
Digital Image Transformation 
and Compression 

A Thesis submitted for examination for the Degree 
of Master of Engineering (Electrical) 

By 

E. Lenc 

B. Eng (Elec.) 

Victoria University of Technology 

Department of Electrical and Electronic Engineering 

Victoria University of Technology 

P.O. Box 14428, M C M C , 

Melbourne, Victoria 8001, 

Australia 

August 1996 



FTS THESIS 
621.367 LEN 
30001005127008 
Lenc, Emil 
Digital image transformation 
and compression 



Statement of Originality 

I, Emil Lenc, hereby declare that this submission is m y own work and that, to the best 

of my knowledge, it contains no material previously published or written by another 

person nor material which to a substantial extent has been accepted for the award of 

any other degree or diploma of a university or other institute of higher learning, except 

where due acknowledgment is made in the text. 

Emil Lenc 



Table of Contents 

Table of Contents i 

List of Figures v 

List of Tables viii 

Abstract x 

Acknowledgments xii 

Abbreviations xiii 

1. Introduction 1-1 

2. Research Background 2-1 

2.1 Introduction 2-1 
2.2 Lossless Compression Techniques 2-2 

2.2.1 Run-Length Coding 2-3 
2.2.2 Statistical Coding 2-3 
2.2.3 Differential Pulse Code Modulation (DPCM) 2-4 

2.3 Lossy Compression Techniques 2-5 
2.3.1 Subsampling 2-5 
2.3.2 Transform Coding 2-6 

2.3.2.1 Kahrunen Loeve Transform 2-7 
2.3.2.2 Discrete Cosine Transform 2-7 
2.3.2.3 Fractal Transform 2-8 

2.4 Interframe Compression Techniques 2-9 
2.4.1 Introduction 2-9 
2.4.2 Predictive 2-9 
2.4.3 Interpolative 2-10 
2.4.4 Motion Prediction 2-10 

2.5 Colour Space Transformation 2-10 
2.5.1 Introduction 2-10 
2.5.2 Quantisation 2-11 
2.5.3 Subsampling 2-11 

2.6 C o m m o n Compression Standards 2-12 
2.6.1 JPEG (Joint Photographic Experts Group) 2-12 
2.6.2 M P E G (Moving Picture Experts Group) 2-13 

3. Outline of Research 3-1 

3.1 Introduction 3-1 
3.2 Research Aims 3-1 

3.2.1 General Aims 3-1 



3.2.2 Specific Aims 3-1 

3.3 Basic Structure of Algorithm 3-2 

3.3.1 The Compression Process 3-3 
3.3.2 The Decompression Process 3-4 

3.4 Testing Platform 3-5 

3.5 Test Procedure 3-6 

3.5.1 Error Measurements 3-6 

3.5.2 Timing Benchmarks 3-8 

3.5.3 Entropy Measurements 3-8 

3.5.4 Output Data Size 3-8 

3.6 The Image Test Set 3-9 

3.6.1 Standard Images 3-9 
3.6.2 Supplementary Images 3-10 

3.6.3 Image Data Format 3-11 

4. The Discrete Cosine Transform 4-1 

4.1 Introduction 4-1 

4.2 The One-Dimensional D C T 4-2 
4.3 The Two-Dimensional D C T 4-6 

4.3.1 The Two-Dimensional DCT-II 4-6 

4.3.2 The Two-Dimensional IDCT-II 4-6 

4.3.3 Basis Functions of the Two-dimensional D C T 4-7 
4.4 Factors Affecting Compression After Transformation 4-8 

4.4.1 The D C T Block Size 4-8 
4.4.2 Quantisation of D C T Coefficients 4-11 

4.4.2.1 Visual Importance of the Coefficients 4-11 
4.4.2.2 Errors Introduced Through Quantisation 4-12 

4.4.2.3 Entropy Improvements Through Quantisation 4-13 
4.5 Pre-processing 4-14 

4.5.1 Input Data Ordering 4-15 

4.5.2 Biasing 4-16 

4.6 The Software Implementation 4-17 
4.6.1 The Forward Transform 4-17 

4.6.2 The Inverse Transform 4-21 

4.7 The Hardware Implementation 4-21 

4.7.1 The SGS-Thomson STV3200 4-21 

4.7.2 The I B M Hardware D C T Interface Description 4-22 
4.7.3 The Driver for the Interface 4-24 

4.7.3.1 Driver Initialisation 4-25 

4.7.3.2 The Hardware Forward D C T 4-25 

4.7.3.3 The Hardware Inverse D C T 4-26 

4.7.3.4 Problems Associated With the Hardware D C T 4-27 
4.8 Post-Processing 4-28 

4.8.1 Bias Removal 4-28 

4.8.2 Re-Ordering 4-28 

4.9 Results 4-29 

4.9.1 Reconstruction Error 4-29 

ii 



4.9.2 Timing Benchmarks 4-31 
4.9.3 Entropy Effects 4-32 

4.10 Conclusion to the Chapter 4-33 

5. The Quantiser 5-1 

5.1 Introduction 5-1 

5.2 The D C T Coefficient Properties 5-2 
5.2.1 Numerical Properties 5-2 

5.2.2 Functional Properties 5-8 

5.3 Quantisation Effects O n D C T Coefficients 5-10 

5.3.1 Error Effects O n the Reconstructed Image Data 5-10 

5.3.2 Numerical Effects of Quantisation 5-15 

5.4 JPEG Quantiser 5-19 

5.5 Development in the Compression Algorithm 5-22 
5.6 Quantiser Realisation 5-23 

5.7 Results 5-27 
5.7.1 Frequency Distribution 5-27 
5.7.2 Reconstruction Error 5-28 

5.7.3 Timing Benchmarks 5-30 
5.7.4 Entropy Effects 5-30 

5.8 Conclusion to the Chapter 5-32 

6. The Run-Length Coder 6-1 

6.1 Introduction 6-1 

6.2 A Basic Run-Length Coder 6-1 
6.3 The D C Coefficients 6-4 

6.4 Input Statistics 6-6 
6.5 Input Ordering 6-10 

6.6 Run-Length Coder Design 6-12 
6.7 Results 6-16 

6.7.1 Timing Benchmarks 6-16 
6.7.2 Entropy Effects 6-16 

6.8 Conclusion to the Chapter 6-17 

7. The Statistical Coder 7-1 

7.1 Introduction 7-1 

7.2 The Huffman Coder 7-3 

7.2.1 The Fixed Huffman Coder 7-6 

7.2.2 The Adaptive Huffman Coder 7-8 

7.3 The Arithmetic Coder 7-9 

7.3.1 Fixed 7-12 

7.3.2 Adaptive 7-13 

7.4 Results 7-14 
7.4.1 Image Size 7-14 

7.4.2 Timing Benchmarks 7-16 
7.4.3 Entropy Effects 7-18 

7.5 Conclusion 7-19 

iii 



8. Algorithm Performance 8-1 

8.1 Introduction 8-1 
8.2 Compressed Image Size 8-2 

8.3 MSE Levels Introduced By the Algorithms 8-4 

8.4 Timing Benchmarks 8-5 

9. Conclusions 9-1 

9.1 Discussion of the Project 9-1 

9.1.1 Project Aims 9-1 
9.1.2 Algorithm Disadvantages 9-3 

9.1.3 Algorithm Advantages 9-3 

9.2 Suggestions For Future Work 9-4 
9.2.1 Adapting the Algorithm For a Different Platform 9-4 

9.2.2 Adapting the Algorithm For Motion Pictures 9-5 

9.2.3 Adapting the Algorithm For Colour Images 9-5 

10. Bibliography 10-1 

Appendix A Image Test Set A-1 

Standard Images (512x512) A-1 

Standard Images (256x256) A-15 

Supplementary Images A-23 

Appendix B Software DCT Algorithm B-1 

Software DCT Header File-DCT.H B-1 

Software DCT Source File - DCT.C B-2 

Appendix C Hardware DCT Interface C-1 

Schematic Diagram of STV3200 Interface C-1 

IBM Decoder Contents for STV3200 Interface C-2 

STV3200 Driver Header File - HDCT.H C-3 

STV3200 Driver Source File - HDCT.C C-4 

Appendix D Algorithm Software D-1 

WTNDCT.DEF - Definition File D-1 

WTNDCT.RC - Resource File D-2 

WINDCT.CPP - Main Program D-3 

Huffman Coder - Fixed D-21 

Huffman Coder - Adaptive D-23 
Arithmetic Coder - Fixed D-26 

Arithmetic Coder - Adaptive D-30 

iv 



List of Figures 
Figure Caption Page 

3-1 The basic structure of the OptIC compression and 
decompression algorithm 3-2 

3-2 P P M Image header format 3-11 
4-1 Basis functions for DCT-II, N=16 [RAO90] 4-5 
4-2 Basis functions for the 2D-DCT-II, N=l 6 4-7 
4-3 A comparison of 4x4, 8x8 and 16x16 Discrete Cosine 

Transforms on Tiffany.Y 4-9 
4-4 A comparison of 4x4, 8x8 and 16x16 Discrete Cosine 

Transforms on Testpatt.Y 4-9 
4-5 Normalised M S E showing coefficient sensitivity to quantisation 4-13 
4-6 Normalised sum of the entropies of all intensity images showing 

the effect of coefficient quantisation 4-14 
4-7 Illustration of the data ordering procedure 4-15 
4-8 Images data biasing 4-17 
4-9 Flowgraph for B.G.Lee's DCT-II algorithm [RAO90] 4-19 

4-10 Image data bias removal 4-28 
4-11 Illustration of the data re-ordering procedure 4-29 
5-1 Frequency of D C T coefficient symbols 5-3 
5-2 Most negative magnitudes of D C T coefficients 5-4 
5-3 Average negative magnitudes of D C T coefficients 5-5 
5-4 Most positive magnitudes of D C T coefficients 5-5 
5-5 Average positive magnitudes of D C T coefficients 5-6 
5-6 A n example of quantisation of a signal with low intensity data 5-9 
5-7 A n example of quantisation of a signal with high magnitude and 

high frequency content 5-10 
5-8 Maximum M S E obtained with coefficients scaled by a factor of 

2 5-11 
5-9 Maximum M S E obtained with coefficients scaled by a factor of 

4 5-12 
5-10 Maximum M S E obtained with coefficients scaled by a factor of 

8 5-12 
5-11 Maximum M S E obtained with coefficients scaled by a factor of 

16 5-13 
5-12 Maximum M S E for quantisation of coefficients along diagonal of 

coefficient matrix 5-14 
5-13 Frequency of D C T coefficient symbols 5-16 
5-14 A simple non-uniform quantiser 5-17 

5-15 Frequency of D C T coefficient symbols after non-uniform 

quantisation 5-18 
5-16 Errors introduced in the JPEG quantiser 5-22 
5-17 A comparison with the OptIC algorithm 5-22 

5-18 Modified forward and inverse hardware D C T driver software 5-23 
5-19 Characteristics of the eight quantisation types 5-26 

v 



5-20 Frequency of D C T coefficient symbols after quantisation 5-28 
6-1 A typical sequence of symbols 6-1 
6-2 A run-length coded sequence - technique 1 6-2 
6-3 A run-length coded sequence - technique 1 6-3 
6-4 Probability of a zero symbol value for each coefficient 6-6 
6-5 An example using the JPEG ordering method 6-7 
6-6 An example using the OptIC ordering method 6-8 
6-7 Number of runs per given coefficient symbol in image test set 6-13 
7-1 Symbols frequencies for the run-length coded images 7-2 
7-2 A sample Huffman coding process [HUF52] 7-5 
7-3 Arithmetic coded example for the sequence {E, A, I, I, !} 

[WIT87] 7-10 
A-1 Airplane. Y original image A-1 
A-2 Airplane.Y reconstructed image A-2 
A-3 Baboon.Y original image A-3 
A-4 BaboonY reconstructed image A-4 
A-5 Lena.Y original image A-5 
A-6 Lena.Y reconstructed image A-6 
A-7 Peppers.Y original image A-7 
A-8 PeppersY reconstructed image A-8 
A-9 Sailboat.Y original image A-9 
A-10 Sailboat.Y reconstructed image A-10 
A-ll Splash.Y original image A-ll 
A-12 SplashY reconstructed image A-12 
A-13 Tiffany Y original image A-13 
A-14 Tiffany.Y reconstructed image A-14 
A-15 Beansl Y original image A-15 
A-16 Beansl Y reconstructed image A-15 
A-17 Beans2Y original image A-16 
A-18 Beans2.Y reconstructed image A-16 
A-19 Couple.Y original image A-17 
A-20 CoupleY reconstructed image A-17 
A-21 Girll.Y original image A-18 
A-22 Girll.Y reconstructed image A-18 
A-23 Girl2.Y original image A-19 
A-24 Girl2.Y reconstructed image A-19 
A-25 GirD.Y original image A-20 
A-26 GirB.Y reconstructed image A-20 
A-27 House.Y original image A-21 
A-28 House Y reconstructed image A-21 
A-29 Tree.Y original image A-22 

A-30 Tree.Y reconstructed image A-22 
A-31 Testpatt.Y original image A-23 
A-32 Testpatt.Y reconstructed image A-24 
A-33 Wendyl.Y original image A-25 
A-34 Wendyl.Y reconstructed image A-26 

A-35 Wendy2.Y original image A-27 
A-36 Wendy2.Y reconstructed image A-28 

vi 



A-37 Wendy3.Y original image A-29 
A-38 Wendy3.Y reconstructed image A-30 

vii 



List of Tables 
Table Caption Page 

2.1 A comparison of the JPEG algorithm with OptIC 2-12 
3.1 Statistical characteristics of the 512x512x8 bit standard images 3-9 
3.2 Statistical characteristics of the 256x256x8 bit standard images 3-10 
3.3 Statistical characteristics of the 512x512x8 bit supplementary 

images 3-10 
4.1 Port functions for the I B M D C T interface 4-23 
4.2 Bit definitions for all ports of the I B M D C T interface 4-24 
4.3 Image reconstruction error for software and hardware D C T s of 

various sizes 4-30 
4.4 Time required to complete the specified cosine transform with 

block size of 4x4, 8x8 and 16x16 4-31 
4.5 Entropy of the image before and after using the software and 

hardware D C T 4-33 
5.1 Atypical J P E G quantisation matrix [PEN90] 5-20 
5.2 Coefficient quantisation types 5-25 
5.3 Image reconstruction error for the non-uniform and J P E G 

quantiser 5-29 
5.4 Entropy of the image after quantisation 5-31 
6.1 Run-length coding technique 1 6-2 
6.2 Run-length coding technique 2 6-3 
6.3 Entropy improvements gained by using D C difference coding 6-5 
6.4 Results obtained using the J P E G ordering method 6-8 
6.5 Results obtained using the OptIC ordering method 6-9 
6.6 Scanning order for blocks in a 256x256 image after 

transformation 6-11 
6.7 Ordering for coefficients after transformation, where the 

coefficients are represented by (x,y) 6-11 
6.8 Run-length coding of zero symbol runs 6-14 
6.9 Run-length coding of short runs of highly probable symbols 6-14 
6.10 Run-length codes for large runs 6-14 
6.11 Entropy of image data after run-length coding 6-17 
7.1 Step by step definition of aHuffman code 7-4 
7.2 Huffman codes for the sample symbols 7-5 
7.3 A sample probability distribution 7-9 

7.4 Image sizes after compression using various statistical coders 7-14 
7.5 Image sizes after compression 7-15 

7.6 Times for the full compression of the images using various 
statistical coders 7-16 

7.7 Times for the full decompression of the images using various 

statistical coders 7-17 
7.8 Image entropies after compression 7-19 

viii 



8.1 A comparison of intensity image sizes after compression with 
D P C M , JPEG and the new algorithm 

8.2 A comparison of green image sizes after compression with 
D P C M , JPEG and the new algorithm 

8.3 M S E introduced after reconstruction of intensity images using 
D P C M , JPEG and the new algorithm 

8.4 M S E introduced after reconstruction of green images using 
D P C M , JPEG and the new algorithm 

ix 



Abstract 

Compression algorithms have tended to cater only for high compression ratios at 

reasonable levels of quality. Little work has been done to find optimal compression 

methods for high quality images where no visual distortion is essential. The need for 

such algorithms is great, particularly for satellite, medical and motion picture imaging. 

In these situations any degradation in image quality is unacceptable, yet the resolutions 

of the images introduce extremely high storage costs. Hence the need for a very low 

distortion image compression algorithm. 

An algorithm is developed to find a suitable compromise between hardware and 

software implementation. The hardware provides raw processing speed whereas the 

software provides algorithm flexibility. The algorithm is also optimised for the 

compression of high quality images with no visible distortion in the reconstructed 

image. 

The final algorithm consists of a Discrete Cosine Transform (DCT), quantiser, run-

length coder and a statistical coder. The DCT is performed in hardware using the SGS-

Thomson STV3200 Discrete Cosine Transform. The quantiser is specially optimised 

for use with high quality images. It utilises a non-uniform quantiser and is based on a 

series of lookup tables to increase the rate of computation. The run-length coder is 

also optimised for the characteristics exhibited by high-quality images. The statistical 

coder is an adaptive version of the Huffman coder. The coder is fast, efficient, and 

produced results comparable to the much slower arithmetic coder. 

x 



Test results of the new compression algorithm are compared with those using both the 

lossy and lossless Joint Photographic Experts Group (JPEG) techniques. The lossy 

JPEG algorithm is based on the DCT whereas the lossless algorithm is based on a 

Differential Pulse Code Modulation (DPCM) algorithm. The comparison shows that 

for most high quality images the new algorithm compressed them to a greater degree 

than the two standard methods. It is also shown that, if execution speed is not critical, 

the final result can be improved further by using an arithmetic statistical coder rather 

than the Huffman coder. 

xi 



Acknowledgments 

I wish to express my thanks to both of my supervisors, Alec Simcock and Ann 

Pleasants for their help, guidance and patience. Special thanks to Alec for his curry 

nights that gave me the spice of life to carry on. His special friendship and dedication 

were also a great inspiration. 

Special thanks also should go to my family, in particular to Dong, his help and 

experience in the field of image compression was invaluable. 

Finally, I owe special thanks to my wife Wendy for her untiring support and faith in 

me, without which I would not have had the will to continue. I love you very much! 

xii 



Abbreviations 

CISC Complex Instruction Set Computer. 

DCT Discrete Cosine Transform. 

DPCM Differential Pulse Code Modulation. 

DSP Digital Signal Processing. 

EPLD Electrically Programmable Logic Device. 

HVS Human Visual System. 

JDCT Inverse Discrete Cosine Transform. 

JPEG Joint Photographic Experts Group. 

KLT Kahrunen Loeve Transform. 

M O S Mean Opinion Score 

MPEG Moving Picture Experts Group. 

MSE Mean Square Error. 

OptIC An acronym for the new algorithm described in this thesis. 

PCX A common run-length coding technique for compressing images on an IBM 

PC. 

PPM A common image format which provides no compression. 

RGB Red, Green, Blue colour coding model. 

RISC Reduced Instruction Set Computer. 

YIQ Intensity (Y) and Chrominance (I and Q) colour model. 

xiii 



1. Introduction 

The need for image compression techniques has been apparent for many years now. 

This need has lead to the design of many algorithms and many different 

implementations of these algorithms. The more common of these are described in 

chapter 2. Unfortunately, most of these algorithms concentrate on increasing the 

compression factor rather than maintaining high-fidelity. They are generally aimed for 

video or television quality images where some losses in quality can be tolerated. 

During the literature survey no documentary evidence was found of research 

specifically aimed at high compression rates for high quality images. The emphasis 

here is to prevent the introduction of visible distortions into the image whilst still 

trying to optimise the compression factor. This form of compression would be 

extremely useful in applications where such levels of quality are a necessity e.g. 

medical imaging, satellite imaging and cinema quality motion pictures. The images in 

these applications are often of extremely high resolution and so require large storage 

requirements. They also demand high quality and no distortions are acceptable as 

life/death or profit/loss decisions may depend on very fine data contained within 

them. However, data storage comes at a cost and any increase in compression factor 

can produce a proportional decrease in storage cost. 

This thesis sets out to define a high quality, high speed compression algorithm OptIC 

(Optimised Image Compressor) that can be utilised in applications where such quality 

Introduction 1-1 



is a necessity. Particular emphasis is placed on optimising the compression factor 

whilst maintaining visible image quality. 

Chapter 3 defines the aims of the project, the basic principles of the OptIC algorithm 

required to achieve these aims and how the algorithm will be tested to ensure that the 

aims have been fulfilled. Chapters 4 to 7 explain the functional components of the 

algorithm in further detail. Each of the functional components are described in detail. 

They are then tested as part of a stepwise refinement and conclusions made at the end 

of each chapter describing the effectiveness of the implementation of the OptIC 

algorithm to that point. Chapter 8 takes the entire algorithm and compares it with 

currently existing algorithms to measure its overall performance. 

A final conclusion and discussion of the advantages and disadvantages may be found 

in chapter 9. This chapter also introduces some research avenues that may be pursued 

in future. 

Introduction 1-2 



2. Research Background 

2.1 Introduction 

Digital image compression provides a means by which the storage requirements of a 

digitised image may be reduced with little or no reduction in quality. This is done by 

removing redundancies which may occur within the image. Consider a typical motion 

picture frame with a resolution of 6000 by 4000 pixels (picture elements) each with a 

colour resolution of 24 bits allowing 16 million possible colours. A single frame of 

this image requires 576 Mbits of storage. If this image was compressed by half, the 

total storage costs would be halved. This would also save costs if the image was to be 

transmitted in the compressed form as it could be transmitted in half the time of the 

original. 

A number of factors allow images to be compressed to a greater degree than other 

forms of data, such as text or binary code. Firstly, image data is two-dimensional 

providing correlation in two directions; this allows us to predict adjacent pixel 

intensities with greater accuracy. In motion picture sequences, the data may be 

considered to be three-dimensional thus providing correlation in three directions and 

so further improving the prediction of adjacent pixels. Secondly, the restored image 

data does not need to be exactly the same as the original image since the human eye 

can not perceive certain levels of detail or changes in intensity. 

Research Background 2-1 



A n image compression algorithm is generally, though not always, composed of two 

basic components: a predictive function and a symbol coding function. The predictive 

function attempts to reduce the entropy of the data to be compressed; see chapter 3 for 

the definition of entropy in this context. The predictor does not normally perform any 

compression, it only maps the data into a different form that is more readily 

compressed by the symbol coding function. The predictor can be either lossless or 

lossy depending upon whether or not it introduces errors after reconstruction of the 

data. 

The symbol coding function generally takes the form of an entropy or statistical coder 

and is the component that performs the compression. These coders are lossless and so 

do not introduce any further error into the data after reconstruction. They are treated in 

more detail in chapter 7. 

Both lossless and lossy techniques exist to compress motion pictures and colour 

images. 

2.2 Lossless Compression Techniques 

The term lossless implies that the coding method used is entirely circular or 

reversible, i.e. the compression-decompression procedure returns the image bit for bit 

to its original state. A lossless technique either has no predictor function or has a 

predictor function that is lossless. In general these algorithms will compress images 

by factors in the range of two to three [THE89, QUI93]. 

Research Background 2-2 



It is possible to have a lossy algorithm method which may appear to be lossless. In this 

situation the predictive component of the algorithm only introduces errors in those 

areas which would not be obvious or noticed because of imperfections in the eye. 

2.2.1 Run-Length Coding 

Run-length coding [HUA74, THI92] is most effective in coding data which contains 

large strings of the same value. It replaces large symbol strings with a shorter run-

length code. That code contains an identifier code, the length of the string and the data 

contained within the string. The predictor of the run-length coder assumes that 

adjacent pixels will most probably contain the same value. For this reason, it is 

generally used for compressing cartoon-style images containing large patches of 

uniform colouring. It is also useful for compressing bi-level images such as FAX 

images as they often contain large areas of white space. 

The compression achieved with run-length coding is not very good when it is used to 

code gray-scale or colour images, particularly if the images contain noisy data or 

constantly varying shades and colours. The PCX image format is a commonly used 

image compression format that incorporates run-length coding. 

2.2.2 Statistical Coding 

Statistical or entropy coding [THI92] is useful for compressing data with large 

quantities of a particular data value. This is achieved by assigning shorter codes for 

those data values which are statistically more probable and longer codes for those data 

Research Background 2-3 



values which are less probable. Though it is possible, a statistical coder is not 

particularly effective when used on its own, generally providing only about 20% 

compression. To be effective, it is generally performed after a predictive function. 

