Runnable threads by the Java V M scheduler. Unfortunately, the behaviour of 

the scheduler is not clearly specified, and consequently may behave differently on 

different platform implementations. 

130 



Chapter 5 - Parallel JPEG Simulation using Java 

5.3.2 Scheduling in the Java V M 

When multiple threads are available for execution on a computer system with a single 

processor, then only one can be run at any single point in time. Such threads are run 

in a way that gives the illusion of concurrency. The execution of multiple threads on a 

single processor in some order is called scheduling [12]. 

All Java threads have a priority assigned to them. When first created, a Java thread 

inherits its priority from the thread that created it. Priority values are in the range 

from MIN_PRIORITYio MAX_PRIORITY (1 to 10) which are constants defined in the 

thread class java.lang.Thread. Thread priority can be dynamically changed by the 

programmer to any value between MIN_PRIORITY and MAXPRIORITY. 

The scheduling of threads in the Java VM follows a simple deterministic scheduling 

algorithm, known as fixed priority scheduling [30]. At any time, the thread that is 

currently executing is the thread with the highest priority amongst all the threads in a 

Runnable state. The scheduler is pre-emptive; therefore the currently executing thread 

will be pre-empted when a thread with a higher priority becomes Runnable. However, 

this is not guaranteed. The thread scheduler may choose to run a lower priority thread 

to avoid starvation. 

When there is more than one thread in a Runnable state at the same highest priority, 

the Java V M thread scheduler chooses the next thread to run using a simple non-

preemptive round robin scheduling order. These highest priority threads may or may 

not be preemptively time sliced. The Java V M does not implement time-slicing, and 

therefore does not guarantee time-slicing of equal highest priority threads. Instead, 

the Java V M relies on the architecture of the underlying operating system. This 

situation is depicted in Figure 5.3. 
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Figure 5.3 Java thread scheduling hierarchy 

The "White Paper" on Java [30] states: 

"Java's threads are pre-emptive, and depending on the platform on which the Java 

interpreter executes, threads can also be time-sliced. On systems that don't support 

time-slicing, once a thread has started, the only way it will relinquish control of the 

processor is if another thread of a higher priority takes control of the processor." 

Windows 95 and Windows NT are both multi-threaded operating systems, and 

implement their o w n pre-emptive scheduling algorithms. O n these platforms, 

multiple threads in Java running at the same highest priority will be time-sliced on a 

round robin basis, but there is no guarantee as to the order of this time-slicing. Java 

on Solaris does not time-slice [91]. O n non time-sliced systems, a thread will run 

until it does one of the following: 

• finishes, 

• is terminated, 

• is interrupted by a thread of higher priority, 
• goes to sleep, 

• blocks on I/O or a synchronized method, 
• initiates its yieldQ method. 
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5.4 Development of Parallel JPEG Simulation Algorithm 

This uncertainty introduced by the Java scheduler makes it difficult to implement and 

simulate the processor farm parallel compression algorithm. As all tasks (on all 

processors) are implemented as threads in JVS1, if their scheduling is left up to the 

Java V M , it would rely on the architecture of the underlying operating system. This 

may or m a y not time-slice threads. One of the reasons for the choice of Java for the 

simulation tool was its platform independence, but this is not the case when relying on 

consistent thread scheduling. Thus the scheduling of threads to achieve a correct 

simulation cannot be left solely to the Java V M . 

Even if the Java VM could be relied upon for consistency in thread scheduling, once 

the thread objects have been created, w e cannot just start all threads and let the Java 

V M scheduler take control. This would result in the simulation being skewed in so 

much as the simulated processors with more tasks would be allocated more simulated 

processor time than they would receive during normal operation. In the algorithm 

PV2, worker processors P.... Pn have only one task each, but processor P0 has three 

tasks. In this situation, the simulation would allocate more time to P0 distorting the 

observed results. 

To see this, consider an abstract view of a multi-processor system shown in Figure 

5.4. In this situation PQ ... Pn are running as independent processors. Thus after a 

specific time quantum At, each of the processors P0 ... Pn has been processing in 

parallel for time At. So for a particular processor Pt, the time quantum At would have 

been shared somehow between its tasks T. ...Tp. The sharing of At between T, ...Tp 

is dependent on the behaviour of the process scheduler on processor P., but with small 

enough scheduling time-slices would be approximately At/p per Tf. Similarly, if 

processor P} had tasks 7j ... Tq, At would have been shared between the tasks 

Tx ...Tq, with approximately At/q per Tj with small enough scheduling time-slices. 
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Figure 5.4 Abstract view of a multi-processor system 

A distortion in a simulation of the above can occur if the tasks on all processors 

P0 ... Pn from Figure 5.4 are instantiated as threads and all allowed to be scheduled 

unsupervised by the Java V M (or underlying operating system) time-sliced scheduler. 

Assuming a set time quantum St, each of the threads zx ...fp, representing tasks 

T. ...Tp from processor P(., would be allocated the same time quantum, St, in one 

round of scheduling. The set of threads T, ...rq representing tasks T. ...Tq from 

processor P. would also each be allocated a time St. However if p * q, then 

£<**£* (5.1) 
i i 

Thus in the simulation, from ( 5.1), in one round of scheduling, one of the processors 

P., P. would receive more processing time in the simulation, depending on which 

was the larger/? or q. 

To solve this problem, we need to be able to treat the set of threads r, ... zp 

representing tasks on processor P(. as a whole and allocate the time At to this group of 

threads as a whole. This will help ensure that over the simulated time period At, the 

threads r, ... r belonging to the simulated processor Pt somehow share At. Each 

thread receives only a portion of At, and the sum of these portions over all the threads 
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in this group is equal to At, (5.2). Applying (5.2) to each of the groups of threads 

representing the tasks on each of the processors, will help ensure a correct simulation. 

Thus 

i>* =At- (5-2) 
k=l 

5.4.1 Thread Groups 

Java provides for a convenient way with respect to the scheduling problem, in which 

to simulate the algorithm PV2, by using thread groups and their associated methods. 

Thread groups in Java are a way to combine particular threads together under a 

unifying umbrella. A thread can be placed into a thread group during thread creation, 

as in Figure 5.5. Once a member of a particular thread group, a thread is a permanent 

member of this group and cannot be moved to another. 

Figure 5.5 Threads assigned to thread groups 

Unless a different thread group is specified, a thread is automatically placed into the 

same thread group as the thread that created it. The Java V M begins automatically 

with one thread group called main, and all new threads are placed in this group unless 

otherwise specified. 
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Thread Group 

Methods that operate on 
the group 

Methods that operate 
on all threads in the group 

Thread has priority 
(1 - threadgroup priority) 

Group has priority (1-10) 

Figure 5.6 Operations on thread groups 

To manipulate these thread groups and the threads contained within them, Java 

provides two classes of methods. These are methods that operate on the thread group 

itself, and methods that operate on the individual threads within the group, as depicted 

in Figure 5.6. O f the latter set, two, suspendQ and resumeQ, are of particular use in 

constructing the parallel simulation with respect to the scheduling problem. These 

methods place all threads in a thread group into a Not Runnable or Runnable state 

respectively, thus effectively making the entire thread group either Not Runnable, or 

Runnable. 

Two methods, which operate on the thread group itself, are activeCountQ and one of 

the enumeration methods, enumerateQ. The activeCountQ method returns a count of 

all the active threads within a thread group. The enumerateQ method is used to place 

a reference to every active thread within a thread group into a specified array. 

It should be noted that all threads in all thread groups are treated equally by the 

scheduler, with respect to priority. That is, if there are multiple threads belonging to 

different thread groups, all Runnable, and all at the same highest priority, then all 

threads have an equal chance as being selected by the Java V M scheduler, again with 

respect to its scheduling algorithm. A thread group has a maximum priority 

associated with it, which specifies the maximum priority possible for all threads added 

to this thread group after this maximum priority limit was set. If one thread group has 

a m a x i m u m priority higher than another, it does not mean that its threads will be 

scheduled before the threads in another group. That depends on the actual priority of 
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the threads in the thread group, which m a y be lower than that of the m a x i m u m priority 

of the thread group. 

With the use of thread groups as an approach to the problem, the objects necessary 

under Java in order to carry out a successful simulation can now be constructed. This 

involves the construction of thread groups representing processors, assigning threads 

to thread groups, and manipulating the priority of the thread groups. A scheduling 

algorithm drives the simulation by manipulating these Java objects. 

5.4.2 Construction of Simulation Objects 

To construct the objects necessary for the Java simulation, the initial simulation 

program first identifies itself, and its default main thread group, assigning the priority 

MAXPRIORITY to both itself and the main thread group to which it belongs. This 

thread then becomes the controlling thread rcontror Thread groups G0 ... G„ are 

constructed which represent the processors P0 ... Pn in the processor farm paradigm, 

G0 representing the master processor, P0, and Gx ... Gn representing the worker 

processors Px ... P„. Each of the thread groups G0 ...Gn are assigned the priority 

NORMPRIORITY, thus all threads assigned to them will run at a lower priority than 

control' 

The thread object rworker, representing worker task tworker from PV2 is created n times 

and a copy placed in each of the worker thread groups, as in (5.3) 

*'worker ~* G1 ••Gn ( 5-3) 

Threads rsnd, and rrec representing the send and receive tasks tsnd and trec of PV2, are 

created and assigned to the master thread group as in (5.4). 

*snd > Tree ^>G0 (5-4) 
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Each of these threads automatically receive the priority of the thread group to which it 

is assigned (NORMPRIORITY). When instantiated, all threads are placed into a Not 

Runnable state. This is achieved by initiating each thread's startQ method 

immediately after creation and assignment to the appropriate thread group, then 

initiating its suspendQ method. The thread will not sneak in any processing time as it 

is running with a priority less than the controlling thread tcontrol, and Java thread 

scheduling is fixed priority based. 

The pseudocode for the creation of the objects for the Java simulation is given below 

in Figure 5.7. 

// Create Simulation Objects 

Identify current thread and its thread group 
set priority of current thread and thread group to MAX_PRIORITY 

C create thread group G0... Gn with priority N0RM_PRI0RITY 

create xscnd thread and assign to G„ 
start xsend thread 
suspend xsend thread 
create xreceive thread and assign to G 0 
start treceive thread 
suspend xreoeive thread 

for each worker thread group G1... Gn 
create new instance of work thread x and assign to G, 
start x thread 
suspend x thread 

Figure 5.7 Algorithm pseudocode for creation of simulation objects 

When all thread groups representing processors and the threads corresponding to tasks 

on those processors have been instantiated, the situation is as depicted in Figure 5.8. 

There are now two general methods to proceed with the simulation. One involves 

letting the Java VM handle the scheduling of the threads within the thread groups, and 

allocating the thread groups a fixed time quantum. The other essentially involves 

writing a custom scheduling algorithm. Both of these approaches were implemented, 
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and their relative merits are discussed in the next section. The latter approach was 

adopted as it helps simulates the processor farm scheduling more accurately. 

Figure 5.8 Structure of objects in Java simulation 

5.4.3 Simulation Algorithm 

To construct the simulation algorithm that will use the simulation objects created in 

the previous section, there are two possible approaches that were both implemented 

and tested in algorithms SIM1 and SIM2 respectively. Both of these are now 

discussed in detail. 

Algorithm SIM1: 

The simple approach of this algorithm is to allocate a specific time quantum, At, to 

each of the thread groups G0 ... Gn, on a time-sliced round robin basis. To do this, 

the controlling thread Tcontrol must implement a simple loop that involves all the thread 

groups. Then rcontrol calls in turn each of the thread group's, G0 ...Gn, resumeQ 

methods, which places each thread in the group into a Runnable state. N o w Tcontrol 

invokes its o w n sleepQ method for the required time quantum zlr. This effectively 

places rcontrol in a Not Runnable state for At milliseconds (assuming At represents a 

time quantum in milliseconds). 
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If thread group G. is the one whose resumeQ method was just invoked, then all 

threads in this thread group are now in a Runnable state at equal highest priority, since 

the only higher priority thread, rcontrol, is in a Not Runnable state. These threads will 

now be scheduled to run according to the Java V M scheduling algorithm. If Java is 

running on top of an operating system, which time-slices multiple threads, then all 

threads in group G,. will be time-sliced for a total time of At (for the thread group). 

After time At has passed, thread rcontrol will revert back to a Runnable state. As rcontrol 

has a higher priority than all threads in thread group G(., then it will pre-empt them 

and begin execution. The first chore of Tcontrol is to then invoke thread group Gi 's 

suspendQ method, which places all threads in that group back into a Not Runnable 

state. 

Thus after one pass through the controlling loop in Tcmtrol, all processors have been 

simulated running for a time quantum of At, by allowing each to run for At on a round 

robin basis. N o matter how many threads involved in thread group G(., G- is 

allocated At time to use among its threads according to the Java V M scheduling 

algorithm. 

While SJM1 is simple to implement, this method has many problems. As discussed in 

section 5.3.2, the architecture of the underlying operating system may not support 

time-slicing multiple threads, in which case, the scheduling of threads within each 

thread group G0 ... Gn will be unfair. In the processor farm simulation, this would 

only be of concern in thread group G 0, since all worker thread groups only have one 

thread Tworket assigned. Also, experimental trials [20] have indicated that if a thread 

group Gi of threads r, ... rn are given a time quantum At in which to run and then 

suspended, when resumed, processing begins back with thread rx, regardless of which 

thread was executing when G,. was suspended. Thus, even if the underlying operating 

system does time-slice multiple threads, if At is the wrong size, the scheduling 
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algorithm may not get around to giving each of the threads TX ... tn an equal share of 

the time quantum At. This again results in unfair thread scheduling. 

Algorithm SIM2: 

The approach of algorithm SJJVI2 is an extension of SIM1 and provides a general 

simulation algorithm that does not allow unfair thread scheduling. This provides a 

platform independent, simulation algorithm that can be used to simulate multi­

processor paradigms other than the processor farm type paradigm used here. 

As before, thread tcontrol implements a simple loop to process each of the thread 

groups G 0 ... Gn, and each pass through this loop represents a simulation of the multi­

processor system of one time quantum At. The time quantum At is not allocated to 

each thread group G, as a whole, but a portion of it to each thread r, ... tn in G,.. 

For each thread group Gt, the number of active threads in the group is determined by 

calling the groups activeCountQ method. This method returns the number of active 

threads in G,, w/. Using the value m^ an array is constructed and G( 's enumerateQ 

method is called, which places a reference to every active thread of G,. in the array. 

Another simple loop in rcontrol now processes each of the active threads in this array 

by giving each of the threads r,, the specific time quantum of At/mf milliseconds to 

process. 

Thus after one pass through this inner loop of zcontrol, all of the threads r. ... r„ in Gt 

have been allocated an equal share of At. Note that threads are allocated time to run 

by using the same method used previously in SIM1 to allocate time to thread groups. 

The pseudo-code for this simulation algorithm is shown in Figure 5.9. The simulation 

algorithm JVS1, is based on this method, SIM2, and the Java code for JVS1 can be 

viewed in Appendix C. 
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^ For each active thread group Gt 

/ call G,'s activeCountQ method 
/ use returned value m to construct array (threadArrayr) 
I enumerate all active threads of G, into thread Array 

for each active thread zyin threadArray 

call r/s resumeQ method 
invoke sleepQ method for St/m milliseconds 
// this controlling thread now sleeps for St/m milliseconds 
call r/s suspendQ method 

end 

x end 

Figure 5.9 Pseudocode for simulation algorithm SIM2 

Effectively this constitutes writing a new thread scheduling algorithm. It does 

however ensure a fairer distribution of the time quantum At amongst all threads in a 

thread group. The algorithm outlined in Figure 5.9 is also dynamic in that it takes into 

account the number of active threads mi of a thread group when calculating the time 

quantum for a process, At/mf. If a thread finishes, then mr- changes, thus altering the 

value of At/mi. This allows us to simulate a multi-processor system correctly by 

ensuring fairer allocation of time to each simulated process in each simulated 

processor. 

5.4.4 Processor Communication 

A technique to simulate the message passing mechanism between processors used in 

the transputer processor farm implementation P V 2 , was developed in [20]. This 

technique involves the use of Java Vectors in the Java simulation. A Vector in Java is 

an implementation of a Dynamic Array. To simulate the transputer processor farm 

communication, the controlling thread rcontrol, must be able to make the next image 

block available to the first available worker thread rworker, in the farm. Also, each 

worker thread Tworker, when finishing processing an image block, must be able to send 

its results to the controlling thread rcontrol, before grabbing the next image block to 
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process. This can be simulated by the implementation of two Java Vectors to act as 

I/O channels between the master processor G0, and the worker processors Gx ...Gn. 

This is shown Figure 5.10 below. 

I/O Channel 

I/O Channel 

Master Processor 

Implemented using Java vectors 
(with synchronization) 

Processor Farm 

Figure 5.10 Use of Java vectors to simulate message passing 

Java Vectors are well suited to this. Java provides methods to add elements to the rear 

of a Vector, and to remove elements from the front, effectively enabling the use of a 

Vector as a queue. Thus in the simulation shown in Figure 5.10, a thread in G 0 can 

add an image block to the rear of one Vector, treating it as an Output Channel, while 

any thread in any of the thread groups G, ... Gn can remove an image block from the 

front of the same Vector, treating it as an Input Channel. In the same way, the thread 

groups Gj ... G„ can use the other Vector as an Output Channel, while G 0 can use it 

as an Input Channel. 

There is another aspect of Vectors that particularly make them valuable as I/O 

channels in the simulation. Vectors can hold data of different types. This is unlike 

static arrays in other languages, which can only hold data elements all of the same 

type. Thus, like any true I/O channel linking processors, any type of data can be 

transmitted over the line, (i.e. any data object can be placed in a Vector). The only 

stipulation is of course that a thread reading an object from one of these vectors must 
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know what type of object it is reading. However this is also true of communicating 

processors, they must know what type of data they are transmitting to each other. 

5.5 Java Simulation Problems 

This section discusses the problems that were encountered when constructing and 

running the Java simulation JVS1, outlined in the previous section. These involved 

the Java garbage collector, network timing considerations of the simulated algorithm, 

inappropriate behaviour of a master processor thread and processor speed. The 

technique used to simulate the actual communication medium is also outlined here. 

5.5.1 Garbage Collector 

One of the most frustrating implementation problems encountered was the behaviour 

of the Java garbage collector. Java contains an automatic garbage collector, which 

runs periodically to gather free space left over by all memory objects that are no 

longer referenced. This is one of the attractive features of the language, which is also 

present in other object-oriented languages, and saves the programmer from having to 

specifically call a memory freeQ function, as is the case in C, after excessive use of 

mallocQ. While this feature can normally be ignored, when trying to run the 

simulation and allocate time to threads in thread groups on a round robin basis, 

making sure that each thread received all the processing time allocated to it was 

crucial for the correctness of the simulation. 

The Java garbage collector runs synchronously in a low priority thread when the 

system gets low on memory resources [12 pp 85]. However, due to the nature of 

thread scheduling in Java, (Section 5.3.2), a low priority thread can get processor time 

if the underlying operating system deems it necessary. This anomaly caused the 

garbage collector to interrupt the simulation often, causing the simulated task it 
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interrupted to miss out on some of its scheduled time quantum, thus slightly distorting 

the results of the simulation presented in the next section. 

There is a work-around for this problem, which involves specifically calling the 

garbage collector in the program before a critical section of code. This was 

incorporated into the algorithm of the previous section but caused the Java V M to 

enter a deadlock situation. As a result of this research, this is now the subject of an 

as-yet unresolved bug-report with Sun2 (bug-report 19913). 

To try to alleviate this problem, a 25 millisecond total simulation delay was placed 

between each scheduled process time allocation, and a one second delay after each 

scheduled simulation time quantum (see Appendix C). It was hoped that during this 

system inactivity the garbage collector would be scheduled. The reason for the times 

chosen is that the garbage collector takes on average 20 milliseconds to run. This 

work-around was largely successful, however the garbage collector still ran at 

unscheduled times which has obviously affected some of the measured results in 

section 5.6. This was difficult to quantify, so the data from multiple runs of each test 

was collected, and the set with the least impact was chosen for analysing. 