An inherent problem of this form of coding is the need for statistical data about the 

input data. Fixed coders assume a particular set of statistics for the input data but 

perform poorly when the input data statistics deviate from this. Adaptive coders 

generate the statistical data on the run and so adjust to varying statistical trends. Both 

of these coders perform poorly when the input data is extremely noisy or random. 

2.2.3 Differential Pulse Code Modulation (DPCM) 

In DPCM [COR90, EKS84] the predictive stage relies on the high degree of 

correlation that occurs between neighbouring pixels in an image. The prediction 

algorithm attempts to predict the value of the next pixel by taking into account the 

values of previous pixels. The difference of the predicted and actual pixel value is 

then stored as this is typically smaller in magnitude than the actual pixel value itself. 

Improved prediction may be obtained by taking into account more pixels on the 

current or previous line of the image to predict the value of the next pixel with greater 

accuracy. Once again, only the difference value would be stored. 

The final stage of the DPCM algorithm is the coding section. Here an entropy coding 

method is used to perform the actual compression. This technique, on average, 

compresses images by a factor of about two. 

Research Background 2-4 



2.3 Lossy Compression Techniques 

In order to obtain higher compression ratios for images, it is necessary to use lossy 

compression techniques. Lossy techniques are not circular, i.e. the compression-

decompression procedure will produce distortions in the reconstructed image. This 

implies that the predictor block is present and that it introduces errors into the 

reconstructed image. 

2.3.1 Subsampling 

Subsampling [GRU92, QUI93] is a very but simple form of image compression. The 

predictor simply reduces the horizontal and vertical resolutions upon compression. 

For example a compression ratio of 4:1 can be achieved by reducing the horizontal 

and vertical resolutions by a factor of two. The decompression process would then 

need to expand each pixel into a 2x2 pixel block containing the same colour and 

intensity of the sub-sampled pixel. The distortion in this case becomes apparent even 

at relatively low rates of compression, as the pixel expansion tends to produce a 

blocking effect. 

Sophisticated subsampling techniques attempt to interpolate between the pixels of the 

compressed image. This, in effect, is a form of low pass filtering and tends to soften 

the appearance of the image. 

Research Background 2-5 



2.3.2 Transform Coding 

Transform coding techniques are typically more computationally intensive than other 

compression methods. This technique requires two steps : transformation and coding 

[EKS84, AM089, BAR88, KOU89, RAB89]. 

The transform forms the predictor function of the algorithm and operates on a two 

dimensional block of data to produce an array in which most of the image information 

is stored in as few elements of the array as possible. The transformed data represents 

the levels of the frequencies in the two-dimensional space within a block. The block 

size of the transform ranges between 4x4 and 16x16. Block sizes smaller than this do 

not produce good results and larger block sizes become computationally difficult to 

calculate. 

The coding stage of this method requires the selection, quantisation and storage of the 

transformed data. The most significant values, i.e. those values which hold the 

majority of the image information are quantised the least so as to keep their values 

intact. The resulting data is then coded using similar coding techniques to those 

mentioned in section 2.2.3 for predictive coding. Note that the quantisation stage 

causes the distortions which may be visible after decompression. 

The compression ratios obtained from transform coding are much greater than those 

obtained from predictive coding. This is especially so where there is little correlation 

between neighbouring pixels in an image. The commonly used orthogonal or unitary 

Research Background 2-6 



transforms for digital image coding, such as D C T , only work well if the inter-pixel 

correlation is high [CLA85]. In general there is a trade-off between the compression 

ratio and the fidelity of the resulting image. 

The Kahrunen Loeve Transform, Discrete Cosine Transform and the Fractal 

Transform are three of the most commonly used transforms. 

2.3.2.1 Kahrunen Loeve Transform (KLT) 

The KLT [RAO90, STA88] is the optimum transform for image coding. It is, 

however, computationally slow as no fast algorithms exist. There are a number of 

related transforms which have been designed to provide a compromise between image 

quality, compression ratio and computational complexity. The most common of these 

is the Discrete Cosine Transform (DCT). 

2.3.2.2 Discrete Cosine Transform (DCT) 

The DCT [RAO90] is most frequently used for image compression. Its popularity is 

due to its being a very close approximation of the KLT. There are also quite a large 

number of fast algorithms available for evaluating the transform and its inverse. A 

number of hardware implementations of the DCT have also become available. For 

these reasons the DCT is also used in the OptIC (Optimised Image Compression) 

algorithm. 

Research Background 2-7 



2.3.2.3 Fractal Transform 

The Fractal Transform [BAR88, SKA94, W0094] is the most recent of the three 

transforms discussed here. The transform itself can produce extremely complex yet 

natural looking images with only a small number of coefficients. Unfortunately the 

process of obtaining the coefficients required to produce a particular image is not a 

simple process. Barnsley [BAR88] invented the fractal transform and has since 

brought out a number of software packages which utilise this transform in image 

compression. 

The fractal transform is an asymmetric algorithm, i.e. it takes a great deal longer to 

compress an image than it does to decompress it. The compression time is about 48 

minutes on a 33Mhz 80486-based machine for a 640x400 pixel 24 bit colour image 

[DET92]. The decompression time for the same image is performed in the order of a 

few seconds. 

One problem with the fractal transform is the lack of any quantitative quality 

measurements. There are often claims of extremely large compression ratios (75:1) 

but no mention of the quality of the restored image [SAU94]. Also the algorithm is 

registered by Barnsley as a trademark thus leaving little room for experimentation. 

Research Background 2-8 



2.4 Interframe Compression Techniques 

2.4.1 Introduction 

Interframe compression [EKS84, QUI93] is useful for sequences of images or motion 

picture images. In most sequences of images there is a high level of redundancy in the 

information between two consecutive frames, particularly when the background of the 

image is constant and only the foreground varies. Interframe compression works to 

reduce this redundancy. To allow motion to commence from various points in the 

image sequence without decoding the entire image sequence, reference frames are 

taken periodically. These reference frames form the points between which or from 

which the compression will take place. The use of reference frames also prevents 

continuous degradation in the image quality in a lossy algorithm which would occur if 

only one reference image was taken and all subsequent images were based on this. 

2.4.2 Predictive 

In predictive coding [GRU92] for interframe compression, the difference between 

reference frames is taken and later used to re-create the second reference frame from 

the first. For images where the background is constant, the differencing will produce a 

large number of zeros which are easily compressed. The predictive algorithm is 

normally a lossless coder. 

Research Background 2-9 



2.4.3 Interpolative 

The interpolative method [GRU92, QUI93], also known as average prediction or 

forward and backward prediction, calculates the current frame based on differences 

between the last and the next reference frame. So, for example, only every second or 

third frame could be kept and the intermediate frames would then later have to be 

predicted. As this algorithm requires the average of frame information, it is a lossy 

one. 

2.4.4 Motion Prediction 

Motion prediction [GRU92, QUI93] attempts to isolate moving objects and track their 

movements across subsequent frames. More advanced algorithms may also determine 

if the object has rotated or changed in scale to provide improved results in 

compression. In general, these algorithms are rather complex and difficult to 

implement. Also, the coding algorithm is often more complicated than the decoding 

algorithm. The motion predictor often makes approximations in order to simplify the 

coding procedure; this leads to losses. 

2.5 Colour Space Transformation 

2.5.1 Introduction 

Colour space transformations provide methods of reducing redundancy in colour 

images. These in general make use of characteristics of the Human Visual System 

(HVS) which indicates that the human eye cannot perceive colours as well as it can 

Research Background 2-10 



perceive intensities. The human eye is also more sensitive to certain colours than to 

others. For this reason the common RGB (Red, Green, Blue) colour model is more 

often transformed to the YIQ model where Y is the intensity component and I and Q 

are the chrominance or colour components. The YIQ format more accurately models 

the eye's capabilities. The transformation is shown in (2.1). 

Y 

I 

Q 

0.299 0.587 0.114 

0.596 -0.274 -0.322 

0.211 -0.522 0.311 

R 

G 

B 

(2.1) 

2.5.2 Quantisation 

Quantisation of the colour space [QUI93] simply reduces the precision of the colour 

carrying information. This will reduce the total number of colours that may be 

represented in the image. In general, before the quantisation is performed, the colour 

space is transformed to the YIQ format as described in section 2.5.1. By doing so the 

colour set will still contain those colours which are most clearly identified by the 

human eye and reduce redundancy. In this case the chrominance (IQ) is normally 

quantised more than the intensity (Y). 

2.5.3 Subsampling 

Subsampling in the colour space [QUI93] averages the colours in a block of pixels 

and in effect reduces the resolution of the colour image whilst leaving the resolution 

of the intensity image intact. 

Research Background 2-11 



2.6 Common Compression Standards 

2.6.1 JPEG (Joint Photographic Experts Group) 

The JPEG algorithm [QUI93] defines methods for coding still picture images using 

both lossless and lossy techniques. The lossless technique is based on predictive 

coding as described in section 2.2.3. The lossy technique is based on the discrete 

cosine transform (DCT) and a combination of run-length and statistical coding. The 

DCT is an 8x8 DCT and is performed on each of the three colour channels. 

The algorithm has been implemented on a variety of systems and is available in 

software and hardware versions. The implementations range from low cost, low 

performance systems to high cost, high performance systems. 

Although this algorithm is capable of producing high quality reproductions of images 

after compression it is not optimised for this purpose. Instead, it is aimed at the 

average consumer market where high rates of compression rates are preferred to high 

quality. 

Feature 

D C T Block Size 

Coefficient Ordering 

Block Ordering 

Grouping 

Compression Stage 

JPEG 

8x8. 

Zig-Zag. 

Left to right. 

Coefficients in same 

block grouped. 

A run-length coder 

stage only. 

OptIC 

16x16. 

Proportional to the coefficients 

probability of being zero. 

Alternating left to right then 

right to left. 

Like coefficients grouped. 

A run-length and statistical 

coder stage. 

Table 2.1 A comparison of the JPEG algorithm with OptIC. 

Research Background 2-12 



As the OptIC algorithm is also based on the D C T it is useful to see how it differs from 

the JPEG algorithm. The major differences are briefly highlighted in Table 2.1. • 

2.6.2 MPEG (Moving Picture Experts Group) 

The MPEG algorithm [FAI95, QUI93, THI92] is an extension of the lossy techniques 

outlined in the JPEG algorithm. It defines a standard for coding moving pictures with 

a sound track. The MPEG does not precisely detail the procedure for compressing 

video images as does JPEG; it merely specifies the format and data rate of the output 

bitstream as well as a set of compression techniques that can achieve varying degrees 

of quality. MPEG uses JPEG for the intraframes together with combinations of both 

predictive and interpolated motion compensation and sub-band coding for the audio. 

As the MPEG standard only specifies the output format, most of the products 

currently on the market only perform MPEG decompression. Only three real-time 

high quality encoders existed by July 1995 [GIL95]. As with JPEG, MPEG is already 

available in both software and hardware implementations. Recently (July 1995), both 

SGS-Thomson Microelectronics and Zatek introduced MPEG decoders for decoding 

both video and audio. 

The output quality of the MPEG algorithm is relatively poor as it is optimised for high 

speed and high levels of compression rather than for quality. For this reason it is not 

feasible for use in high quality motion picture image compression. 

Research Background 2-13 



3. Outline of Research 

3.1 Introduction 

An outline of the research aims is to be presented together with a proposed algorithm 

structure to realise these aims. A test platform and a set of test methods are also 

defined. These provide a means to determine whether or not the set aims have been 

achieved. 

3.2 Research Aims 

3.2.1 General Aims 

The aim of this research is to compress motion picture quality images using an 

optimal combination of hardware and software to minimise costs and maximise 

performance. Most compression systems are either fully software based and require 

extremely high performance computers to provide any reasonable performance 

[GRU92, KOU89, CHA87] or they are fully hardware based and suffer from high 

costs and inflexibility [LE093, TSA89, ART88, STA88, REZ87]. 

3.2.2 Specific Aims 

• To transform digitised images into a format more suitable for manipulation using 

computers, and then to reduce the amount of information required to represent the 

original optical impression by at least a factor of 2, whilst maintaining fidelity of 

the original image. 

Outline of Research 3-1 



• To store and retrieve an image, and to reconstitute the original optical image from 

the stored information. 

• To produce compression and reconstitution algorithms that are adaptable for use in 

processing motion picture quality images (approx. 6000x4000x24 bits) in the order 

of five seconds with a minimum reduction of image quality. Initially, smaller 

images will be used (256x256x8 bits or 512x512x8 bits); all results will then be 

extrapolated for the full resolution. 

• To investigate various transformation and compression techniques. 

• To choose and optimise a compression / transform technique for use in a hardware 

/ software implementation. 

3.3 Basic Structure of OptIC Algorithm 

The basic structure of the OptIC (Optimised Image Compression) algorithm is shown 

in Fig. 3-1. It can be seen from this diagram that the compression and decompression 

components of the OptIC algorithm are each composed of six distinct functions. 

The Compression 

Pre-processing 

The Decompressi 

Statistical 
Decoding —• 

Process: 

— > 

on 1 

Forward 
DCT 

'rocess: 

Run-length 
Decoding 

—• 
Quantisation 

Re­
ordering —• 

—• 
Ordering 

—1 
Run-length 

* Coding 

De-quantisation Inverse 
-* DCT —• 

—> 
Statistical 
Coding 

Post-processing 

Fig. 3-1 The basic structure of the OptIC compression and decompression algorithm. 

Outline of Research 3-2 



3.3.1 The Compression Process 

The pre-processing block conditions the input image data so that it is in a format 

readily accepted by the forward DCT function. The pre-processing also adds a bias to 

the image data so that the average of the image data lies approximately about the zero 

value. This block does not add any error to the data nor does it in any way affect the 

entropy of the original image data. 

The forward DCT function transforms the image data and outputs an array of DCT 

coefficients. The number of coefficients output is equivalent to the number of pixels 

in the input image. As these coefficients are twice the precision of the pixel data in the 

original image, this block actually doubles the storage requirement of the image. It 

does, however, improve the entropy of the image and so the image can be compressed 

to a greater extent than the original image by a statistical coder. The DCT process 

introduces an extremely small amount of error to the image data and so forms the first 

lossy function. 

Once the image has been transformed it is then quantised to reduce the precision of 

the coefficients which do not have a great affect on our perception of the image. This 

improves the entropy yet again but in the process also increases the error introduced 

into the image data and as such, it forms the second lossy function. The errors 

introduced here, though much greater than those introduced in the DCT process, are 

still not visible to the human eye. 

Outline of Research 3-3 



The effect of quantisation on the image tends to reduce a number of coefficients to 

zero. By ordering the coefficients produced by the DCT, it is possible to increase the 

chance of generating large lengths of zero values. These can then be effectively 

compressed by the run-length coder. 

The run-length coder function replaces repetitions of a like value with one or two 

smaller values. This effectively is the first compression function in the algorithm and 

is completely lossless. As the run-length coder looks at the relationship between 

neighbouring values, it can produce better results when used in conjunction with a 

statistical coder than those obtained by using the latter alone. 

The run-length coded data is finally passed through a statistical coder which forms the 

second and final compression function in the algorithm. The statistical coder is also a 

lossless coder which looks at the statistics of the data and replaces frequently 

occurring data symbols with short symbols and less frequently occurring data symbols 

with longer symbols. 

3.3.2 The Decompression Process 

The decompression process is basically the exact reverse of the compression process. 

The compressed image data is first statistically decoded to produce the run-length 

coded data that is then passed through the run-length decoder to produce the ordered 

and quantised DCT coefficients. These coefficients are re-ordered back to their 

original positions and then de-quantised to approximate the original coefficient values 

that were obtained after the forward DCT process. As there were errors involved in 

Outline of Research 3-4 



the original quantisation function, the values of the coefficients that are output from 

the de-quantiser are only an approximation of those that were originally produced by 

the forward DCT process. 

Once the coefficients have been restored they are passed through the inverse DCT. 

This function will add further error though in this process it is very minute. The 

output of the inverse DCT is finally passed through the post-processing function that 

removes the bias that was introduced by the pre-processing function. The final output 

will be, apart from the introduced errors, the reconstructed version of the original 

image. The accumulated errors obtained throughout the entire compression and 

decompression process are not visible to the human eye. 

3.4 Testing Platform 

All of the tests were performed on an IBM compatible computer based on the 

80486SX processor running at a clock speed of 33 MHz (this does not include a 

floating point processor). The computer was equipped with 8 Mb of memory, 410 Mb 

Hard disk and 256 Kb of cache memory. The hard disk was controlled by a standard 

VESA local bus IDE hard disk controller card. A Cirrus Logic VL-VGA-24 graphics 

card fitted with 1 Mb of VRAM was used. It is common practice to use a Sony Grade 

1 monitor for subjective evaluation exercises; but as one was not available, an NEC 

Multisync 4D monitor in True colour mode (24 bit per pixel or 16 million colours) was 

used as it was the best available alternative. 

Outline of Research 3-5 



The software for the OptIC algorithm was developed using a Borland C++ Compiler 

version 4.0 for Microsoft Windows. The algorithm was executed under Microsoft 

Windows version 3.1. 

3.5 Test Procedure 

Where applicable four important tests were performed after the introduction of each 

function to measure progress and to provide a progressive indication of the 

performance of the compression algorithm. These four tests are : measuring the error 

introduced by a lossy function, the timing benchmarks with the function included, the 

entropy of the data after introduction of a function and the size of the output data after 

introduction of a compression function. 

3.5.1 Error Measurements 

A number of error measurement techniques exist, the most common of these is the 

Mean Square Error (MSE) as defined in (3.1) [RAO90] for an NxM image where 

x(m,n) is an element in the original image and x(m,n) is an element in the 

reconstructed image. 

i M-\ N-\ 2 

This form, though very commonly used, does not incorporate the Human Visual 

System (HVS) and so does not provide a real indication of how much of the error the 

human eye can visualise. 

Outline of Research 3-6 



A number of attempts have been made to define a method of measuring error which 

would be perceived by the human eye [HOS86, MIY85] but these methods are not 

entirely accurate and it has not been proved that they apply for all types of images. As 

such they would not form a reliable method of testing the image quality. Instead a 

form of Mean Opinion Score (MOS) was devised. Images were subjected to 

increasing levels of compression and the image qualities verified by individual 

inspection at very close distances from the monitor screen. The image inspection was 

performed by a group of ten randomly chosen university students, three staff 

members, five family members and myself. The group consisted of a wide spread of 

ages and technical ability, all individuals had to decide whether or not they could 

perceive any differences between the original image and the reconstructed image. The 

image on the display could be quickly swapped between original and reconstructed 

image so that any distortions may be easily observed. In order to satisfy the aims ail 

the individuals had to agree that all of the images contained no visible distortions after 

reconstruction. A note was made (for both the JPEG and OptIC algorithms) of the 

greatest compression which each image could tolerate with no observer identifying 

errors. This represents a subjective mean opinion score of the algorithm's capability to 

compress without introducing visible errors (please see section 8.3 and Tables 8.3 and 

8.4 for a description of the results). 

Outline of Research 3-7 



3.5.2 Timing Benchmarks 

In all of the test cases the test was executed ten times and timed using a stop-watch. 

The result was then divided by ten giving a result that is at least accurate to the nearest 

tenth of a second. 

3.5.3 Entropy Measurements 

The measurement of entropy gives an indication of how much further an image may 

be compressed if processed with an ideal statistical coder. It is thus an important test 

in determining the effectiveness of processes that only manipulate data but do not 

actually compress it, such as, the DCT and the quantisation processes. The entropy of 

an image can be defined by (3.2) where N is the number of symbols and p(i) is the 

probability of the i symbol. 

N 

Entropy = - ^ p(i) log2 p(i) (3.2) 

The entropy value is the average number of bits required to code each of the possible 

symbols. This implies that a reduction in entropy would result in a smaller output data 

size if the data was to be passed through a statistical coder. 

3.5.4 Output Data Size 

The output data size of the image after processing is simply the size of the data when 

output to a file on the hard disk. 

Outline of Research 3-8 



3.6 The Image Test Set 

3.6.1 Standard Images 

Fifteen standard images were used to form the standard image test set. These are 

images which are commonly used for testing image compression algorithms and 

provide a base from which the algorithm may be compared with other existing 

algorithms. The images were originally stored as colour images that were converted to 

intensity images and green component images as these were the components generally 

used by other compression techniques for comparison. The statistical characteristics 

for the 512x512x8 and the 256x256x8 bit pixel images are tabulated in Tables 3.1, 

and 3.2 respectively. A hard copy of each of the intensity images, both original and 

reconstructed, can be found in Appendix A. 

Image 

airplane 

airplane 
baboon 

baboon 
lena 

lena 

peppers 

peppers 

sailboat 

sailboat 
splash 

splash 

tiffany 

tiffany 

Image 

T y p e -

Intensity 
Green 

Intensity 
Green 

Intensity 

Green 

Intensity 
Green 

Intensity 
Green 

Intensity 
Green 

Intensity 

Green 

average 

179.132 

177.856 
129.694 

128.863 

124.108 
99.056 

120.464 

115.581 

125.284 

124.305 

103.284 

70.521 

211.345 

208.631 

variance 

2161.472 

2687.813 
1789.110 

2282.638 
2298.224 

2796.058 

2909.980 
5629.022 

4297.523 

6026.763 
2662.172 

3638.671 

862.075 

1125.752 

minimum 

16 
0 
0 
0 
25 
1 
0 
0 
2 
0 
9 
0 
0 
0 

maximu 
m 

231 
234 
231 
236 
245 
248 
228 
237 
239 
249 
242 
247 
255 
255 

entropy 

6.705764 

6.805543 
7.358139 
7.475280 
7.447764 

7.595153 

7.594303 
7.518362 

7.485789 

7.646107 

7.258475 

6.916109 

6.600483 
6.689978 

Table 3.1 Statistical characteristics of the 512x512x8 bit standard images. 

Outline of Research 3-9 



Image 

beansl 

beansl 
beans2 

beans2 

couple 

couple 

girll 

girll 
girl2 

girl2 
girl3 

girl3 
house 

house 

tree 
tree 

Image 

Type 

Intensity 

Green 

Intensity 
Green 

Intensity 
Green 

Intensity 
Green 

Intensity 
Green 

Intensity 
Green 

Intensity 

Green 

Intensity 
Green 

average 

176.000 

180.638 

167.403 

170.869 
33.424 

30.122 
58.872 

139.960 

139.691 

139.960 
111.114 

99.275 

138.066 

133.004 

129.115 
124.906 

variance 

1469.183 

2021.443 

1849.728 

2562.536 

1000.177 

989.483 
1579.841 

857.937 
880.510 

857.937 

2471.922 
2871.558 
2128.970 

3145.283 

4554.317 
5854.357 

minimum 

32 
19 
24 
9 
1 
0 
1 
30 
27 
30 
14 
0 
16 
0 
0 
0 

maximu 
m 

204 
212 
207 
213 
244 
254 
234 
255 
255 
255 
250 
254 
240 
246 
237 
238 

entropy 

5.724703 

5.700033 
6.242539 

6.231839 
6.427370 
6.064014 
7.053766 

5.405798 
5.607469 
5.405798 

7.261685 
7.325684 

6.504477 
6.551604 

7.314443 
7.418101 

Table 3.2 Statistical characteristics of the 256x256x8 bit standard images. 

3.6.2 Supplementary Images 

A number of supplementary images were also generated to support the test set. The first 

of these images, testpatt, was generated by a C program to test the compression 

algorithms ability to compress various frequencies of alternating low and high intensity. 

Image 

testpatt 

wendyl 
wendy2 

wendy2 

wendy3 

wendy3 

Image 
Type 

intensity 

intensity 

intensity 
green 

intensity 
green 

average 

112.026 

155.573 

65.610 

68.916 
109.056 

107.081 

variance 

16016.361 
7239.374 

3881.104 

4113.347 

4813.107 

5252.605 

minimu 

m 

0 
1 
1 
0 
0 
0 

maximu 

m 

255 
255 
255 
255 
253 
255 

entropy 

0.989348 

6.822758 
7.096842 

6.544705 
7.821364 

6.820176 

Table 3.3 Statistical characteristics of the 512x512x8 bit supplementary images. 

Outline of Research 3-10 



The remaining images were obtained from photographs digitised using a high 

resolution Hewlett Packard colour image scanner. All of the images were 512x512x8 

bits, and their characteristics are shown in Table 3.3. A hard copy of each intensity 

image, both original and reconstructed, can be found in Appendix A. 

3.6.3 Image Data Format 

All of the images are stored in format known as the PPM format. This format is used 

because the data is stored in a raw format with no compression. This format is also 

quite simple and so it is very easy to read. 

The PPM file consists of a header which identifies the image format and also provides 

information about the width, height and the maximum intensity of the pixels. 

Following the header is the raw image data where each byte represents a pixel 

intensity and the pixels are stored consecutively on a line by line basis. 

The image header format is shown in Fig. 3-2 where LF is the code for a line-feed 

(decimal 10) and the width, height and maximum intensity are ISO-coded values. An 

ISO-coded value is simply the required number stored with a separate character for 

each digit in that value. For example, the number 134 when stored in an ISO-coded 

format would become the characters {"1", "3", "4"}. 

"P" "5" LF Width CC 5? Height LF Maximum Intensity LF 

Fig. 3-2 PPM Image header format. 

Outline of Research 3-11 



The software to read and write a P P M format image may be found in Appendix D. 

The C functions for the read and write are Loadlmage (page D-ll) and 

SaveDecompressed (page D-13) respectively. 

Outline of Research 3-12 



4. The Discrete Cosine Transform 

4.1 Introduction 

The original Discrete Cosine Transform (DCT) is based on the Fast Fourier Transform 

(FFT) [RAO90, WAN84]. Since its discovery in 1974 [AHM74], its use has become 

widespread in digital signal processing (DSP), in particular for image processing. 

There are a number of reasons for its popularity, the DCT is real, separable, 

orthogonal and it approaches the statistically optimal transform, KLT [KAR47, 

LOE60]. The DCT does not suffer the computational problems involved in generating 

the KLT, as it is not dependent on signal statistics. Furthermore there are a large 

number of fast algorithms available to evaluate the DCT [LEE84, WAN84, SUE86, 

CHA87, KOU89]; a number of these have also been implemented in hardware for 

extremely high speed processing [JUT87, REZ87, ART88, QUI93, LE093]. As the 

DCT is a separable transform, it is also possible to extend all the algorithms to 

multiple dimensions. 

The DCT forms the heart of the image compression algorithm described in this thesis. 

The transform does not actually compress the data. It could instead increase the size of 

the data since the resolution of the output coefficients is generally greater than that of 

the input data. It does, however, have the useful property of reducing the entropy of 

the input data. The entropy of the data gives an indication to the extent of which an 

image may be compressed. By reducing the entropy the image is made more readily 

The Discrete Cosine Transform 4-1 



compressible. This is achieved by transferring the majority of the input vector 

information or energy into small number of elements of the transformed output vector. 

This chapter will begin by introducing the various forms of the DCT, describing how 

they can be used for image compression and discussing the various factors that can 

affect the level of compression obtained. Software and hardware implementations of 

the DCT are described. Both of the implementations will be optimised for high quality 

images, tested and compared in detail. 

4.2 The One-Dimensional DCT 

The family of one-dimensional forward and inverse DCTs as classified by Wang 

[WAN84] can be defined as shown in (4.1) to (4.4). 

DCT-I 

DCT-II 

Wl = 
DCT-III 

[C"L = 

DCT-IV 

tcn„, = 

N 

Vi 

k k c o s f — Y 
Kmkn cos^ N j 

m,n = 0,1, ---.N 

1VA 

2 ^ 

2 ^ 

N. 

K, cos 

k„ cos 

m(n + 0 i 

. N ' 

m(n + y)rc 

m,n = 0,1,---,Â -1 

m,n = 0,1,"-,N-l 

cos< 
'(m + ̂ n + i}-

N 
m,n = 0,\,"-,N-l 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The Discrete Cosine Transform 4-2 



where 

1 

*; = 

for j = O.N 
V2 

1 for j-tO.N 

The relationship between the four classifications of the D C T can be summarised by 

(4.5) to (4.8) below. 

DCT-I: 

[cL]1 =[CN+i] = [CL (4.5) 

DCT-II: 

[cL]1 = [C'N+1] = [CL (4.6) 

DCT-III: 

[c'N+.]
1 =[cL] = [CL (4-7) 

DCT-IV: 

[ci+,r=K,J = [Ci+I (4.8) 

DCT-II is the discrete cosine transform first reported by Ahmed, Natarajan, and Rao 

[AHM74]. DCT-III is simply the transpose of DCT-II. DCT-IV is the shifted version 

of DCT-I. Note that only DCT-I and DCT-IV are capable of involution. DCT-II is the 

most commonly used of the four forms of DCT. As most software and hardware 

algorithms are based on this form, the remainder of this chapter focuses on this rather 

than the other three forms. 

Using (4.2) it is possible to define the forward and inverse DCT as shown in (4.9) and 

(4.10) respectively. 

The Discrete Cosine Transform 4-3 



Forward DCT-II: 

9 \ 1/2 JV-1 

X^M-lj-) *„2>(»)cos 
(2n + l)mn 

IN ' 
m = 0,---,N-\ (4.9) 

Inverse DCT-II 

/ ~ S 1/2 JV-1 

w=0 

(2« + l)mn 

2N 
n = 0, — ,N-\ (4.10) 

where 

*, = 
V2 

for/? = 0,7V 

1 for/j^0,7V 

The diagram shown in Fig. 4-1 shows the basis functions for DCT-II with A^=16. A 

basis function is closely related to harmonics in a Fourier series. Any waveform can 

be created by summing different levels of each of the basis functions, just as any 

waveform can be created by summing the various harmonics of a Fourier series. The 

basis functions in the diagram were constructed by individually setting each of the 

coefficients in the DCT-II input vector to 127 with all other coefficients forced to 

zero. An IDCT-II is performed on this input vector and the respective results plotted. 

This was performed 16 times, once for each coefficient in the input vector. Note that 

the waveforms represent the intensities of the image and not the spectral qualities of 

the light emerging from the image. For this reason the peaks in the waveforms 

represent bright areas and the troughs represent dark areas. 

The Discrete Cosine Transform 4-4 



(0) 

0) 

CT 

(3) 

(4) 

(5) 

(6) 

CT 

(8) 

^-, W 

(10) fl r̂  

T j-" i on nP-

L J 

I r 

- J~ 

V L 

iJ P 

L J 

i r 

H i 

- i_ 

J"| [L 

— 

d2) n 

(14) rn 

d5) r 
TJ 

I 

r~ 

i n 

— 

i 

— • 

i 
1 • 

i 
i 

— 

i 
i 

i i 

\ \ 

_ 

h_ 

r — i 

— 

— 

— 

i—i 

Ll 

n 

Li 

n 

J 

n 

3=r-

F/g. 4-7 Basis functions for DCT-II, N = 16 [RAO90]. 

The Discrete Cosine Transform 4 



4.3 The Two-Dimensional DCT 

The DCT can also be performed in two dimensions. This is particularly useful when 

dealing with digitised images. Since the DCT is separable, the two-dimensional 

transform can be implemented by a series of one-dimensional transforms. 

4.3.1 The Two-Dimensional DCT-II 

Let g be an MxN input matrix and G its two-dimensional DCT-II. The uvth'-element of 

G is given by (4.11) below. 

G ---m-YYg cos (2m + l)w7r 
2M cos 

(2n + l)v7t 

IN 
(4.11) 

where M = 0 , - - , M - 1 and v = 0,- •,7V-1, and 

1 

:(k) = 

; - ifjfc = 0 

V2 

1 if k i-0 

4.3.2 The Two-Dimensional IDCT-II 

th Similarly, the mn -element ofg is given by (4.12) below. 

9 M-\ N-\ (2m + l)un 

2M cos 
"(2/l + l)v7I 

2iV 
(4-12) 

where m = 0,--,M-\ and« = 0,- --,N -I. 

The Discrete Cosine Transform 4-6 



4.3.3 Basis Functions of the Two-Dimensional D C T 

As with the one-dimensional DCT, the two-dimensional DCT coefficients provide the 

building blocks necessary to reconstitute any two-dimensional waveform. In Fig. 4-2, 

the effect of several of the two-dimensional coefficients on the final waveform is 

shown. Once again, the coefficient of interest was set to 127 and all other coefficients 

were forced to zero. A two dimensional IDCT-II is then performed and the results 

plotted in three dimensional space. 

Fig. 4-2 Basis functions for the 2D-DCT-II, N = 16. 

The Discrete Cosine Transform 4-7 



4.4 Factors Affecting Compression After Transformation 

There are two controllable factors relating to the DCT which can affect the eventual 

level of compression possible after transformation. The first is the DCT block size, 

which has a direct relation to the DCT itself. The second is the level of quantisation of 

the coefficients after transformation. This is indirectly related to the DCT in that 

adequate knowledge is required about the DCT coefficients in order to provide low 

error quantisation. The following is an analysis of these two factors to determine their 

optimum settings for the compression of high quality images. 

4.4.1 The DCT Block Size 

Increasing the block size of the DCT will in most cases improve the entropy of the final 

result after transformation. Unfortunately errors in rounding will generally increase 

with larger transformations because of increasingly more complex calculations. The 

block sizes are limited to 4, 8 and 16 for reasons of computational efficiency in the 

software implementation and due to available block sizes in the hardware DCT 

transform device. In order to make an accurate comparison of the various size 

transforms a plot of the entropy versus the MSE of the images after restoration must be 

made. The different points in the plot are generated by scaling the DCT coefficients 

from 12 bit values down to one bit values in one bit decrements, doing so reduces the 

range of the coefficients by a factor of two in each step. As this will reduce the number 

of symbols, the overall entropy will as a consequence also be reduced. In each step the 

entropy of the transformed image and the MSE of the restored image were measured. 

The Discrete Cosine Transform 4-8 



The graphs in Fig. 4-3 and Fig. 4-4 show plots of the entropy of the transformed image 

with respect to the M S E of the restored image for the D C T sizes 4x4, 8x8 and 16x16 

for the images Tiffany. Y and Testpatt. Y respectively. It should be noted that most of the 

points in the graphs are contained below the M S E value of ten, for this reason their 

markers have been removed for the sake of clarity. 

Fig. 4-3 A comparison of 4x4, 8x8 and 16x16 Discrete Cosine Transforms on Tiffany. Y. 

8 T 
7 .. 

6 .. 

5 

2 .. 

1 .. 

0 

10 

~* M % • • • V B l 

20 30 40 

•4x4 — 

MSE 

8x8 - •16x16 

50 

Fig. 4-4 A comparison of 4x4, 8x8 and 16x16 Discrete Cosine Transforms on Testpatt. Y. 

The Discrete Cosine Transform 4-9 



All the other images in the test set were also examined and exhibited characteristics 

similar to that of those shown for Tiffany. Y. The graph shown in Fig. 4-3 for Tiffany. Y 

is a typical result that is obtained for all but one of the images in the test set. Note that 

for an MSE of less than two, it is advantageous to use a smaller block size for the 

DCT. This is due to the larger errors involved in generating the more arithmetically 

complex algorithms required for the larger block size DCTs. From the graphs it is, 

however, noticeable that the effect of the different block sizes on the graphs quickly 

reduce as the block size increases above 8x8. The algorithms dealt with in this project 

will be generating MSEs greater than two but at levels which are not visible to the 

human eye. At this level of error it is desirable to perform the DCT with the largest 

possible block size. 

The results for Testpatt. Y shown in Fig. 4-4 show values which are inconsistent with 

those obtained from the other images in the test set. Testpatt. Y produced improved 

entropy results with a smaller block size. This particular image is artificially generated 

using software and so its characteristics are not normally found in natural images. It 

contains adjacent pixel values of minimum and maximum intensity only and so there 

are a large number of sharp transitions which are difficult for the larger block size 

transforms to reproduce without added error. It should be noted that the error effects 

are still minor and not perceivable at low error rate coding levels. 

From Fig. 4-3 and Fig. 4-4, it can also be noted that the improvements in entropy are 

not increased significantly when the block size is increased to a size greater than 8x8. 

The Discrete Cosine Transform 4-10 



Secondly, the largest block size is restricted by the device used for the hardware 

implementation and the calculation time for the software implementation. The 

hardware transform device limits the block size to 16x16 and the software 

implementation becomes unpractically slow for block sizes greater than 16x16. A 

block size of 16x16 is the most suitable choice for the hardware and software 

implementation. 

4.4.2 Quantisation of DCT Coefficients 

To further improve the compression after the DCT the coefficients of the output 

transform are quantised. The coefficients should not be quantised equally or 

indiscriminately. Each coefficient plays a different role in building up the original 

image. The extent to which a particular coefficient is quantised depends on three 

factors: the visual importance of that coefficient, the amount of error introduced to the 

entire image by quantising that coefficient, and the improvement in entropy gained by 

quantising that coefficient. 

4.4.2.1 Visual Importance of the Coefficients 

The Human Visual System (HVS) [NGA86, TZ084] has flaws which allows certain 

forms of error in the reconstructed image to be, in effect, invisible. By the same token 

some errors become clearly visible if the flaws in the HVS make them stand out. 

The HVS is most sensitive to the DC level of the image [TZ084], i.e. the average 

intensity level of the image. This is directly related to the DCT coefficient (0,0). 

Inappropriate quantisation of this coefficient will produce a great deal of blocking, 

The Discrete Cosine Transform 4-11 



that is, the different blocks of the reconstructed image will have slightly altered 

average intensities giving a mosaic-like appearance. For this reason care must be 

taken to avoid unnecessary quantisation of this coefficient. 

The HVS is least sensitive to high frequency changes in intensity. This relates to 

coefficients furthest from the coefficient (0,0), for example (15,15), (14,15) and 

(15,14). These coefficients can be quantised to reasonably high levels without any 

really noticeable effects. Extremely high quantisation of these coefficients tends to 

filter the image resulting in the reconstructed image appearing rather soft and perhaps 

unclear. 

4.4.2.2 Errors Introduced Through Quantisation 

Different coefficients of the DCT have differing sensitivities to quantisation and the 

resultant error after restoration. For example, in Fig. 4-2, even if G(0,0) and G(15,15) 

were quantised by the same amount, G(0,0) would introduce greater errors than 

G(15,15) as it carries more information about the image. The graph in Fig. 4-5 shows 

the average MSE for all the images in the test set where a given coefficient has been 

quantised by a factor of 256, that is, the eight least significant bits were removed. The 

graph was produced by normalising the results of each image and then taking the 

average for each of the coefficients. 

From the graph in Fig. 4-5 it can be seen that the most sensitive coefficients are those 

close to the origin, along the zero X axis and along the zero Y axis. These are the low 

frequency coefficients. The most sensitive of all the coefficients is the DC coefficient. 

The Discrete Cosine Transform 4-12 



Where the block size is 16, those coefficients that are not on the axis and are more 

than 3 units in distance from the origin are reasonably insensitive to quantisation. This 

seems to match quite accurately with the HVS. Further information on the 

quantisation of the DCT coefficients can be found in Chapter 5. 

Fig. 4-5 Normalised M S E showing coefficient sensitivity to quantisation 

4.4.2.3 Entropy Improvements Through Quantisation 

The graph shown in Fig. 4-6 shows the normalised sum of the entropy of all the 

intensity images after quantising each coefficient individually by a factor of 256. The 

vertical axis has been exaggerated to highlight any trends, however small they may be. 

From this figure it can be seen that the entropy improves more after quantisation of the 

coefficients closer to the origin than with those further from the origin. It is also 

The Discrete Cosine Transform 4-13 



interesting to note that the improvements gained are very minor. For example, only a 

0.6% improvement is gained in quantising the DC coefficient as opposed to quantising 

the coefficient at (15,15). This is quite advantageous for the compression system as the 

coefficients closer to the DC coefficient are quite sensitive to quantisation as discussed 

in section 4.4.2.2. 

Fig. 4-6 Normalised sum of the entropies of all intensity images showing the effect of coefficient quantisation 

4.5 Pre-Processing 

The pre-processing stage is performed on the image before it can be transformed. It 

involves two very basic steps : Input Data Ordering and Biasing. 

The Discrete Cosine Transform 4-14 



4.5.1 Input Data Ordering 

The image data itself is a large two dimensional array of pixels. It is stored in memory 

as a one dimensional block with each new line of the image stored consecutively after 

the previous line. The DCT, however, expects the data to appear in a smaller two 

dimensional blocks, the size of which is determined by the block size of the DCT. For 

this reason input data ordering is required. This conversion process is also known as 

blockup. 

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 

0 
12 

24 

36 
48 

60 

72 

84 

7 
4 
2 

6 
4 

0 
2 

3 
6 

5 
3 

9 
6 

8 
7 

6 
8 
7 

6 

5 

2 
5 
5 

2 
3 

8 

0 
2 

0 
2 

2 

1 0 
4 

8 

12 

7 3 8 6 
4~~ 6~1~ 5 
2~5~6~~2 

6~ 3~~ 8~5 

L 

The input matrix for the D C T 

after Input Data Ordering. 

The 2-D matrix is converted to 

a 1-D vector. 

The image data 7 3 8 6 4 6 7 5 2 5 6 2 6 3 8 5 

Fig. 4-7 Illustration of the data ordering procedure. 

Fig. 4-7 shows the image data for a 12x12 pixel image. The pixels of the image are 

stored line by line in a large 144 pixel array. In order to perform a DCT transform 

with a block size of 4 on this image it is necessary to first split the image into 4x4 

blocks as shown by the thick borders. The values inside the boxes indicate some 

The Discrete Cosine Transform 4-15 



sample data, whereas the values outside of the arrays indicate the memory location 

that the data is stored in. Note that since the size of the DCT block is smaller than that 

of the image many pixels must be skipped to get to the next line of the DCT block. 

This explains the need for input data ordering. For the hardware algorithm the two-

dimensional block must be converted to a one-dimensional vector before it can be 

transformed. 

4.5.2 Biasing 

Input biasing helps to reduce the magnitude of the DC coefficient in the transformed 

data. The input data obtained from the test images ranges from 0 (pure black) to 255 

(pure white), values between these two extremes form various shades of gray. Most 

images have an average pixel value of approximately 128. The DC coefficient itself 

represents the average value within the current block. By adding a negative bias of 

128 to the input data, it is possible to balance its values about zero forcing the 

average within the block closer to zero and subsequently the DC coefficient is also 

more likely to become zero. By reducing the magnitude of the DC coefficient we also 

reduce the chance of internal overflows in the case of the hardware implementation 

which may occur because of its limited internal resolution. 

The effect of the biasing can be seen more clearly in the diagram Fig. 4-8. Note the 

lower level of peak magnitudes and that the waveform varies about zero on the Y axis. 

The Discrete Cosine Transform 4-16 



Unbiased Image Data. Biased Image Data. 

Fig. 4-8 Image data biasing 

4.6 The Software Implementation 

4.6.1 The Forward Transform 

The forward transform is based on B.G. Lee's algorithm [RAO90] for the 1-

Dimensional (1-D) DCT. This algorithm is one of the fastest available algorithms and 

is relatively simple to implement. Its flow diagram is shown in Fig. 4-9 where each 

coefficient C(m) is defined in (4.13) as: 

C(m)= 
1 

0 (nm 
2 cos -

(4.13) 

\32) 

A flow diagram is often used to describe the implementation of transform algorithms. 

The flow can be interpreted from left to right for the forward transform and from right 

The Discrete Cosine Transform 4-17 



to left for the inverse transform. The values on the left are the 16 input values, that is, 

the pixel values. On the right are the 16 output DCT coefficients. 

The rules of the flow diagram are quite simple. Points where two lines join form a 

summing point, a minus sign below a line indicates that the value that line carries 

should be negated, and a value above a line indicates the factor by which the value 

carried by that line should be multiplied. For example if the x(3) line is partly traced, 

refer to the highlighted lines in diagram Fig. 4-9, the first summing point is reached at 

P indicating that x(3) should be summed with x(12) as shown in (4.14), the second 

point Q indicates that P should then be summed with the x(4) line, as in (4.15), which 

itself is now the sum of x(4) and x(l 1). The value at Q is then negated and summed 

with the value carried by the line x(0) which itself is the sum of x(0), x(15), x(7) and 

x(8). The result of this summation is then scaled by the factor C(4) giving a result at 

point R as given by (4.16). This process continues until the end of the line is reached 

at which point the coefficient X(4) would have been fully calculated. 

P = x(3) + *(12) (4.14) 

0=P + x(4) + x(ll) 

= JC(3) + X(12) + X ( 4 ) + JC(11) 

R = C(4) * (x(0) + x(15) + x(7) + x(8) - Q) 

= C(4) * (JC(0) + x(15) + *(7) + x(8) - x(3) - x(12) - x(4) - x(l 1)) 

The Discrete Cosine Transform 4-18 



<H) 

x(10) 

X(12) 

X(10) 

X(14) 

X(13) 

X(ll) 

X(15) 

F/g. 4-9 Flowgraphfor B.G.Lee's DCT-II algorithm[RAO90]. 

The software algorithm follows the flow diagram but has output scaling adjustments 

so that it generates outputs equivalent to those of the SGS-Thomson device used in 

The Discrete Cosine Transform 4-19 



the hardware implementation. See section 4.7 for more details on the hardware 

algorithm. The software also clips the output coefficients so that they do not exceed 

the maximum possible values for a 12 bit signed integer. Again this is to provide 

compatibility with that of the SGS-Thomson device. 

The software is contained in two files, which may be found in Appendix B. The first 

listing is the header file dct.h and the second is the algorithm source file dct.c. As with 

the hardware device, the software algorithm will limit the block size to one of the 

following : 4x4, 4x8, 8x4, 8x8, 8x16, 16x8 or 16x16. The forward DCT function 

prototype is defined in the C programming language as follows : 

fdct(intul6xdct, intul6ydct, intsl61[16][16], intsl6 0[16][16]) 

The inputs xdct and ydct specify the block size to be used for the forward transform. 

The input (I) and output (O) arrays are 16x16 arrays regardless of the block size. Even 

though both the input and output are integer values, the internal calculations are 

performed using floating point arithmetic and so it is advisable that a microprocessor 

with a floating point co-processor is used for higher performance during calculations 

(e.g. 80486DX, 80387 etc). The 80486SX used in the test system contained no 

floating point processor, as such the software algorithm performed rather slowly but 

nonetheless provided a base upon which simulations could be performed. 

The Discrete Cosine Transform 4-20 



4.6.2 The Inverse Transform 

The inverse transform follows the same flow diagram as that for the forward 

transform, but the diagram is read from right to left. The inverse DCT function 

prototype is defined in the C programming language as follows : 

ifdct (intul6xdct, intul6ydct, intsl61[16][16], intsl6 0[16][16]) 

The inputs xdct and ydct specify the block size to be used for the inverse transform. 

The input (I) and output (O) arrays are 16x16 arrays regardless of the block size. As 

with the forward transform all of the calculations use floating point arithmetic 

internally. 

As there are rounding errors in the forward and inverse transformation cycle it is 

possible that the output of the inverse transform can fall out of the valid range for a 

pixel (-128 to 127). For this reason an additional check is made here to ensure that the 

restored pixel value is within the valid range. If it is not then its value is clipped to the 

appropriate extreme. This also helps keep the output within the 8 bit restriction of a 

byte. 

4.7 The Hardware Implementation 

4.7.1 The SGS-Thomson STV3200 

The hardware implementation of the DCT is based upon the SGS-Thomson STV3200 

Discrete Cosine Transform. The device itself is capable of transforming up to 15 

million pixels per second. It can perform 4x4, 4x8, 8x4, 8x8, 8x16, 16x8 or 16x16 

The Discrete Cosine Transform 4-21 



forward or inverse two-dimensional DCTs. The input data is 8-bit two's complement 

signed integers and the output coefficients are 12-bit two's complement signed 

integers. Two's complement values are capable of representing both negative and 

positive numbers, the most significant bit is used to represent the sign and the 

remaining 11 bits the magnitude. Internally the device implements the forward 

transform as shown in (4.17). 

F(u,v)= Round 
NM K^KJttp0

 KJJ \ 2M j [ 2N 

(4-17) 

where c («) = 

y2 if« = o 

1 ifw*0 

The inverse transform is internally implemented by (4.18). 