5.5.2 Inappropriate Behaviour of Master Processor Send Thread. 

Because of the construction of the simulation outlined in section 5.4.3, the behaviour 

of thread Tsnd in thread group G 0 is not modelled correctly. In the actual parallel 

algorithm P V 2 on the transputer, there are two tasks, Tsnd and Trec running together 

on the master processor. Because of the nature of the processor farm network 

communication (Chapter 4), task Tsnd executes for almost the entire running time of 

the algorithm, preparing image blocks and transmitting them as required by the 

processor farm. Since Tsnd can easily keep up with demand from the farm, it gets 

2 Sun Microsystems Incorporated - JavaSoft Division 
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processor time only when required, leaving the bulk of the processor time for task 

Tree-

The simulation thread zsnd, representing task Tstuj, is scheduled with equal processor 

time to that of rrec, thus rsnd finishes preparing all image blocks for processing by the 

farm early in the running time of the algorithm JVS1. It then enters a Dead state and 

is removed from the simulation. As a consequence, the thread rrec receives less 

processor time in the simulation than it should when vsnd is alive, and more processor 

time in the simulation than it normally should after rsnd dies. 

The effect of this on the observed results is discussed in detail in section 5.6. 

5.5.3 Network Timing Considerations 

Since the simulation was run on a single processor system, and threads in Java all 

share the same process and memory space as in Figure 5.1, the simulation as 

described in section 5.4.3 does not take into account any communication delay 

between processors. As described in section 5.4.4, communication channels are 

simulated with the use of Java Vectors, and in order to build real-time communication 

network delays in the simulation, timing delays were placed at either end of these 

Vectors before access. 

Delays were incorporated into the simulation to imitate data transmission over a 

20Mbits/sec communication line between processors. The thread rmd places an 8 x 8 

block of Java integers in the output queue, and the thread rrec removes an 8 x 8 block 

of Java double precision floating point numbers. Since a Java integer is four bytes, 

and a Java double is 8 bytes, this simulates transmitting blocks of 2048 bits and 

receiving blocks of 4096 bits. 
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Using the results from Table 4.8, the delays due to transmission of these amounts of 

data over a 20Mbits/sec line can be calculated. The figure of 4 0 % , rounded from 

Table 4.8 has been used as a guide to the processor involvement percentage of the 

observed communication time. This percentage, while valid on the processor network 

it was measured on, will not be as high on the much faster processor on which the 

simulation was executed. However, the differences are extremely small in 

comparison to component processing time, and the discrepancy should have no 

appreciable effect on the simulation. These aspects are discussed in section 5.5.4. 

Using the above-mentioned data, a processor involvement delay of 30 nanoseconds 

was introduced in the rsnd and rworker threads. This simulated the processor 

involvement component of the communication delay with transmitting the 2048 bit 

blocks from rmd to the rworker threads in the processor farm, via the output 

communication channel. In addition, a 59 nanosecond delay was built into the Tworker 

and rrec threads. This simulated the processor involvement component of the 

communication delay with transmitting the 4096 bit blocks to the rrec thread from the 

Tworker threads of the processor farm, via the input communication channel. 

The actual physical time the data is in transit over the communication line was also 

modelled. It was decided to model this from the master processor's perspective, and 

thus introduce two more delays in the Tworker threads. A delay of 89 nanoseconds was 

introduced to account for the physical transmission of 2048 bits from the output 

channel, and a delay of 176 nanoseconds was introduced to account for the physical 

transmission of 4096 bits over the input channel. The term, input and output channel, 

here is used to refer to the Vectors simulating these channels, from the master 

processor's perspective. If the physical communication times were being modelled 

from the rworlcer thread's perspective, these communication times would be built into 

the rsnd and rrec threads respectively, and not the Tworlcer thread. These delays are 

shown in Figure 5.11. 
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30 nanosecond 
processor involvement 

89 nanosecond 
physical transmission 

I/O Channel 

Tsnd 

I/O Channel 

59 nanosecond 
processor involvement 

30 nanosecond 
processor involvement 

^worker 

59 nanosecond 
processor involvement 

176 nanosecond 
physical transmission 

Figure 5.11 Delay times to simulate network communication delays 

The allowance for communication times in Figure 5.11 is based on the investigations 

and calculations in Section 4.5. These calculations are based on adjacent 

communicating processors, with no allowance made for distance in the topology of 

the processor network. As discussed in Section 4.5, distance refers to the number of 

processors involved in the message routing, and a uniform distance of one is assumed. 

This is equivalent to using a star topology for the processor farm in relation to the 

master processor. This assumed configuration is depicted in Figure 5.12. 

Worker 6n 

Worker S4 

Worker S3 

Figure 5.12 Assumed simulation network topology 

148 



Chapter 5 - Parallel JPEG Simulation using Java 

It would be a relatively minor task to incorporate the simulated physical transmission 

delays into a distance function. The distance of a worker processor from the master 

processor could be specified when the appropriate thread group representing the 

worker processor is instantiated. As communication times appear to be a linear 

function of distance (Section 4.5), the basic delay factor could be multiplied by the 

distance. It would however be difficult to allow for the performance loss of 

intervening processors involved in the message routing. For this reason, no allowance 

in made for the slight degradation in performance of the simulated processor Go as the 

number of worker processors increases. 

5.5.4 Processor Speed When Running Simulation 

The Java simulation was performed on a personal computer with an Intel Pentium 

processor running at 160 M H z clock speed. It was hypothesized in Chapter 4 that the 

relative times of the JPEG algorithm components in Figure 4.2 should "scale down" 

when run on a newer generation, faster processor. That is, while the algorithm would 

run much faster, the relative times should remain approximately the same. Any 

difference in relative component times should come in the I/O components, where the 

speed of I/O technology has not increased at the same rate as processor speed. 

This hypothesis was tested for its validity. It was difficult to test each of the 

individual components on a block by block basis, as the refinement of the processor 

timing function in Java was in milliseconds. Due to the speed of the processor, the 

components could not be tested per image block in this way. The JPEG algorithm 

components were tested by timing them individually processing 4096 image blocks. 

In this way, the times they each took in processing this group of blocks were 

compared to each other, to arrive at a similar component comparison as in Figure 4.3. 

The figures obtained were then compared as overall percentages of image processing 

times to the same figures as measured on the transputer. These comparison figures are 

shown in Table 5.1. It can be seen that the D C T component remains as the 
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component that takes the largest amount of processing time. These results can also be 

seen represented in a comparative bar chart in Figure 5.13. 

Table 5.1 Comparison of transputer and Pentium processor times 

Processor 

Transputer 

Pentium 

Get Block 

2.83 
6.27 

Level Shift 

1.68 
2.29 

D C T Quantization 

87.38 
69.32 

5.13 
10.7 

Huffman/ Block Store 
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11.42 
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Figure 5.13 Comparative chart representation of Table 5.1 

Although the figures represented in the chart in Figure 5.13 are similar to each other, 

there are some obvious differences that will have an effect on the simulation. These 

differences are discussed in Chapter 6. In order for the simulation to accurately reflect 

the processing within the transputer, timed delays were inserted in appropriate places 

in the simulation code. These delays then distorted the overall percentages of the 

JPEG components in the simulation, so that they were more accurately aligned with 

those representing the transputer as shown in Figure 5.13. 
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5.6 Simulation Results 

Presented in this section are the results of running the Java simulation of the parallel 

processor farm algorithm constructed in the previous sections. The results of this 

section were obtained by the following procedure. 

The Java simulation in Appendix C was run with the number of simulated worker 

processors ranging from one to ten, using a simulated time quantum zl* of 100 

milliseconds allocated to each of the simulated processors in turn. For each of the 

runs, with the number of worker processors varying between 1 and 10, three trials 

were performed. Data was gathered at the end of the first 100 simulated time 

quantums for each of the three trials, and the data from one of the three trials for each 

run was selected for comparison. A sample of the raw data in table format can be seen 

in Appendix A. Since the overall quantity of data collected was too large to include 

fully in an appendix, it is provided as a series of Excel3 spreadsheets on the 

accompanying diskette. 

The data was obtained by monitoring the two queues representing the Input and 

Output channels of the master processor, discussed in section 5.4.4. B y monitoring 

the lengths of these queues at varying stages of the first 100 time quantums, some 

indication of the saturation point introduced in Chapter 4 can be obtained. Only the 

first 100 time quantums were examined since it was during this period that thread rsnd 

of thread group G 0 (representing the master processor) finished execution. That is, all 

the image blocks were gathered, level shifted and placed in the output queue. Once 

this occurred, thread rsnd entered a Dead state, leaving thread group G 0 with only one 

thread, rrec. During the remaining processing time, this thread group, and the thread 

groups Gj ... Gn (representing the worker processors) with thread Tworker, remained 

stable. 

3 Excel is a product of the Microsoft corporation 
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Unfortunately, this event during the simulation as discussed, section 5.5, does not 

reflect the actuality of the real multi-processor system algorithm PV2. In the real 

system, task Tsnd runs occasionally only sending another block to the processor farm 

when one of the worker tasks becomes free. Most of the time, this task is idle 

allowing task Trec most of the processor time to deal with incoming packets of work 

from the processor farm. In the simulation constructed in section 5.4.3, thread rsnd 

representing task Tsnd is scheduled regularly and thus finishes early. This both affects 

the simulation before and after this event in that before, thread rrec in the simulation is 

not getting as much time as its counter-part Trec would, and after, rrec is getting more 

time than its counter-part Trec. However, by examining the behaviour of the input and 

output queue lengths before and after this event, this simulation anomoly can be taken 

into account to arrive at a close approximation to the saturatiuon point. 

Table 5.2 Overall averages of the first 100 time quantums 

Number of Worker Increase in Master Difference in Master 
Processors Output Queue Length Input Queue Length Blocks Transformed 

1 
2 
3 
4 
5 
6 
7 
8 
g 
10 

39.00 
37.34 
35.45 
33.46 
31.55 
29.34 
27.94 
26.58 
23.91 
22.44 

0.02 
0.04 
0.06 
0.08 
0.1 

0.12 
0.14 
1.11 
3.14 
5.22 

1.95 
3.6 

5.48 
7.46 
9.36 
11.56 
12.95 
14.45 
16.96 
18.42 

Table 5.2 measures the overall averages of three quantities for the first 100 time 

quantums, with the number of simulated worker processors varying from 1 to 10. At 

each time quantum the increase in the output queue from the previous time quantum is 

measured and averaged. This gives an indication of the rate at which rsnd is gathering 

image blocks and performing a level shift, thus also giving some indication if more 

worker processors are having an effect on this queue's rate increase. At each time 

quantum the difference in the input queue from the previous time quantum is 

measured and averaged. This gives an indication as to what point in adding more 

worker processors, that the master processor, (and in particular rrec) can no longer 
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cope (or keep up with) with the increase in worker packets from the processor farm. 

This measure in particular is used to help locate the saturation point. Since rsnd 

finishes early, this measure is looked at before and after the event of rsnd's death. 

Table 5.2 also displays the average number of blocks processed by the processor farm 

for varying numbers of processors. This helps when comparing the previous two 

quantities in Table 5.2 to the increase in workload expected of rrec. The figures in 

Table 5.2 are presented as a comparative line chart in Figure 5.14. 

3 4 5 6 7 8 
Worker Processors 

Increase in Master Output 
Queue Length 
Difference in Master Input Queue 
Length 
Blocks Transformed 

9 10 

Figure 5.14 Comparative line chart representation of Table 5.2 

From Figure 5.14 it can be seen that as the number of the worker processors in the 

farm increases, the average number of image blocks processed by the farm each time 

quantum, and hence available to rrec for processing, also increases, in an almost linear 

fashion. This is expected, as the more workers available in the farm, the more the 

farm should be able to produce. As a consequence of this, the increase per time 

quantum in the master processors output queue decreases as more worker processors 

are added, again, in a similar linear fashion. This is also expected, as more processors 

in the farm mean more image blocks can be taken from the output queue for 

processing each time quantum. 
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It should be pointed out that the averages graphed in Figure 5.14, are averages over all 

the 100 time quantums. Thus the averages for the increase in the output queue include 

all negative figures from when thread rsnd dies. In the figures in Appendix A and the 

accompanying diskette, it is at the point when the individual numbers turn negative 

for this measure, that w e can acertain that rsnd has died. 

The first indication of the saturation point can be seen in both the values for the 

difference in the input queue length in Table 5.2, and the corresponding line chart in 

Figure 5.14. There is an overall slight rise in the length of the input queue, which 

rises in an almost linear fashion until the size of the processor farm is seven worker 

processors. After more than seven workers are added to the farm, the rise sharply 

increases indicating that the simulation has reached a stage where rrec cannot process 

the worker packets faster, or at the same rate that the farm is producing them. This is 

the saturation point as described in Chapter 4. It should also be noted that until 

saturation point, it was expected that no rise at all should be seen in the master 

processor's input queue length. To understand this, some further analysis of the 

results is needed. 

The data in Table 5.3 is similar to that shown in Table 5.2, except that it is shown only 

up to the point of the death of thread rsnd. If the averages shown for the output and 

input queue lengths in Table 5.2 are examined separately before and after the death of 

rsnd, some further insights can be gained. Both of these sets of averages are shown 

below. Table 5.3 shows the average length of the queues before this event, while 

Table 5.4 shows the averages after the event. 

The figures corresponding to the average length of the input queue in Table 5.3 and 

Table 5.4 n o w make more sense, when viewed both before and after tsnd death. 

While rsnd is processing, it is filling up the output queue much faster than the 

processor farm can process these packets. W h e n rsnd dies, the input queue then 

begins to empty out at exactly the rate which the processor farm can then process 
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these work packets, which happens in an almost linear fashion according to the 

number of processors in the farm. Before the death of rsnd, the output queue increase 

reduces at a rate comensurate with the number of worker processors retrieving packets 

from the queue. Both Table 5.3 and Table 5.4 can be viewed as comparative line 

charts which are shown in Figure 5.15 and Figure 5.16 respectively. 

Table 5.3 Averages of first 100 time quantums up to rsnd death 

Number of Worker Increase in Master Difference in Master 

Processors Output Queue Length Input Queue Length 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

126.09 
124.47 
119.42 
113.19 
115.82 
112.85 
108.65 
116.66 
107.42 
107.64 

0.06 
0.13 
0.18 
0.24 
1.39 
3.97 
5.06 
5.28 
8.79 
9.33 

Table 5.4 Averages of first 100 time quantums after tsnd death 

Number of Worker Increase in Master Difference in Master 
Processors Output Queue Length Input Queue Length 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-1.99 
-3.66 

-5.91 
-7.98 
-9.66 

-11.79 
-13.64 

-15.81 
-17.22 
-19.52 

0 
0 
0 
0 

-0.54 

-1.78 
-2.39 

-0.85 
0.36 
3.19 

By adding more workers to the processor farm, the number of packets processed per 

time quantum from the master processors output queue can be increased. B y adding 

enough, the increase in the output queue length can be reduced to zero. However, this 

would take us far beyond the saturation point because the rsnd thread runs for only a 
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relatively short time in the simulation, corresponding to task Tsnd using relatively little 

processor time in the actual parallel version PV2. It is then up to thread rrec to 

process the output from the processor farm, and would be overwhelmed with the 

output from this number of processors. 
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Figure 5.15 Comparative line chart representation of Table 5.3 
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Figure 5.16 Comparative line chart representation of Table 5.4 
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It is the behaviour of thread Trec and its effect on the master threads input queue that 

more accurately shows the saturation point, (or its close proximity). If the line charts 

representing the difference in the input queue length in both Figure 5.15 and Figure 

5.16 are placed together, they can be compared more easily by using a smaller scale as 

shown in Figure 5.17. If the trends in both of these plots are examined, it can be seen 

that both are relatively stable up to approximately four processors in the processor 

farm. The two plots diverge at five processors, but both have much sharper rises later. 

The plot representing the queue length before tsnd finishes has a sharp rise after eight 

processors, while the plot representing queue length after rsnd finishes, rises sharply 

after seven processors. 
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Figure 5.17 Comparison line charts of trends in input queue length 

It should have been expected that, were the simulation behaving 1 0 0 % correctly, both 

of these plots would have remained stable at zero, and both risen positively once 

saturation point was reached. Both do remain stable at zero, but diverge in opposite 

directions, well before saturation point. Both of these anomalies can be accounted for 

in the behaviour of the Java simulation discussed in section 5.5. 
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The rise in the plot before rsnd cut-off is due to rsnd taking too much processor time. 

The time quantum At (of 100 milliseconds) is shared equally between the two threads 

of simulated processor G 0 (see Appendix C). A s can be seen from Figure 5.15, rsnd 

is supplying the processor farm with far more work packets than it can handle, hence 

the rise in the input queue of well over 100 packets per time quantum. In the actual 

parallel processor farm algorithm, packets are only assembled and delivered as needed 

by the farm. Thus, the extra processor time thread zsnd is using assembling these un-

needed packets in the simulation, means that thread rrec has less time to process the 

incoming packets from the farm. While the overall saturation point for the parallel 

algorithm has not yet been reached, until rsnd dies, thus allowing rrec more processing 

time, it cannot process fast enough, the incoming packets from the farm once the farm 

size becomes greater than four. The steeper rise after eight processors in the farm is 

an indication of the saturation point. 

Again, after there are four processors in the farm, the plot representing the length of 

the input queue after thread rsnd dies drops below zero, and keeps decreasing slightly 

until the farm has seven processors. This seems extradoniary, but it must be 

remembered that this plot represents the difference in the input queue length between 

time quantums, and not the actual queue length. This anomoly is actually caused by 

the thread rsnd getting too much processor time when it was alive, as just discussed. 

With up to four processors in the farm, rrec is getting enough processor time to empty 

out the input queue as fast as the farm can fill it, hence the plot remains stable at 

approximately zero. After four processors, as previously discussed, before thread rsnd 

dies, thread zrec is not getting enough time to empty out the input queue, thus it 

accumulates entries until thread rsnd dies. Once this happens, rrec is alone in thread 

group G 0 , and then gets 1 0 0 % of the simulated processor time. Until overall 

saturation point is reached, thread rrec can n o w empty out the input queue at the same 

rate or slightly quicker than the processor farm produces packets. The slight decrease 
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in the difference of the input queue length between time quantums, can be explained 

°y Trec processing farm packets at a slightly quicker rate than the farm can produce 

them. The reason that the plot continues to decrease until there are seven workers in 

the farm is that for the same number of processors in the farm, rsnd causes the input 

queue to increase at a faster rate. Thus there are more data packets which can be 

cleared from the input queue while rrec is still able to process these faster than they 

are received. 

It should also be noted that these plots are constructed from data from the first 100 

time quantums. If the data regarding the difference in the length of the master 

processors input queue was taken over all time quantums, then once rrec managed to 

clear accumulated farm packets from the input queue, there would be many entries in 

the difference column at or near zero. This can be seen in the tables in Appendix A 

and the provided files on the accompanying diskette. This would move the averages 

for the time after the death of rsnd closer to zero. To test this hypothesis, data for 

seven worker processors was gathered from all the time quantums, and the average 

length of the input queue after rsnd died for the first 100 time quantums was -1.85, yet 

taken over all time quantums was -0.5 (see Appendix A for this data). Thus the plots 

for the differences in the queue length after rsnd 's death would move up. 

From Figure 5.17 it can be seen that the turning point for this trend is after seven 

processors in the farm, and with nine processors in the farm, the differences in the 

length of the input queue is definitely increasing. At this point, is is fair to assume 

that saturation point has definitely been passed. 

5.7 Conclusions 

A number of conclusions were made in the previous chapter based on a limited set of 

results obtained from a parallel algorithm running on a transputer with three 

processors. In order to substantiate these conclusions they had to be tested on a larger 
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network of processors. In the absence of such a network, a simulation was devised 

using the Java language. The simulation devised took advantage of the multi-threaded 

nature of the language and exploited the unique feature of thread groups to simulate a 

multi-processor system. 

Results were obtained from the simulation and presented in the previous section. 