D(i,j)= Round 
\^<QU^\J(2j + i>~ 

u=0 v=0 '{ 2M 2N 
(4.18) 

4.7.2 The I B M Hardware D C T Interface Description 

Using the SGS-Thomson STV 3200, an inexpensive add-on board for an IBM PC was 

designed and built to allow the DCT and IDCT to be performed in hardware. The 

schematic diagram for the DCT hardware is shown in Appendix C. The heart of the 

system is the STV3200CP DCT device, U6. U4 is an eight bit latch that provides 

general purpose output bits for controlling the block size (BS0..BS2), precision (PR), 

The Discrete Cosine Transform 4-22 



type of transform (F/I) and the enable control (EN) of the D C T device. U5 is an 8 bit 

buffer that allows read-back of the contents of the 8 bit latch. 

U2 and U3 are two 8 bit buffers that interface the STV3200CP data ports to the IBM 

data bus. Note that data bit 9 acts to control the DSYNC signal when writing the 

image data for a DCT or when reading the data from an IDCT. The DSYNC signal 

indicates the start of the block being read or written. Similarly, data bit 12 acts to 

control the FSYNC signal when reading the DCT coefficients from a DCT or when 

writing the coefficients for an IDCT. The FSYNC signal indicates the start of the 

coefficient block. 

Ul is an EPLD (Electrically Programmable Logic Device) which performs all the 

necessary decoding to avoid any bus contention or timing problems. The content of 

the EPLD Ul is shown in Appendix C. 

The hardware is mapped into the IBM port map at the addresses shown in Table 4.1. 

Note that the function of the data bus depends on the state of the F/I signal. 

Port Address 

0x300 

0x300 

0x300 

0x300 
0x302 

0x302 

0x302 
0x302 

Action 

Read 

Write 

Read 

Write 

Read 

Write 

Read 

Write 

Size 

Word 

Word 

Word 

Word 

Byte 

Byte 

Byte 

Byte 

DCT/IDCT 

DCT 
DCT 
IDCT 
IDCT 
DCT 
DCT 
IDCT 
IDCT 

Function 

Read Coefficient 
Write D C T Input Data 

Read IDCT Output Data 

Write Coefficient 

Read Command Port 

Write Command Port 

Read Command Port 

Write Command Port 

Table 4.1 Port functions for the IBM DCT interface. 

The Discrete Cosine Transform 4-23 



The function of each data bit for the various ports is shown in Table 4.2. Note that the 

exclamation mark is used to indicate that the signal is active low, that is, when this 

signal is zero then it is activated. 

Bit 
Number 

DO 
Dl 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 
Dll 
D12 

Coefficient Data 

Coefficient D O 

Coefficient Dl 
Coefficient D 2 

Coefficient D 3 
Coefficient D 4 

Coefficient D 5 
Coefficient D 6 
Coefficient D 7 

Coefficient D 8 

Coefficient D 9 

Coefficient D10 
Coefficient Dll 

FSYNC 

Image Data 

Data DO 
DataDl 

Data D2 

Data D3 
Data D4 
Data D5 
Data D6 

Data D7 
Data D8 

DSYNC 

unused 
unused 

unused 

Command Port 

Block Size BS2 

Block Size BSl 
Block Size BSO 
!PR 
!F/I 
[Enable 
unused 
unused 

unused 
unused 

unused 
unused 

unused 

Table 4.2 Bit definitions for all ports of the IBM DCT interface. 

4.7.3 The Driver For the Interface 

In order to support the hardware interface it was necessary to design and implement 

drivers to control the hardware. The driver for the IBM DCT Interface is shown in 

appendix C. It consists of two C source files, the hardware DCT header file (hdct.h) 

and the hardware DCT driver (hdct.c). It provides functions to initialise the DCT 

device, perform a forward DCT and perform an IDCT. These will be described in 

more detail in the following sections. 

The Discrete Cosine Transform 4-24 



4.7.3.1 Driver Initialisation 

Before using the forward or inverse transform, it is necessary to initialise the 

STV3200 DCT transform chip. This is achieved by calling the function initDCTQ. 

The function sets up the control registers of the STV3200 and sends a train of 130 

dummy values to clear out the devices internal buffer and to prepare it for an 

incoming block of data. 

4.7.3.2 The Hardware Forward DCT 

The forward DCT function prototype is defined in the C programming language as 

follows: 

voidfdct(intul6xdct, intul6ydct, ints8far * source, intsI6far * destination) 

The inputs xdct and ydct specify the block size to be used for the forward DCT 

transform. The input source is a pointer to the input data. Note that this input differs 

slightly from the software DCT in that the input consists of 8 bit signed data values 

compared to the 16 bit signed data values of the software DCT. Also the size of the 

input source is dependent on the DCT block size whereas the software DCT had a 

constant data block size of 16x16 regardless of the DCT block size. The destination is 

a pointer to a block of signed 16 bit integers. The size of the block is again dependent 

on the DCT block size used. 

The input data is converted to nine bit signed integer values and clocked into the 

STV3200 device. Following the data transfer a further 131 clock pulses must be sent 

before the STV3200 begins to output the DCT results. The DCT results are then 

The Discrete Cosine Transform 4-25 



clocked out of the STV3200, sign extended to 16 bit signed integers and stored in the 

destination block. 

4.7.3.3 The Hardware Inverse DCT 

The inverse DCT function prototype is defined in the C programming language as 

follows: 

voidfldct (intul6 xdct, intul6ydct, intsl6far *source, intsSfar ^destination) 

The inputs xdct and ydct specify the block size to be used for the inverse DCT 

transform. The input source is a pointer to the input DCT coefficients. This input 

differs slightly to the software inverse DCT in that the size of the input source is 

dependent on the inverse DCT block size, whereas the software inverse DCT had a 

constant data block size of 16x16 regardless of the inverse DCT block size. The 

destination is a pointer to the output block of signed 8 bit integers. The size of the 

block dependent on the inverse DCT block size used. 

The input DCT coefficients are converted back to 12 bit signed integer values and 

clocked into the STV3200 device. Following the data transfer a further 131 clock 

pulses must be sent before the STV3200 begins to output the inverse DCT results. The 

inverse DCT results are then clocked out of the STV3200, clipped to fit within an 8 

bit signed integer and stored in the destination block. The STV3200 device should 

clip the output values itself though this operation does not seem to work correctly and 

had to be performed in software. 

The Discrete Cosine Transform 4-26 



4.7.3.4 Problems Associated With the Hardware DCT 

There are two major problems with the performance of the hardware DCT. The first is 

that all the data must be continually clocked in and out of the STV3200 by software. 

This tends to be quite a tedious and time consuming task for a Complex Instruction 

Set Computer (CISC) such as the Intel 80486. This is further slowed down by the 

reduced bus speed of the IBM AT standard bus where the 33Mhz 80486 is slowed 

down to a rate of 8Mhz. The best solution for this is to design a stand-alone system 

based around a Reduced Instruction Set Computer (RISC) such as the Intel i860 to 

improve throughput. Another improvement would be to have Direct Memory Access 

(DMA) capabilities to avoid transferring the data via software. Unfortunately both of 

these would add considerably to the cost of the project in terms of hardware costs and 

in terms of time. Since the ideal rate of the transforms from the data sheets of the 

STV3200 is already known, it is not really necessary to construct a more complex 

device. It is more important to examine the characteristics of this device so as to 

provide an improved compression algorithm. 

Another problem associated with the hardware DCT is that there is a great deal of 

overhead required if the blocks are transformed individually: it is more efficient to 

bulk transform several blocks at one time. This problem is quite easily overcome in 

software by combining a group of blocks together and then transforming them. This is 

exploited later in the development of the OptIC algorithm, see section 5 for a 

description of the modified DCT algorithm. 

The Discrete Cosine Transform 4-27 



4.8 Post-Processing 

The post-processing stage after the inverse DCT transform, consists of two stages: 

bias removal, and reordering. 

4.8.1 Bias Removal 

This stage removes the bias that was added prior to the forward transform. It simply 

adds an offset of 128 to the output data. 

Fig. 4-10 Image data bias removal. 

4.8.2 Re-Ordering 

Once the block has been fully restored it is then re-ordered back to its previous form, 

i.e. as it was in the original image. This involves taking the output of the IDCT, which 

is an NxN element vector in the case of the hardware NxN IDCT algorithm, and 

converting it to an NxN 2-D matrix (this is the form of the data after a software NxN 

IDCT). This 2-D matrix is then inserted back into the larger image array. This 

The Discrete Cosine Transform 4-28 



procedure is illustrated in Fig. 4-11 where after completion of a 4x4 hardware IDCT 

the 16 element output vector must be converted to a 2-D matrix, the value in each 

element box represents some sample data whereas the value along the side of the array 

represents the address of that element. This 2-D matrix is then stored in the 12x12 

pixel image array. Note that the memory locations of the IDCT output and those of the 

image do not correspond, that is why there is a need for the re-ordering. 

7 3 8 6 4 6 7 5 2 5 6 2 6 3 8 5 

The 1 -D output vector from the 

IDCT transform. \ 
0 1 2 3 

0 1 2 3 4 5 6 7 8 9 10 11 

0 

12 

24 

36 

48 

60 

72 

84 

96 

7 
4 

2 
6 

4 

0 
2 

3 
6 

5 

3 
9 
6 

8 

7 
6 

8 
7 

6 

5 
2 

5 
5 

2 

3 
8 

0 

2 

0 
2 

2 

1 

0 

4 

8 

12 

7 

4 
2 
6 

3 

6 
5 
3 

8 

7 
6 
8 

6 
5 

2 
5 

The 1-D vector is converted to 

a 2-D matrix. 

The output data after 

re-ordering 

Fig. 4-11 Illustration of the data re-ordering procedure 

4.9 Results 

4.9.1 Reconstruction Error 

Both the hardware and the software D C T algorithms were tested to compare the errors 

introduced after reconstruction of the intensity images in the test set. The tests were 

The Discrete Cosine Transform 4-29 



performed using block sizes of 4x4, 8x8 and 16x16. The error is measured by 

calculating the MSE between the original image and the reconstructed image. The 

results of these tests are shown in Table 4.3. 

Image File 

Airplane.Y 

Baboon.Y 
Beansl.Y 
Beans2.Y 
Couple.Y 

Girll.Y 
Girl2.Y 
Girl3.Y 
House.Y 
Lena.Y 

Peppers. Y 
SailboatY 
Splash.Y 
TestpattY 
Tiffany.Y 
Tree.Y 

Wendyl.Y 
Wendy2.Y 

Wendy3.Y 

Software D C T Block Size 

4x4 

p
p
p
p
o
o
o
o
o
o
p
o
o
p
o
p
p
o
p
 

©
 
©
 
©
 
©
 ©
 
©
 ©
 
©
 
©
 
©
 
o
 
©
 
©
 
©
 
©
 ©
 
©
 
©
 
©
 

0
©
0
0
©
©
©
0
0
©
©
©
©
0
©
©
©
©
©
 

©
©
©
o
o
o
o
o
©
©
©
©
©
©
©
©
©
©
©
 

©
©
©
©
©
o
o
o
o
©
©
©
©
©
©
©
©
©
©
 

©
©
©
©
©
©
©
©
©
©
©
©
©
©
©
o
o
©
©
 

©
©
©
©
©
o
o
o
o
©
©
©
©
©
©
©
©
©
©
 

8x8 
0.001820 
0.002140 
0.001953 
0.001816 
0.001984 

0.001938 
0.001923 
0.001892 
0.002075 
0.001945 
0.001938 
0.001888 
0.001961 
0.000557 
0.001877 
0.001801 
0.001774 
0.001884 

0.001766 

16x16 ; 

0.103535 

0.103390 
0.101593 
0.101547 
0.102188 
0.104858 
0.103271 

0.101196 
0.102142 
0.104008 

0.104179 
0.102558 

0.103107 
0.028084 
0.102909 
0.102692 

0.102810 
0.102665 
0.103077 

Hardware D C T Block Size 
4x4 

0.000000 
0.000004 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 

8x8 
0.004837 
0.005238 

0.004745 
0.004776 

0.004913 
0.004913 
0.004410 
0.004578 
0.004822 
0.004833 
0.004459 
0.004910 
0.004807 
0.008522 
0.004570 
0.004990 
0.004841 
0.004852 

0.004761 

16x16 

0.157028 
0.157040 
0.158203 
0.156799 
0.155807 
0.156052 
0.157227 
0.156555 
0.158615 
0.157051 
0.156776 
0.157990 
0.156040 
0.077656 
0.154491 
0.157471 
0.155964 

0.157650 
0.156033 

Table 4.3 Image reconstruction error for software and hardware DCTs of various sizes. 

It can be seen that the M S E increases with the block size in all of the test images, as 

already discussed in 4.4.1. It can also be noted that the MSE is greater in the hardware 

transform than in the software transform. This is because the hardware transform uses 

integer arithmetic in its internal calculations and so rounding errors are more evident. 

The software algorithm uses high precision floating point arithmetic to perform its 

calculations and is so more accurate and less prone to rounding errors. 

The Discrete Cosine Transform 4-30 



4.9.2 Timing Benchmarks 

The second test performed on the DCT algorithms is to examine their computational 

speed. These tests were done with both the software and hardware algorithm on the 

forward and inverse transform. The tests were also performed using block sizes of 

4x4, 8x8 and 16x16. Ideal results were also calculated for the STV3200 from the data 

sheets to compare the results of the hardware algorithm with that of the ideal 

maximum throughput. The results gained from the tests are summarised in Table 4.4. 

Block 

Size 

4x4 

8x8 

16x16 

Software Algorithm 

DCT 

12.91mS 
67.34mS 
335.ImS 

IDCT 

13.35mS 
72.23mS 
376.8mS 

Hardware Algorithm 

DCT 

341 p,S 

621 u. S 

1.719mS 

IDCT 

341 yx S 

615jiS 

1.697mS 

Hardware (Ideal) 

DCT 

1.07U.S 
4.27 u. S 

17.1 p,S 

IDCT 

1.067 p. S 

4.267 u.S 

17.07 u.S 

Table 4.4 Time required to complete the specified cosine transform with block sizes of 4x4, 8x8 and 16x16. 

A number of characteristics can be seen from these results. Firstly, the software 

algorithm is a great deal slower than the hardware algorithm, particularly for larger 

block sizes. For the 16x16 DCT the software algorithm is almost 200 times slower. 

Secondly, it can be seen that a doubling in block size causes an increase in processing 

time of a factor of over four in software, but the corresponding increase in the 

hardware processing is less than three. This is because of the larger overheads in the 

hardware algorithm when dealing with smaller blocks, see section 4.7.3.4. In order to 

transform a 16x16 block using DCTs with a block size of 8x8, four 8x8 transforms 

would be required. Therefore if the processing time for a 16x16 transform is less than 

four times that for an 8x8 transform, it would be more advantageous to use the 16x16 

The Discrete Cosine Transform 4-31 



transform. Thus for the hardware algorithm, it is faster to use a larger block size than 

it is to use a smaller one. This is not, however, true with the software algorithm since 

the 16x16 transform is more than four times slower than the 8x8 transform. 

Another interesting result is that the STV3200 is not used anywhere close to its 

potential abilities. Only a fraction of its power is tapped because of the poor 

architecture of the Intel 80486 with respect to Input/Output transfers as discussed 

earlier, see section 4.7.3.4. 

4.9.3 Entropy Effects 

The final test performed was to measure the entropy effects on the image data after the 

transformation. The entropy of the original image was measured and then the image 

was transformed using both the software and hardware algorithm with block sizes of 

4x4, 8x8 and 16x16. The results of these tests are shown in Table 4.5. 

From the results a number of patterns can be seen. Firstly, a DCT with a block size of 

4x4 does not really provide any benefits to the entropy of the image and in some cases 

increases it. A block size of 8x8 does, however, provide great improvements in 

entropy, improving in some cases by over two bits. A block size of 16x16 provides 

even greater improvements, over 3 bits in some cases. Improvements in entropy 

occurred in all but one image - Testpatt.Y. The reasons for this were discussed in 

4.4.1. 

The Discrete Cosine Transform 4-32 



Image 

Airplane.Y 

Baboon.Y 
Beans l.Y 

Beans2.Y 
Couple.Y 

Girll.Y 
Girl2.Y 
Girl3.Y 
House.Y 
Lena.Y 

Peppers. Y 
SailboatY 

Splash.Y 

TestpattY 
Tiffany.Y 

Tree.Y 
Wendyl.Y 
Wendy2.Y 
Wendy3.Y 

Original 

6.70576 
7.35814 
5.72470 

6.24254 

6.42737 
7.05377 
5.60747 
7.26169 
6.50448 
7.44776 
7.59430 
7.48579 

7.25848 

0.98935 
6.60048 
7.31444 

6.82276 
7.09684 
7.82136 

Software D C T Block Size 

4x4 
6.59883 
8.23258 

5.04377 
5.57542 

6.49216 
6.69353 
5.63987 

6.38091 
6.47716 
6.73084 

6.96417 
7.52480 
6.21584 

3.98828 

6.68245 
7.66236 
5.69242 

6.64787 
6.53512 

8x8 
5.46118 

7.22579 
3.90887 
4.47563 

5.37668 
5.51193 

4.59549 
5.25496 

5.34951 
5.53930 
5.78915 
6.39000 

5.03779 
6.16478 
5.50143 

6.67389 
4.37729 
5.37983 
5.26977 

16x16 

4.49233 
6.24640 

2.98390 

3.61587 
4.50975 
4.55283 
3.76962 
4.30994 

4.37570 
4.53030 
4.80178 
5.40044 

4.05277 
6.20373 
4.51656 
5.80216 
3.33852 
4.32710 
4.22150 

Hardware D C T Block Size 

4x4 
6.59815 
8.23203 
5.04333 
5.57615 
6.49188 

6.69317 
5.63783 
6.38057 
6.47580 
6.73056 
6.96405 
7.52451 
6.21559 

4.04839 
6.68241 
7.66187 
5.69006 

6.64699 
6.53454 

8x8 
5.46163 
7.22536 
3.91436 

4.47897 
5.37726 
5.51229 
4.59681 
5.25522 
5.35076 
5.53951 
5.78887 
6.38964 
5.03766 
6.17924 
5.50145 
6.67400 
4.38009 
5.38041 
5.27025 

16x16 

4.49679 
6.24667 
3.02061 
3.64295 
4.51369 
4.55489 
3.77790 
4.31520 
4.38083 
4.53318 
4.80349 
5.40114 
4.05722 

6.20320 
4.51991 
5.80349 
3.35043 
4.33512 
4.22606 

Table 4.5 Entropy of the image before and after using the software and hardware DCT. 

4.10 Conclusion to the Chapter 

Several important conclusions may be drawn from the results obtained in this chapter. 

The first is that the hardware implementation of the DCT/IDCT algorithm is a great 

deal faster than the software algorithm, up to 200 times in some cases. The results also 

indicate that for the hardware DCT/IDCT algorithm, the processing time for a set 

image size decreases with a larger block size, that is, a block size of 16x16 is 

favourable. 

The entropy effect results also tend to indicate that the entropy improves greatly with 

the larger block sizes. With the 16x16 block size maximum reduction of entropy was 

obtained. 

The Discrete Cosine Transform 4-33 



There is only one disadvantage in shifting towards a larger block size. The 

reconstruction error increases because of increased rounding errors. However, when 

the reconstruction error was compared with the entropy gained it was found that for 

reconstruction errors of greater than two it was still advantageous to use a larger block 

size, see section 4.4.1 for further details. 

In summing up, it was found that the most suitable DCT/IDCT implementation for 

use in the OptIC algorithm would be the hardware implementation with a block size 

of 16x16. 

The Discrete Cosine Transform 4-34 



5. The Quantiser 

5.1 Introduction 

The quantiser forms the second stage of the OptIC algorithm. It has the effect of 

reducing the entropy of the image data by reducing the resolution of the DCT 

coefficients. This is done by scaling down the coefficient magnitudes by a given 

amount and removing any fractional portions. At dequantisation the coefficient is 

scaled up by the same amount. The greater the scaling the greater the resultant error in 

the reconstructed coefficient. 

The different coefficients are quantised by differing extents depending upon their 

importance. This is primarily determined by the degree of visual error introduced after 

reconstruction. It is also determined to a lesser extent by the degree of error 

introduced with respect to the reduction of entropy after quantisation. This circular 

definition implies that an iterative process is required to determine an optimum 

quantiser for the algorithm described in this thesis. This process defined in more detail 

in section 5.6. 

For this research it was stated that a low error rate is desirable. In particular this error 

rate must fall below that where it is perceivable by the human eye. Note that the Mean 

Square Error (MSE) does not give a true indication of the subjective error assessment 

but does, however, give an estimate when dealing with a large test space. The 

The Quantiser 5-1 



difference between the M S E and the subjective error assessment becomes greater as 

more HVS properties are incorporated into the algorithm. 

Before the quantiser was designed, it was important to make a further study of the 

DCT coefficient properties and to incorporate their effects as perceived by the Human 

Visual System. 

5.2 The DCT Coefficient Properties 

The properties of the DCT coefficients are now looked at in greater detail with 

particular emphasis on their numerical and functional aspects. 

5.2.1 Numerical Properties 

The first of the numerical properties to be considered was the statistical qualities of 

the transformed images. An observation was made of the frequency of occurrences of 

a particular symbol, where a symbol is defined as a member of the possible set of 

values which the coefficients may take. As the coefficients are 12 bit signed values, 

the symbol set includes all values from -2048 to 2047 inclusive. The frequency is 

measured by transforming all the intensity images in the test set using the DCT 

transform described in Section 4.7, and counting the occurrence of each unique 

symbol. The images are then compared with each other to find the minimum, 

maximum and average frequency of each symbol. It should be noted that the 

frequencies of the smaller 256x256 images were appropriately scaled by a factor of 

The Quantiser 5-2 



four so that they may be accurately compared with the results obtained with the 

512x512 images. The results of this are shown in the graph in Fig. 5-1. 

140000 

120000 

100000 

o 80000 
O) 
3 
a> 60000 

40000 

20000 

0 

-30 -20 
—t-
30 

Coefficient Symbol 

— - — - Minimum •Maximum Average 

Fig. 5-1 Frequency of DCT coefficient symbols 

The frequency data shown in Fig. 5-1 is very important in determining how the data 

will respond to a statistical coder. The more concentrated the symbols are within a 

particular range the lower the entropy of the data and so it is more compressible. Only 

coefficient values ranging from -30 to 30 are shown in the graph since only these 

values have significant frequencies. Outside this range the frequency values drop 

dramatically. It can be seen that the peak frequency occurs with the zero coefficient 

symbol (which represents between one fifth to one half of the transformed image 

data). Furthermore a great majority of the symbol values lie within the range of-10 to 

10. 

The Quantiser 5-3 



The second analysis made on the D C T coefficients is to make an observation of what 

the average, peak negative and positive magnitudes are for each coefficient after 

transformation. To obtain the required data for this test, the intensity images in the test 

set were transformed using the DCT transform (4.14). The minimum and maximum 

magnitudes of each coefficient were then recorded for each image. Finally, the values 

obtained for each image were compared with those of the other images to determine 

the overall most negative (Fig. 5-2), average negative (Fig. 5-3), most positive (Fig. 5-

4) and average positive magnitudes (Fig. 5-5) for each coefficient in the DCT. The 

coefficients are, in fact, discrete values, valid only at the intersection of the horizontal 

and vertical lines on the diagrams. Figures 5-2 and 5-4 are included for comparison 

purposes, and not to imply any continuous nature of the magnitude of the coefficients. 

Fig. 5-2 Most negative magnitudes of DCT coefficients 

The Quantiser 

D 

• 

-500-0 

-1000-

n-1500-

-500 

-1000 



• -800-700 

FJ -700-600 

0-600-500 

• -500-400 

D^00-300 

D-300-200 

• -200-100 

Fl-100-0 

Fig. 5-3 Average negative magnitudes of DCT coefficients 

10 11 12 13 14 15 

D1000-1500 

• 500-1000 

00-500 

Fig. 5-4 Most positive magnitudes of DCT coefficients 

The Quantiser 5 



Fig. 5-5 Average positive magnitudes for DCT coefficients 

By analysing the results shown in Fig. 5-2 and Fig. 5-4 two interesting characteristics 

were noted. Firstly, the number of coefficients exceeding a maximum magnitude of 

1000 composes approximately 7% of all the coefficients. Most of the coefficients 

(53%) have magnitudes in the range of 500 to 1000 with the remainder of coefficients 

(40%) having magnitudes in the range of 0 to 500. We can therefore conclude that 

very few coefficients will exceed an absolute magnitude of 1000, and practically none 

will reach the possible maximum of magnitude of 2047. It was also noted that the 

maximum negative magnitudes of the coefficients are slightly higher than their 

corresponding maximum positive magnitudes. 