These results support the idea of the saturation point of the number of useful 

processors that a parallel JPEG algorithm based on the processor farm paradigm can 

effectively use. In fact, with the data obtained from the simulation, the saturation 

point can be identified as being present at around seven or eight processors. This 

agrees with the preliminary calculation of the saturation point of approximately seven, 

from the original data in Chapter 4. 

Data obtained from the simulation, also supports the relative overall processing times 

of the J P E G algorithm components, originally obtained from the older transputer 

processors. This also supports the idea that the processor farm paradigm would yield 

superior results to another parallel paradigm such as a pipeline. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

This research has demonstrated the existence of a practical limit to the number of 

processors that can effectively be used in the processor farm paradigm. JPEG image 

compression, which decomposes an image into blocks, is well suited to this type of 

processing. This is due to the independent component processing of the image blocks 

and the relative processing times of the components, and in particular the dominance 

of the D C T component, as shown in Figures 4.3 and 5.13. The research has further 

shown, by extrapolation of the experimental results in Chapter 4, and followed by the 

Java simulation in Chapter 5, that this limit is around 7 processors. This limit can be 

increased by re-arrangement of the tasks on the processors, as demonstrated in Section 

4.7.3.3. However, in view of the diminishing return in terms of speedup time against 

the number of processors, which was shown in Figures 4.17 and 4.18, re-distribution 

of the tasks among the processors may not provide further effective speedup. 

The saturation point in the number of useful processors is independent of the size of 

the digital image to be compressed. The saturation point is a measure of the master 

processor's ability to process the output of the worker processors, in the processor 

farm paradigm. If the saturation point is exceeded, then the master processor falls 

behind in processing due to overload in incoming result packets, Figure 4.12. To the 

processor farm, an image becomes just a stream of work packets to be processed, and 

result packets to be collated. 
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6.2 Critical Appraisal 

This research has been useful in providing valuable data to formulate the hypothesis 

of the existence of the saturation point, and then to measure it. The extrapolations 

derived in Chapter 4 were obtained with data gathered from using at most three 

processors. Using more processors would have given extra confidence but it is 

believed that the results are sufficiently accurate. As the findings are dependent on 

accurate timings, it was necessary to take account of different processor speeds in the 

farm. However, once used for confidence testing, it seemed reasonable to normalize 

these speeds to simplify calculations, and this was done using an average of the 

processor speeds in the farm. 

Some of the other obstacles, that made it difficult to measure times, were the 

performance of the filter and afterver tasks on the root and host processors 

respectively, Figure 3.18. The filter task took time away from the master processor in 

the processor farm and this was difficult to measure. The behaviour of the afserver 

task on the host processor was unknown, but was responsible for the I/O to the host 

I/O devices. To try to reduce any erratic behaviour of this task, multiple time trials 

were taken so an average could be used. 

When calculating speedup with the introduction of more processors in 4.7.3.2, the 

performance gain with the placement of a copy of the worker task on the master 

processor was difficult to account for. However, it is believed that the method used in 

this research gave a reasonable estimate. This consisted of estimating the time it 

would take, to process the expected number of result packets from the farm, then 

calculating the idle time of the master processor. This was then used as an indication 

of the extra blocks that could be processed by the worker task on the master 

processor. 

The use of the Java language for the simulation of the processor farm in Chapter 5 

may also be questioned. Java is not as efficient as other languages such as C, for use 

when real-time behaviour is expected. In hindsight, the use of C would have avoided 

the many problems encountered in Section 5.5, particularly those involving the Java 

garbage collector. However, this was a simulation, and was not meant to provide real-
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time behaviour. It did achieve its objectives in allowing the modeling of the worker 

processors as threads, so the saturation point could be observed. The in-depth 

experience gained in using Java for the simulation was invaluable, and this knowledge 

was subsequently used during the course of m y own teaching. 

To model the physical message passing of the transputer, Java vectors were used. 

W h e n using these vectors, some of the initial data values obtained from the simulation 

of processor scheduling time quantums seemed dubious. W h e n it was realized that 

the garbage collector was impacting on these, many trials were performed and the 

values observed. It was clear when the garbage collector had had an impact, as very 

few image blocks were processed by a simulated processor during that time quantum. 

Thus over many trials, those displaying this effect were discarded, yielding a set of 

reliable results. From the trials selected for further processing, reasonable results 

were obtained. 

Another thing to note is that the Pentium processor used to conduct the simulation 

was faster than the transputer processors. There was concern that the times taken to 

process the components of the JPEG algorithm would not be in the same ratios as with 

the transputer. After testing, Figure 5.13 indicates that, while quicker on the Pentium, 

the D C T component was still the most time consuming. However, the Pentium 

processor took more time with the other components. This suggests that the Java 

environment, with its use of object oriented techniques for creating and obtaining 

these objects from Vectors played a part in this. O n a per block basis these 

components could not be measured because of the coarseness of the timing function. 

The times were obtained by processing all 4096 blocks for each component and then 

averaging these. Again, the garbage collector will have played a role in distorting 

some of these times. The D C T processing was faster, possibly because of the far 

greater efficiency of the Pentium floating point processor, and with these shorter 

times, not being interrupted as much by the garbage collector. 

If a Transputer system with more processors were available, some further testing 

should be performed to confirm the accuracy of the simulation. Algorithm P V 2 

would then be tested with a larger processor farm by progressively adding more 

processors, enabling a number of the predictions to be confirmed for accuracy. 
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Algorithm P V 1 need not be tested further as it was constructed to test the algorithm 

with one extra processor. Predicted values to be checked would be the overall 

processing times of the master processor vs. the average worker processor times, and 

the progressive time saving gained by the introduction of more processors. This 

would enable the predictions in Figures 4.14 and 4.18 to be verified. Verification of 

these values would also be valuable in determining the accuracy of the predicted 

result for the saturation point, and of the simulation values in Section 5.6. 

I believe that the methods used, outlined above have helped overcome any of the 

problems encountered with this research. The research has been successful as it has 

helped to quantify limitations of a particular parallel processing paradigm used for 

JPEG standard image compression. The insights and experience gained have been 

valuable, and the process of creating the simulation has initiated an interest in 

distributed processing using the internet. Some answers have been found, but also 

more questions posed. Some of these questions are outlined in the areas for further 

research. 

6.3 Further Research 

Research by Wagner et.al. [85], indicates that if the problem to be parallelised fits the 

processor farm paradigm, then there is probably no need to seek more elaborate 

parallelization schemes. The processor farm scheme provides good performance up 

to saturation point. With up to seven processors, estimates based on figures from 

Chapter 4 indicates JPEG compression time on the transputer for small pictures of 512 

x 512 pixels, using the processor farm paradigm is in the order of 11 seconds. This 

time will be reduced when faster processors are used. 

However, in some circumstances, huge pictures are generated and even with seven 

processors, real-time processing of these images using this paradigm would not be 

possible. Some sources of these large images are space probes, the Hubble telescope 

and geographical data collected from orbiting satellites. In the last example, multiple 

type information can be collected for each picture. Landsat satellites collect image 
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data on 4 spectral bands and some images can be up to 300 megabytes in size. Some 

digital images made available at the beginning of this research from Kodak1 were over 

20 megabytes in size. 

For JPEG compression, if the processor farm paradigm is near optimal [85], and this 

research has demonstrated the existence of a saturation point, the next question, is 

how do w e make better use of more processors? This research has shown that, 

extension of the saturation point only brings minimal gains for speedup. One area for 

possible future research would be the investigation of the possibility of multiple 

processor farms to increase speedup. The root transputer of a transputer system is 

often used as a gateway to more elaborate configuration schemes [59] [43]. Thus, 

rather than involve the root transputer in a processor farm paradigm, it could be used 

as a gateway to multiple processor farms, as depicted in Figure 6.1. 

Figure 6.1 Possible use of multiple processor farms 

As each transputer has four external links, then if one of these is allocated to the host 

processor, this leaves three links to provide gateways to other processor farms. It 

1 Kodak Australasia Pty. Ltd 
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would be expected that under such a configuration, the links from the root processor 

would become bottlenecks. The research in [85] investigates the best performance in 

the processor farm with respect to configuration. However, with multiple processor 

farms, there is then the question of optimal configuration for performance of the 

parallel system, with a limited number of processors allocated to a number of 

processor farms. 

The research in Section 4.7.3.3 shows more dramatic speedup when adding the first 

two processors to the farm than there is for the rest. Thus, another interesting 

question is, would it be better to have three processor farms with 3 or 4 processors, or 

two farms configured up to saturation point? The root transputer could be used solely 

to allocate portions of the original image to the processor farms and then to collate the 

results from the farms. The communication overhead on the root transputer would 

then have to be taken into account when allocating image portions. 

With the possibility of using multiple farms, then perhaps the overall saturation point 

could be extended. There m a y also be optimal configurations for different size 

images. Since the root transputer is not involved directly in any of the processor 

farms, then the automatic processor farm configuration could not be used by the 

transputer software. Instead, special software implementing processor farms, which 

handled the network routing of work and result packets, would have to be developed 

in order to be loaded onto the designated configuration. 

Some other areas also warrant further investigation. To extend the usefulness of the 

Java parallel simulation, the topology of the simulated processor network could be 

made known, and its effects accounted for. This could be specified in advance in the 

form of a data file formatted using a simple specification language. This file could be 

read by the controlling thread of the simulation and used when creating the thread 

groups representing the processors. Each of the thread groups could be passed 

distance and load factor figures, representing the distance from the master processor, 

and a load factor indicating the number of other processors that will use this processor 

in their message routing. 
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The simulation algorithm could be generalized to allow easy simulation of other 

parallel computations using a processor farm paradigm. The worker thread already 

resides in its o w n class, and thus would only need to be modified to reflect its new 

task, similarly for the send and receive threads. However, the master or controlling 

thread does contain some application specific code. This could be removed and 

placed in an initialization thread, which again could be modified on a per application 

basis. This would leave the controlling thread with the sole responsibility of the 

simulation scheduling. This algorithm could further be modified to enable the 

simulation parallel paradigms other than the processor farm. Instead of creating n 

copies of the worker thread, the controlling thread could be used to create n threads of 

possibly different tasks. However, the communication aspects would then need to be 

re-addressed. 

One area that would require intensive study is the possibility of using Java to actually 

distribute processor load to various processors over the Internet. That is, to 

investigate the possibility of using the Internet as a large, distributed parallel 

processor. Java was developed for extensive use on the Internet, and in fact, has a 

rich set of classes for distributed processor communication. This language is ideally 

suited for this particularly due to its platform independence. One of the major 

impediments to this idea is the current limitation on bandwidth. However, assuming 

this situation will improve in future, it remains an interesting proposition. The entire 

internet could possibly be treated as one large distributed multi-processor. O f course, 

security issues would play a major role in any research into this area. 
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Appendix A - Images and Tables 

APPENDIX A 

IMAGES AND TABLES 

A.1 Introduction 

The following pages in this appendix contain the images used for testing the 

algorithms developed in Chapter 4 and Chapter 5, and some of the collected data from 

experimental runs. M a n y of the tables appearing in Chapter 4 are summarized 

versions of the original data included here. Also included is some of the raw data 

collected from simulation runs discussed in Chapter 5. The inclusion of all this data 

in printed format is both unnecessary and costly in terms of space, so the raw data 

files are provided as Excel files on the accompanying diskette. Some of the JPEG 

procedure diagrams are also included in Section A.4. 
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A.2 Images 

The following images are those used for testing in Chapters 4 and 5. 

(a) Adam (b) Plates 

(c) Preps (d) George 

All the above images are displayed at one half size, and are 512 x 512 pixels, thus 

each has 4096, 8x8 image blocks. The sample size of each image is 8 bit greyscale, 

with image (d) George, having the most distinct number of grey shades, 247. Image 

(a) has 236 gray shades, (b) has 235 and (c) has 244. Images (a) - (c) are 24 bit true 

colour scans reduced to 8 bit grey shades, while image (d) is a 256 grey shade scan of 
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a portion of the U.S. one dollar bill. Because of the nature of the engraving, there are 

more edges and contours in image (d) than the others. 

A.3 Chapter 4 Tables 

The following table contains timing data for five time trials of Algorithm SV1 on 

Processor Po in Chapter 4. For each time trial, the total clock ticks over all image 

blocks and the average clock ticks per image block is shown for each of the 6 

components from SV1. 

Table A.l Timing data for algorithm SV1 components 

Algorithm Component 

Get Block 

Level Shift 

FDCT 

Quantization 

Huffman Coding 

Block Storage 

Total 

Average/Block 

Total 

Average/Block 

Total 

Average/Block 

Total 

Average/Block 

Total 

Average/Block 

Total 

Average/Block 

Trial 1 

41666 

10.17236 

24789 

6.052 

1286877 

314.17896 

75610 

18.45947 

26223 

6.4021 

17567 

4.28882 

Trial 2 

41725 

10.18677 

24772 

6.04785 

1286911 

314.18726 

75565 

18.44849 

26127 

6.37866 

17705 

4.32251 

Trial 3 

41642 

10.1665 

24805 

6.05591 

1286885 

314.18091 

75547 

18.44409 

26135 

6.38062 

17695 

4.32007 

Trial 4 

41598 

10.15576 

24801 

6.05493 

1286880 

314.17969 

75650 

18.46924 

26208 

6.39844 

17545 

4.28345 

Trial 5 

41646 

10.16748 

24803 

6.05542 

1286874 

314.17822 

75567 

18.44897 

26160 

6.38672 

17664 

4.3125 

Table A.2 below contains timing data for the four non I/O algorithm components, 

Thhift, Tdct, Tquant, ™& TCode, on processors P} and P2. Timing data for these 

tasks on processor Po has already been obtained and shown in Table A.l. The figures 

in Table A.2 are compared to the equivalent figures of Table A.l within Chapter 4. 
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Table A.2 Timing of SV1 non I/O components on processors PI and P2 

FDCT 
| 

Processor P1 
Processor P2 

Level Shift 

Processor P1 
Processor P2 

Quantization 
i 

j 

Processor P1 
Processor P2 

Huffman Coding 

Processor P1 
Processor P2 

Trial 1 

1094370 
873797 

Trial 1 

21573 
17235 

Trial 1 

65654 
52429 

Trial 1 

21102 
16773 

Trial 2 

1094352 
873790 

Trial 2 

21511 
17228 

Trial 2 

65649 
52437 

Trial 2 

21104 
16601 

Trial 3 

1094326 
873807 

Trial 3 

21526 
17221 

Trial 3 

65686 
52461 

Trial 3 

21065 
16675 

Trial 4 

1094344 
873766 

Trial 4 

21569 
17211 

Trial 4 

65646 
52452 

Trial 4 

20852 
16690 

Trial 5 

1094371 
873784 

Trial 5 

21523 
17238 

Trial 5 

65680 
52460 

Trial 5 

21062 
16706 

Average 

1094352.6 
873788.8 

Average 

21540.4 
17226.6 

Average 

65663 
52447.8 

Average 

21037 
16689 

Average/Block 

267.1759 
213.3273 

Average/Block 

5.258887 
4.205713 

Average/Block 

16.03101 
12.80464 

Average/Block 

5.135986 
4.074463 

The next four tables contain processor communication timing data. The times are in 

clock ticks (cts) and represent the total time it takes to send and receive 4096 

messages, formatted as 8 x 8 arrays (or blocks) between processor Po and processors 

Pi and j°2- The size of each element in the block is varied between the four tables. 

Table A.3 to Table A.6 show the timing for transmission and receipt of 4096 blocks, 

where each element in the block consists of the stated number of bytes. In Table A.6, 

there is a difference in the size per element of the transmitted block and the received 

block. All times are measured in cts units. 

Table A.3 Transmission & receipt times of 4096 blocks (1 byte/element) 

Trial 
1 
2 
3 
4 
5 

Average 

P1 
5192 

5193 
5192 

5192 
5192 

5192.2 

P2 
10374 

10374 
10374 

10374 

10373 

10373.8 
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Table A.4 Transmission & receipt times of 4096 blocks (4 bytes/element) 

Trial 

1 
2 
3 
4 
5 

Average 

P1 
19021 

19021 

19020 
19020 

19019 

19020.2 

P2 
38494 

38495 
38495 
38494 
38494 

38494.4 

Table A.5 Transmission & receipt times of 4096 blocks (8 bytes/element) 

Trial 

1 
2 
3 
4 
5 

Average 

P1 
37442 
37441 
37441 
37441 
37441 

37441.2 

P2 
75962 
75961 
75962 
75961 
75961 

75961.4 

Table A.6 Transmission & receipt times of 4096 blocks (4/8 bytes/element) 

Trial 
1 
2 
3 
4 
5 

Average 

P1 
28236 
28237 
28234 
28237 

28236 

28236 

P2 
56923 
56923 
56922 

56923 
56923 

56922.8 
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A.4 JPEG Procedure Diagrams 

Figure A.l is the JPEG procedure diagram for the generation of the table of Huffman 

code sizes. These code sizes are then used to generate the table of Huffman codes. 

The procedure diagram for the generation of the table of Huffman codes is shown in 

Figure A.2. These procedure diagrams are reproduced from Annex C [52]. 

Generato_size_labte 

HUFFSIZE(K) = I 
K = K+1 
JsJ+1 

K = 0 
1 = 1 
J= 1 

U U 1 
J = 1 

HUFFSIZE<K)=0 
LASTK = K 

TISO 1000-93/d036 

Done 

Figure A.l Generation of table of Huffman code sizes 
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Qenen*«_eode>_tatte 

KsO 
COOE=0 
St=HUFFS«ZE(0) 

HUFFOODE^CODE 
COC€ = CODE *• t 
K=K+1 

HUFFSIZE<K) A Yea 

CODE * SIX C O D E 1 
SI - St + 1 Dore 

TISO 1010-93/d037 

Figure A.2 Generation of table of Huffman codes 
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The procedure diagram shown in Figure A.3 is the procedure of the JPEG sequential 

encoding of A C coefficients using Huffman coding. The procedure diagram in Figure 

A.4 is the associated procedure for the encoding of non-zero A C coefficients. This 

procedure is called from the procedure shown in Figure A.3. These procedure 

diagrams are reproduced from Annex F [52]. The research algorithms used a 

modified version of Figure A.3 to encode the D C coefficient along with the A C 

coefficients. This was achieved by modification of the loop boundaries in Figure A.3. 

Ereode>C_ 
coefficients 

K = 0 

K = K + 1 ( URvl 

No 

Append EHUFSipCFOI Ms 
dEHUFCOfXTcn 

R = R-16 

Append EHUFSI (XW) bits 
of EHUFCO (X'OO) 

Yes 

Ewxte_H.ZZ(K) 

FUO 

NO K = 63 Yes 

Dane 

TISO 1340-93/d072 

Figure A.3 Sequential encoding of A C coefficients with Huffman coding 
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Encode_R.ZZ<K) 

SSSS « CStZE(ZZ(K)) 
RS = (16xR) + SSSS 
Append EHUFSI<RS) bite 

of EHUFCO(RS) 

Yes ̂  ZZ{K)<o \ 

2Z(K) = ZZ{K)-1 

t 

No 

Append SSSS 
low order bits of ZZ(K) 

I 
Done 

TISO 1350-93/d073 

Figure A.4 Sequential encoding of a non-zero A C coefficient 
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A.5 Simulation Run Data 

Table A.7 shows the trial run data for the timing of the JPEG compression 

components on the Pentium processor used for the simulation. All times are in 

milliseconds and represent the times for the processing of all 4096 image blocks. The 

average times, and the relative percentages they represent in overall image processing 

are displayed, and these are the figures shown in Section 5.5.4 Chapter 5 against the 

comparative transputer percentages. 

Table A.7 Timing trials for JPEG compression components 

Trial Get Block Level Shift DCT Quantization Huffman/Store Block 
(ms) (ms) (ms) (ms) (ms) 

1 
2 
3 
4 
5 

averages 
perc (%) 

880 
820 
820 
930 
880 

866 
6.27 

262 
372 
312 
372 
262 

316 
2.29 

9536 
9596 
9596 
9536 
9606 

9574 
69.32 

1516 
1476 
1406 
1466 
1526 

1478 
10.70 

1586 
1526 
1576 
1576 
1626 

1578 
11.42 

The following table, Table A.8, is a sample of the data collected for processing from 

the simulated trial runs in Chapter 5. For each run with a number of worker 

processors, three groups of trial data were collected for the first 100 simulated time 

quantums, see Section 5.6 Chapter 5. O f these trials, one was selected for further 

processing, from which the increase and differences in the output and input queue 

lengths were obtained. 

The data in Table A.8, shows the data collected for one trial of the first 100 simulated 

time quantums, for seven simulated worker processors. The difference and increase in 

the output and input queue lengths are not shown here, but can be seen in the trial data 

files on the accompanying diskette. 
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Table A.8 Sample data for trial 1 of simulation of 7 worker processors. 

Schedule Output Queue Input Queue Transformed Completed 
Round Length Length Blocks Blocks 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

120 
246 
372 
499 
632 
755 
880 
1007 
1132 

1257 
1267 
1392 

1418 
1553 
1680 
1798 
1925 
2043 

2170 
2264 
2392 

2513 
2636 
2752 

2886 
3004 
3127 
3253 
3372 
3501 
3627 

3676 
3681 

3667 
3654 

3641 

3634 

3627 
3613 
3599 
3585 
3572 

3558 
3544 
3530 
3516 

7 
14 
19 
24 
30 
35 
41 
47 
57 
62 
68 
73 
79 
85 
83 
89 
95 
100 
105 
111 
116 
121 
127 
141 
147 
147 
153 
157 
162 
168 
173 
180 
186 
183 
179 
175 
165 
156 
153 
150 
147 
143 
140 
138 
135 
132 

7 
21 
35 
49 
56 
63 
77 
91 
105 
119 
133 
147 
161 
168 
174 
188 
202 
215 
229 
243 
257 
270 
284 
298 
305 
312 
326 
339 
352 
366 
380 
394 
408 
422 
435 
448 
455 
462 
476 
490 
504 
517 
531 
545 
559 
573 

0 
7 
15 
24 
25 
27 
35 
43 
47 
56 
64 
73 
81 
82 
90 
98 
106 
114 
123 
131 
140 
148 
156 
156 
157 
164 
172 
181 
189 
197 
206 
213 
221 
238 
255 
272 
289 
305 
322 
339 
356 
373 
390 
406 
423 
440 
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47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

3502 
3488 
3475 
3461 
3447 
3433 
3419 
3405 
3391 
3378 
3365 
3351 
3337 
3323 
3309 
3295 
3281 
3268 
3254 
3240 
3226 
3212 
3198 
3184 
3170 
3156 
3143 
3129 
3115 
3101 
3087 
3073 
3059 
3045 
3031 
3018 
3004 
2990 
2976 
2962 
2948 
2934 
2920 
2906 
2892 
2878 
2864 
2850 
2836 
2822 
2808 
2794 
2780 
2766 

129 
126 
122 
119 
116 
113 
110 
107 
104 

too 
97 
94 
91 
88 
85 
83 
80 
76 
73 
70 
68 
66 
64 
61 
58 
55 
51 
48 
45 
42 
39 
37 
34 
31 
28 
24 
22 
19 
16 
14 
14 
14 
14 
14 
14 
22 
20 
17 
14 
14 
14 
14 
14 

587 
601 
614 
628 
642 
656 
670 
684 
698 
711 
724 
738 
752 
766 
780 
794 
808 
821 
835 
849 
863 
877 
891 
905 
919 
933 
946 
960 
974 
988 
1002 
1016 
1030 
1044 
1058 
1071 
1085 
1099 
1113 
1127 
1141 
1155 
1169 
1183 
1197 
1211 
1225 
1239 
1253 
1267 
1281 
1295 
1309 

14 1323 

457 
474 
491 
508 
525 
542 
559 
576 
593 
610 
626 
643 
660 
677 
694 
710 
727 
744 
761 
778 
794 
810 
826 
843 
860 
877 
894 
911 
928 
945 
962 
978 
995 
1012 
1029 
1046 
1062 
1079 
1096 
1113 
1127 
1141 
1155 
1169 
1183 
1188 
1204 
1221 
1238 
1253 
1267 
1281 
1295 
1309 

To show all data collected for all trials would occupy too much space. A diskette is 

provided with all data collected for the simulation runs of Chapter 5. This data is 
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collected into a number of Excel spreadsheet files. Each file contains the collected 

data for the three trial runs for a specific number of simulated worker processors. 

Each of the files further contains the derived figures of the increase and difference in 

the output and input queue lengths from one simulated time quantum to the next, for 

the trial selected for further processing. 

The files contained on the diskette are 

chpWltrials.xls - trial data for 1 simulated worker processor 

chpW2trials.xls - trial data for 2 simulated worker processors 

chpW3trials.xls - trial data for 3 simulated worker processors 

chpW4trials.xls - trial data for 4 simulated worker processors 

chpW5trials.xls - trial data for 5 simulated worker processors 

chpW6trials.xls - trial data for 6 simulated worker processors 

chpW7trials.xls - trial data for 7 simulated worker processors 

chpW8trials.xls - trial data for 8 simulated worker processors 

chpW9trials.xls - trial data for 9 simulated worker processors 

chpW10trials.xls - trial data for 10 simulated worker processors 

chpW7trialsSpec.xls - trial data for 7 simulated worker processors, all time quantums 

The last file represents data collected for a simulation run with 7 simulated worker 

processors, including all simulated time quantums. This data was collected to test a 

hypothesis made in Section 5.6 Chapter 5, regarding averages over all time quantums 

versus the first 100 time quantums. 
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APPENDIX B 

PARALLEL C TRANSPUTER CODE 

B.1 Introduction 

The following pages in this Appendix contain the code for the Parallel C programs 

implementing the parallel JPEG algorithms developed and discussed in Chapter 4. 
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B.2 Configuration File for Sequential Program SV1 

Configuration file for 3 transputer cpu System DCT Transform 

file -> dct.cfg for SVl.c 

processor HOST ! host PC with transputer board 
processor ROOT ! root transputer node connected to host 
processor P001 ! exists but is not used in SV1 
processor P002 ! exists but is not used in SV1 

wire ? ROOT[0] HOST[0] 
wire ? POOltl] ROOT[2] 
wire ? P002[l] P001[2] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
task svl ins=3 outs=3 

place afserver HOST 
place filter ROOT 
place svl ROOT 

connect ? afserver[0] filter[0] 
connect ? filter[0] afserver[0] 
connect ? filter[1] svl[l] 
connect ? svl[l] filter[1] 
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B.3 Parallel C code of program SV1 

/* SVl.c Newer Faster version 

The size of this two dimensional (M x N) matrix is 8x8, 
ie M = 8, and N = 8. 

Compression Algorithm C8F 

svl - Sequential Version 1 based on JPEG standard 

added the DCT.CFG file to this, the main CHAN parameters, and compiled 
and ran it like the parallel versions 26/2/97 

*/ 

#include <stdio.h> 
#include <math.h> 
tinclude <float.h> 
tinclude <stdlib.h> 
tinclude <string.h> 
tinclude "\masters\include\standard.h" 
tinclude "\masters\include\admv3.h" 
tinclude "\masters\include\cmpv3.h" 
tinclude "\masters\include\uquant.h" 
tinclude <chan.h> 

/* Function Prototypes */ 

void Initialize(void); 
void GetBlock(void); 
void BuildCodes(); 
void Huffman(); 
void FDCT(); 
void DCT(double p[8]); 

/* 
note : y is the image source block, Y is the FDCT transform of y 

q is the quantized block 
*/ 

int y [BlockSize][BlockSize]; 
int q[BlockSize][BlockSize]; 
long c[30]; 
double Y [BlockSize][BlockSize]; 
double X [BlockSize]; 
char cl; 

/* variables for Huffman encoding procedures */ 
FILE *hufftab; /* file containing Huffman Table specification */ 
int *EHUFSI; /* huffman encoding tables */ 
ULint32 *EHUFCO; 
ULint32 buff; /* buffer to which huffman codes are written */ 
int32 count; /* keeps track of how many bits used in buff */ 
ULint32 total; /* records total number of bits used to encode image */ 

FILE *ADMfp, *CMPfp; 
char ADMfile[40], CMPfile[40], *p; 

/* Input Image File BUFFER and associated variable declarations */ 
unsigned char *ifb; /* ifb - Image File Buffer */ 
char ofb[5000]; /* ofb - Output File Buffer */ 
int Bused; /* blocks used from the buffer */ 

struct CMPhead cmpheader; 
struct ADMhead admheader; 

/* */ 
void main(int argc, char *argv[], char *envp[], 

CHAN *in[], int ins, CHAN *out[], int outs) { 

int NumBlocks,BlocksProcessed, j,k; 
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OpenFiles(argc, argv); 
Initialize(); 

NumBlocks = cmpheader.BlkAcross * cmpheader.BlkDown; 
printf("Encoding %i Blocks\n",NumBlocks); 
for (BlocksProcessed = 0; BlocksProcessed < NumBlocks; BlocksProcessed++) < 

GetBlock(); 

/* Level shift */ 
for (j=o,-j<8;j++) for (k=0; k<8; k++) y[j][k] = y[ j] [k] -128; 

FDCT(); 

/* Quantization using the uniform quantization table in quant h */ 
for (j=0;j<BlockSize;j++) 

for (k=0;k<BlockSize;k++) 
q[j][k] = (Y[j][k]/Q[j][k])+ (Y[j][k]>0 ? 0.5 : -0.5); 

/* do the Huffman encoding as defined in ISO/IEC 10918-1 Annex F */ 
Huffman(); 

> 

/* flush the buffer if there is anything in it */ 
if (count > 0) { 

/* shift it left to the MSB */ 
buff « = 32-count; 
fwrite(&buff,4,1,CMPfp); 
total += count; 

} 
fclose(CMPfp); 
fclose(ADMfp); 
printf("\nThe entire image was encoded in %71u bits\n",total); 

/< 

void OpenFiles(int argc, char *argv[]) 
{ 

if (!(argc >1)) { 
printf("Usage - code filename"); 
exit(1); 

> 

/* get the filenames */ 
strcpy(ADMfile,argv[l]); 
p = strrchr(ADMfile,92); 
if (p == NULL) strcpy(CMPfile,ADMfile); else strcpy(CMPfile,++p); 
strcat(ADMfile,".ADM"); 
strcat(CMPfile,".CMP"); 

/* Try to open the ADM file */ 
ADMfp = fopen(ADMfile,"rb"); 
if (ADMfp == NULL) { 

printf("Error opening ADM file %s \n",ADMfile) ; 
exit(l); 

> 

/* and now open the CMP file (the empty compressed file) */ 
CMPfp = fopen(CMPfile,"wb"); 
if (CMPfp == NULL) { 

printf("Error opening CMP file %s \n",CMPfile); 
exit(l); 

> 
setvbuf(CMPfp, ofb, _IOFBF, 5000); 

/* 

void Initialize;) 
{ 

/* get the image header */ 
fread(&admheader,sizeof(struct ADMhead), 1, ADMfp) ; 

/* Now set the compressed file header and write it out */ 
cmpheader.Version = ver; 
strcpy(cmpheader.Description,admheader.Description); 
cmpheader.BlkSize = BlockSize; 
cmpheader.BlkAcross = admheader.PixAcross / BlockSize; 
cmpheader.BlkDown = admheader.PixDown / BlockSize; 
cmpheader.DCBlkl = 0; /* for the moment re-write the header later */ 
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strcpy(cmpheader.Mode, "Gray") ; 
fwrite(scmpheader,sizeof(struct CMPhead),1,CMPfp); 

/* allocate the Image File Buffer */ 
ifb = malloc(admheader.PixAcross*BlockSize); 
if (ifb == NULL) { 

printf("Could not Alloctae Image File Buffer\n"); 
exit (1); 

> 
/* set the number of blocks used so as to initiate a ifb read */ 
Bused = cmpheader.BlkAcross; 

/* initially start with empty buffer */ 
buff = 0; count = 0; total = 0; 

/* Hauffman initialization stuff */ 
BuildCodes(); 

/* */ 

void GetBlockO 
{ 

int i,j, offset; 

if (Bused >= cmpheader.BlkAcross) { /* initiate a read from the file */ 
fread(ifb,admheader.PixAcross*BlockSize,1,ADMfp); 
Bused=0; } 

offset = Bused * BlockSize; 
for (i=0; i < BlockSize; i++) { 

for (j=0; j < BlockSize; j++) { 
y[i] [j] = ifb[offset+j]; } 
offset += admheader.PixAcross; 

} 
Bused++; 

/* */ 

/* Huffman Code Table initialization Routines */ 

void BuildCodes() ( 

int BITS[16], *HUFFVAL, *HUFFSIZE; 
unsigned int *HUFFCODE; 
int i, j, k, lastk, code, si, HVTsze=0; 

printf("\n Building Huffman Code Tables\n"); 
hufftab = fopenCACtable.dat", "r"); 
if (hufftab == NULL) { 

printf("Error opening Huffman Code Table \n"); 
exit(l); 

) 

/* read the code lengths (for luminance ) Annex K ISO/IEC 10918-1 */ 
for (i=0;i<16;i++) fscanf(hufftab," %x",&BITS[i]); 

/* Now read the Huffman values associated with the code lengths */ 
for (i=0;i<16;i++) HVTsze += BITS[i]; 

HUFFVAL = malloc(sizeof(int)*HVTsze); 
for (i=0;i<HVTsze;i++) fscanf(hufftab," %x",&HUFFVAL[i]); 

fclose(hufftab); 

/* now follow procedures in Annex C to generate the following tables */ 

/* HUFFSIZE table - slight changes because BITS indexed from 0*/ 
HUFFSIZE = malloc((sizeof(int)*HVTsze)+l) ; 
k = 0; i = 1; j = 1; 
do { 

while (j <= BITS[i-l]) { 
HUFFSIZE[k] = i; 
k++; 
j++; 
} 

i = i; 
> while (i <= 16 ); 
HUFFSIZE[k] = 0; 
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lastk = k; 

/* HUFFCODE table */ 
HUFFCODE = malloc(sizeof(unsigned int)*HVTsze) ; 
k = 0; code = 0; si = HUFFSIZE[0]; 
do { 

do { 
HUFFCODE[k] = code; 
code = code + 1; 
k = k + 1; 

} while (HUFFSIZE[k] == si); 
If (HUFFSIZE[k] == 0) break; 
do { 

code = code « 1; 
si = si + 1; 

} while (HUFFSIZE[k] != si); 
) while (HUFFSIZE[k] == si); 

/* Now create encoding procedure code tables EHUFCO & EHUFSI */ 
EHUFCO = malloc(sizeof(ULint32)*256) ; 
EHUFSI = malloc(sizeof(int)*256); 
for (i=0;i<256;i++) { 

EHUFCO[i] = 0; 
EHUFSI[i] = 0; ) 

k = 0; 
do { 

i = HUFFVAL[k]; 
EHUFSI[i] = HUFFSIZE[k]; 
/* code component - align bits to the MSB end of the 32 bit int */ 
EHUFCO[i] = (ULint32)(HUFFCODE[k]) « (32-EHUFSI[i]); 
k++; 

} while (k < lastk); 

/* reallocate some of the memory back */ 
free(HUFFVAL); 
free(HUFFSIZE); 
free(HUFFCODE); 

> 

/* */ 

/* Huffman encoding routines based on quantised block q */ 

/* Append assumes the code parameter has all bits aligned to the MSB */ 
void Append(int bits, ULint32 code) { 

int i; 

for (i=l; i<=bits; i++) { 
buff « = 1; 
buff += (code » 31) & 1; 
code « = 1; 
count ++; 

if (count == 32) { /* 32 bit integer */ 
fwrite(Sbuff,4,1,CMPfp); /* 32 bits = 4 bytes */ 
count = 0; 
buff = 0; 
total +=32; } 

} 
} 

Csize (int coeff) { 
if (abs(coeff) == 1) return 1; 
else if (abs(coeff) <= 3) return 2; 
else if (abs(coeff) <= 7) return 3; 
else if (abs(coeff) <= 15) return 4; 
else if (abs(coeff) <= 31) return 5; 
else if (abs(coeff) <= 63) return 6; 
else if (abs(coeff) <= 127) return 7; 
else if (abs(coeff) <= 255) return 8; 
else if (abs(coeff) <= 511) return 9; 
else if (abs(coeff) <= 1023) return 10; 
else { 

printf("problen encountered in Csize function, coeff out of range.\n"); 
exit(l); } 

} 
void Huffman() { 

int ZZ[64], k, r, ssss, rs; 

195 



Appendix B - Parallel C Transputer Code 

ULint32 cde; 

/* fir 
ZZ[0] 
ZZ[4]= 
ZZ[8]= 
ZZ[12] 
ZZ[16] 
ZZ[20] 
ZZ[24] 
ZZ[28] 
ZZ[32] 
ZZ[36] 
ZZ[40] 
ZZ[44] 
ZZ[48] 
ZZ[52] 
ZZ[56] 
ZZ[60] 

st re 
q[0] [ 
q[l] [ 
q[2] [ 
=q[2] 
=q[l] 
=q[5] 
=q[3] 
=q[0] 
=q[4] 
=q[7] 
=q[3] 
=q[3] 
=q[7] 
=q[4J 
=q[6] 
=q[5] 

-arrange 
0]; ZZ[ 

U; 
1]; 
[2] 
[4] 
[0] 
[3] 
[7] 
[3] 
[1] 
[5] 
[6] 
[2] 
[6] 
[5] 
[7] 

ZZ[5]= 
ZZ[9]= 

; ZZ[13] 
; zz[l7] 
; ZZ[21] 
; ZZ[25] 
; ZZ[29] 
; ZZ[33] 
; ZZ[37] 
; zz[4l] 
; ZZ[45] 
; ZZ[49] 
; ZZ[53] 
; ZZ[57] 
; ZZ[61] 

quantized 
l]=q[0][1]; 

q[0][2]; 
q[3][0]; 
=q[l][3] 
=q[2][3] 
=q[6][0] 
=q[2][4] 
=q[l][6] 
=q[5][2] 
=q[6][2] 
=q[2][6] 
=q[4][5] 
=q[7][3] 
=q[3][7] 
=q[7][4] 
=q[6][7] 

coeffici 
ZZ[2] 
ZZ[6] 
ZZ[10 

; ZZ[14 
; ZZ[18 
; ZZ[22 
; ZZ[26 
; ZZ[30 
; ZZ[34 
; ZZ[38 
; ZZ[42 
; ZZ[46 
; ZZ[50 
; ZZ[54 
; ZZ[58 
; ZZ[62 

ents in 
q[l][0]; 
q[0][3]; 
=q[4][0] 
=q[0][4] 
=q[3][2] 
=q[5][1] 
=q[l][5] 
=q[2][5] 
=q[6][1] 
=q[5][3] 
=q[l][7] 
=q[5][4] 
=q[6][4] 
=q[4][7] 
=q[7][5] 
=q[7][6] 

Zig-Zag 
ZZ[3]> 
ZZ[7]> 

; ZZ[11 
; zz[15 
; zz[19 
; ZZ[23 
; ZZ[27 
; ZZ[31 
; ZZ[35 
; ZZ[39 
; ZZ[43 
; ZZ[47 
; zz[5l 
; ZZ[55 
; ZZ[59 
; ZZ[63 

sequence 
;q[2] [0]; 
:q[l] [2]; 
=q[3][1] 
=q[0][5] 
=q[4][1] 
=q[4][2] 
=q[0][6] 
=q[3][4] 
=q[7][0] 
=q[4] [4] 
=q[2][7] 
=q[6][3] 
=q[5][5] 
=q[5][6] 
=q[6][6] 
=q[7][7] 

/* Encode AC cofficients - procedure from annex F ISO/IEC 10918-1 */ 
k = -1; /* index into zig-zag sequence : -1 codes DC coefficient */ 
r = 0; /* run length of zero coefficients */ 

jumpl: /* jump point for goto I KNOW! but it was the easiest way */ 

k++; 
if (ZZ[k] == 0) { 

if (k == 63) { 
Append(EHUFSI[0],EHUFCO[0]); 
goto jump2; 

> 
r++; 
goto jumpl; 