The Quantiser 5-6 



The second characteristic that can be observed is that, though the positions of the 

positive and negative maximum magnitude ranges tend to coincide in both figures, the 

actual positions of these ranges do not follow any regular patterns in the coefficient 

matrix. This irregularity is caused by the large number of images in the test set. Each 

peak may have been derived from a different image, as each image has its own 

characteristics and its own peaks associated with these characteristics. As such, one 

would not expect there to be any correlation between the points in these figures, the 

figures can only give information about the magnitudes of specific coefficients in 

isolation. Fig. 5-2 and Fig. 5-4 only give an approximate guide to where the highest 

and lowest magnitudes may occur. It is not possible to clearly define the maximum 

magnitude for a particular coefficient in the coefficient matrix. It is purely dependent 

on the test set of images used. 

An analysis of the graphs in Fig. 5-3 and Fig. 5-5 verify the characteristic found 

previously that the negative magnitudes are on average greater than those of the 

positive magnitudes. Also, unlike the graphs showing the most negative and positive 

magnitudes, the average magnitudes follow a trend. The different ranges of average 

magnitudes are formed as concentric sectors about the DCT coefficient (0,0). The 

values of the average magnitude reduce sharply as we move away from the DC 

coefficient (0,0). Those coefficients that are more than 7 units in distance from the DC 

coefficient (0,0) have average magnitudes of less than 100 (The effect of quantisation 

on these characteristics is discussed further in section 5.3). 

The Quantiser 5-7 



5.2.2 Functional Properties 

The functional properties of the DCT coefficients describe the contribution of each 

coefficient in rebuilding the transformed image and, in particular, how this relates to 

the HVS. In section 4.4.2.1, it was noted that the most important property in the HVS 

was that we are most sensitive to lower frequency changes of intensity. That is, 

smooth transitions from one intensity to another over a large area. 

Another important property is that for higher frequency coefficients we are able to 

notice changes at lower intensity levels more than at higher levels. In effect the eye 

follows a non-linear response to changes in these coefficients. This can be 

demonstrated by the quantisation of any signal. For low amplitude signals the effect 

of the quantisation will appear greater than for higher amplitude signals. This is 

simply because the percentage change in magnitude caused by the quantisation is 

much greater for smaller magnitudes. This is particularly evident in high frequency 

data. With low amplitude signals, the intensity of each symbol can be easily measured 

by the human eye with respect to neighbouring pixels. As all the pixels will have 

similar intensities, each pixel can be used as a reference to measure the intensity of an 

adjacent pixel. Any slight changes caused by quantisation will, in this situation, be 

easily perceived. However, as the amplitude and frequency of the signals increases, 

the human eye loses its reference by which the intensities of adjacent pixels may be 

measured. The sudden light-dark changes thus make it difficult to visualise the 

The Quantiser 5-8 



changes caused by quantisation [TZ084]. This property is the justification for the use 

of a non-uniform quantisation [RAO90], 

The usefulness of a non-uniform quantiser is more easily shown by the example in 

Fig. 5-6 and Fig. 5-7. Fig. 5-6 shows an image segment before quantisation (left) and 

after quantisation by a factor of 16 (right). The images are composed of vertical bars 

each of which has a random low intensity. If the two images are compared visually it 

is easy to see that images are not identical. The columns have clearly changed in 

intensity. It can be concluded that the level of quantisation in this situation was too 

high. 

Fig. 5-6 An example of quantisation of a signal with low intensity data. 

Fig. 5-7 contains the same intensities as those in Fig. 5-6 but with a high frequency 

signal superimposed on top of it. After quantisation by a factor of 16 the errors caused 

by the quantisation are still the same as those in Fig. 5-6 but are no longer as apparent. 

It can thus be concluded that with high magnitude, high frequency data added to the 

signal it is possible to quantise by a greater degree without degrading image quality. 

The Quantiser 5-9 



Fig. 5-7 An example of quantisation of a signal with high magnitude and high frequency content. 

The non-linear quantiser can take into consideration such effects so as to maximise 

the possible level of quantisation without compromising image quality. 

5.3 Quantisation Effects On DCT Coefficients 

It is now important to examine the effect of quantisation on the coefficients. It was 

determined in section 4.4.2.3 that the entropy improvements provided by each 

particular coefficient were not dramatically varied throughout the different 

coefficients. For this reason, and to satisfy the requirement of minimal error in 

reconstruction, the error characteristics form the basis for determining the method of 

quantisation. 

5.3.1 Error Effects On the Reconstructed Image Data 

The quantiser introduces a second level of error into the algorithm. The first was 

introduced by the DCT transformation and reconstruction of the image. It can be seen, 

by referring to Table 4.3, that the forward-inverse hardware DCT introduces a 

maximum MSE of approximately 0.16 with a block size of 16x16. This can now be 

compared to the MSE obtained when the coefficients are scaled down by factors of 1 

to 16. To make this comparison the images were all transformed using a 16x16 DCT 

and each coefficient individually scaled down by factors in the range of 2 to 16 and 

The Quantiser 5-10 



then restored and compared with the original image to determine the amount of M S E 

introduced. This resulted in an MSE measurement for each of the 256 coefficients 

(16x16) when scaled by factors of 2 to 16 (15 cases) for each of the 19 intensity 

images in the test set. Since special emphasis is placed on minimising error, the 19 

images were compared taking the largest occurrence of MSE among them. The graphs 

shown in Fig. 5-8, Fig. 5-9, Fig. 5-10 and Fig. 5-11 show the maximum MSE when 

each coefficient was individually scaled by factors of 2, 4, 8 and 16 respectively for 

the images in the test set. 

Fig. 5-8 Maximum MSE obtained with coefficients scaled by a factor of 2. 

The Quantiser 5-11 



Fig. 5-9 Maximum MSE obtained with coefficients scaled by a factor of 4. 

Fig. 5-10 Maximum MSE obtained with coefficients scaled by a factor of 8. 

The Quantiser 5-12 



Fig. 5-11 Maximum MSE obtained with coefficients scaled by a factor of 16. 

The most distinctive feature of these figures is that the greatest M S E occurs when the 

D C component of the coefficient matrix is quantised. The M S E in this situation is up 

to an order of magnitude greater than that of the other coefficients when quantised by 

the same quantity. For low levels of quantisation all but the D C coefficient have errors 

of approximately 0.17 M S E , this is only marginally higher than the base level of error 

obtained by errors internal to the D C T algorithm itself. Even with higher levels of 

quantisation it can be seen that the coefficients that do not lie on the (0,x) or (x,0) axis 

of coefficients contribute very little to the overall M S E . This indicates that there is a 

reasonable level of redundancy in these coefficients and little changes in the 

information content of the image when these are quantised. 

The Quantiser 5-13 



4.5 

MSE 
-•-(0,0) 

-*-(2,2) 

-•—(14,14) 

Quantisation Factor 

Fig. 5-12 Maximum MSE for quantisation of coefficients along diagonal of coefficient matrix. 

The effect of the different levels of quantisation on the M S E can be seen more clearly 

in Fig. 5-12. Where a graph of the MSE versus the quantisation factor is plotted for 

several coefficients that appear along the diagonal of the coefficient matrix. Once 

again the high impact of quantising the DC coefficient on the MSE can be seen 

clearly. The second feature that may be noticed is how sharply the MSE drops as we 

quantise coefficients further from the DC coefficient. 

In conclusion a number of important factors have arisen in determining the form of 

the quantiser. Firstly, it is important to avoid quantisation of the DC coefficient by 

factors of more than 2 as it very quickly affects the overall quality of the image. 

Secondly, care must be taken when quantising those coefficients that lie along (0, x) 

and (x, 0) of the quantisation matrix as these also contribute significant amounts to the 

The Quantiser 5-14 



error. The remaining coefficients are reasonably resistant to error after quantisation 

and can be quantised by factor of 16 or even more in some situations. The last point is 

that the level of quantisation can be a function of the distance from the DC coefficient, 

the exact relationship depending on the required level of MSE. 

5.3.2 Numerical Effects of Quantisation 

The first numerical effect that will be examined is the frequency spread of the symbol 

space. The symbol space in this context can be defined as all of the possible values 

that a coefficient can take. To examine this the images were all transformed using the 

DCT and then quantised by a factor of 16. The minimum, maximum and average 

frequencies of all the symbols were then determined. The different images were then 

compared to determine the absolute minima and maxima throughout the entire test set. 

The results of this test are shown in Fig. 5-13. When these results are compared with 

the results obtained before quantisation in Fig. 5-1 the effect of quantisation can be 

noted. The graph is compressed along the symbol axis. By quantising the symbols 

their total number is reduced and they are shifted closer to zero. With extreme 

quantisation most, or all of the symbol values will become zero, but the MSE will of 

course, become unreasonably high. 

The Quantiser 5-15 



250000 

200000 

150000 

£100000 

50000 

-30 -20 -10 0 

Coefficient Symbol 

20 30 

— Minimum Maximum Average 

Fig. 5-13 Frequency of DCT coefficient symbols. 

It is also quite easy to deduce the effect on the graphs shown in Fig. 5-2 to Fig. 5-5. 

The graphs will simply be scaled down by the same factor as the quantisation factor. 

Therefore a quantisation factor of 8 will reduce all the magnitudes by a factor of 8. 

The final effect that should be examined is that of a non-uniform quantiser on the 

frequency of symbols. This type of quantiser is built up using a piece-wise algorithm, 

rather than a continuous curve. The quantiser consists of numerous linear quantisers 

which are activated at different points depending on the magnitude of the symbol. The 

characteristics of a typical non-uniform quantiser are shown in Fig. 5-14. This figure 

shows h o w the quantised symbol can be determined from the original symbol. Further 

The Quantiser 5-16 



details of the non-uniform quantiser used in the algorithm described in this thesis can 

be found in section 5.6. 

Fig. 5-14 A simple non-uniform quantiser. 

All the intensity images were once again transformed and then quantised using the 

non-uniform quantiser with all coefficients being treated equally. It would have been 

better to incorporate the HVS into this and quantise the lower frequency coefficients 

less than the higher frequency coefficients. However, for demonstration purposes and 

for an accurate comparison with the previous linear quantiser tests, all of the 

coefficients have been treated equally. The minimum, maximum and average 

frequencies were determined using the same techniques described earlier. The results 

of the tests are shown in Fig. 5-15. 

The Quantiser 5-17 



120000 . 

100000 . 

t? 80000 . 

e
q
u
e
n
 

0)
 

o o o o 

u. 

40000 -

20000 -

0: 

\ 

* 1 

—x-^M\ , • - * , i » T ~ - ,., / — 

-30 -20 -10 0 10 

Coefficient Symbol 

20 30 

— - — - Minimum Maximum Average 

Fig. 5-15 Frequency of DCT coefficient symbols after non-uniform quantisation. 

From Fig. 5-15 it can be seen that the distribution of the symbols are spread 

considerably more than that in Fig. 5-13. However, it should be noted that in the same 

magnified range of -30 to 30, both diagrams contain approximately the same amount 

of data and both n o w contain a total of less than 256 symbols after quantisation. 

Limiting the number of symbols to a number less than 256 is significant in that the 

information can then be contained within one eight-bit byte. 

Another characteristic of the non-uniform quantiser is the formation of several crests 

in the frequency plot. This is caused by the non-continuous approximation to the non­

uniform quantiser, at each break-over point several different symbols are mapped into 

the same symbol thereby increasing the frequency of this symbol. This actually is 

better than standard quantisation where a large number of coefficients are reduced to 

The Quantiser 5-18 



zero value because the quantisation is greater than the coefficient value itself. This 

results in high losses and the all too familiar blocking effect when the image is 

reconstructed. With the non-uniform quantiser the coefficients are not cleared but 

rather shifted down by differing amounts depending on the magnitude of the 

coefficient in the first place. The smaller the coefficient magnitude, the less it is 

quantised. This does not necessarily result in a lower MSE but rather an image with a 

lowered entropy and with a lower level of visual degradation in the reconstructed 

image. 

5.4 JPEG Quantiser 

After close examination of the effects of quantisation on the DCT coefficients and on 

the resulting reconstruction error, it is worthwhile examining the operation of the 

JPEG quantiser. The JPEG algorithm is chosen here because it is a standard and there 

are a number of implementations available which may be used to compare with the 

algorithm described in this thesis. It is based on the DCT and as it is transform based, 

it contains a coefficient quantiser. Through examination of the JPEG quantiser, it is 

possible to determine to what extent it utilises the characteristics of the DCT 

coefficients. 

The JPEG quantiser is composed of a matrix in which each element contains the 

quantisation factor for the corresponding DCT coefficient. Since the quantisation is 

performed by simple division it does not make use of the non-uniform effects 

The Quantiser 5-19 



described earlier. Unfortunately the JPEG standard does not provide standard values 

for the quantisation matrix, it only recommends a set of values. One typical example 

of this quantisation matrix for the luminance component of an image is shown in 

Table 5.1. 

x\y 
0 
1 f 
2 
3 

. . 4 
5 
6 
7 

III 1 
16 
12 
14 
14 
18 
24 
49 
72 

1 
11 
12 
13 
17 
22 
35 
64 
92 

2 
10 
14 
16 
22 
37 
55 
78 
95 

3 
16 
19 
24 
29 
56 
64 
87 
98 

4 
24 
26 
40 
51 
68 
81 
103 
112 

|§ 
40 
58 
57 
87 
109 
104 
121 
100 

6 
51 
60 
69 
80 
103 
113 
120 
103 

111111 
61 
55 
56 
62 
77 
92 
101 
99 

Table 5.1 A typical JPEG quantisation matrix [PEN90J. 

Several observations can be made from the quantisation matrix. The first is that the 

matrix has only 64 elements; that is JPEG is based on a DCT with a block size of 8x8. 

As was determined earlier, this not an ideal choice for higher quality compression. 

The JPEG algorithm was tailored to provide rather large levels of compression 

without too much emphasis on the quality, but at a reasonably fast rate. JPEG catered 

for those requiring higher quality by defining a separate lossless algorithm which in 

most cases would only compress by a factor of two. 

The Quantiser 5-20 



The second observation that can be made is that the different coefficients are 

quantised by different amounts. In particular, the lower frequency coefficients are 

quantised to a lesser extent than those of higher frequency. This conforms with the 

observations made earlier. The function relating the quantisation level to the DCT 

coefficient contains some anomalies, for example, the coefficient (6, 6) is quantised 

more heavily than (7, 7) even though it is closer to the DC coefficient. These are 

dependent on the image test set used to determine the quantisation matrix required to 

generate minimal error. 

The last observation is that the values in the quantisation matrix are rather high. This 

results in a reconstructed image with obvious errors. The JPEG specification claims 

[PEN90] that if the quantisation matrix is divided by a factor of two the resulting 

image will normally be indistinguishable from the original. This, however, is not true 

if close examination is made between the two images. The JPEG quantiser introduces 

obvious distortions in the reconstructed image, note particularly the circled area in 

Fig. 5-16. These distortions are more noticeable on a video monitor than in the 

hardcopy images in this document. Even though the differences are not particularly 

evident they are still too much as far as this research project is concerned, this gives 

an indication of the level of quality that this algorithm is trying to achieve. 

The Quantiser 5-21 



Fig. 5-16 Errors introduced in the JPEG quantiser. 

The original can also be compared with the reconstructed image obtained with the 

OptIC quantiser described in this chapter, see Fig. 5-17. 

Fig. 5-17 A comparison with the OptIC algorithm. 

5.5 Development in the Compression Algorithm 

An improvement was made in the DCT hardware driver described in the previous 

chapter. This was to modify the driver so that it may transform more than one block at 

a time thus reducing the amount of overhead required per block transformed and so 

The Quantiser 5-22 



improving the efficiency of the algorithm. The forward and inverse transformations 

are shown diagrammatically in Fig. 5-18. 

ExecuteDCT 

BlockDCT OrderDCT 

ExecutelDCT 

OrderlDCT BlocklDCT 

Fig. 5-18 Modified forward and inverse hardware DCT driver software. 

Many different routines were written to perform specific functions within the overall 

algorithm. The two functions ExecuteDCT and ExecutelDCT provide functionality for 

transforming an entire image in the forward or inverse direction. These two functions 

are composed of two further functions. BlockDCT and BlocklDCT send one line of 

blocks from the image to the hardware transform device. OrderDCT and OrderlDCT 

perform two functions, quantisation/dequantisation and ordering. The ordering 

component of the ordering function will be described in more detail in chapter 6. The 

C source code listing for these functions can be found in Appendix D. 

5.6 Quantiser Realisation 

The quantiser developed for implementation of this compression algorithm takes into 

account a number of the characteristics that were discussed in this chapter. The first 

characteristic employed was to classify the coefficients by their sensitivity to 

quantisation in terms of MSE. The second was to design individually tuned quantisers 

for each of the classed coefficients using a non-uniform quantiser. The tuning of the 

The Quantiser 5-23 



quantisers was achieved through an iterative process involving subjective quality 

assessment. This tuning allowed the HVS to be incorporated into the quantiser more 

effectively. 

It was highlighted in 5.1 that the MSE can be used as an approximate indicator of 

subjective image quality for a large image test set. As extensive tests of coefficient 

sensitivity to quantisation in terms of MSE were made in 5.3.1 for the entire image 

test set, it was possible to classify the coefficients into groups that represented 

different levels of sensitivity. It should be noted that this use of MSE was used only 

to group the coefficients into like types and does not actually define how the quantiser 

will operate on these groups. The actual definition of the quantiser must incorporate 

the HVS and so will be performed during the iterative tuning process. 

The data used to classify the coefficients was obtained from Fig.5-11 which graphed 

the maximum MSE obtained by quantising each coefficient by a factor of 16. The 

maximum was taken over the entire image set and so provided worst case figures. The 

coefficients were classified into eight separate groups (0 to 7) depending on their 

sensitivity to quantisation. The result of this classification can be found in Table 5.2. 

Note that group 0 coefficients produce very high levels of MSE when quantised 

whereas group 7 coefficients produce low levels of MSE when quantised. 

The Quantiser 5-24 



It should be noted that the results of the grouping actually support some of the theory 

described with respect to the HVS, this is because of the large image set. For example, 

the DC coefficient and those coefficients along the axis are in the lower groups 

indicating that they are sensitive to quantisation. This is also true in terms of the HVS, 

that is, quantisation of these coefficients should be minimised to acheive improved 

subjective image quality. The same is true for the higher frequency coefficients which 

are in the higher groups indicating that they are insensitive to quantisation. It does not, 

however, fully incorporate the HVS as the quantiser itself has not been defined by 

using each of the images individually through subjective assessment. 

x\y 
0 
1 
2 
3 % 
4: ' 
5 
6 
7 
8 
9 f 

10 
11 
12 
13 
14 
15 

0 
0 
1 
1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
4 
5 
6 
7 

1 
1 
2 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
7 
7 
7 
7 

2 
1 
2 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
7 
7 
7 
7 

3 
2 
2 
2 
3 
3 
3 
4 
4 
5 
5 
5 
6 
6 
7 
7 
7 

4 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
7 
7 

•5 

2 
3 
3 
3 
4 
4 
4 
5 
5 
5 
6 
6 
6 
6 
7 
7 

6 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
7 
7 

7: 
3 
4 
4 
4 
4 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 

i$! 
3 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
7 
7 
7 

9 
3 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
7 

10 
3 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 

11 
3 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 

111! 
4 
7 
7 
6 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 

111 
5 
7 
7 
7 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 

H 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

15 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 

7aWe 5.2 Coefficient quantisation types. 

The Quantiser 5-25 



In order to incorporate the H V S , eight quantiser types were defined for the eight 

groups of coefficients.The quantiser is not based on a continuous function but rather 

an approximation of one built with linear sections. By using the linear sections, 

greater control is gained over the shape of the quantiser function and it can also be 

implemented with a very fast look-up table requiring no multiplication function. The 

linear sections are defined in the array constants quantjc and quantjy, where quant x 

is the coefficient magnitude at which a new linear section begins and quantjy defines 

the slope of the linear section. The function genquant generates a look-up table for a 

particular quantisation type given the data stored in quant_x and quantjy. It generates 

two tables in parallel, the first is the quantisation table (hForward) and the second is 

the de-quantisation table (hBackward). The characteristics of the eight quantiser types 

in this compression algorithm can be seen in Fig. 5-19. 

Fig. 5-19 Characteristics of the eight quantisation types. 

The Quantiser 5-26 



The exact form of the quantisation types were determined through an iterative process. 

The iteration process is three fold: the top level iteration is to process the quantiser 

types from level 7 down to level 0, the second level is to process the separate linear 

sections that form the non-uniform quantiser, that is, to define quantjc and quantjy 

and the final level is to determine the quantisation level possible for the current 

quantisation type and linear section. This final level of iteration requires testing each 

image with the current quantiser definition, if this resulted in no visible restoration 

error, then the current quantisation level of the current quantiser type and linear 

section was increased. If there was visible reconstruction error then the previous 

iterations quantisation level was used and processing was continued with the next 

linear section or quantisation type. 

5.7 Results 

5.7.1 Frequency Distribution 

The frequency distribution of the transformed images is shown in Fig. 5-20. As in 

section 5.3.2 the minimum, maximum and average frequencies for the coefficient 

symbol values from -30 to 30 are shown for the intensity images in the test set. 

The Quantiser 5-27 



200000 

150000 

5-
c 
0) 
3 

S" 100000 

50000 

-30 -20 -10 0 10 

Coefficient Symbol 

20 30 

— - — - Minimum Maximum Average 

Fig. 5-20 Frequency of DCT coefficient symbols after quantisation. 

The frequency distribution's characteristic is similar to that of the non-uniform 

quantiser distribution shown in Fig. 5-15. It differs only in that the new distribution 

exhibits a higher level of quantisation, that is, there is a higher concentration of 

symbols in the -4 to 4 range. The existence of a slight bulge about the -3 and 3 symbol 

values and the slight bulges about the -15 and 15 symbol values are also indicative of 

the non-uniform quantiser. 

5.7.2 Reconstruction Error 

The image reconstruction error after quantisation with the non-uniform quantiser and 

the JPEG quantiser is shown for all of the intensity images in Table 5.3. 

The Quantiser 5-28 



Image File 

Airplane.Y 

Baboon.Y 
Beans l.Y 

Beans2.Y 
Couple.Y 
Girll.Y 

Girl2.Y 
Girl3.Y 

House.Y 
Lena.Y 

Peppers.Y 
Sailboat.Y 

Splash.Y 
Testpatt.Y 
Tiffany.Y 
Tree.Y 

Wendyl.Y 

Wendy2.Y 
Wendy3.Y 

Hardware D C T 

M S E 

0.157028 

0.157040 
0.158203 

0.156799 

0.155807 
0.156052 

0.157227 
0.156555 

0.158615 
0.157051 

0.156776 
0.157990 

0.156040 
0.077656 
0.154491 
0.157471 
0.155964 

0.157650 
0.156033 

Non-uniform 
Quantiser M S E 

5.549461 
35.092472 
2.166992 

3.110580 

6.557709 
6.747757 
4.548828 
5.282883 

6.971359 
6.442287 
11.092140 
16.493061 
3.998802 
28.986454 

8.026783 
19.055832 
2.161739 
4.058239 
3.511997 

JPEG 
Quantiser M S E 

3.438511 

8.885120 
1.400757 
1.887634 

3.406158 
4.122482 
2.563141 

3.289993 
3.507980 
4.604576 
6.831085 
7.869686 
3.219627 
2.292976 
4.489658 
7.117462 
1.987961 
2.382908 
2.882843 

Table 5.3 Image reconstruction error for the non-uniform and JPEG quantiser. 

The error increase was greatest for the images Baboon. Y and Testpatt. Y. These images 

contain a large amount of high frequency data. That is, there are very rapid transitions 

between the intensity levels of adjacent pixels. As high frequency components of the 

image are being heavily quantised, the MSE of these images must increase more than 

in images where high frequency data is not so prevalent. These errors, however, are 

not perceived by the human eye and so are not of great concern. A hard copy of the 

original and reconstructed images can be found in Appendix A Image Test Set for 

direct comparison purposes. 