} 
while (r > 15) { 

Append(EHUFSI[240],EHUFCO[240] ) ; 
r -= 16; } 

/* Encode R & ZZ(k) at this point */ 
ssss = Csize(ZZ[k]); 
rs = (r * 16) + ssss; 
Append(EHUFSI[rs],EHUFCO[rs]) ; 
if (ZZ[k] < 0) ZZ[k]—; 
cde = (ULint32)(ZZ[k]) « (32-ssss); 
Append(ssss,cde); 

r = 0; 
if (k < 63) goto jumpl; 

jump2: /* jump point for jump out of loop */ 

/* Fast Discrete Cosine Transform */ 

void FDCTO 
{ int i,j; 

/* set up double matrix Y which is to be transformed / be the result */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) Y[i][j] = (double)y[i][j]; 
} 

/* now do the 2D-FDCTO */ 

/* first dimension - down the columns */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[j][i]; } 

DCT(X); 
for (j = 0; j < BlockSize; j++) Y[j][i] = X[j]; 

} 

/* second dimension - accross the rows */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[i][j]; } 

DCT(X); 
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for (j = 0; j < BlockSize; j++) Y[i][j] = X[j]; 

/•> Fast Discrete Cosine Transform "/ 

void DCT(double Z[BlockSize]) 
{ double a[BlockSize], b[BlockSize], c[BlockSize], d[BlockSize]; 

/* C8F Algorithm */ 
/* first butterfly loop */ 
a[0 
a[l 
a[2 
a[3 
a[4 
a[5 
a[6 
a[7 

/* 
b[0 
b[l 
b[2 
b[3 
b[4 
b[5 
b[6 
b[7 

/* 
c[0 
c[l 
c[2 
c[3 
c[4 
c[5 
c[6 
c[7 

/* 
d[4 
d[5 
d[6 
d[7 

/* 
Z[0 
Z[l 
Z[2 
Z[3 
Z[4 
Z[5 
Z[6 
Z[7 

= Z[0] + Z[7] 
= Z[l] + Z[6] 
= Z[2] + Z[5] 
= Z[3] + Z[4] 
= Z[3] - Z[4] 
= Z[2] - Z[5] 
= Z[l] - Z[6] 
= Z[0] - Z[7] 

second butterfly loop */ 
a[0] 
a[l] 
a[l] 
a[0] 
a[4]; 
(a[6] 
(a[6] 
a[7]; 

+ a[3] 
+ a[2] 
- a[2] 
- a[3] 

a[5])*cos(pi/4.0); 
a[5])*cos(pi/4.0); 

third butterfly loop */ 
(b[0] + b[l]) * cos(pi/4.0); 
(b[0] - b[l]) * cos(pi/4.0); 
b[2]*sin(pi/8.0) + b[3]*cos(pi/8.0); /* 
b[3]*cos(3.0*pi/8.0) - b[2]*sin(3.0*pi/8, 
b[4] 
b[4] 
b[7] 
b[7] 

found 
0); 

mistake here ? */ 

+ b[5] 
- b[5] 
- b[6] 
+ b[6] 

fourth & final butterfly loop */ 
= c[4]*sin(pi/16.0) + c[7]*cos(pi/16.0); 
= c[5]*sin(5.0*pi/16.0) + c[6]*cos(5.0*pi/16.0) 
= c[6]*cos(3.0*pi/16.0) - c[5]*sin(3.0*pi/16.0) 
= c[7]*cos(7.0*pi/16.0) - c[4]*sin(7.0*pi/16.0) 

calculate 
c[0]/4.0; 
d[4]/4.0; 
c[2]/4.0; 
d[6]/4.0; 
c[l]/4.0; 
d[5]/4.0; 
c[3]/4.0; 
d[7]/4.0; 

normalized Forward Transform Coefficients */ 
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B.4 Configuration File for Parallel Program PV1 

Configuration file for 3 transputer cpu System DCT Transform 

file -> dct.cfg for PVl.c 

processor HOST 
processor ROOT 
processor P001 
processor P002 

! host PC with transputer board 
! root transputer node connected to host 
! transputer node to do the worker DCT task 
! exists but is not used in PVl 

wire ? ROOT[0] HOST[0] 
wire ? P001[l] ROOT[2] 
wire ? P002[l] P001[2] 

task afserver ins=l outs=l 
task filter ins=2 outs=2 data=10k 
task dctmain ins=3 outs=3 
task dcttask ins=l outs=l 

place afserver HOST 
place filter ROOT 
place dctmain ROOT 
place dcttask P001 

connect 
connect 
connect 
connect 
connect 
connect 

afserver[0] 
filter[0] 
filter[l] 
dctmain[1] 
dctmain[2] 
dcttask[0] 

filter[0] 
afserver[0] 
dctmain[1] 
filter[l] 
dcttask[0] 
dctmain[2] 
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B.5 Parallel C code of Program PV1 

B.5.1 Code for Processor Pn 

/* code.c Newer Faster version 
The size of this two dimensional (M x N) matrix is 8 x 8 , 
ie M = 8, and N = 8. 
Compression Algorithm C8F 
pvl - parallel Version 1 dctmain task based on JPEG standard 

*/ 

tinclude <stdio.h> 
tinclude <math.h> 
tinclude <float.h> 
tinclude <stdlib.h> 
tinclude <string.h> 
tinclude "\masters\include\standard.h" 
tinclude "\masters\include\admv3.h" 
tinclude "\masters\include\cmpv3.h" 
tinclude "Wasters\include\uquant.h" 
tinclude <chan.h> 

/* Function Prototypes */ 
void Initialize(void); 
void GetBlock(void); 
void BuildCodes(void); 
void Huffman(void) ; 

/* 
note : y is the image source block, Y is the FDCT transform of y 

q is the quantized block 

V 
int y [BlockSize][BlockSize]; 
int qfBlockSize][BlockSize]; 
long c[30]; 
double Y [BlockSize][BlockSize]; 
double X [BlockSize]; 
char cl; 

/* variables for Huffman encoding procedures */ 
FILE *hufftab; /* file containing Huffman Table specification */ 
int *EHUFSI; /* huffman encoding tables */ 
ULint32 *EHUFCO; 
ULint32 buff; /* buffer to which huffman codes are written */ 
int32 count; /* keeps track of how many bits used in buff */ 
ULint32 total; /* records total number of bits used to encode image */ 

FILE *ADMfp, *CMPfp; 
char ADMfile[40], CMPfile[40], *p; 

/* Input Image File BUFFER and associated variable declarations */ 
unsigned char *ifb; /* ifb - Image File Buffer */ 
char ofb[5000]; /* ofb - Output File Buffer */ 
int Bused; /* blocks used from the buffer */ 

struct CMPhead cmpheader; 
struct ADMhead admheader; 

/* */ 
main(int argc, char *argv[], char *envp[], CHAN *in[], int inlen, 

CHAN *out[], int outlen) { 

int NumBlocks,BlocksProcessed, j,k; 
OpenFiles(argc, argv); 
Initialize (); 
NumBlocks = cmpheader.BlkAcross * cmpheader.BlkDown; 
printf("Encoding %i Blocks\n",NumBlocks); 

/* Get the First block and send it off to the worker task */ 
GetBlock(); 
/* Level shift */ 
for (j=0;j<8;j++) for (k=0;k<8;k++) y[j][k] = y[j][k]-128; 
chan out_message((sizeof(int)*BlockSize*BlockSize),y,out[2]) ; 
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/* set Blocks Processed = 1 in for loop since already sent one */ 
for (BlocksProcessed = 1; BlocksProcessed < NumBlocks; BlocksProcessed++) { 

/* Assemble the next block to be processed */ 
GetBlockO; 
/* Level shift */ 
for (j=0;j<8;j++) for (k=0;k<8;k++) y[j][k] = y[j][k]-128; 
/* wait for a block to come back from the worker task */ 
chan_in_message(sizeof(double)*BlockSize*BlockSize,Y,in[2]); 

/* Now send off the next block */ 
chan_out_message(sizeof(int)*BlockSize*BlockSize,y,out[2]); 

/* Now process the block just recieved */ 
/* Quantization using the uniform quantization table in quant.h */ 
for (j=0;j<BlockSize;j++) for (k=0;k<BlockSize;k++) 

q[j][k] = (Y[j][k]/Q[j][k])+ (Y[j][k]>0 ? 0.5 : -0.5); 
/* do the Huffman encoding as defined in ISO/IEC 10918-1 Annex F */ 
Hiiffman / \ . Huffman() ; 

} 

/* now get the last straggler block */ 
/* wait for a block to come back from the worker task */ 
chan_in_message(sizeof(double)*BlockSize*BlockSize, Y,in[2] ) ; 
/* Now process the block just recieved */ 
/* Quantization using the uniform quantization table in quant.h */ 
for (j=0;j<BlockSize;j++) for (k=0;k<BlockSize;k++) 

q[j][k] = (Y[j][k]/Q[j][k])+ (Y[j][k]>0 ? 0.5 : -0.5); 
/* do the Huffman encoding as defined in ISO/IEC 10918-1 Annex F */ 
Huffman(); 

/* flush the buffer if there is anything in it */ 
if (count > 0) { 

/* shift it left to the MSB */ 
buff « = 32-count; 
fwrite(&buff,4,1,CMPfp) ; 
total += count; } 

fclose(CMPfp); 
fclose(ADMfp); 
printf("\nThe entire image was encoded in %71u bits\n",total); 

/* 

void OpenFiles(int argc, char *argv[]) { 

if (!(argc >1)) { 
printf("Usage - code filename"); 
exit(l); } 

/* get the filenames */ 
strcpy(ADMfile,argv[l]); 
p = strrchr(ADMfile,92); 
if (p == NULL) strcpy(CMPfile,ADMfile); else strcpy(CMPfile,++p); 
strcat(ADMfile,".ADM"); 
strcat(CMPfile,".CMP") ; 

/* Try to open the ADM file */ 
ADMfp = fopen(ADMfile,"rb"); 
if (ADMfp == NULL) { 

printf("Error opening ADM file %s \n",ADMfile) ; 
exit(l); } 

/* and now open the CMP file (the empty compressed file) */ 
CMPfp = fopen(CMPfile,"wb"); 
if (CMPfp == NULL) { 

printf("Error opening CMP file %s \n",CMPfile); 
exit(l); } 

setvbuf(CMPfp, ofb, _IOFBF, 5000); 
} 

/* 

void Initialized 
{ 

/* get the image header */ 
fread(&admheader,sizeof(struct ADMhead),1,ADMfp); 

/* Now set the compressed file header and write it out */ 
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cmpheader.Version = ver; 
strcpy(cmpheader.Description,admheader.Description) ; 
cmpheader.BlkSize = BlockSize; 
cmpheader.BlkAcross = admheader.PixAcross / BlockSize; 
cmpheader.BlkDown = admheader.PixDown / BlockSize; 
cmpheader.DCBlkl = 0; /* for the moment re-write the header later */ 
strcpy(cmpheader.Mode,"Gray"); 
fwrite(&cmpheader,sizeof(struct CMPhead),1,CMPfp); 

/* allocate the Image File Buffer */ 
ifb = malloc(admheader.PixAcross*BlockSize); 
if (ifb == NULL) { 

printf("Could not Alloctae Image File Buffer\n"); 
exit(l); ) 

/* set the number of blocks used so as to initiate a ifb read */ 
Bused = cmpheader.BlkAcross; 

/* initially start with empty buffer */ 
buff = 0; count = 0; total = 0; 

/* Hauffman initialization stuff */ 
BuildCodes(); 

void GetBlock() 
{ 

int i,j, offset; 

if (Bused >= cmpheader.BlkAcross) { /* initiate a read from the file */ 
fread(ifb,admheader.PixAcross*BlockSize, 1, ADMfp) ; 
Bused=0; ) 

offset = Bused * BlockSize; 
for (i=0; i < BlockSize; i++) { 

for (j=0; j < BlockSize; j++) { y[i][j] = ifb[offset+j]; } 
offset += admheader.PixAcross; } 

Bused++; 

/* v 

/* Huffman Code Table initialization Routines */ 

void BuildCodes() { 

int BITS[16], *HUFFVAL, *HUFFSIZE; 
unsigned int *HUFFCODE; 
int i, j, k, lastk, code, si, HVTsze=0; 

printf("\n Building Huffman Code Tables\n"); 
hufftab = fopenCACtable.dat", "r"); 
if (hufftab == NULL) { 

printf("Error opening Huffman Code Table \n"); 
exit(l); } 

/* read the code lengths (for luminance ) Annex K ISO/IEC 10918-1 */ 
for (i=0;i<16;i++) fscanf(hufftab, " %x",SBITS[iJ); 

/* Now read the Huffman values associated with the code lengths */ 
for (i=0;i<16;i++) HVTsze += BITSfi]; 

HUFFVAL = malloc(sizeof(int)*HVTsze) ; 
for (i=0;i<HVTsze;i++) fscanf(hufftab," %x",&HUFFVAL[i]); 

fclose(hufftab); 

/* now follow procedures in Annex C to generate the following tables */ 

/* HUFFSIZE table - slight changes because BITS indexed from 0*/ 
HUFFSIZE = malloc((sizeof(int)*HVTsze)+l); 
k = 0; i = 1; j = 1; 
do { 

while (j <= BITS[i-l]) < 
HUFFSIZE[k] = i; 
k++; 
j++; ) 
i++; 
j - i; 

} while (i <= 16 ); 
HUFFSIZE[k] = 0; 
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lastk = k; 

/* HUFFCODE table */ 
HUFFCODE = malloc(sizeof(unsigned int)*HVTsze); 
k = 0; code = 0; si = HUFFSIZE[0]; 
do { 

do { 
HUFFCODE[k] = code; 
code = code + 1; 
k = k + 1; 

} while (HUFFSIZE[k] == si); 
if (HUFFSIZE[k] == 0) break; 
do { 

code = code « 1; 
si = si + 1; 

} while (HUFFSIZE[k] != si); 
} while (HUFFSIZE[k] == si); 
/* Now create encoding procedure code tables EHUFCO & EHUFSI */ 
EHUFCO = malloc(sizeof(ULint32)*256) ; 
EHUFSI = malloc(sizeof(int)*256); 
for (i=0;i<256;i++) { 

EHUFCO[i] = 0; 
EHUFSI[i] = 0; } 

k = 0; 
do { 

i = HUFFVAL[k]; 
EHUFSI[i] = HUFFSIZEfk]; 
/* code component - align bits to the MSB end of the 32 bit int */ 
EHUFCO[i] = (ULint32)(HUFFCODE[k]) « (32-EHUFSI[i]); 
k++; 

} while (k < lastk); 
/* reallocate some of the memory back */ 
free(HUFFVAL); 
free(HUFFSIZE); 
free(HUFFCODE); 

/* Huffman encoding routines based on quantised block q */ 

/* Append assumes the code parameter has all bits aligned to the MSB */ 
void Append(int bits, ULint32 code) { 

int i; 

for (i=l; i<=bits; i++) { 
buff « = 1; 
buff += (code » 31) & 1; 
code « = 1; 
count ++; 
if (count == 32) { /* 32 bit integer */ 

fwrite(Sbuff,4,1,CMPfp); /* 32 bits = 4 bytes */ 
count = 0; 
buff = 0; 
total += 32; } 

} 
> 

Csize (int coeff) { 
if (abs 
else 
else 
else 
else 
else 
else 
else 
else 
else 
else 

if 
if 
if 
if 
if 
if 
if 
if 
if 
( 

coeff) == 1 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 
(abs(coeff) 

printf("probl 
exit(1); } 

return 1; 
<= 3) return 2; 
<= 7) return 3; 
<= 15) return 4; 
<= 31) return 5; 
<= 63) return 6; 
<= 127) return 7; 
<= 255) return 8; 
<= 511) return 9; 
<= 1023) return 10; 

en encountered in Csize function, coeff out of range.\n") 

) 

void Huffman() { 
int ZZ[64], k, r, ssss, rs; 
ULint32 cde; 
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I* first re-arrange quantized coefficients in Zig-Zag 
ZZ[0]=q[0][0]; ZZ[l]=q[0][1]; ZZ[2]=q[l][0]; ZZ[3]^ 
ZZ[4]=q[l][1]; ZZ[5]=q[0][2]; ZZ[6]=q[0][3]; ZZ[7]< 
ZZ[8]=q[2][l]; ZZ[9]=q[3][0]; ZZ[10]=q[4][0]; ZZ[11 
ZZ[12]=q[2][2]; ZZ[13]=q[l][3]; ZZ[14]=q[0][4]; ZZ[15 
ZZ[16]=q[l][4]; ZZ[17]=q[2][3]; ZZ[18]=q[3][2]; ZZ[19 
ZZ[20]=q[5][0]; ZZ[21]=q[6][0]; ZZ[22]=q[5][1]; ZZ[23 
ZZ[24]=q[3][3]; ZZ[25]=q[2] [4] ; ZZ[26]=q[l] [5]; ZZ[27 
ZZ[28]=q[0][7]; ZZ[29]=q[l][6]; ZZ[30]=q[2][5]; ZZ[31 
ZZ[32]=q[4] [3]; ZZ[33]=q[5] [2] ; ZZ[34]=q[6] [1]; ZZ[35 
ZZ[36]=q[7][1]; ZZ[37]=q[6][2]; ZZ[38]=q[5][3]; ZZ[39 
ZZ[40]=q[3] [5]; ZZ[41]=q[2] [6]; ZZ[42]=q[l] [7] ; ZZ[43 
Z2[44]=q[3][6]; ZZ[45]=q[4][5]; ZZ[46]=q[5][4]; ZZ[47 
ZZ[48]=q[7][2]; ZZ[49]=q[7][3]; ZZ[50]=q[6][4]; ZZ[51 
ZZ[52]=q[4][6]; ZZ[53]=q[3][7]; ZZ[54]=q[4][7]; ZZ[55 
ZZ[56]=q[6] [5]; ZZ[57]=q[7] [4]; ZZ[58]=q[7] [5] ; ZZ[59 
ZZ[60]=q[5][7]; ZZ[61]=q[6][7]; ZZ[62]=q[7][6]; ZZ[63 

sequence 
:q[2] [0]; 
:q[l] [2]; 
=q[3][1] 
=q[0][5] 
=q[4][1] 
=q[4][2] 
=q[0][6] 
=q[3] [4] 
=q[7][0] 
=q[4][4] 
=q[2] [7] 
=q[6][3] 
=q[5][5] 
=q[5][6] 
=q[6][6] 
=q[7][7] 

/* Encode AC cofficients - procedure from annex F ISO/IEC 10918-1 */ 
k = -1; /* index into zig-zag sequence : -1 codes DC coefficient */ 
r = 0; /* run length of zero coefficients */ 

jumpl: /* jump point for goto I KNOW! but it was the easiest way */ 

k++; 
if (ZZ[k] == 0) { 

if (k == 63) { 
Append(EHUFSI[0],EHUFCO[0 ] ) ; 
goto jump2; } 

r++; 
goto jumpl; 

} 
while (r > 15) { 

Append(EHUFSI[240],EHUFCO[240] ) ; 
r -= 16; } 

/* Encode R & ZZ(k) at this point */ 
ssss = Csize(ZZ[k]); 
rs = (r * 16) + ssss; 
Append(EHUFSI[rs],EHUFCO[rs]); 
if (ZZ[k] < 0) ZZ[k]—; 
cde = (ULint32)(ZZ[k]) « (32-ssss); 
Append(ssss,cde); 

r = 0; 
if (k < 63) goto jumpl; 

jump2: /* jump point for jump out of loop */ 

} 

/*-
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B.5.2 Code for Processor P, 

/* pvl - parallel version 1 dcttask prog */ 

tinclude <math.h> 
tinclude <float.h> 
tinclude <stdlib.h> 
tinclude "\masters\include\standard.h" 
tinclude <chan.h> 

int y[BlockSize][BlockSize]; /* level shifted image source block */ 
double Y[BlockSize][BlockSize]; /* DCT Transformed double block */ 
double X[BlockSize] ; 

/* Fast Discrete Cosine Transform */ 

main(int argc, char *argv[], char *envp[], CHAN *in[], int inlen, 
CHAN *out[], int outlen) { 

int i,j; 

for ('•;){ /* infinite loop to recieve & process blocks */ 
/* wait for input from the transputer root */ 
chan_in_message(sizeof(int)*BlockSize*BlockSize,y, in[0]) ; 

I* set up double matrix Y which is to be transformed and be the result */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) Y[i][j] = (double)y[i][j]; 

/* now do the 2D-FDCT() */ 

/* first dimension - down the columns */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[j][i]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[j][i] = X[j]; 

} 

/* second dimension - accross the rows */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[i][j]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[i][j] = X[j]; 

} 

/* now send the result back to the transputer root task */ 
chan_out_message(sizeof(double)*BlockSize*BlockSize, Y, out[0]) ; 

} /* end of infinite for loop */ 

/* Fast Discrete Cosine Transform */ 

void DCT(double Z[BlockSize]) { 
double a[BlockSize], b[BlockSize], c[BlockSize], d[BlockSize], 

/* C8F Algorithm */ 

/* first butterfly loop */ 
a[0] = Z[0] + Z[7], 
a[l] = Z[l] + z[6], 
a[2] = Z[2] + Z[5], 
a[3] = Z[3] + Z[4], 
a[4] = Z[3] - Z[4]. 
a[5] = Z[2] - Z[5], 
a[6] = Z[l] - Z[6] 
a[7] = Z[0] - Z[7] 

/* second butterfly loop */ 
b[0] = a[0] + a[3]; 
b[l] = a[l] + a [2]; 
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b[2 
b[3 
b[4 
b[5 
b[6 
b[7 

/ 
c[0 
c[l 
c[2 
c[3 
c[4 
c[5 
c[6 
c[7 

/ 
d[4 
d[5 
d[6 
d[7 

= a[l] - a[2]; 
= a[0] - a[3]; 
= a[4]; 
= (a[6] - a[5])*cos(pi/4.0); 
= (a[6] + a[51)*cos(pi/4.0) ; 
= a[7]; 

third butterfly loop */ 
(b[0] + b[l]) * cos(pi/4.0); 
(b[0] - b[l]) * cos(pi/4.0); 
b[2]*sin(pi/8.0) + b[3]*cos(pi/8.0); /* found mistake here ? */ 
b[3]*cos(3.0*pi/8.0) - b[2]*sin(3.0*pi/8.0) ; 

/* r 
Z[0] 
Z[l] 
Z[2] 
Z[3] 
Z[4] 
Z[5] : 

Z[6] < 

Z[7] 

b[4] 
b[4] 
b[7] 
b[7] 

+ b[5], 
- b[5], 
- b[6], 
+ b[6], 

fourth & final butterfly loop */ 
c[4]*sin(pi/16.0) + c[7]*cos(pi/16.0) ; 
c[5]*sin(5.0*pi/16.0) + c[6]*cos(5.0*pi/16.0) 
c[6]*cos(3.0*pi/16.0) - c[5]*sin(3.0*pi/16.0) 
c[7]*cos(7.0*pi/16.0) - c[4]*sin(7.0*pi/16.0) 

calculate 
c[0]/4.0; 
d[4]/4.0; 
c[2]/4.0; 
d[6]/4.0; 
c[l]/4.0; 
d[5]/4.0; 
c[3]/4.0; 

= d[7]/4 

normalized Forward Transform Coefficients */ 

0; 
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B.6 Configuration File for Processor Farm Program PV2 

Configuration file for 3 transputer cpu System using processor Farm 

file -> dct.cfg for PV2.C 

task master 
task worker data=20k 
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B.7 Parallel C code of Processor Farm Program PV2 

B.7.1 Code for Master task 

• / 

code.c Newer Faster version 
The size of this two dimensional (M x N) matrix is 
ie M = 8, and N = 8. 
Compression Algorithm C8F 
pv2 - Parallel Version 2 master task 

8 x 8 , 

tinclude <stdio.h> 
tinclude <math.h> 
tinclude <float.h> 
tinclude <stdlib.h> 
tinclude <string.h> 
tinclude "Wasters\include\standard.h" 
tinclude "Wasters\include\admv3 .h" 
tinclude "Wasters\include\cmpv3.h" 
tinclude "Wasters\include\uquant.h" 
tinclude <net.h> 
tinclude <thread.h> 
tinclude <par.h> 
tinclude <sema.h> 
/* Function Prototypes */ 

void Initialize(); 
void GetBlock(); 
void OpenFiles(int, 
void BuildCodes(); 
void Huffman(); 
void Receive(); /* 
void Send(); /* 

char 

used as 
used as 

int yfBlockSize][BlockSize]; /* 
double Y[BlockSize][BlockSize]; 
int q[BlockSize][BlockSize]; 
long c[30]; 
char cl; 

Thread to send Blocks */ 
Thread to recieve Blocks 

image source block */ 

/* variables for Huffman encoding procedures */ 
*hufftab; /* file containing Huffman Table specification */ 

huffman encoding tables */ /' int *EHUFSI; 
ULint32 *EHUFCO; 
ULint32 buff; /* 
int32 count; /* 
ULint32 total; /* 

buffer to which huffman codes are written */ 
keeps track of how many bits used in buff */ 
records total number of bits used to encode image */ 

FILE *ADMfp, *CMPfp; 
char ADMfile[40], CMPfile[40], *p; 

/* Input Image File BUFFER and associated variable declarations */ 
unsigned char *ifb; /* ifb - Image File Buffer */ 
char ofb[5000]; /* ofb - Output File Buffer */ 
int Bused; /* blocks used from the buffer */ 

struct CMPhead cmpheader; 
struct ADMhead admheader; 

/* variables used to help synchronize between Main, Receive & Send threads */ 
int NumBlocks, BlocksProcessed; 

/* Interface to Main Thread */ 
static SEMA main_resume; 
/* + / 

void main(int argc, char argvf]) { 

int j,k; 
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OpenFiles(argc, argv); 
Initialize(); 
NumBlocks = cmpheader.BlkAcross * cmpheader.BlkDown; 
BlocksProcessed = 0; 
printf("Encoding %i Blocks\n",NumBlocks); 
/* now use par_sema beyond this point for access to C-RTL */ 
/* initialize the resume semaphore */ 
sema_init (&main_resume, 0) ; 

/* Now start the Send & Receive Threads */ 
thread_create(Send,10000,2,0,0); 
thread_create(Receive,10000,2, 0, 0); 

/* Now sit and wait for the Receive thread to finish */ 
sema_wait(&main_resume); 

/* all threads are now stopped so no need for par_sema */ 
printf("\nThe entire image was encoded in %71u bits\n", total); 

> 
/* */ 
void Send() { 

int done, nbytes; 
int i,j, offset; 

for (done = 0; done < NumBlocks; done++) { 

/* Assemble next block to be processed block */ 
if (Bused >= cmpheader.BlkAcross) { /* initiate a read from the file */ 

sema_wait(&par_sema); /* wait for C RTL */ 
fread(ifb,admheader.PixAcross*BlockSize,1,ADMfp); 
sema_signal(&par_sema); /* release C RTL */ 
Bused=0; 

} 
offset = Bused * BlockSize; 
for (i=0; i < BlockSize; i++) { 

for (j=0; j < BlockSize; j++) ( 
y[i][j] = ifb[offset+j]; 

> 
offset += admheader.PixAcross ; 

} 
Bused++; 

/* Level shift */ 
for (i=0;i<8;i++) for (j=0;j<8;j++) y[i][j] = y[i][j]-128; 

/* Now send the block on its way */ 
nbytes = net_send(sizeof(int)*BlockSize*BlockSize,y, 1); 

sema_wait(&par_sema); /* wait for C RTL */ 
fclose(ADMfp); /* closed the image file */ 
sema_signal(&par_sema); /* release C RTL */ 

/* All the blocks of the image have been sent STOP the Thread */ 
thread_stop(); 

> v 

void Receive() { 
int nbytes, complete; 
int i, j; 

BlocksProcessed =0; . 
while (BlocksProcessed < NumBlocks) { /* loop to recieve & process blocks / 

/* Receive a block from the Processor Farm */ 
nbytes = net_receive(Y,scomplete); 
/* Quantization using the uniform quantization table in quant.n / 
for (i=0;i<BlockSize;i++) for (j=0;j<BlockSize;j++) 

q[i][j] = <Y[i][j]/Q[i][J]>+ (Y[i][jl>0 ? 0.5 : -0.5); 
/* do the Huffman encoding as defined in ISO/IEC 10918-1 Annex F */ 
Huffman(); 
BlocksProcessed++; 

/* flush the buffer if there is anything in it */ 
if (count > 0) { 

/* shift it left to the MSB */ 
buff « = 32-count; 
sema_wait(spar_sema); /* wait for C RTL */ 
fwrite(&buff,4,1,CMPfp); 
sema_signal(&par_sema); /* release C RTL */ 
total += count; ) 
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sema_wait(&par_sema); /* wait for C RTL */ 
fclose(CMPfp); /* closed the compressed file */ 
sema_signal(&par_sema); /* release C RTL */ 
sema_signal(smain_resume); /* signal the main thread to resume */ 
thread_stop(); /* stop this thread */ 

> 
/* */ 

void OpenFiles(int argc, char *argv[]) { 
/* No need to use par_sema here as other threads are not active yet */ 

if (!(argc >1)) { 
printf("Usage - code filename"); 
exit(l); } 

/* get the filenames */ 
strcpy(ADMfile,argv[l]); 
p = strrchr(ADMfile,92); 
if (p == NULL) strcpy(CMPfile,ADMfile); else strcpy(CMPfile,++p); 
strcat(ADMfile,".ADM"); 
strcat(CMPfile,".CMP"); 

/* Try to open the ADM file */ 
ADMfp = fopen(ADMfile,"rb"); 
if (ADMfp == NULL) { 

printf("Error opening ADM file %s \n",ADMfile); 
exit(l); } 

/* and now open the CMP file (the empty compressed file) */ 
CMPfp = fopen(CMPfile,"wb"); 
if (CMPfp == NULL) { 

printf("Error opening CMP file %s \n",CMPfile) ; 
exit(l); } 

setvbuf(CMPfp, ofb, _IOFBF, 5000); 
/* */ 
void Initialize() { 

/* No need to use par_sema here as other threads are not active yet */ 
/* get the image header */ 
fread(&admheader,sizeof(struct ADMhead),1,ADMfp); 

/* Now set the compressed file header and write it out */ 
cmpheader.Version = ver; 
strcpy(cmpheader.Description,admheader.Description); 
cmpheader.BlkSize = BlockSize; 
cmpheader.BlkAcross = admheader.PixAcross / BlockSize; 
cmpheader.BlkDown = admheader.PixDown / BlockSize; 
cmpheader.DCBlkl = 0; /* for the moment re-write the header later */ 
strcpy(cmpheader.Mode, "Gray") ; 
fwrite(&cmpheader,sizeof(struct CMPhead) ,1,CMPfp); 

/* allocate the Image File Buffer */ 
ifb = malloc(admheader.PixAcross*BlockSize) ; 
if (ifb == NULL) { 

printf("Could not Alloctae Image File Buffer\n"); 
e x i t < 1 ) ; > . • « . . , * > 

/* set the number of blocks used so as to initiate a ifb read */ 
Bused = cmpheader.BlkAcross; 

/* initially start with empty buffer */ 
buff = 0; count = 0; total = 0; 

/* Huffman initialization stuff */ 
BuildCodes(); 

• * / 

/* Huffman Code Table initialization Routines */ 

void BuildCodes() { . 
/* No need to use par_sema here as other threads are not active yet / 

int BITS[16], *HUFFVAL, *HUFFSIZE; 
unsigned int *HUFFCODE; 
int i, j, k, lastk, code, si, HVTsze=0; 

printf("\n Building Huffman Code Tables\n"); 
hufftab = fopenCACtable.dat", "r"); 
if (hufftab == NULL) { 

printf("Error opening Huffman Code Table \n"); 
eXit(l),* } *nmo 1 +/ 

/* read the code lengths (for luminance ) Annex K ISO/IEC 10918-1 / 
for (i=0;i<16;i++) fscanf(hufftab," %x",&BITS[i]); 
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I* Now read the Huffman values associated with the code lengths */ 
for (i=0;i<16;i++) HVTsze += BITS[i]; 

HUFFVAL = malloc(sizeof(int)*HVTsze); 
for (i=0;i<HVTsze;i++) fscanf(hufftab," %x",&HUFFVAL[i]); 

fclose(hufftab); 

/* now follow procedures in Annex C to generate the following tables */ 
/* HUFFSIZE table - slight changes because BITS indexed from 0*/ 
HUFFSIZE = malloc((sizeof(int)*HVTsze)+l); 
k = 0; i = 1; j = 1; 
do { 

while (j <= BlTS[i-l]) { 
HUFFSIZE[k] = i; 
k++; 
j++; 

} 
i++; 
j = l; 

} while (i <= 16 ); 
HUFFSIZE[k] = 0; 
lastk = k; 

/* HUFFCODE table */ 
HUFFCODE = malloc(sizeof(unsigned int)*HVTsze); 
k = 0; code = 0; si = HUFFSIZE[0]; 
do { 

do { 
HUFFCODE[k] = code; 
code = code + 1; 
k = k + 1; 

} while (HUFFSIZE[k] == si); 
if (HUFFSIZE[k] == 0) break; 
do { 

code = code « 1; 
si = si + 1; 

} while (HUFFSIZE[k] != si); 
} while (HUFFSIZE[k] == si); 

/* Now create encoding procedure code tables EHUFCO & EHUFSI */ 
EHUFCO = malloc(sizeof(ULint32)*256); 
EHUFSI = malloc(sizeof(int)*256); 
for (i=0;i<256;i++) { 

EHUFCO[i] = 0; 
EHUFSI[i] = 0; 

} 
k = 0; 

do { 
i = HUFFVAL[k]; 
EHUFSI[i] = HUFFSIZE[k] ; 
/* code component - align bits to the MSB end of the 32 bit int */ 
EHUFCO[i] = (ULint32) (HUFFCODE[k]) « (32-EHUFSI[i]) ; 
k++; 

} while (k < lastk); 

/* reallocate some of the memory back */ 
free(HUFFVAL); 
free(HUFFSIZE); 
free(HUFFCODE); 

} 
/* */ 
/* Huffman encoding routines based on quantised block q */ 
/* Append assumes the code parameter has all bits aligned to the MSB */ 
void Append(int bits, ULint32 code) { 

int i; 

for (i=l; i<=bits; i++) { 
buff « = 1; 
buff += (code » 31) s i ; 
code « = 1; 
count ++; 

if (count == 32) { /* 32 bit integer 32 bits = 4 bytes */ 
sema_wait(&par_sema); /* wait for C RTL */ 
fwrite(&buff,4,1,CMPfp); 
sema_signal(spar_sema); /* release C RTL */ 
count = 0; 
buff = 0; 
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total += 32; 

) 

Csize (int coeff) { 
if (abs(coeff) == 1) return 1; 
else if (abs(coeff) <= 3) return 2; 
else if (abs(coeff) <= 7) return 3; 
else if (abs(coeff) <= 15) return 4; 
else if (abs(coeff) <= 31) return 5; 
else if (abs(coeff) <= 63) return 6; 
else if (abs(coeff) <= 127) return 7; 
else if (abs(coeff) 
else if (abs(coeff) 
else if (abs(coeff) 
else { 

sema_wait(&par_sema); /* wait for C RTL */ 
printf("problem encountered in Csize function, coeff out of range.\n"); 
sema_signal(&par_sema); /* release C RTL */ 
exit(l); } 

} 

255) return 8; 
511) return 9; 
1023) return 10; 

void Huffman() { 
int ZZ[64], k, r, ssss, rs; 
ULint32 cde; 

/* first 
ZZ[0]=q[0 
ZZ[4]=q[l 
ZZ[8]=q[2 
ZZ[12]=q[ 
ZZ[16]=q[ 
ZZ[20]=q[ 
ZZ[24]=q[ 
ZZ[28]=q[ 
ZZ[32]=q[ 
ZZ[36]=q[ 
ZZ[40]=q[ 
ZZ[44]=q[ 
ZZ[48]=q[ 
ZZ[52]=q[ 
ZZ[56]=q[ 
ZZ[60]=q[ 

re-arrange quantized coefficients 
] 
] 
] 
2 
1 
5 
3 
0 
4 
7 
3 
3 
7 
4 
6 
5 

[0]; 
[l]; 
[l]; 
[2] 
[4] 
[0] 
[3] 
[7] 
[3] 
[1] 
[5] 
[6] 
[2] 
[6] 
[5] 
[7] 

ZZ[1]= 
ZZ[5]= 
ZZ[9]= 
ZZ[13 
ZZ[17 
ZZ[21 
ZZ[25 
ZZ[29 
ZZ[33 
ZZ[37 
ZZ[41 
ZZ[45 
ZZ[49 
ZZ[53 
ZZ[57 
ZZ[61 

=q[0] 
=q[0] 
=q[3] 
-q[l] 
=q[2] 
=q[6] 
=q[2] 
=q[l] 
=q[5] 
=q[6] 
=q[2] 
=q[4] 
=q[7] 
=q[3] 
=q[7] 
=q[6] 

l]; 
2]; 
0]; 
[3]; 
[3]; 
[0]; 
[4]; 
[6]; 
[2]; 
[2]; 
[6]; 
[5]; 
[3]; 
[7]; 
[4]; 
[7]; 

ZZ[2] = 
ZZ[6]= 
ZZ[10 
ZZ[14 
ZZ[18 
ZZ[22 
ZZ[26 
ZZ[30 
ZZ[34 
ZZ[38 
ZZ[42 
ZZ[46 
ZZ[50 
ZZ[54 
ZZ[58 
ZZ[62 

=q[l] 
=q[0] 
=q[4] 
=q[0] 
=q[3] 
=q[5] 
-qtl] 
-q[2] 
=q[6] 
=q[5] 
=q[l] 
=q[5] 
=q[6] 
=q[4] 
=q[7] 
=q[7] 

in Z 
0]; 
3]; 
[0]; 
[4]; 
[2]; 
[1]; 
[5]; 
[5]; 
[1]; 
[3]; 
[7]; 
[4]; 
[4]; 
[7]; 
[5]; 
[6]; 

ig-Zag 
ZZ[3] = 
ZZ[7]= 
ZZ[11 
ZZ[15 
ZZ[19 
ZZ[23 
ZZ[27 
ZZ[31 
ZZ[35 
ZZ[39 
ZZ[43 
ZZ[47 
ZZ[51 
ZZ[55 
ZZ[59 
ZZ[63 

sequence 
=q[2] 
=q[l] 
=q[3] 
=q[0] 
=q[4] 
=q[4] 
=q[0] 
=q[3] 
=q[7] 
=q[4] 
=q[2] 
=q[6] 
=q[5] 
-q[5] 
=q[6] 
=q[7] 

0]; 
2]; 
[l]; 
[5]; 
[l]; 
[2]; 
[6]; 
[4]; 
[0]; 
[4]; 
[7]; 
[3]; 
[5]; 
[6]; 
[6]; 
[7]; 

/* Encode AC cofficients - procedure from annex F ISO/IEC 10918-1 */ 
k = -1; /* index into zig-zag sequence : -1 codes DC coefficient */ 
r = 0; /* run length of zero coefficients */ 

jumpl: /* jump point for goto. I KNOW! but it was the easiest way */ 

k++; 
if (ZZ[k] == 0) { 

if (k == 63) { 
Append(EHUFSI[0],EHUFCO[0]) ; 
goto jump2; 

} 
r++; 
goto jumpl; 

} 
while (r > 15) { 

Append(EHUFSI[240],EHUFCO[240]); 
r -= 16; 

> 
/* Encode R S ZZ(k) at this point */ 
ssss = Csize(ZZ[k]); 
rs = (r * 16) + ssss; 
Append(EHUFSI[rs],EHUFCO[rs]); 
if (ZZ[k] < 0) ZZ[k]—; 
cde = (ULint32)(ZZ[k]) « (32-ssss); 
Append(ssss,cde); 

r = 0; 
if (k < 63) goto jumpl; 

jump2: /* jump point for jump out of loop */ 
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B.7.2 Code for Worker task 