The Quantiser 5-29 



Comparing the non-uniform quantiser M S E results with the JPEG quantiser M S E 

results, the uninitiated would assume that the latter was the superior of the two. 

However, in this situation, the reverse is true. Both of the results relate to the same 

level of perceivable image quality as visualised with the human eye. The results show 

that the non-uniform quantiser was able to add more non-perceivable distortions to the 

image than the JPEG quantiser. These non-perceivable distortions are as defined by 

the HVS. By adding more quantiser-introduced distortions it is possible to reduce the 

entropy of the image and so improve the compression factor after coding, see chapters 

6 and 7 for further details on coding. 

5.7.3 Timing Benchmarks 

To transform and quantise an entire 512x512 intensity image now takes 3.5 seconds. 

This requires 1024 16x16 DCT transforms which equates to approximately 3.4mS per 

transform including quantisation. This is almost twice the time required for just a 

single 16x16 transform but includes all the overhead for pre-processing and 

quantisation. 

5.7.4 Entropy Effects 

Equation (5.1) defines the size of an image when compressed using an ideal statistical 

non-adaptive coder, as will be described in chapter 7. The original image size and the 

new image size are measured in bytes. 

NewSize = 0ri&nal$™ x Entr°Py (5.1) 
8 

The Quantiser 5-30 



The effect on the entropy of the images after quantisation is shown in Table 5.4. 

Image File 

Airplane.Y 

Baboon.Y 
Beans l.Y 
Beans2.Y 
Couple.Y 
Girll.Y 
Girl2.Y 
GirB.Y 
House.Y 

Lena.Y 
Peppers. Y 

Sailboat.Y 
Splash.Y 

Testpatt.Y 
Tiffany.Y 
Tree.Y 

Wendyl.Y 
Wendy2.Y 
Wendy3.Y 

Original 

6.7056 
7.35814 
5.72470 
6.24254 

6.42737 
7.05377 
5.60747 
7.26169 
6.50448 

7.44776 
7.59430 

7.48579 
7.25848 
0.98935 
6.60048 
7.31444 
6.82276 
7.09684 
7.82136 

After 

D C T 

4.49679 

6.24667 
3.02061 
3.64295 
4.51369 
4.55489 
3.77790 
4.31520 
4.38083 

4.53318 
4.80349 
5.40114 

4.05722 
6.20320 

4.51991 
5.80349 
3.35043 
4.33512 
4.22606 

After 

Quantisation 

2.277871 
3.434531 

1.215568 
1.659312 
2.263864 
2.261720 
1.603080 

2.139159 
2.153411 

2.248318 
2.349689 

2.770187 
1.982384 
3.816599 
2.220038 
3.106545 
1.472530 
2.287059 
2.180153 

Original 

Image Size 

262144 
262144 
65536 
65536 
65536 
65536 
65536 
65536 
65536 
262144 
262144 

262144 
262144 
262144 
262144 
65536 
262144 
262144 
262144 

Compressed 

Image Size 

74642 
112543 
9958 
13594 
18546 
18529 
13133 
17524 
17641 

73673 
76995 

90774 
64959 
125062 
72747 
25449 
48252 
74943 
71440 

Table 5.4 Entropy of the image after quantisation. 

Note that the entropy has improved on average by approximately 2.2 bits per pixel for 

all of the images. This represents an overall reduction of approximately 185Kb for a 

256Kb image after transformation and quantisation. 

These results will not be compared with other compression techniques at this point in 

the development of the algorithm. The reason is that the algorithm requires the run-

length coding and statistical coding stages before the full compression stage is 

completed. The comparison will instead be performed in chapter 8, where the 

algorithm is analysed as a whole. 

The compressed image size is estimated based on the entropy using (5.1). 

The Quantiser 5-31 



5.8 Conclusion to the Chapter 

The non-uniform quantiser was quite successful in reducing the entropy of the image 

without any visible effect on the reconstructed image. The implementation of the new 

DCT and quantiser also proved to be quite fast, the entire transformation and 

quantisation stage requiring an execution time of only 3.5 seconds for a 512x512 

intensity image. 

The Quantiser 5-32 



6. The Run-Length Coder 

6.1 Introduction 

In section 5.7.1 it was shown that there was a very large number of zero symbols in 

each transformed image. This suggests that the probability of having a run of adjacent 

zero valued symbols is very high. An extremely efficient algorithm for compressing 

this form of data is the run-length coder. The run-length coder forms the third function 

block in the compression algorithm and is the first layer of compression. 

The run-length coder is ideal for this application in that it is computationally very fast 

as it requires no complex arithmetic. The algorithm is also lossless and so will not add 

to the errors already accumulated after transforming and quantising the image. 

Furthermore, run-length coders are more efficient than statistical coders in this 

application as they treat large blocks of data as one or two symbols whereas the 

statistical coders must treat each symbol individually, see chapter 7. 

6.2 A Basic Run-Length Coder 

The basic operation of a run-length coder is to replace a run of equal symbols with a 

smaller, less frequent symbol. Fig. 6-1 is a typical sequence of symbols. 

0 0 0 1 0 0 0 0 0 0 0 3 2 

Fig. 6-1A typical sequence of symbols. 

The Run-Length Coder 6-1 



The sequence contains four different symbol values : 0, 1,2 and 3. However, the zero 

symbol occurs more often than the others and often forms runs. There are two 

methods by which this sequence can be coded using run-length coding techniques. 

The first technique uses a new symbol, or a less probable symbol, to represent a run of 

a more probable symbol. This is generally as shown in the Table 6.1 where sO', si', 

s2', and s3' are the run-length coded symbol representations and sO, si, s2, and s3 are 

the former symbol representations. 

Run-length Coded Symbol 

sO' 
si' 
s2' 
(s3',sx) 

Original Symbol(s) 

sO 
si 
(s0,s0,s0) 

sx 

Table 6.1 Run-length coding technique 1. 

In technique 1 the sO' and si' symbols still represent the original symbols sO and si 

respectively, however, symbol s2' now represents a run of three sO symbols. Symbol 

s2 must now somehow be represented with the remaining symbol value, that is, 

symbol s3. This is done by creating a composite symbol value where symbol s3' is 

followed by the symbol that this composite represents. Thus (s3',s2) represents 

symbol s2, (s3\ s3) represents symbol s3, etc. [Note that the codes (s3',s0) and 

(s3 \sl), though possible, are redundant as they can be represented by the shorter sO' 

and si' symbols respectively]. Using this technique we can recode the sequence in 

Fig. 6-1 to that shown in Fig. 6-2. 

2 1 2 2 0 3 3 3 2 

Fig. 6-2 A run-length coded sequence - technique 1. 

The Run-Length Coder 6-2 



Note that the run-length coded sequence is four symbols shorter than the original 

sequence, which is a 30% reduction in the sequence length. 

The second technique by which run-length coding can be applied is by representing a 

run length of n by the form (s2', n). Using this method it is possible to encode the 

symbol set as shown in Table 6.2. 

Run-length Coded Symbol 

sO' 
si' 
(82', n) 
(s3', sx) 

Original Symbol 

sO 
si 
(sO, sO, sO,...) 

sx 

Table 6.2 Run-length coding technique 2. 

With this technique the symbol sequence (s2 ',4) now represents (s0,s0,s0,s0), (s2 \6) 

now represents (s0,s0,s0,s0,s0,s0) and so on. The symbols s2 and s3 are still 

represented by the larger composite symbols (s3 \s2) and (s3 \s3) respectively. Using 

this mapping of symbols the original sequence can be run-length coded in the 

sequence shown in Fig. 6-3. 

2 3 1 2 7 3 3 3 2 

Fig. 6-3 A run-length coded sequence - technique 2. 

Once again, the length of the resultant sequence reduced by 3 0 % when compared to 

the original. 

The two different techniques have advantages and disadvantages depending on the 

statistics of the input sequence being coded. For sequences containing many short 

runs of a single symbol, the first technique is more efficient as there is less overhead 

The Run-Length Coder 6-3 



in representing the run-length. That is, only one symbol is required to represent a run 

of symbols, whereas two symbols are required in the second technique. 

The second technique is more efficient in situations where there are very large runs of 

a particular symbol. The first technique is not efficient here as it can only represent 

fixed lengths of a symbol and so the symbol must be repeated several times to 

represent the large run. For example, to represent a run of twenty zeros would require 

a sequence of eight symbols (s2',s2',s2',s2',s2',s2',s0',s0') using technique 1, 

whereas using technique 2 the sequence would only require the two symbols (s2', 20). 

6.3 The DC Coefficients 

Before commencing the design of the run-length coder there is a further improvement 

that may be done in reference to the DC coefficients after transformation. In general, 

the DC coefficients have reasonable large values as they represent the average 

intensity of the block. However, as the average intensity of adjacent blocks does not 

vary greatly it would be advantageous to use difference coding for the DC coefficient. 

Difference coding of the DC coefficients is also used in the JPEG algorithm. The 

OptIC algorithm differs in that the result of the difference coding is also run-length 

coded. In JPEG the DC coefficients are first difference coded then statistically coded, 

the run-length coder is not used. The reason for using the run-length coder in the 

OptIC algorithm is to convert the 12 bit coefficient values to 8 bit symbols. 

The Run-Length Coder 6-4 



Difference coding is very simple to implement and would be performed after the 

quantisation stage. The difference coder is defined in (6.1) and the difference decoder 

is defined in (6.2). The difference decoder would be performed after the run-length 

decoding and before the dequantisation. 

Z'(0)n_, = X(0\_. - X(0\ n = 1, • • •, NumberOfBlocks -1 (6.1) 

X{0\_x = Jr'(°)„-i + X'(0\ n = NumberOfBlocks -1, • • -,1 (6.2) 

The results gained through the introduction of the DC difference coding are shown in 

Table 6.3. Note that improvements were gained in all but two images, Lena.Y and 

Wendyl.Y. 

Image File 

Airplane.Y 
Baboon.Y 
Beans l.Y 
Beans2.Y 
Couple.Y 

Girll.Y 

Girl2.Y 
Girl3.Y 
House.Y 

Lena.Y 
Peppers.Y 

Sailboat.Y 
Splash.Y 
Testpatt.Y 
Tiffany.Y 

Tree.Y 
Wendyl.Y 

Wendy2.Y 

Wendy3.Y 

Without D C 
Difference Coding 

2.282744 
3.440941 
1.220645 

1.664439 
2.264821 

2.265231 
1.607322 

2.141358 
2.157442 
2.247754 

2.352095 
2.775944 
1.985177 

3.824703 
2.221588 

3.112865 

1.471500 

2.287395 

2.187438 

With D C 

Difference Coding 

2.277871 
3.434531 
1.215568 
1.659312 
2.263864 

2.261720 
1.603080 

2.139159 
2.153411 
2.248318 
2.349689 
2.770187 
1.982384 

3.816599 
2.220038 

3.106545 
1.472530 

2.287059 
2.180153 

Table 6.3 Entropy improvements gained by using DC difference coding. 

The Run-Length Coder 6-5 



6.4 Input Statistics 

As has been discussed, it is important to understand the statistics of the input data 

before the run-length coder is designed. The most useful test is to measure the 

probability of a zero symbol value coefficient. This is done for each coefficient and 

over the entire set of test images. The result of this test is shown in Fig. 6-4. 

It can be seen that the probability of having a zero symbol value coefficient is very 

high for coefficients furthest from the DC coefficient (0,0). The statistics suggest two 

methods by which we can modify the ordering of the data to improve the result of the 

run-length coder. 

Fig. 6-4 Probability of a zero symbol value for each coefficient. 

The Run-Length Coder 6-6 



The first method is to follow the technique used by JPEG and reorder the coefficients 

within one block. This can be done by forming a vector containing all of the 

coefficients in order of lowest to highest probability of zero symbol value. When run-

length coded, the first part of the vector would show very little signs of compression. 

However, it is very likely that the remainder of the vector will contain mainly zero 

symbol values and so will be readily compressed by the run-length coder. An example 

of this can be seen in Fig. 6-5. The DC and lower frequency components of the DCT 

tend to prevent long runs from forming. 

< Block 0 n Block 1 n Block 2 M Block 3 • 

X(0,0) X(0,1) X(1,0) X(l,l) X(0,0) X(0,1) X(1,0) X(l,l) X(0.0) X(0,1) X(1,0) X(l,l) X(0,0) X(0,1) X(1,0) X(l,l) 

7 2 0 0 8 1 0 0 9 2 0 0 6 2 0 0 

Fig. 6-5 An example using the JPEG ordering method. 

If we apply the JPEG ordering method to a typical 512x512 pixel image, 1024 16x16 

DCT transforms are required each containing 256 coefficients. It is very unlikely that 

the DC coefficients will be zero and so, in virtually all situations, the run-length will 

be less than 256 symbols. The problem here is that those values that are likely to be 

zero are not grouped together thus limiting the effectiveness of the run-length coder. 

Table 6.4 shows the results obtained when the JPEG ordering method is used. The 

table contains data relating to the zero symbol and includes the maximum run size, the 

total number of runs and the number of specific run lengths. The specific lengths 

The Run-Length Coder 6-7 



range between two and ten. Note that in most of the images it is rare to produce runs 

of length greater than six. 

Image 

Airplane.Y 
Baboon.Y 
Beans l.Y 
Beans2.Y 
Couple.Y 
Girll.Y 
Girl2.Y 
Girl3.Y 
House.Y 
Lena.Y 

Peppers .Y 
Sailboat.Y 
Splash.Y 
TestpattY 
Tiffany.Y 
Tree.Y 

Wendyl.Y 
Wendy2.Y 
Wendy3.Y 

Number 
of Runs 
7121 
1200 
5810 
4243 
2431 
1421 
3413 
1943 
2269 
353 
336 
101 
746 
2703 
417 
1217 
1191 
952 
797 

Maximum 
Run Size 

12 
4 
44 
16 
15 
6 
8 
8 
9 
8 
3 
3 
9 
255 
4 
13 
7 
14 
7 

Run 
of2 
4610 
1058 
2413 
1931 
1479 
1118 
2302 
1429 
1566 
317 
319 
84 
515 
365 
369 
735 
816 
478 
460 

Run 
of 3 
1389 
128 
1305 
940 
529 
238 
695 
362 
463 
6 
17 
17 
128 
448 
34 
279 
195 
201 
225 

Run 
of 4 

673 
14 
826 
575 
218 
52 
275 
119 
161 
28 
0 
0 
69 
140 
14 
99 
76 
163 
79 

Run 
of 5 
266 
0 
487 
339 
108 
12 
77 
21 
52 
0 
0 
0 
16 
182 
0 
43 
88 
81 
18 

Run 
of 6 
98 
0 
277 
174 
44 
1 
50 
9 
19 
0 
0 
0 
3 
182 
0 
28 
2 
17 
1 

Run 
of 7 
28 
0 
162 
104 
28 
0 
9 
2 
5 
1 
0 
0 
1 
154 
0 
15 
14 
6 
14 

Run 
of8 
43 
0 
95 
74 
6 
0 
5 
1 
1 
1 
0 
0 
0 
154 
0 
6 
0 
1 
0 

Run 
of 9 
0 
0 
99 
51 
11 
0 
0 
0 
2 
0 
0 
0 
14 
546 
0 
6 
0 
0 
0 

Run 
of 10 
0 
0 
59 
29 
1 
0 
0 
0 
0 
0 
0 
0 
0 
14 
0 
3 
0 
2 
0 

Table 6.4 Results obtained using the JPEG ordering method. 

The second method is an improvement over the first and is the method used in the 

OptIC algorithm. This method groups all like coefficients from all of the blocks in an 

image together. That is, all (0,0) coefficients are in one group, all (0,1) coefficients are 

in another group and so on. These groups are sorted in order of lowest to highest 

probability of zero symbol values for the coefficients contained within that group. An 

example of the OptIC ordering method is shown in Fig. 6-6. Note how the X(1,0) and 

X(l,l) coefficients now form a large run. 

X(0,0) M X(0,1) n X(1,0) M X(l,l) 

Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3 

7 8 9 6 2 1 2 2 0 0 0 0 0 0 0 0 

Fig. 6-6 An example using the OptIC ordering method. 

The Run-Length Coder 6-8 



When the OptIC ordering method is applied to a typical 512x512 pixel image that has 

been transformed by a 16x16 DCT transform an improvement in the run-lengths occurs. 

The reason is that we have grouped all of the coefficients that are unlikely to have a 

zero value together so that they do not disrupt the runs we can obtain with the 

coefficients that are more likely to be zero. A further improvement is that groups of 

1024 are now formed as this is the number of block transforms required to process a 

512x512 pixel image, this is four times longer than the groups formed in first method. 

Also, as these groups are adjacent to other groups that are very likely to have zero value 

symbols it is possible to have runs of several thousands of symbols. 

Image 

Airplane.Y 
Baboon.Y 
Beansl.Y 
Beans2.Y 
Couple.Y 
Girll.Y 
Girl2.Y 
GirB.Y 
House.Y 
Lena.Y 

Peppers.Y 
SailboatY 
Splash.Y 
Testpatt.Y 
Tiffany.Y 
Tree.Y 

Wendyl.Y 
Wendy2.Y 
Wendy3.Y 

Number 
of Runs 

9423 
9358 
1577 
2180 
2871 
2904 
3003 
2630 
2540 
10460 
10984 
10116 
9805 
7603 
11722 
2477 
9994 
8447 
8546 

Maximu 
mRun 
Size 
18434 
962 
4743 
4698 
4625 
3399 
4696 
4638 
4663 
12488 
7700 
15442 
18445 
160 
5133 
4615 
18615 
18720 
18578 

Run 
of2 

3448 
3554 
251 
647 
1056 
1008 
790 
922 
879 
3954 
4229 
3838 
3814 
2518 
4193 
889 
3113 
2838 
3360 

Run 
of3 

1586 
1528 
133 
304 
478 
482 
434 
446 
437 
1941 
2010 
1802 
1676 
864 
2124 
450 
1526 
1435 
1529 

Run 
of4 

974 
808 
185 
221 
316 
287 
347 
254 
266 
988 
1123 
954 
1051 
365 
1213 
283 
1069 
902 
887 

Run 
of 5 

618 
549 
91 
170 
190 
171 
201 
162 
186 
585 
681 
632 
633 
145 
735 
205 
774 
588 
530 

Run 
of 6 

436 
421 
226 
206 
131 
134 
142 
122 
129 
408 
434 
419 
464 
89 
560 
167 
569 
425 
414 

Run 
of 7 

329 
321 
81 
110 
113 
103 
97 
113 
69 
337 
333 
311 
342 
22 
427 
146 
509 
271 
282 

Run 
of 8 

221 
221 
46 
63 
78 
92 
110 
84 
89 
269 
261 
237 
291 
14 
361 
88 
408 
234 
259 

Run 
of 9 

185 
179 
26 
50 
51 
60 
111 
44 
51 
180 
171 
198 
189 
3 
237 
61 
301 
221 
156 

Run 
oflO 

156 
156 
63 
36 
49 
66 
89 
62 
40 
172 
177 
188 
174 
2 
192 
29 
208 
196 
132 

Table 6.5 Results obtained using the OptIC ordering method. 

Table 6.5 shows the zero symbol run-length results when the second ordering method is 

used. Note that the size of the runs has increase dramatically, in some cases it has 

increased in size by a factor of more than 5000. The number of runs has also changed, 

The Run-Length Coder 6-9 



where two runs may merge or where new runs a formed. In all but four images 

(Beansl.Y, Beans2.Y, Girl2.Y and Testpatt.Y) the number of runs have increased and 

the size of the runs have increased. In all of the images, however, the sizes of the runs on 

average increased. 

6.5 Input Ordering 

In the software implementation of the OptIC ordering method, the ordering is 

performed by look-up tables in two stages. The first is to collect like coefficients from 

all the blocks into groups. When grouping these coefficients an order in which they 

will be extracted from the blocks, that is, the block ordering must be defined. The 

blocks are ordered by scanning rows from the top of the image down to the bottom. 

Each even row is scanned from left to right and each odd row from right to left. 

In general, an image may contain sections of uniform characteristics that may spread 

over several adjacent blocks. Some of these relations may still appear in one form or 

another after transformation. As such, adjacent blocks will often contain related 

information. By alternating the direction of scanning from row to row a sudden 

change in the block characteristics as we change from one row to another is avoided. 

Table 6.6 shows the ordering used in the case of a 256x256 image. The table is 

generated by the subroutine CreateBlockOrder and stored in the array variable 

blockorder, refer to Appendix D. CreateBlockOrder takes the parameter width as the 

The Run-Length Coder 6-10 



number of blocks which is dependent on the image size and so too is the ordering of 

the blocks. 

0 
31 
32 
63 
64 
95 
96 
127 
128 
159 
160 
191 
192 
223 
224 
255 

1 

30 
33 
62 
65 
94 
97 
126 
129 
158 
161 
190 
193 
222 
225 
254 

2 

29 
34 
61 
66 
93 
98 
125 
130 
157 
162 
189 
194 
221 
226 
253 

3 
28 
35 
60 
67 
92 
99 
124 
131 
156 
163 
188 
195 
220 
227 
252 

4 
27 
36 
59 
68 
91 
100 
123 
132 
155 
164 
187 
196 
219 
228 
251 

5 
26 
37 
58 
69 
90 
101 
122 
133 
154 
165 
186 
197 
218 
229 
250 

6 
25 
38 
57 
70 
89 
102 
121 
134 
153 
166 
185 
198 
217 
230 
249 

7 
24 
39 
56 
71 
88 
103 
120 
135 
152 
167 
184 
199 
216 
231 
248 

8 
23 
40 
55 
72 
87 
104 
119 
136 
151 
168 
183 
200 
215 
232 
247 

9 
22 
41 
54 
73 
86 
105 
118 
137 
150 
169 
182 
201 
214 
233 
246 

10 
21 
42 
53 
74 
85 
106 
117 
138 
149 
170 
181 
202 
213 
234 
245 

11 
20 
43 
52 
75 
84 
107 
116 
139 
148 
171 
180 
203 
212 
235 
244 

12 
19 
44 
51 
76 
83 
108 
115 
140 
147 
172 
179 
204 
211 
236 
243 

13 
18 
45 
50 
77 
82 
109 
114 
141 
146 
173 
178 
205 
210 
237 
242 

14 
17 
46 
49 
78 
81 
110 
113 
142 
145 
174 
177 
206 
209 
238 
241 

15 
16 
47 
48 
79 
80 
111 
112 
143 
144 
175 
176 
207 
208 
239 
240 

Table 6.6 Scanning order for blocks in a 256x256 image after transformation. 

The second stage of the ordering process is to define the order in which the coefficient 

groups will be stored. This is based of the probability of the coefficients having a 

symbol value of zero. By using the data shown in Fig. 6-4 and sorting the probability 

values from lowest to highest a coefficient ordering array can be formed. The result is 

shown in Table 6.7. 

y\x 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0 
16 
64 
97 
70 
41 
118 
134 
59 
166 
108 
224 
29 
194 
211 
221 
218 

1 
0 
65 
38 
24 
87 
103 
120 
177 
122 
183 
155 
47 
210 
216 
174 
250 

2 
1 
80 
83 
114 
102 
133 
149 
90 
107 
139 
156 
61 
126 
220 
187 
206 

3 
32 
36 
53 
55 
131 
73 
105 
178 
76 
14 
186 
30 
243 
143 
205 
191 

4 
17 
51 
68 
100 
145 
161 
176 
60 
152 
184 
125 
62 
172 
229 
188 
238 

5 
48 
4 
23 
115 
26 
58 
135 
179 
181 
124 
200 
31 
157 
217 
236 
223 

6 
2 
66 
54 
40 
72 
147 
164 
75 
167 
212 
214 
94 
127 
230 
228 
222 

7 
33 
21 
98 
129 
117 
148 
10 
106 
92 
93 
215 
78 
245 
247 
190 
251 

8 
18 
81 
69 
7 
57 
119 
150 
121 
182 
198 
171 
110 
232 
159 
234 
249 

9 
49 
37 
99 
101 
128 
9 
11 
136 
77 
154 
185 
63 
246 
204 
235 
207 

10 
34 
67 
112 
25 
146 
89 
192 
151 
196 
199 
201 
209 
242 
231 
203 
254 

11 
19 
52 
113 
71 
144 
104 
208 
165 
168 
140 
44 
193 
244 
142 
219 
239 

12 
3 
82 
84 
86 
8 
162 
12 
91 
153 
109 
28 
111 
173 
227 
175 
252 

13 
50 
96 
6 
56 
88 
74 
13 
180 
123 
213 
45 
95 
189 
233 
225 
253 

14 
35 
5 
85 
116 
42 
163 
27 
137 
138 
169 
240 
241 
226 
158 
237 
15 

15 
20 
22 
39 
130 
132 
160 
43 
195 
197 
170 
46 
79 
141 
202 
248 
255 

Table 6.7 Ordering for coefficients after transformation, where the coefficients are represented by (x,y). 