/* pv2 - parallel version 2 worker task */ 

tinclude <math.h> 
tinclude <float.h> 
tinclude <stdlib.h> 
tinclude "\masters\include\standard.h" 
tinclude <net.h> 

/* Function Prototypes */ 
void DCT(double p[BlockSize]) ; 

int yfBlockSize][BlockSize]; /* level shifted image source block */ 
double Y[BlockSize][BlockSize]; /* DCT Transformed double block */ 
double X[BlockSize]; 

/* Fast Discrete Cosine Transform */ 

void main() { 
int i,j; 
int nbytes,complete; 

for (;;) { /* infinite loop to recieve s process blocks */ 
/* wait for a block to arrive from the Net */ 
nbytes = net_receive(y,Scomplete) ; 

/* set up double matrix Y which is to be transformed / be the result */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) Y[i][j] = (double)y[i][j]; 

/* now do the 2D-FDCTO */ 

/* first dimension - down the columns */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[j][i]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[j][i] = X[j]; 

> 

/* second dimension - accross the rows */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[i][j]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[i][j] = X[j]; 

> 

/* send processed block back to master task */ 
nbytes = net_send((sizeof(double)*BlockSize*BlockSize) ,Y, 1) ; 

} 

/*-

} /* end of infinite for loop */ 

/* Fast Discrete Cosine Transform */ 

void DCT(double Z[BlockSize]) { 
double a[BlockSize], b[BlockSize], c[BlockSize], d[BlockSize] ; 

/* C8F Algorithm */ 

/* first butterfly loop */ 
a[0] = Z[0] + Z[7], 
a[l] = Z[l] + z[6], 
a[2] = Z[2] + Z[5], 
a[3] = Z[3] + Z[4], 
a[4] = Z[3] - Z[4], 
a[5] = Z[2] - Z[5] 
a[6] = Z[l] - Z[6] 
a[7] = Z[0] - Z[7] 

/* second butterfly loop */ 
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b[0] = a[0] + a[3]; 
b[l] = a[l] + a[2]; 
b[2] = a[l] - a[2]; 
b[3] = a[0] - a[3]; 
b[4] = a[4]; 
b[5] = (a[6] - a[5])*cos(pi/4.0); 
b[6] = (a[6] + a[5])*cos(pi/4.0); 
b[7] = a[7]; 

/* third butterfly loop */ 
c[0] = (b[0] +b[l]) * cos(pi/4.0); 
c[l] = (b[01 - b[l]) * cos(pi/4.0); 
c[2] = b[2]*sin(pi/8.0) + b[3]*cos(pi/8.0); /* found mistake here ? */ 
c[3] = b[3]*cos(3.0*pi/8.0) - b[2]*sin(3.0*pi/8.0); 
c[4] = b[4] + b[5]; 
c[5] = b[4] - b[5]; 
c[6] = b[7] - b[6]; 
c[7] = b[7] + b[6]; 

/* fourth & final butterfly loop */ 
d[4] = c[4]*sin(pi/16.0) + c[7]*cos(pi/16.0) ; 
d[5] = c[5]*sin(5.0*pi/16.0) + c[6]*cos(5.0*pi/16.0) 
d[6] = c[6]*cos(3.0*pi/16.0) - c[5]*sin(3.0*pi/16.0) 
d[7] = c[7]*cos(7.0*pi/16.0) - c[4]*sin(7.0*pi/16.0) 

/* now 
Z[0' 
z[i: 
z[2; 
Z[3 
Z[4' 
z[5; 
Z[6' 
z[7; 

calculate 
c[0]/4.0; 
d[4]/4, 
c[2]/4. 
d[6]/4. 
c[l]/4. 
d[5]/4 
c[3]/4 
d[7]/4 

normalized Forward Transform Coefficients */ 

.0; 

.0; 

.0; 

.0; 

.0; 

.0; 

.0; 
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B.8 Include Files 

/* admv3.h */ 

/* file header for ADM files */ 
/* Requires a typedef statement for int32 equating it to a 32 bit number */ 

struct ADMhead { 
char 
int32 
int32 
char 
char 

>; 

int32 Version; 
Description[32]; /* now ends on word boundary */ 
PixAcross; 
PixDown; 
Mode[8]; /* only valid value is "Gray" */ 
filler[76]; 

/* cmpv3.h */ 

/* File Header for Compressed File */ 
/* Requires a typedef statement for int32 equating it to a 32 bit number */ 

struct CMPhead { 
/* now ends on word boundary */ 
/* square blocks only */ 

}; 

/* DC component of first block */ 
/* only valid value is "Gray" */ 

int32 
char 
int32 

char 
char 

Version; 
Description[32] 
BlkSize, 
BlkAcross, 
BlkDown, 
DCBlkl; 
Mode[8]; 
filler[68]; 

/* standard.h */ 

/* file header for Image processing programs 
contains definitions used for standardisation between wordsizes of 
different CPU's */ 

/* Other constants used in the programs */ 
tdefine BlockSize 8 
tdefine pi 3.14159 
tdefine ver 2 

/* type definition for 32-bit integer on local CPU */ 
typedef int int32; 

/* type definition for 32 bit Unsigned integer */ 
typedef unsigned int ULint32; 
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I* uquant.h */ 

/* Uniform Quantization Table 

This is the Luminance Quantization Table K.l specified in Annex K of 
document ISO/IEC 10918-1:1944 (used for 8 bit gray scale images) */ 

unsigned short int Q[8][8] = 
{16, 11, 10, 
{12, 12, 14, 
{14, 13, 16, 
{14, 17, 22, 
{18, 22, 37, 
{24, 35, 55, 
{49, 64, 78, 
{72, 92, 95, 
}; 

{ 
16, 
19, 
24, 
29, 
56, 
64, 
87, 
98, 

24, 
26, 
40, 
51, 
68, 
81, 

103, 
112, 

40, 
58, 
57, 
87, 

109, 
104, 
121, 
100, 

51, 
60, 
69, 
80, 

103, 
113, 
120, 
103, 

61}, 
55}, 
56}, 
62}, 
77}, 
92}, 

101}, 
99} 
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APPENDIX C 

JAVA PARALLEL SIMULATION CODE 

C.1 Introduction 

The following pages in this Appendix contain the code for the Java classes used in the 

parallel simulation algorithm developed and discussed in Chapter 5. 
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C.2 Image file Header Class 

/* admv3.java */ 

/* file header for ADM files Image source 

class Admv3 { 

int Version; 
char Description!] = new char[32]; 
int PixAcross; 
int PixDown; 
char Mode[] = new char[8]; /* 
char filler[] = new char[76]; 

Appendix C - Java Parallel Simulation Code 

file */ 

only valid value is "Gray" */ 
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C.3 Compressed file Header Class 

/* cmpv3.java */ 

/* File Header for Compressed File */ 

class Cmpv3 { 
int Version; 
char Description!] = new char[32]; /* now ends on word boundary */ 
int BlkSize; /* square blocks only */ 
int BlkAcross; 
int BlkDown; 
int DCBlkl; /* DC component of first block */ 
char Mode[] = new char[8]; /* only valid value is "Gray" */ 
char filler[] = new char[68]; 
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C.4 Token Object Class 

/* Token.java 

This class is the Token Object which is passed to each of the 
thread groups, and gives them easy access to control data in 
the simulation. Also contains flags to aid in the avoidance 
of deadlock on synchronous objects (Vectors) 

class Token { 

private int blocksTransformed; 
int blocksFinished; 
private int blocksToProcess; 
private boolean critical; // indicates if thread is in critical reigon 
private boolean time; // scheduler wants thread to give up CPU 
int numWorkers; // number of worker processors in simulation 

Token(int nworkers) { 
super(); 
blocksTransformed = 0; 
blocksFinished = 0; 
blocksToProcess =0; 
critical = false; 
time = false; 
numWorkers = nworkers; 

} 

// 
public void setTotalBlocks(int x) { 

blocksToProcess = x; 
} 

public int totalBlocks() { 
return blocksToProcess; 

} 

public void addBlocksO { 
blocksTransformed++; 

} 

public int numBlocks() { 
return blocksTransformed; 

> 

// 
public void setCritical() { 

critical = true; 
} 

public void clearCritical() { 
critical = false; 

} 

public boolean inCriticalO { 
return critical; 

} 

// 
public void setTime() { 

time = true; 
} 

public void clearTimeO { 
time = false; 

> 

public boolean isTime() { 
return time; 

} 

} 
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C.5 Worker thread Object Class 

Dct.java 

This Thread object is the DCT worker task in the parallel 
simulation, the FDCT is a fast version of Discrete Cosine 
Transform by Chen and Smith 

Note this containd built in delays for Processor 
communication times, and delay factors 

*/ 

import java.util.Vector; 
import Token; 
import j ava.util.NoSuchElementException; 
import Java.lang.Math; 

class Dct extends Thread { 

final double pi = 3.14159; 
int BlockSize; 
Vector blockQ, dctBlockQ; 
Token token; 

int y[][]; /* level shifted image source block */ 
double Y[][j; /* DCT Transformed double block */ 
double X [ ]; 

// DCT constructor 
Dct(int bSize, Vector bQueue, Vector tQueue, Token t, ThreadGroup group, 

String name) { 

super(group,name); 
BlockSize = bSize; 
blockQ = bQueue; 
dctBlockQ = tQueue; 
token = t; 

} 

public void run() { 
int i, j ; 
int nbytes,complete; 

X = new double[BlockSize]; 

/* loop to retreive & process blocks */ 
while (token.numBlocks() < token.totalBlocks()) { 

// get block from the queue 

// first delay associated with receiving 8x8 4 byte per element block 
try { Thread.sleep(0,89); } // physical transmission delay 

catch (Exception e) 
{ System.out.println("Error Wl");System.out.flush() ;} ; 

try { Thread.sleep(0,30); } // processor end comms delay 
catch (Exception e) 

{ System.out.println("Error W2");System.out.flush();} ; 

token.setCritical(); 
try { 

y = (int[][]) blockQ.firstElement(); 
blockQ.removeElementAt(0);} 

catch (NoSuchElementException e) { 
token.clearCritical(); 
if (token.isTimeO ) yield(); 
continue; 

) 
token.clearCritical(); 
if (token.isTime()) yield(); 

// create new double matrix Y 
Y = new double[BlockSize][BlockSize]; 
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/* set up double matrix Y which is to be transformed */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) Y[i][j] = (double)y[i][j]; 

/* now do the 2D-FDCTO */ 

/* first dimension - down the columns */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[j][i]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[j][i] = X[j]; 

/* second dimension - accross the rows */ 
for (i = 0; i < BlockSize; i++) { 

for (j = 0; j < BlockSize; j++) { 
X[j] = Y[i][j]; 

} 
DCT(X); 
for (j = 0; j < BlockSize; j++) Y[i][j] = X[j]; 

// Time adjustment factor 
try { Thread.sleep(87); } catch (Exception e) 

{ putil.writeln("Error 3");} ; 

// place transformed block in a special queue 

// first delay associated with sending 8x8 8 byte per element block 
try { Thread.sleep(0,59); } // processor end comms delay 

catch (Exception e) 
{ System.out.println("Error W3") ,-System.out.flush();} ; 

try { Thread.sleep(0,176); } // physical transmission delay 
catch (Exception e) 

{ System.out.println("Error W4");System.out.flush!);} ; 

token.setCritical(); 
dctBlockQ.addElement(Y); 
token.addBlocks(); 
token.clearCritical(); 
if (token.isTime()) yield(); 

} /* end of infinite for loop */ 

/* Fast Discrete Cosine Transform 

void DCT(double Z[]) { 
double a[], b[], c[], d[]; 

// allocate Arrays 
a = new double[BlockSize]; 
b = new double[BlockSize]; 
c = new double[BlockSize]; 
d = new double[BlockSize]; 

/* C8F Algorithm */ 

/* first butterfly loop */ 
a[0] = Z[0] + Z[7], 
a[l] = Z[l] + Z[6], 
a[2] = Z[2] + Z[5], 
a[3] = Z[3] + Z[4], 
a[4] = Z[3] - Z[4] 
a[5] = Z[2] - Z[5] 
a[6] = Z[l] - Z[6] 
a[7] = Z[0] - Z[7] 

/* second butterfly loop */ 
b[0] = a[0] + a[3]; 
b[l] = a[l] + a [2]; 
b[2] = a[l] - a[2]; 
b[3] = a[0] - a[3]; 
b[4] = a[4]; 
b[5] = (a[6] - a[5])*Math.cos(pi/4.0); 
b[6] = (a[6] + a[5])*Math.cos(pi/4.0); 
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b[7] = a[7]; 

/* third butterfly loop */ 
c[0] = (b[0] + b[l]) * Math.cos(pi/4.0) ; 
c[l] = (b[0] - b[l]) * Math.cos(pi/4.0); 
/* found mistake in published code at this point */ 
c[2] = b[2]*Math.sin(pi/8.0) + b[3]*Math.cos(pi/8.0) ; 

= b[3]*Math.cos(3.0*pi/8.0) - b[2]*Math.sin(3.0*pi/8.0) ; 
= b[4] + b[5], 

c[3] 
c[4] 
C[5] 
c[6] 
C[7] 

= b[4] -
= b[7] -
= b[7] + 

b[5] 
b[6] 
b[6] 

/* fourth & final butterfly loop */ 
d[4] = c[4]*Math.sin(pi/16.0) + c[7]*Math.cos(pi/16.0) ; 
d[5] = c[5]*Math.sin(5.0*pi/16.0) + c[6]*Math.cos(5.0*pi/16.0) 
d[6] = c[6]*Math.cos(3.0*pi/16.0) - c[5]*Math.sin(3.0*pi/16.0) 
d[7] = c[7]*Math.cos(7.0*pi/16.0) - c[4]*Math.sin(7.0*pi/16.0) 

/* now 
Z[0] = 
Z[l] = 
Z[2] = 
Z[3] = 
Z[4] = 
Z[5] = 
Z[6] = 
Z[7] = 

calculate 
c[0]/4.0; 
d[4]/4.0; 
c[2]/4.0; 
d[6]/4.0; 
c[l]/4.0; 
d[5]/4.0; 
c[31/4.0; 
d[7]/4.0; 

normalized Forward Transform Coefficients */ 
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C.6 Send thread Object Class of Master Processor 

/ * 

-i 

Send.java 

This is the Send thread of the master processor in the processor farm 

The purpose of this thread is to read the image file and break the image 
into 8 x 8 blocks it then places the blocks in an area where idle worker 
tasks pick them up and process them 

import java.util.Vector; 
import Token; 
import putil; 
import java.io.FilelnputStream; 
import java.io.IOException; 
import Admv3; 
import Cmpv3; 

public class Send extends Thread { 
// CONSTANTS 
int BlockSize; 
final int flip = 255; 

// Buffers 
byte ifb[]; // the image File buffer - Bused triggers an ifb read 
int y[][]; // the 8 x 8 image block of pixels 
Vector blockQ; // The raw image block Queue 
Token token; 

//Other variables 
int Bused; // incdicates how many blocks have been used since last ifb read 
Admv3 admhead; 
Cmpv3 cmphead; 
FilelnputStream image; 

Send(FileInputStream img, Cmpv3 cmp, Admv3 adm, int bSize, Vector bQueue, 
Token t, ThreadGroup group, String name) { 

super(group,name); 
BlockSize = bSize; 
blockQ = bQueue; 
cmphead = cmp; 
admhead = adm; 
image = img; 
token = t; 

public void run() { 
int done, nbytes=0; 
int i,j, offset, NumBlocks; 
String tmp; 

//System.out.println("Block assemble and transmitter Thread running "); 
NumBlocks = cmphead.BlkAcross * cmphead.BlkDown; 
ifb = new byte[admhead.PixAcross*BlockSize]; // allocate the ifb 
Bused = cmphead.BlkAcross; // caused an ifg read initially 

// now assemble all blocks in the image and place in the processing Queue 
done = 0; 
while (done < NumBlocks) { 

/* Assemble next block to be processed block */ 
if (Bused >= cmphead.BlkAcross) { // initiate a read from the file 

try { image.read(ifb); } 
catch (lOException e) {System.out.println("Image read exception "+e); 

return;}; 
Bused=0; 

} 
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y = new int[BlockSize][BlockSize]; // allocate the new image block 
offset = Bused * BlockSize; 
for (i=0; i < BlockSize; i++) { 

for (j=0; j < BlockSize; j++) { 
y[i][j] = ifb[offset+j] & 255; // because a Java byte is signed 

} 
offset += admhead.PixAcross; 

} 
Bused++; 

// Time adjustment factor 
try { Thread.sleep(3); } catch (Exception e) 
{ putil.writeln("Error 3");} ; 

/* Level shift */ 
for (i=0;i<8;i++) for (j=0;j<8;j++) y[i][j] = y[i] [j]-128; 

// Time adjustment factor 
try { Thread.sleep(2); } catch (Exception e) 
{ putil.writeln("Error 3");} ; 

/* Now send the block on its way */ 
try { Thread.sleep(0,30); } // processor end comms delay 
catch (Exception e) { System.out.println("Error");System.out.flush();} ; 
token.setCritical(); 
blockQ.addElement(y); 
done++; 
token.clearCritical(); 
if (token.isTimeO ) yieldO; 

} 
} 

} 
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C.7 Receive thread Object Class of Master Processor 

/* 
Receive.Java 

This is the Receiveend thread of the master processor in the processor farm 

This thread gets data from the network performs quantization, the JPEG 
huffman coding routines, and then stores the block 

*/ 

import java.util.Vector; 
import Token; 
import putil; 
import java.lang.Math; 
import j ava.util.NoSuchElementException; 
import j ava.io.FileOutputStream; 
import j ava.io.DataOutputStream; 
import java.io.IOException; 

public class Receive extends Thread { 

// CONSTANTS 
int BlockSize; 

/* Uniform Quantization Table 

This is the Luminance Quantization Table K.l specified in Annex K of 
document ISO/IEC 10918-1:1944 (used for 8 bit gray scale images) */ 

short Q[][] = { 
{16, 11, 10, 16, 24, 40, 51, 61}, 
{12, 12, 14, 19, 26, 58, 60, 55}, 
{14, 13, 16, 24, 40, 57, 69, 56}, 
{14, 17, 22, 29, 51, 87, 80, 62}, 
{18, 22, 37, 56, 68, 109, 103, 77}, 
{24, 35, 55, 64, 81, 104, 113, 92}, 
{49, 64, 78, 87, 103, 121, 120, 101}, 
{72, 92, 95, 98, 112, 100, 103, 99} 

}; 

// Other variables 
int EHUFSI[]; // huffman encoding tables 
int EHUFCO[]; 
FileOutputStream cimage; 
Token token; 
Vector dctBlockQ; // The Transformed Block Queue 
DataOutputStream dos; 
int buff = 0 ; // the 32 bit buffer used to write huffman codes 
int count = 0 ; // counts the number of bits used in buff 
int BlocksProcessed; 

long total =0; // counts the total number of bits in encoding 
double Y[][]; /* DCT Transformed double block */ 
int q[][]; // Quantized block 

Receive(FileOutputStream cimg, int bSize, Vector dctQueue, Token t, 
int hctsif], int hctco[], ThreadGroup group, String name) { 

super(group,name); 
EHUFSI = hctsi; 
EHUFCO = hctco; 
BlockSize = bSize; 
dctBlockQ = dctQueue; 
cimage = cimg; 
token = t; 
dos = new DataOutputStream(cimage) ; 

} 

public void run() { 

int nbytes, complete, numBlocks; 
int i, j; 

count = 0; 
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numBlocks = token.totalBlocks() ; 

/* loop to recieve & process blocks */ 
while (token.blocksFinished < numBlocks) { 

/* Receive a block from the Processor Farm */ 
try { Thread.sleep(0,59); } // processor end comms delay 
catch (Exception e) { System.out.println("Error Rl"); 

System.out.flush();} ; 
token.setCritical(); 
try {Y = (doublet][]) dctBlockQ.firstElement() ; 

dctBlockQ.removeElementAt(0);} 
catch (NoSuchElementException e) { 

token.clearCritical(); 
if (token.isTime ()) yieldO; 
continue;} 

token.clearCritical(); 
if (token.isTime()) yield(); 