The Run-Length Coder 6-11 



From Table 6.7 it can be seen that, by following the order in sequence from 0 to 255, 

the first coefficient stored will be coefficient (1,0), followed by coefficients (2,0), 

(6,0), (12,0) and (5,1). The coefficient ordering table is stored in the integer constant 

array coefficientOrder and is used in the procedure CreateBlockOrder to generate the 

array coeffOrder. The array coeffOrder is the coefficient ordering matrix multiplied 

by a factor equivalent to the number of blocks in the image. This factor is used to 

separate the groups of differing coefficients. 

The ordering of the data in preparation for the run-length coding is performed in the 

procedures OrderDCT and OrderlDCT along with the quantisation. Refer to 

Appendix D for the listing of the C software implementation. 

6.6 Run-Length Coder Design 

After the ordering of the coefficients it is important to take a closer look at the 

characteristics of the data. The most important information at this stage is to 

determine which symbols most often form runs and the length of the runs. This was 

done by transforming, quantising and ordering all of the intensity images in the test 

set and then counting the number of runs between lengths of two and nine. A 

summary of the results of this test is shown graphically in Fig. 6-7. 

From Fig. 6-7 it can be seen that the symbol that most frequently forms runs is the 

zero symbol. It can also be noted that a large number of symbols in the range of -4 to 

The Run-Length Coder 6-12 



4 also often form runs of length 2. The final important characteristic is that apart from 

the zero symbol, few symbols form runs of length greater than 3. 

90000 

80000 , 

I 
70000 •. 

1 
600001. 

1 
50000'. 

i 

400001. 

If 
30000 j. 

200ff0|i 

IQ6OC(/. 

i i 

, 

i 
1 

1 
1 

•1 

1 
1 

1 
• 1 

1' 
\ \ 

\\ 
"B \ 

t>.-, ,— 1 
-20 -15 -10 -5 0 5 10 15 20 

Coefficient Symbol 

— — - Length=2 — - - — Length=3 Length=4 Length=9 

Fig. 6-7 Number of runs per given coefficient symbol in image test set. 

The test results suggest that both of the run-length methods described in section 6.2 

are required to optimally code the transformed and quantised image data. That is, a 

small run should be represented by single symbol, whereas, a large run can be 

represented by a multi-symbol sequence with the run-length and perhaps the original 

symbol coded within it. 

The coefficients that are produced by the DCT transform are all 12 bits in size. As 

most of these coefficients lie within the range of -100 to 100 it is better to store these 

The Run-Length Coder 6-13 



as an eight bit symbol. Symbols which are too large to be represented within these 

eight bits must be represented by a slightly longer string of symbols. As the large 

symbol values are relatively improbable this will have little effect on the efficiency of 

the run-length coder. 

Using the test results the symbol mappings shown in Table 6.8, Table 6.9 and Table 

6.10 were designed for the OptIC run-length coder. 

Run-length Coded Symbol 

(127) 
(126) 

(125) 
(124) 
(123) 
(122) 
(121) 

(120) 
(119, n-10) 

Original Symbol 

(0,0) 

(0,0,0) 
(0, 0, 0, 0) 

(0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0) 
(0, 0, 0, 0, 0, 0, 0, 0, 0) 

(0) x n, where n = 10..265 

Table 6.8 Run-length coding of zero symbol runs. 

Run-length Coded Symbol 

(-128) 

(-127) 
(-126) 

(-125) 
(-124) 

(-123) 
(-122) 
(-121) 

Original Symbol1 

(-3,-3) 

(-2, -2) 

(-1,-1) 

(1,1) 
(2,2) 

(3,3) 

(-1,-1,-1) 

0,1,1) 

Table 6.9 Run-length coding of short runs of highly probable symbols. 

Run-length Coded Symbol 

(118, SS, S(n-l)) 

(-120, (n-2)S) 
(-119, S, (n-1)) 

(-118,n,n,nS, S) 

Original Symbol 

(S) x n, where S = -2048..2047, n = 1..16 

(S) x n, where S = -16..15, n = 2..9 
(S) x n, where S = -128.. 127, n = 1..256 

(S) x n, where S = -2048..2047, n = 1.. 1048677 

Table 6.10 Run-length codes for large runs. 

The Run-Length Coder 6-14 



Runs formed with the zero symbol are coded with the run-length codes shown in 

Table 6.8. Small runs from 2 to 9 symbols in length formed with the zero symbol can 

be represented by the symbols 120 to 127 respectively. Larger runs are represented by 

the two symbol code (119,n-10) where n represents the length of the run. This can 

represent runs between 10 and 265. Run-lengths greater than 265 must be represented 

by the -118 code as shown in Table 6.10. Small runs of symbols -3, -2, -1, 1, 2 and 3 

are also represented by a single symbol as shown in Table 6.9. 

Table 6.10 contains the remaining codes for coding large run-lengths. Note there are a 

number of variations to optimise the coding for various combinations of symbol and 

run-length. The symbol 118 is used to represent symbols lost in defining all of the 

other symbol codings and those symbols which are too large to represent within the 

eight bit constraint of the run-length coder symbol. 

The entire run-length coder and decoder can be found in Appendix D. The run-length 

coder function prototype is defined in the C programming language as follows: 

DWORD RunLengthCode (int *DCT, char *RunLength, DWORD ImageSize) 

The function takes as parameters a pointer DCT to the transformed and quantised 

image data, a pointer RunLength to a buffer where the coded image data is to be stored 

and ImageSize which contains the number of pixels in the image. The function returns 

the size of the run-length coded output stored in the RunLength buffer. 

The Run-Length Coder 6-15 



The run-length decoder function prototype is similarly defined in the C programming 

language as follows: 

DWORD RunLengthDecode (char *RunLength, int *DCT, DWORD CodeSize) 

In the decoder the parameters are the reverse of the coder. The pointer RunLength 

points to the buffer where the run-length coded image is stored, the pointer DCT 

points to the buffer where the result of the decoder is to be stored and CodeSize 

contains the number of symbols stored in the run-length buffer. 

6.7 Results 

6.7.1 Timing Benchmarks 

The entire transformation, quantisation and run-length coding process was timed to 

check its execution speed. The full compression process required 5.25 seconds to 

complete for a 512x512 pixel image. The decompression process required 5.4 seconds 

to complete for the same size image. 

6.7.2 Entropy Effects 

The effect on the image entropy after the run-length coding is shown in Table 6.11. 

From this table it can be seen that there are improvements gained through the run-

length coding for all of the images. In some of the images the improvements are quite 

dramatic. On average, there is a 15% improvement in the final compressed image size 

after run-length coding when compared to the possible final compressed image size 

immediately after quantisation only. 

The Run-Length Coder 6-16 



Image File 

Airplane.Y 
Baboon.Y 

Beans l.Y 
Beans2.Y 
Couple.Y 

Girll.Y 

Girl2.Y 
Girl3.Y 
House.Y 

Lena.Y 
Peppers.Y 
SailboatY 
Splash.Y 

Testpatt.Y 
Tiffany.Y 
Tree.Y 

Wendyl.Y 
Wendy2.Y 

Wendy3.Y 

Run Length 
Code File Size 

99484 

152203 
11669 
16192 

26058 

26158 
19471 
24666 
24112 

102873 
109386 
123101 
94102 

147953 
107231 
33373 
72027 
94084 

97471 

Entropy After Run­

Length Coding 

5.038965 
5.244405 
5.476905 
5.500693 

4.959877 

4.950389 
4.841252 
4.861619 

4.905119 
4.848337 
4.829962 
5.119864 

4.572128 

5.821420 
4.775544 
5.346665 
4.633005 

5.225760 
4.775387 

Image Size After 
Quantisation 

74642 

112543 
9958 
13594 

18546 
18529 

13133 
17524 
17641 

73673 
76995 
90774 

64959 
125062 
72747 
25449 
48252 
74943 
71440 

Compressed 
Image Size1 

62663 
99777 
7989 
11134 

16156 
15187 
11784 
14990 
14785 
62346 
66042 
78783 
53781 
107663 
64011 
22305 
41713 

61458 
58183 

Table 6.11 Entropy of image data after run-length coding. 

6.8 Conclusion to the Chapter 

The results indicate that the run-length coder improved the amount by which the 

image could be compressed. It also indicated that there is still a requirement for a 

statistical coder to further reduce the size of the compressed image. This is obvious 

because the entropies shown in Table 6.11 are lower than the number of bits currently 

used to represent each symbol, that is, each entropy value is less than 8 bits in size. 

The statistical coder will be more closely examined in the following chapter. 

The image size after quantisation is based on the entropy obtained immediately after quantisation as obtained in 
section 5.7.4 using equation (5.1). The compressed image size is based on the entropy obtained after run-length 
coding the image if it was to be passed through a statistical coder. The resultant size is once again based on 
equation (5.1). 

The Run-Length Coder 6-17 



7. The Statistical Coder 

7.1 Introduction 

The statistical coder forms the fourth and final functional unit in the OptIC algorithm 

and is the second layer of compression. The prime purpose of an ideal statistical coder 

is to compress a set of data to the theoretical size possible as determined by the 

entropy of the data. The relation between the entropy of a data set and the possible 

compressed size of the data was shown in (5.1) in chapter 5. 

It is advantageous to use statistical coder wherever the size of the data symbol is 

greater than the entropy of the entire data set, the greater the difference the better the 

results after compression. In the results obtained for the run-length coder the data 

symbols were eight bits in size. The entropies shown in Table 6.4 suggest that a 

statistical coder would provide substantial improvements in the size of the image data. 

Statistical coders have been available since the work of Shannon [SHA48] and have 

been extensively researched. There are now a very wide range of coders available, 

providing different compromises between computational speed, algorithm complexity 

and compression efficiency. The purpose of this chapter is to describe and implement 

two different statistical coders and test their computational speed and efficiency when 

combined with the current image compression algorithm. 

Before discussing the coders it is useful to look at the image statistics obtained after 

the run-length coding and try to visualise how a statistical coder can compress this 

The Statistical Coder 7-1 



data further. The frequency of all eight bit symbols from the run-length coded 

intensity images was measured and graphed in Fig. 7-1. 

160000 T 

140000 . 

120000 . 

100000 . 

5" 
c § 80000 . 
O" 

60000 .. 

40000 .. 

20000 .. 

-+- \L •+-50 100 150 

Symbol 

200 250 

Fig. 7-1 Symbols frequencies for the run-length coded images. 

From Fig. 7-1 it can be seen that the images are mainly composed of symbols in the 

extremes of the possible range of symbol values, that is, most symbols are close to 

zero or close to 255. These are all the zero and -1 symbols that did not form runs. 

There is also a peak at the centre of the symbol range, these are the symbols that were 

used to code all of the runs during the run-length coding process. 

The basis for statistical coding is rather simple. Fundamentally, it operates by replace 

the more probable symbols with short symbol codes and the less probable symbols 

with larger symbol codes. The coders that will be investigated here are the Huffman 

The Statistical Coder 7-2 



coder and the Arithmetic Coder. The Huffman Coder is a very well known algorithm 

that is a computationally fast algorithm but not as efficient as the arithmetic coder 

which is more complex and computationally slower. 

The two coders were implemented using both fixed and adaptive models. A fixed 

model uses a fixed set of statistics that approximates the statistics of the input data. If 

the statistics of the data change then the fixed coder will not perform very well. An 

adaptive model measures the statistics of the data during the coding process and can 

thus adapt to changes in statistics and provide better results than that of the fixed 

model. In general, the adaptive model is algorithmically more complex than the fixed 

model so there is generally a compromise between the efficiency of the algorithm and 

its computational speed. 

The two coders were also be compared against commercially available coders such as 

ARJ, LHARC and PKZIP. 

7.2 The Huffman Coder 

The Huffman coder was originally described in a paper by Huffman [HUF52]. This 

paper describes the method by which the Huffman codes are generated for all of the 

symbols dependent on their probability of occurrence. 

The first step in coding sequence is to sort all of the probabilities of the symbols from 

highest to lowest probability. The two symbols of least probability of occurrence are 

taken out of the sorted list, their probabilities are summed and are then re-inserted into 

The Statistical Coder 7-3 



the list. This is repeated for the next two least probable symbols and continued until 

all of the symbols in the list have been summed into a single value. The number of 

times that a symbol is taken out of the list and summed indicates the size of the code 

that the symbol will be represented by. The code itself is defined by adding a zero to 

the code if the symbol has the second lowest probability and a one if the symbol has 

the lowest probability. This is procedure is more simply understood when shown 

diagrammatically as in Fig 7-2. The procedure is for a symbol set containing 13 

unique symbols. 

As an example the procedure will be followed to determine the Huffman code for the 

symbol marked with a '*'. The procedure is followed step-wise in Table 7.1. As the 

symbol is taken out of the sorted list 5 times, that is, in stages 2, 4, 7, 10 and 11 the 

final Huffman code has 5 binary digits. 

Stage 

2 
4 
7 
10 
11 

Probability 

0.04 

0.08 
0.14 

0.24 

0.60 

Sum 

0.08 
0.14 

0.24 

0.60 

1.00 

Probability Position 

Second Last 

Second Last 

Second Last 

Last 

Second Last 

N e w Code 

0 
00 
000 
1000 

01000 

Table 7.1 Step by step definition of a Huffman code. 

After coding all the symbols in Fig 7-2 it is possible to create a symbol to Huffman 

code conversion table, see Table 7.2. 

The Statistical Coder 7-4 



Original 

Message 

Ensemble 

0.20 

0.18 

0.10 

0.10 

0.10 

0.06 

0.06 

0.04 

* 0.04 

0.04 

0.04 

0.03 ~ 

0.01 

1 

0.20 

0.18 

0.10 

0.10 

0.10 

0.06 

0.06 

0.04 

0.04 

0.04 

0.04 

>0.04 

^ 

2 

0.20 

0.18 

0.10 

0.10 

0.10 

r-• o o s 

0.06 

0.06 

0.04 

0.04 ~ 

0.04 

3 

0.20 

0.18 

0.10 

0.10 

0.10 

0.08 

—•0.08 

0.06 

0.06 -

0.04 

— 

4 

0.20 

0.18 

0.10 

0.10 

0.10 

_»0.10 

0.08 

0.08 ~ 

0.06 

Auxiliary Message Ensembles (Step) 

5 6 7 8 9 

0.20 0.20 0.20 

0.18 0.18 

r->0.14 

0.10 

0.10 

0.10 

0.10~ 

0.08 

[—•0.18 
0.14 

0.10 

0.10" 

0.10 

r-•"•20 

0.18 

0.18 

0.14 ~ 

0.10 

_>0.24 

0.20 

0.20 

0.18 ~ 

0.18 

_jj.0.36 

0.24 

0.20 ~ 

0.20 

10 

—•0.40 

0.36 ~ 

0.24 

11 

,—•0.60 " 

0.40 

12 

r-fl-00 

Fig. 7-2 A sample Huffman coding process[HUF52J. 

Symbol 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

P(symbol) 
0.20 
0.18 
0.10 
0.10 
0.10 
0.06 
0.06 
0.04 
0.04 
0.04 
0.04 
0.03 
0.01 

Code 
10 
000 
011 
110 
111 
0101 
00100 
00101 
01000 
01001 
00110 
001110 
001111 

Table 7.2 Huffman codes for the sample symbols. 

The Statistical Coder 7-5 



7.2.1 The Fixed Huffman Coder 

The code for the fixed Huffman coder and decoder can be found in Appendix D. The 

fixed Huffman coder assumes a static probability distribution for the image set. The 

frequency distribution shown in Fig. 7-1 was used to create a probability distribution 

and thus provide the data required to create the Huffman codes using the procedure 

outlined in section 7.2. The codes were stored in the constant array sym to allow for a 

direct mapping between the original symbol code and the Huffman code used to 

represent this code. As an array contains elements which are all of the same length it 

was necessary to create another array which contained the Huffman codes lengths, this 

array was stored in the variable len. 

The fixed Huffman coding function prototype is defined in the C programming 

language as follows: 

DWORD StatisticalCode (char *source, char *dest, DWORD length) 

The pointer source points to the data to be coded and the pointer dest points to the 

buffer where the Huffman coded data will be stored while length indicates the length 

of the source buffer. On return the function returns the length of the coded data. 

The coder operates by simply reading a code from the source buffer, mapping that 

code to a Huffman code via the array sym and then storing the code in the destination 

buffer. The array len is also examined to determine how many bits actually need to be 

The Statistical Coder 7-6 



stored. Note that the Huffman code can be between 3 to 15 bits in length in this 

implementation. 

The fixed Huffman decoder function prototype is defined in the C programming 

language as follows: 

DWORD StatisticalDecode (char *source, char *dest, DWORD length) 

The parameters are basically the same as for the coder but the functionality is now 

reversed. The pointer source points to the data to be decoded and the pointer dest 

points to the buffer where the decoded data will be stored and length indicates the 

length of the source buffer. On return the function returns the length of the decoded 

data. 

The decoder reads information from the source buffer on a bit by bit basis and 

attempts to recognise a valid code. This is slightly more complicated than the coder in 

that the code value and the code length must both be used to determine if the code is 

indeed a valid code. For example, the codes 000 and 0000 are different codes even 

though both their values are zero. To perform this code validation the two dimensional 

array convert is used which has indices formed by the current code and current code 

length. The contents of the array contain a zero if the code is invalid and the original 

symbol value if the code is valid. The zero symbol is treated separately as a special 

case to avoid problems in the decoding. If the current code is invalid then another bit 

is read from the source buffer and the process is repeated until a valid code is formed. 

The Statistical Coder 7-7 



7.2.2 The Adaptive Huffman Coder 

In the quantisation and ordering process the like coefficients of the DCT were grouped 

together. In general the characteristics of one type of coefficient will differ from 

another type of coefficient implying that their statistical characteristics would also 

differ. It would, therefore, be advantageous to create a coder that could adapt to 

changes in the data statistics to provide the best coding method at that instant. 

The adaptive Huffman coder in appendix D is a modified version of the fixed 

Huffman coder. Its C function prototype is identical to that of the fixed Huffman 

coder. The coder works by keeping a record of the frequency of occurrence of each 

symbol which is initially set to the statistics shown in Fig. 7-1. As each symbol is read 

from the input source this frequency distribution is correspondingly updated. An 

upper bound is also set for the frequency of any symbol. When this bound is reached 

all of the frequencies are scaled down by a factor of two. The purpose of this is to 

introduce a 'forgetting' functionality, thus improving the response of the coder to 

changes in the data statistics. 

The frequencies in the adaptive coder are always maintained in descending order in 

the array freq and the list of Huffman codes are stored in the array sym in increasing 

length size. The corresponding length of the code is stored in the array len. As the 

frequencies are constantly shuffled around as the statistics of the source data change, 

it is necessary to create two arrays chartojndex and index Jo char. These provide a 

link the between the symbol value and an index which points to the appropriate 

The Statistical Coder 7-8 



element in the frequency, Huffman code and Huffman code length arrays. As a 

symbol becomes more frequent its index begins to move up through the frequency list 

and so its coded value will become shorter in length. Similarly as a symbol becomes 

less frequent it will be moved down the frequency list and be associated with a longer 

code. 

7.3 The Arithmetic Coder 

The arithmetic coder, though still a statistical coder, takes a completely different 

approach to coding the symbol set. Both the fixed and adaptive versions of the 

adaptive coder are based on the coder described in [WIT87]. The principle operation 

of the arithmetic coder is most easily explained by an example and diagramrnatically 

as in Fig. 7-3. In this example the probability distribution shown in Table 7.3 is 

assumed. The symbol set is composed of the six symbols {A, E, I, O, U, !} where the 

symbol / is used to represent the end of the sequence. 

Symbol 
A 
E 
I 
0 

u 
! 

Probability 
0.2 
0.3 
0.1 
0.2 
0.1 
0.1 

Table 7.3 A sample probability distribution. 

The arithmetic coder begins with an initial range, typically [0, 1) which represents the 

interval 0 < x < 1. This range is split into sub-ranges, one for each symbol, that are 

proportional in size to the probability of the symbol it represents. Using the 

The Statistical Coder 7-9 



probabilities of the symbols listed in Table 7.3, the range can be split up as shown in 

Fig. 7-3. In this example the symbol A is represented by the range [0, 0.2), symbol E 

by [0.5, 0.5), symbol /by [0.5, 0.6) and so on. 

Initially 

1 -, 

0 -

! 
U 

O 

I 

E 

After E 

,0.5 -, 

/ : 

/ 

/ : 

\ " 
\0.2 J 

i 

U 

O 

I 

E 

A 

After A 

,0.26 -, 

: 

= 

i _ 

0.2 

i 

u 
0 

I ~~ 

E 

A 

After I 

.0.236 -, 

/ : 

/ 
/ 

\ 

\ 

\ " 
•0.23 J 

! 
U 

O 

I ~~ 

E 

A 

After I 

,0.2336 -, 

/ : 

/ 
/ 

\ 

\ 

\ " 
\0.233 J 

! 
U — 

O 

I 

E 

A 

After! 

0.2336 -, 

1 : 

: 

" 
10.23354-

! 
U 

0 

I 

E 

A 

Fig. 7-3 Arithmetic coded example for the sequence fE, A, I, I, !} [WIT87]. 

As a symbol is read from the input source the sub-range for that symbol is taken as the 

new range. The new range is then again split into sub-ranges representing all of the 

possible symbols where the size of each sub-range is proportional to the probability of 

the symbol it represents. This subdivision is continued until all of the symbols in the 

input source have been coded. Referring to the example it can be seen that the initial 

range is [0, 1). After reading the symbol E the range is narrowed to [0.2, 0.5). This 

new range is now split into sub-ranges in preparation for the next symbol. Thus if the 

next symbol were to be an A the range would become [0.2, 0.26), an E would give a 

range [0.26, 0.35), an I would give a range of [0.35, 0.38) and so on. Fig. 7-3 shows 

how the range is narrowed when the sequence {E, A, I, I, !} is coded using the 
i 

arithmetic coder. By storing one of the values in the final range after coding it is 

The Statistical Coder 7-10 

file:///0.233


possible to represent the entire sequence. Thus 0.23354, 0.23355 and even 0.2335455 

can be used to represent the sequence {E, A, I, I,!} when coded. 

The decoding process is similar to the encoding process. The decoder begins with the 

initial range [0, 1) and creates the sub-ranges as with the encoder. It then determines 

in which sub-range the coded values lies within. Using the code generated in the 

coding example, 0.23354, it is clearly seen that this lies within the sub-range [0.2, 0.5) 

which represents the symbol E. As each symbol is decoded the sub-range for that 

symbol then becomes the new range and is divided into a new set of sub-ranges as for 

the encoder. So the new range after decoding the symbol E becomes [0.2, 0.5) and its 

sub-ranges become [0.2, 0.26) for A, [0.26, 0.35) for E, [0.35, 0.38] for I, etc. From 

the new set of sub-ranges it can be seen that the coded symbol set, 0.23354, lies 

within the sub-range for A. It can thus be deduced that the next symbol in the 

sequence is A and the new range will become [0.2, 0.26), the sub-range for the A 

symbol. This procedure is repeated until the final symbol is decoded, represented by 

the / symbol. 

It can be noted that for large sequences and for large symbol spaces a great deal of 

precision is required to represent the final code, making the arithmetic coder 

inherently complex. Also the action of creating sub-ranges requires multiplications 

and divisions, and these operation greatly increase the processing time. There does 

exist arithmetic coders which do not require any multiplications or divisions 

The Statistical Coder 7-11 



[CHE91]. These are, however, only approximations and as such they do not perform 

as well as a true arithmetic coder. 

7.3.1 Fixed 

The C source listing of this coder can be found in Appendix D. The fixed arithmetic 

coder has a static record of the frequency distribution of the symbols built into the 

coder. These statistics are the same as those shown in Fig. 7-1 except that they are 

scaled down to keep the cumulative frequency below 16383 which is a limit for this 

implementation of the arithmetic coder. The frequency information is stored in the 

array freq. 