/* Quantization using the uniform quantization table in quant.h */ 
q = new int[BlockSize][BlockSize]; 
for (i=0;i<BlockSize;i++) 
for (j=0;j<BlockSize;j++) 

q[i][j] = (int) (<Y[i][j]/Q[i][j])+ (Y[i][j]>0 ? 0.5 : -0.5)); 

// Time adjustment factor 
try { Thread.sleep(5); } 
catch (Exception e) { putil.writeln("Error 3");} ; 

/* do the Huffman encoding as defined in ISO/IEC 10918-1 Annex F */ 
Huffman(); 

// Time adjustment factor includes huffman and store block stuff 
try { Thread.sleep(3); } 
catch (Exception e) { putil.writeln("Error 3");} ; 

token.blocksFinished++; 

} 
/* flush the buffer if there is anything in it */ 
if (count > 0) { 

/* shift it left to the MSB */ 
buff « = 32-count; 
try {dos.writelnt(buff);} 

catch (IOException e) {System.out.println("write error");} 
total += count; 

} 

/* closed the compressed file */ 
try {dos.close 0;} catch (IOException e) {} 

} 

// 

/* Huffman encoding routines based on quantised block q */ 

/* Append assumes the code parameter has all bits aligned to the MSB */ 
void Append(int bits, int code) { 

int i; 

for (i=l; i<=bits; i++) { 
buff « = 1; 
buff += (code » 31) & 1; 
code « = 1; 
count ++; 

if (count == 32) { /* 32 bit integer 32 bits = 4 bytes */ 
try {dos.writelnt(buff);} 
catch (IOException e) {System.out.println("write error");) 
count = 0; 
buff = 0; 
total += 32; 

} 
} 

} 

int Csize (int coeff) { 
if (Math.abs(coeff) == 1) 

return 1; 
else if (Math.abs(coeff) <= 3) 

return 2; 
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) 

else if (Math.abs(coeff) <= 7) 
return 3; 

else if (Math.abs(coeff) <= 15) 
return 4; 

else if (Math.abs(coeff) <= 31) 
return 5; 

else if (Math.abs(coeff) <= 63) 
return 6; 

else if (Math.abs(coeff) <= 127) 
return 7; 

else if (Math.abs(coeff) <= 255) 
return 8; 

else if (Math.abs(coeff) <= 511) 
return 9; 

else if (Math.abs(coeff) <= 1023) 
return 10; 

else { 

System.out.println("problem encountered in Csize function, 
coeff out of range.\n"); 

System.exit(1); 
} 
return 0; // this should never be reached, but must be here 

void Huffman() { 
int ZZ[], k, r, ssss, rs; 
int cde; 
ZZ = new int[64]; 

/* first re-arrange 
ZZ[0]=q[0][0]; ZZ[: 
ZZ[4]=q[l] 
ZZ[8]=q[2] 
ZZ[12]=q[2 
ZZ[16]=q[l 
ZZ[20]=q[5 
ZZ[24]=q[3 
ZZ[28]=q[0 
ZZ[32]=q[4 
ZZ[36]=q[7 
ZZ[40]=q[3 
ZZ[44]=q[3 
ZZ[48]=q[7 
ZZ[52]=q[4 
ZZ[56]=q[6 
ZZ[60]=q[5 

[0]; 
[l]; 
[l]; 
] [2] 
] [4] 
] [0] 
] [3] 
] [7] 
][3] 
] [1] 
] [5] 
] [6] 
] [2] 
] [6] 
] [5] 
] [7] 

ZZ[1]= 
ZZ[5]= 
ZZ[9]= 
ZZ[13] 
ZZ[17] 

• ZZ[21] 
• ZZ[25] 
• ZZ[29] 
ZZ[33] 
ZZ[37] 
ZZ[41] 
ZZ[45] 
ZZ[49] 
ZZ[53] 
ZZ[57] 
ZZ[61] 

quantized 
;q[0] [1]; 
q[0] [2]; 
q[3] [0]; 
=q[l][3], 
=q[2][3], 
=q[6] [0], 
=q[2][4], 
=q[l][6] 
=q[5][2], 
=q[6][2], 
=q[2][6], 
=q[4] [5], 
=q[7][3], 
=q[3][7], 
=q[7] [4], 
=q[6] [7], 

coefficients in 
ZZ[2]=q[l] [0]; 
ZZ[6]=q[0][3]; 
ZZ[10 
ZZ[14 
ZZ[18 
ZZ[22 
ZZ[26 
ZZ[30 
ZZ[34 
ZZ[38 
ZZ[42 
ZZ[46 
ZZ[50 
ZZ[54 
ZZ[58 
ZZ[62 

=q[4][0] 
=q[0][4] 
=q[3][2] 
=q[5][1] 
=q[l][5] 
=q[2][5] 
=q[6][1] 
=q[5][3] 
=q[l][7] 
=q[5][4] 
=q[6][4] 
=q[4][7] 
=q[7][5] 
=q[7][6] 

Zig-Zag 
ZZ[3] 
ZZ[7] 
ZZ[11 
ZZ[15 
ZZ[19 
ZZ[23 
ZZ[27 
ZZ[31 
ZZ[35 
ZZ[39 
ZZ[43 
ZZ[47 
ZZ[51 
ZZ[55 
ZZ[59 
ZZ[63 

sequence 
•q[2] [0]; 
:q[l] 
-q[3 
=q[0 
=q[4 
=q[4 
=q[0 
=q[3 
=q[7 
=q[4 
=q[2 
=q[6 
=q[5 
=q[5 
=q[6 
=q[7 

[2]; 
I [1] 
I [5] 
I [1] 
I [2] 
I [6] 
I [4] 
[0] 
[4] 
[7] 
[3] 
[5] 
[6] 
[6] 
[7] 

/* Encode AC cofficients - procedure from annex F ISO/IEC 10918-1 */ 
k = -1; /* index into zig-zag sequence : -1 codes DC coefficient */ 
r = 0; /* run length of zero coefficients */ 

while (true) { // jumpl: 

k++; 
if (ZZ[k] == 0) { 

if (k == 63) { 
Append(EHUFSI[0],EHUFCO[0]) ; 
break; // goto jump2 

} 
r++; 
continue; // goto jumpl 

} 
while (r > 15) { 

Append(EHUFSI[240],EHUFCO[240]); 
r -= 16; 

} 
/* Encode R & ZZ(k) at this point */ 
ssss = Csize(ZZ[k]); 
rs = (r * 16) + ssss; 
Append(EHUFSI[rs],EHUFCO[rs] ); 
if (ZZ[k] < 0) ZZ[k]—; 
cde = (ZZ[k]) « (32-ssss); 
Append(ssss,cde); 
r = 0; 
if (k >= 63) break; // if k<63 goto jumpl 

} 
// jump2: 
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C.8 Controlling Thread and Simulation algorithm Class 

Master.java 

This is the controlling thread of the simulation. 

This main program, opens the image file, reads the header andsets up the 
header of the compressed file. 

This program the creates the thread groups representing the processors, 
assigns the threads to the thread groups, then performs the multi-processor 
simulation. Simulating the processor farm paradigm of the parallel 
JPEG algorithm. 

'/ 

import Token; 
import java.lang.Thread; 
import java.util.Vector; 
import putil; 
import j ava.io.*; 

// input and output file headers 
import Admv3; 
import Cmpv3; 

public class Master { 

// any Constants 
static final int BlockSize = 8; 
static final String hufftab = "ACtable.dat"; 

static final int numProcessors = 8; // Number of processors in simulation 
static final int timeSlice = 100; // Time slice that each Processor gets 

/* variables for Huffman encoding procedures */ 
static int EHUFSI[]; // huffman encoding tables 
static int EHUFCOf]; 

// FILE OBJECTS 
static FilelnputStream image; 
static FileOutputStream cimage; 

static Cmpv3 cmpheader = new Cmpv3(); // make an output file header 
static Admv3 admheader = new Admv3(); // make an input file header 

/* variables used for communication between Receive S Send threads */ 
static Vector BlockQueue = new Vector(); // raw image block queue 
static Vector dctBlockQueue = new Vector(); // Queue of DCT transformed blocks 

/* */ 
public static void main(String args[]) { 

int j,k; 
String str; 
char c; 

OpenFiles(); 
BuildCodes(); 
System.out.println("SCHEDULING " ) ; 
Scheduler(); 

} 

/* 
This is the main Scheduling algorithm, the multi-processor system is 
simulated by 

ThreadGroups simulating processors 
Threads simulating processes 

A Vector is used to hold the ThreadGroups, thus the Vector has one entry for 
each processor. Processors are PO ... Pi where i is determined by the 
constant numProcessors. 

the Threads allocated are Send —> PO 
Receive — > PO 
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A copy of Dct to every other processor Dct — > PI .. Pn 

Each ThreadGroup is then Time Sliced by a number of milliseconds setermined 
by the constant timeSlice 

public static void Scheduler() { 
String str; 
char c; 
Send sender; // Send thread object 
Receive receiver; // Receive thread object 
Dct dct; // DCT (Worker) thread object 
Vector processorQueue = new Vector(); // Holds all Simulated Processors 
Vector processQueue = new Vector(); 
Token token; 

ThreadGroup schedGroup; // Thread group containing this scheduler 
Thread schedThread; // The scheduler thread - this thread 

// general purpose variables 
int i, j, activeThreads, activeProcessors; 
ThreadGroup processor; 
Thread[] processList; 
Thread process; 
int round; 
DataOutputStream fp= null; 
// 

// Initialize scheduler thread and Group 
schedThread = Thread.currentThreadf) ; 
schedThread.setName("masterThread") ; 
schedGroup = schedThread.getThreadGroup() ; 
schedThread.setPriority(Thread.MAX_PRIORITY); // priority of scheduler Thread 

// Create the Token 
token = new Token(numProcessors-1) ; 
token.setTotalBlocks(cmpheader.BlkAcross * cmpheader.BlkDown); 

// now create the simulated Processors 
System.out.println("\nCreating "+numProcessors+" simulated processors ...\n"); 
for (i = 0; i < numProcessors; i++) { 

// create processor with name PO . . Pn 
processor = new ThreadGroup("P"+i) ; 
processor.setMaxPriority(Thread.NORM_PRIORITY); // set its priority 
processorQueue.addElement(processor); // add to queue of processors 

} 

// now add Threads (processes) to the Thread Groups (simulated Processors) 

// First the processor PO - Master processor 
processor = (ThreadGroup) processorQueue.elementAt(0); // get processor PO 

// create and add new Send thread 
sender = new Send(image, cmpheader, admheader, BlockSize, BlockQueue, 

token, processor, "sender"); 
// Now Start the new Thread but suspend it so it doesnt get any processor time 
sender.start(); sender.suspend(); 

// create and add new Receive thread 
receiver = new Receive(cimage, BlockSize, dctBlockQueue, token, 

EHUFSI, EHUFCO, processor, "receiver"); 
receiver.start(); receiver.suspend(); 

// Now all other processors Pi ... Pn - Worker processors 
for (i=l; KprocessorQueue.size(); i++) { 

processor = (ThreadGroup) processorQueue.elementAt(i) ; 
dct = new Dct(BlockSize, BlockQueue, dctBlockQueue, token, 

processor, "dctTask"); 
// Start the new Thread and suspend it so it doesnt get processor time 
dct.startO; dct.suspend() ; 

} 

// now list all process ThreadGroups 
schedGroup.list(); 

System.out.println("Beginning Simulation with "+token.numWorkers+ 
" Worker processors"); 

try { Thread.sleep(5000) ; } 
catch (Exception e) { putil.writeln("Error 3");} ; 
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1/ now schedule all Processors (Thread Groups) 
round = 0; 

// continue simulating until all processes on all processors have finished 
while (true) { 

activeProcessors = processorQueue.size() ; 
if (activeProcessors == 0) break; // we have finished 
i = 0; 
while (i < activeProcessors) { 

processor = (ThreadGroup) processorQueue.elementAt(i); 
//enumerate all active threads in this group 
activeThreads = processor.activeCount(); 
// if no active threads then remove from the ThreadGroup list 
if (activeThreads == 0) { 

processorQueue.removeElementAt(i); 
activeProcessors—; 
System.out.println("Processor "+processor.getName()+ 

" removed from processor queue"); 
continue; 

} 
// create a big enough array for the processes and enumerate 
// from the ThreadGroup 
processList = new Thread[activeThreads]; 

processor.enumerate(processList); 
//now give each process in this Processor a share of the time slice 
for (j = 0; j < activeThreads; j++) ( 

process = processList[j]; 
// pause for garbage collector 
try { Thread.sleep(25); } 
catch (Exception e) { System.out.println("Error 0"); 

System.out.flush();} ; 
process.resume(); 
// put control thread to sleep 
try { Thread.sleep(timeSlice/activeThreads); } 
catch (Exception e) { System.out.println("Error 1"); 

System.out.flush();} ; 
// check for critical section 
while (token.inCritical()) { 

System.out.println("Critical situation Detected"); 
token.setTime(); 
Thread.yield(); 

} 
if (token.isTime()) { 

token.clearTime(); 
System.out.println("Critical resolved"); 

} 
process.suspend(); 

} 
i++; // now go on to the next processor 

} 
round++; 

// pause for garbage collector 
try { Thread.sleep(lOOO); } 
catch (Exception e) { System.out.println("Error 2");} ; 

} 
try {fp.close 0;} catch (IOException e) {}; 
} 

*/ 

static void OpenFiles() { 

ByteArraylnputStream bis; 
ByteArrayOutputStream bos; 
DatalnputStream dis; 
DataOutputStream dos; 

byte^admHI] = new byte[128]; // ADM header itself as a byte array 

System.out.println("Reading Image header !"); 

// open the image file 
try {image = new FileInputStream("demo4.adm"); } 
catch (IOException e) { System.out.println("Cannot open image file ); 

System.exit(0); }; 
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II read the ADM header 
try { image.read(admH); } catch (IOException e) {return;}; 
bis = new ByteArraylnputStream(admH); 
dis = new DatalnputStream(bis); 
try { 

admheader.Version = reverse (dis.readlntO ); 
for (i = 0; i < 32; i++) 

{ admheader.Description[i] = (char) dis.readByte(); } 
admheader.PixAcross = reverse(dis.readlnt()) ; 
admheader.PixDown = reverse(dis.readlnt()); 
for (i=0; i< 8; i++) admheader.Mode[i] = (char) dis.readByte(); 

} 
catch (IOException e) {return;}; 
System.out.println("Constructing Compressed File Header !"); 
// Now set up the CMP header 
cmpheader.Version = admheader.Version; 
for (i=0; i<admheader.Description.length; i++) 

cmpheader.Description[i] = admheader.Description[i] ; 
cmpheader.BlkSize = BlockSize; 
cmpheader.BlkAcross = admheader.PixAcross / BlockSize; 
cmpheader.BlkDown = admheader.PixDown / BlockSize; 
cmpheader.DCBlkl = 0; 
for (i=0; i<admheader.Mode.length; i++) 

cmpheader.Mode[i] = admheader.Mode[i]; 

// open the compressed file 
try {cimage = new FileOutputStream("demo4.cmp"); } 
catch (IOException e) { System.out.println("Cannot open compressed file") 

System.exit(0) ; }; 
// write cmpheader out to compressed file 
bos = new ByteArrayOutputStream(); 
dos = new DataOutputStream(bos); 
try { 

dos.writelnt(cmpheader.Version) ; 
for (i=0; i<32; i++) dos.write((int) cmpheader.Description[i]); 
dos.writelnt(cmpheader.BlkSize) ; 
dos.writelnt(cmpheader.BlkAcross); 
dos.writelnt(cmpheader.BlkDown); 
dos.writelnt(cmpheader.DCBlkl) ; 
for (i=0; i<8; i++) dos.write((int) cmpheader.Mode[i]); 
for (i=0; i<68; i++) dos.write((int) cmpheader.filler[i] ) ; 
// now write the header 
cimage.write(bos.toByteArray() ); } 

catch (IOException e) { }; 
// close files 
/* try { image.close() ; 
cimage.close(); } 
catch (IOException e) {}; 
*/ 

/* 

// used to reverse the orser of bytes in an integer 
// Java expects ints stored MSB first 
static int reverse(int i) { 

int inta, intb, intc, intd, result; 

inta = (i » 24); 
intb = (i « 8); intb = (intb » 24) 
intc = (i « 16); intc = (intc » 24), 
intd = (i « 24); intd = (intd » 24) 
return (intd « 24) + (intc « 16) + (intb « 8) + inta; 

/* 
/* Huffman Code Table initialization Routines */ 

static void BuildCodes() { 

FilelnputStream table = null; 
StreamTokenizer tis; 
Reader r; 

int BITS[] = new int[16]; 
int HUFFVALU, HUFFSIZEU, HUFFCODE[] ; 
int i, j, k, lastk, code, si, HVTsze=0; 

System.out.println("\n Building Huffman Code Tables\n"); 
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II open the huffman table file 
try { table = new FilelnputStream(hufftab); } 
catch (IOException e) { System.out.println("Cannot open huffman table file"); 

System.exit(0); }; 

r = new BufferedReader(new InputStreamReader(table)); 

tis = new StreamTokenizer(r); // create a token input stream from table 
tis.resetSyntax(); 
tis.wordChars('a', 'z'); 
tis.wordChars('A', 'Z'); 
tis.wordChars('0', '9'); 
tis.wordChars(128 + 32, 255); 
tis.whitespaceChars(0, ' ' ) ; 
tis.eollsSignificant(false); 
tis.lowerCaseMode(false) ; 

/* read the code lengths (for luminance ) Annex K ISO/IEC 10918-1 */ 
try { 

for (i=0;i<16;i++) { 
tis.nextToken(); 
BITS[i] = putil.hexStrToInt(tis.sval); 

} 
} 
catch (IOException e) { 

System.out.println("Trouble reading huffman code tables"); 
System.exit(0); }; 

/* Now read the Huffman values associated with the code lengths */ 
for (i=0;i<16;i++) HVTsze += BITS[i]; 

HUFFVAL = new int[HVTsze]; 
try { 

for (i=0; i < HVTsze; i++) { 
tis.nextToken(); 
HUFFVAL[i] = putil.hexStrToInt(tis.sval); 

} 
} 
catch (IOException e) { 

System.out.println("Trouble reading huffman code tables"); 
System.exit(0); }; 

try {table.close(); } catch (IOException e) {}; 

/* now follow procedures in Annex C to generate the following tables */ 

/* HUFFSIZE table - slight changes because BITS indexed from 0*1 
HUFFSIZE = new int[HVTsze + 1]; 
k = 0; i = 1; j = 1; 
do { 

while (j <= BITS[i-l]) { 
HUFFSIZEfk] = i; 
k++; 

} 
i++; 
j = i; 

} while (i <= 16 ) ; 
HUFFSIZE[k] = 0; 
lastk = k; 

/* HUFFCODE table */ 
HUFFCODE = new int[HVTsze] ; 
k = 0; code = 0; si = HUFFSIZEfO] ; 
do { 

do { 
HUFFCODE[k] = code; 
code = code + 1; 
k = k + 1; 

} while (HUFFSIZE[k] == si); 
if (HUFFSIZE[k] == 0) break; 
do { 

code = code « 1; 
si = si + 1; 

} while (HUFFSIZE[k] != si); 
} while (HUFFSIZE[k] == si); 
/* Now create encoding procedure code tables EHUFCO & EHUFSI */ 
EHUFCO = new int[256]; 
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EHUFSI = new int[256]; 
for (i = 0; i < 256; i++) { 

EHUFCO[i] = 0; 
EHUFSI[i] = 0; 

} 

k = 0; 
do { 

i = HUFFVAL[k]; 
EHUFSI[i] = HUFFSIZE[k]; 
/* code component - align bits to the MSB end of the 32 bit int */ 
EHUFCOfi] = (HUFFCODEfk]) « (32-EHUFSI ;[i] ) ; 
k++; 

} while (k < lastk); 

/* reallocate some of the memory back */ 
HUFFVAL = null; 
HUFFSIZE = null; 
HUFFCODE = null; 

/* v 

} // end of class definition 
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