Rather than using extremely large floating point values, which would be impractically 

slow, the algorithm performs all calculations using integer arithmetic and uses an 

incremental transmission method to avoid the need of high precision arithmetic. The 

incremental transmission method works by storing bits which will no longer change 

and keep only those bits which may change as a result of a new sub-range. 

Using the sub-ranges formed while coding the sequence {E, A, I, I, !} in Fig. 7-3, it 

can be seen that after coding symbol A the range is reduced to [0.2, 0.26). No matter 

how much further this range is reduced nothing can change the first digit after the 

decimal point, it will always remain a 2. It is thus possible to store this digit. 

Similarly, after the first / symbol is coded the range becomes [0.23, 0.236), here the 

second digit also becomes static and may be stored. 

The Statistical Coder 7-12 



To reduce the precision required and to simplify the calculations required to perform 

the arithmetic coding it is also necessary to scale up the range after the static digits 

have been stored. In the example the range could be increased by a factor of ten after 

the removal of each digit, so the range [0.2, 0.26) would become [0, 0.06) after the 

removal of the first digit and then [0, 0.6) after the range has been expanded. 

The C function prototype for the fixed arithmetic coder is identical to that of the 

Huffman coders. The coder differs from the original algorithm described in [WIT87] 

in that the coding is performed in memory rather than using file operations in order to 

improve its performance. 

7.3.2 Adaptive 

The software listing for the adaptive coder can be found in Appendix D. This 

algorithm is based on the algorithm described in [WIT87]. The base of the adaptive 

arithmetic coder is identical to that of the fixed coder. It only differs in that the data 

statistics are measured during coding using methods similar to that used in the 

adaptive Huffman coder described in section 7.2.2. 

The C function prototype for the adaptive arithmetic coder is identical to that of the 

Huffman coder. 

The Statistical Coder 7-13 



7.4 Results 

7.4.1 Image Size 

The fixed Huffman, adaptive Huffman, fixed arithmetic and adaptive arithmetic 

statistical coders were used to compress the output of the run-length coder. The image 

sizes after compression are shown in Table 7.4. From this table, it can be seen that the 

adaptive arithmetic coder provided the best results on average. It was the only coder 

that in some cases produced results better than was predicted from the original 

entropy of the run-length data. The second most efficient coder was the adaptive 

Huffman coder. 

Image 

Airplane.Y 
Baboon.Y 
Beans l.Y 
Beans2.Y 
Couple.Y 
Girll.Y 
Girl2.Y 
GirB.Y 
House.Y 
Lena.Y 
Peppers.Y 
Sailboat.Y 
Splash.Y 
Testpatt.Y 
Tiffany.Y 
Tree.Y 
Wendyl.Y 
Wendy2.Y 
Wendv3.Y 

Compressed 
Image Size 
62663 
99777 
7989 
11134 
16156 
15187 
11784 
14990 
14785 
62346 
66042 
78783 
53781 
107663 
64011 
22305 
41713 
61458 
58183 

Fixed 
Huffman 
63281 
102325 
8299 
11471 
16390 
16389 
12211 
15244 
14977 
63261 
66870 
79745 
55327 
117601 
65145 
22803 
43967 
62256 
59004 

Adaptive 
Huffman 
62984 
101041 
8193 
11392 
16324 
16349 
11981 
15202 
14936 
62971 
66481 
79251 
54693 
112805 
64287 
22665 
42347 
61638 
58424 

Fixed 
Arithmetic 
62826 
101368 
8236 
11361 
16289 
16282 
12095 
15153 
14910 
62975 
66682 
79059 
55250 
116331 
64824 
22576 
43746 
61769 
58790 

Adaptive 
Ârithmetic 
62430 
98954 
8108 
11289 
16328 
16342 
11919 
15155 
14940 
62375 
65795 
78150 
53605 
106414 
63762 
22406 
41530 
60718 
57497 

Table 7.4 Image sizes after compression using various statistical coders. 

The compressed image size is based on the entropy of the output from the run length coder. 

The Statistical Coder 7-14 



Various commercial statistical coders were also tested to compare with the Huffman 

and arithmetic coders. The image size after compression using the ARJ, LZH and ZIP 

coders is shown in Table 7.5 for all of the intensity images in the test set. 

When the results in Table 7.5 are compared with those in Table 7.4 it can be seen that 

the commercial coders are out-performed by all of the Huffman and arithmetic coders. 

The commercial coders perform well in only one image, Testpatt. Y. 

Image 

Airplane.Y 

BaboomY 
Beans l.Y 

Beans2.Y 

Couple.Y 

Girll.Y 
Girl2.Y 
GirB.Y 

House.Y 

Lena.Y 
Peppers.Y 

SailboatY 

Splash.Y 

Testpatt.Y 

Tiffany.Y 

Tree.Y 

Wendyl.Y 

Wendy2.Y 

Wendy3.Y 

Compressed 
ImageSize 

62663 

99777 

7989 
11134 

16156 

15187 
11784 

14990 

14785 

62346 
66042 

78783 

53781 
107663 

64011 
22305 

41713 

61458 

58183 

ARJ 

66174 
104854 

8502 

11950 

17494 

17492 

12791 
16359 
16202 

66827 
70721 

82837 

57728 

105371 

68021 

23671 

44067 

64305 

61707 

LZH 

65588 

103843 
8393 
11763 

17238 
17231 

12581 
16145 
15995 

66311 
70067 
81884 

57305 

104609 

67366 
23322 

43684 

63661 

61193 

ZIP 

66067 

104753 

8489 
11921 
17547 

17524 

12751 
16404 

16284 

66727 
70487 
82638 

57475 

105427 

67835 

23671 
43827 

64230 

61571 

Table 7.5 Image sizes after compression. 

2 The compressed image size is based on the entropy of the output from the run length coder. 

The Statistical Coder 7-15 



7.4.2 Timing Benchmarks 

Timing benchmarks were made for the full compression of each image using the fixed 

Huffman, adaptive Huffman, fixed arithmetic and adaptive arithmetic coders. The 

results of these benchmarks are shown in Table 7.6. These benchmarks include the 

time taken to perform the transformation, quantisation, ordering, run-length coding 

and statistical coding. 

Image 

Airplane.Y 

Baboon.Y 
Beans l.Y 

Beans2.Y 

Couple.Y 

Girll.Y 

Girl2.Y 

GirB.Y 
House.Y 

Lena.Y 

Peppers. Y 
Sailboat.Y 

Splash.Y 
Testpatt.Y 

Tiffany.Y 

Tree.Y 

Wendyl.Y 

Wendy 2. Y 

Wendy3.Y 

Fixed 
Huffman 

6.1 
6.9 
1.3 
1.4 
1.5 
1.6 
1.4 
1.5 
1.5 
6.2 
6.2 
6.5 
6.0 
6.9 
6.2 
1.7 
5.7 
6.0 
6.0 

Adaptive 
Huffman 

6.4 
7.4 
1.4 
1.4 
1.6 
1.6 
1.5 
1.6 
1.6 
6.5 
6.6 
6.9 
6.3 
7.4 
6.5 
1.7 
5.9 
6.3 
6.4 

Fixed 
Arithmetic 

15.1 

21.1 
2.5 
2.9 
3.9 
3.9 
3.2 
3.7 
3.7 
15.3 

15.9 
17.7 
14.3 

21.7 

15.7 

4.8 
12.0 
14.7 

14.7 

Adaptive 
Arithmetic 

17.5 
24.2 
3.0 
3.5 
4.6 
4.6 
3.9 
4.4 
4.4 
17.7 

18.3 
20.5 

16.3 
24.8 

18 
5.7 
13.7 
16.8 

16.8 

Table 7.6 Times for the full compression of the images using various statistical coders. 

From Table 7.6 it can be seen that even though the arithmetic coder performed well in 

terms of its coding efficiency, it did not perform well in the timing benchmark. This is 

due to the large number of multiplications required. The fastest of the four coders was 

The Statistical Coder 7-16 



the fixed Huffman coder with the adaptive Huffman coder coming a close second. 

Note that the time for compression is closely linked to the size of the data being 

compressed and so varies with the different images. 

The timing benchmarks were also made for the decompression cycle of all of the 

images using the same coders. The results of these tests are shown in Table 7.7. These 

benchmarks include the time taken to perform the statistical decoding, run-length 

decoding, re-ordering, de-quantisation and inverse transformation. 

Image 

Airplane.Y 
Baboon.Y 

Beans l.Y 

Beans2.Y 

Couple.Y 

Girll.Y 
GM2.Y 

GirB.Y 

House.Y 
Lena.Y 

Peppers.Y 

SailboatY 

SplasLY 
Testpatt.Y 

Tiffany.Y 

Tree.Y 

Wendyl.Y 

Wendy2.Y 
Wendy3.Y 

Fixed 

Huffman 

6.4 
7.4 

1.4 

1.5 

1.6 

1.6 
1.5 

1.6 

1.6 
6.4 

6.5 

6.8 

6.2 

7.6 

6.5 

1.8 

5.9 

6.3 

6.3 

Adaptive 

Huffman 

7.7 
9.4 

1.6 

1.7 

2.0 

2.0 
1.8 

1.9 

1.9 
7.7 

7.9 
8.4 

7.4 

9.8 

7.8 

2.3 

6.8 

7.6 

7.5 

Fixed 
Arithmetic 

25.8 

37.7 
3.6 

4.7 

6.7 
6.7 
5.2 

6.4 
6.2 

26.3 
27.6 

31.0 

24.2 

37.7 

27.0 
8.4 

19.4 

24.9 

25.1 

Adaptive 

Arithmetic 

21.4 
30.0 
3.4 

4.2 

5.6 
5.6 
4.5 

5.4 
5.3 

21.7 
22.4 

25.0 

19.7 

31.1 
22.0 

7.0 

16.3 

20.6 

20.5 

Table 7.7 Times for the full decompression of the images using various statistical coders. 

Once again the fixed Huffman coder is the fastest of the four coders and the adaptive 

Huffman came a close second. It is interesting to note that in the decompression cycle 

The Statistical Coder 7-17 



the fixed arithmetic coder was slower than the adaptive arithmetic coder even though 

algorithmically it is simpler. The reason for this unexpected result is that the speed of 

the arithmetic coders is highly dependent on how differently the statistics of the image 

data differs from the statistics stored within the coder itself. In the case of the adaptive 

arithmetic coder the statistics within the coder are constantly modified to approximate 

the current statistics of the image and so improving its performance. The fixed 

arithmetic coder, however, has a fixed set of statistics and will not adjust itself when 

the image statistics deviate from this set, thus its performance is reduced greatly under 

these conditions. 

7.4.3 Entropy Effects 

It is useful to measure the entropy of the compressed images to examine if the 

statistical coders have compressed the images as fully as possible. The entropies of all 

the images when compressed using the four coders described are shown in Table 7.8. 

In all cases the entropy was extremely close to 8 which is also the number of bits used 

to store the symbols. This indicates that it is not possible to further compress the 

image using only a statistical coder. 

The Statistical Coder 7-18 



Image 

Airplane.Y 
Baboon.Y 
Beansl. Y 
Beans2.Y 
Couple.Y 
Girll.Y 
GM2.Y 
GM3.Y 
House.Y 
Lena.Y 
Peppers.Y 
SailboatY 
Splash.Y 
Testpatt.Y 
Tiffany.Y 
Tree.Y 
Wendyl.Y 
Wendy2.Y 
Wendy3.Y 

Fixed 
Huffman 
7.996891 
7.997963 
7.977401 
7.984922 
7.988093 
7.989398 
7.984555 
7.988747 
7.988116 
7.996942 
7.997294 
7.997479 
7.996948 
7.998079 
7.996413 
7.991157 
7.995791 
7.996740 
7.997233 

Adaptive 
Huffman 
7.972004 
7.974088 
7.954711 
7.961536 
7.961451 
7.954440 
7.944551 
7.952564 
7.959225 
7.960810 
7.971006 
7.978558 
7.942108 
7.937926 
7.957128 
7.965613 
7.940319 
7.977821 
7.968289 

Fixed 
Arithmetic 
7.996598 
7.998123 
7.973617 
7.982749 
7.988116 
7.988587 
7.987139 
7.987257 
7.987530 
7.996957 
7.997393 
7.997671 
7.996639 
7.998382 
7.996956 
7.991533 
7.996129 
7.997060 
7.996465 

Adaptive ! 
Arithmetic 
7.933456 
7.933871 
7.912978 
7.922467 
7.927724 
7.923846 
7.878017 
7.913958 
7.928264 
7.932413 
7.936137 
7.935063 
7.903789 
7.872324 
7.919576 
7.925362 
7.886421 
7.938452 
7.919862 

Table 7.8 Image entropies after compression. 

7.5 Conclusion 

The results indicate that a compromise exists between the processing speed of an 

algorithm and the level of compression obtainable by it. In terms of compression, the 

adaptive arithmetic coder and the adaptive Huffman coder proved to be the highest 

performers. In terms of processing speed, the two Huffman coders proved to be a 

great deal faster than the arithmetic coders. Overall it appears that the adaptive 

Huffman coder provides the best compromise between speed and efficiency. It 

performed only marginally slower than the fixed Huffman coder and was only slightly 

less efficient than the adaptive arithmetic coder. 

The Statistical Coder 7-19 



8. Algorithm Performance 

8.1 Introduction 

It is important to compare the OptIC algorithm designed in this thesis with other 

available algorithms to provide a true analysis of its performance. Two common 

algorithms were used for this comparison, these are the DPCM and JPEG 

compression algorithms. The features that will be compared include the level of 

compression obtained, the level of MSE introduced and the compression time. All of 

the comparisons are made with respect to the adaptive Huffman version of the OptIC 

algorithm described in chapter 7. 

The DPCM algorithm used in these tests is similar to that used in the lossless JPEG 

algorithm [PEN90, RAO90]. It consists of a simple one-dimensional predictor and an 

arithmetic coder. The DPCM algorithm is lossless and so does not introduce any 

distortion into the reconstructed image. 

The JPEG algorithm is an implementation of the JPEG algorithm by the Independent 

JPEG Group and was written by Thomas G. Lane (this is a shareware product 

available through the internet). This implementation is made up of two executable 

files CJPEG.EXE (version 4.0) and DJPEG.EXE (version 4.0) which form the 

compression and decompression algorithms respectively, both run in an MS-DOS 

environment. Lane's implementation of the JPEG algorithm also incorporates a 

quality factor ranging from extremely poor quality (0%) to extremely high quality 

Algorithm Performance 8-1 



(100%). Through experimentation, it was found that a quality level of 9 2 % gave 

results that were indistinguishable from the original images, in all of the images in the 

test set. This was the quality level used in the comparison tests. 

8.2 Compressed Image Size 

The results in Table 8.1 show the sizes of all of the intensity images after compression 

using the DPCM, JPEG and new algorithm. All of the sizes are shown in 8 bit bytes. 

Image 

Airplane.Y 
Baboon.Y 

Beans l.Y 

Beans2.Y 
Couple.Y 
Girll.Y 

Girl2.Y 
GirB.Y 
House.Y 
Lena.Y 
Peppers.Y 

SailboatY 
Splash.Y 
Testpatt.Y 

Tiffany.Y 
Tree.Y 

Wendyl.Y 

Wendy2.Y 
Wendy3.Y 

Original 
Image Size 

262144 

262144 
65536 
65536 

65536 
65536 
65536 
65536 
65536 
262144 
262144 

262144 
262144 

262144 
262144 

65536 
262144 
262144 

262144 

D P C M 

149135 
206682 
25798 
29904 
38270 
39411 

30180 
39413 
36317 
165637 
167289 
183537 
137319 
37774 
157594 
44902 

120696 
146345 
140626 

JPEG 

65766 
123351 
9209 
11991 
16252 

16769 
11155 
15784 
16192 
67976 
76421 

93794 
55297 
126534 
66063 
25621 

41743 
66108 
61302 

Algorithm 
Results 

62984 
101041 
8193 
11392 
16324 

16349 
11981 
15202 
14936 
62971 
66481 
79251 
54693 

112805 
64287 
22665 

42347 
61638 
58424 

Table 8.1 A comparison of intensity image sizes after compression with DPCM, JPEG and the new algorithm. 

From Table 8.1 it can be seen that the OptIC algorithm is the best performer in terms 

of the level of compression obtained. On average, it gives a compression factor of 

4.38 compared to 3.93 for the JPEG algorithm and 1.9 for the DPCM algorithm. 

Algorithm Performance 8-2 



The OptIC algorithm performed better than the JPEG algorithm in all but three 

images: Couple. Y, Girl2. Y and Wendy3. Y When compared to the DPCM algorithm, 

the OptIC algorithm was only out-performed with the image Testpatt. Y. This image, 

however, is an artificially generated image and does not exhibit characteristics which 

are typical with natural images. 

The tests were also performed on the green component of those images which were 

originally represented in colour. The results of these tests can be found in Table 8.2. 

linage 

Airplane.G 
Baboon.G 
Beans l.G 

Beans2.G 
Couple.G 

Girl l.G 
GM2.G 

Girl3.G 
House.G 
Lena.G 

Peppers.G 
Sailboat.G 
Splash.G 

Tiffany.G 
Tree.G 

Wendy2.G 
Wendy3.G 

Original 
Image Size 

262144 
262144 

65536 

65536 
65536 
65536 
65536 

65536 
65536 
262144 
262144 
262144 
262144 

262144 

65536 
262144 
262144 

DPCM 

154213 
212894 
28115 
32084 
38513 
39437 
32071 
40934 
38043 
174577 

173967 
195347 
149003 
171872 

45797 

144731 
119575 

JPEG 

69978 

130579 
10178 
13023 
16784 
17554 
12014 

17263 
17360 
78428 
84268 
105782 
66445 

81075 
26808 

66748 
63898 

Algorithm 
Results 

66227 

106455 
9675 
12783 

16769 
16950 
12896 
16276 
15889 
69379 
73162 
86792 
62588 
73130 

23753 
62276 
59701 

Table 8.2 A comparison of green image sizes after compression with DPCM, JPEG and the new algorithm. 

The results shown in Table 8.2 for the green component images do not differ greatly 

from those of the intensity image results. The average compression factor for the 

DPCM algorithm is 1.71, 3.79 for the JPEG algorithm and 4.05 for the OptIC 

algorithm. Once again the OptIC algorithm out-performs the other algorithms. 

Algorithm Performance 8-3 



8.3 MSE Levels Introduced By the Algorithms 

The MSE introduced after reconstruction using the DPCM, JPEG and OptIC 

algorithm for all of the intensity images is shown in Table 8.3. As described in section 

3.5.1, each line in Table 8.3 represents the MSE for each image at the extreme just 

before errors became noticable, therefore, at this point, with respect to what the 

human eye can perceive, all of the reconstructed images appear identical to the 

original images. As such, the MSE, in this situation, does not represent the visible 

level of distortion introduced into the image by the various algorithms. Instead it gives 

an indication of the mean opinion score (MOS) and, therefore, the degree to which the 

HVS has been incorporated into the algorithm. 

Image 

Airplane.Y 
Baboon.Y 
Beans l.Y 
Beans2.Y 
Couple.Y 

Girll.Y 

Girl2.Y 
GirB.Y 
House.Y 

Lena.Y 

Peppers.Y 
SailboatY 
Splash.Y 

Tiffany.Y 

Tree.Y 
Testpatt.Y 

Wendyl.Y 
Wendy2.Y 

Wendy3.Y 

DPCM 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

JPEG 

3.438511 
8.885120 
1.400757 
1.887634 

3.406158 
4.122482 
2.563141 
3.289993 
3.506980 

4.604576 

6.831085 
7.869686 
3.219627 

2.292976 
4.489658 
7.117462 

1.987961 

2.382908 

2.882843 

Algorithm 

Results 

5.549461 
35.092472 
2.166992 
3.110580 

6.557709 
6.747757 
4.548828 
5.282883 

6.971359 
6.442287 
11.092140 

16.493061 
3.998802 
28.986454 

12.564140 

22.768616 
2.161739 

4.058239 

3.511997 

Table 8.3 MSE introduced after reconstruction of intensity images using DPCM, JPEG and the new algorithm. 

Algorithm Performance 8-4 



From Table 8.3 it can be seen that the D P C M does not incorporate the H V S at all. It 

can also be seen that the OptIC algorithm incorporates the HVS more effectively than 

the JPEG algorithm, as indicated by the higher MSE results. 

The same tests were also applied to the green component of all of the images that 

were originally in colour. The results of these tests are shown in Table 8.4. These 

results do not differ greatly from those in Table 8.3 and the same conclusions may be 

drawn. That is, the OptIC algorithm incorporates the HVS to a greater degree than 

both DPCM and JPEG. 

Image 

Airplane.G 

Baboon.G 
Beansl.G 

Beans2.G 
Couple.G 
Girl l.G 
GirI2.G 
GirB.G 

House.G 
Lena.G 

Peppers.G 
SailboatG 
Splash.G 

Tiffany.G 
Tree.G 

Wendy2.G 

Wendy3.G 

DPCM 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

JPEG 
3.983284 
9.089264 
1.802444 

2.328156 
3.940475 
4.882935 
3.118912 
3.988754 
4.096909 
6.109669 
7.393932 

8.557076 
4,626606 
6.209301 

7.296997 
2.710674 

3.525803 

Algorithm 

6.829433 
41.363766 
2.977798 
4.252090 

7.745407 
8.511765 

5.235733 
6.581909 
8.461914 
9.337826 

14.774143 
26.638569 
6.225773 
8.026783 
19.055832 
4.450462 

4.352993 

Table 8.4 MSE introduced after reconstruction of green images using DPCM, JPEG and the new algorithm 

8.4 Timing Benchmarks 

It was found in chapter 7 that with the OptIC algorithm, the greatest amount of time 

required to process an image was 9.8 seconds with image Testpatt. Y. This was for the 

Algorithm Performance 8-5 



decompression component of the algorithm. Similar tests were also run with the 

DPCM algorithm and Lane's implementation of the JPEG algorithm using the same 

test platform. Only the 512x512 intensity images were used in the tests. For the JPEG 

algorithm, Testpatt.Y also took the greatest time to process, 7.1 seconds in this case. In 

the DPCM case there was little difference between the processing times of the 

different images, all of them required approximately 38 seconds. 

It is interesting to note that the DPCM algorithm is a great deal slower than both the 

JPEG algorithm and the OptIC algorithm. The reason for this is that the arithmetic 

coder used in the DPCM algorithm is a computationally intensive algorithm and as 

there are no other compression stages after the DPCM predictor, the coder is left to do 

all of the coding. In chapter 7 the OptIC algorithm was also tested using an arithmetic 

coder. It performed much better than the DPCM algorithm because it had two coding 

stages. The first coding stage, that is, the run-length coder, reduced the amount of data 

reaching the arithmetic coder and so in effect increasing the computational speed of 

the algorithm. 

It was noted that the OptIC algorithm did not perform as quickly as the JPEG 

algorithm. The new algorithm was approximately 40% slower than the JPEG 

algorithm. One reason for this is the slow nature of the input and output port handling 

of the test system. As the DCT is hardware based it must pass all of the data through 

the test system's input and output ports. This procedure forms a bottleneck and 

reduces the performance of the algorithm as a whole. It should also be noted that 

Algorithm Performance 8-6 



Lane's implementation of the JPEG algorithm runs under M S - D O S whereas the 

OptIC algorithm runs under the Windows environment. As such, Lane's software 

does not suffer from the large number of overheads associated with the Windows 

operating environment. One of the greatest of which is its memory management 

facility, this is used quite extensively by the OptIC algorithm to gain access to large 

blocks of memory. Possible improvements to the OptIC algorithm that may overcome 

these bottlenecks will be discussed further in Chapter 9. 

Algorithm Performance 8-7 



9. Conclusions 

9.1 Discussion of the Project 

9.1.1 Project Aims 

The project aims for this project were introduced in section 3.2.2. The OptIC 

algorithm satisfies all but one of these aims in that, on the hardware platform used for 

experimentation it could exceed the execution time limit of five seconds maximum. In 

chapter 7, it was found that the OptIC algorithm took on average 8 seconds to 

compress a 512x512 pixel image but the worst case was 9.8 seconds depending on the 

characteristics of the image. It should be noted that the tests were run on a 33MHz 

486SX based machine without a floating point co-processor. This machine has now 

been superseded by the faster lOOMhz 486DX and the Pentium based machines, 

which give much higher levels of performance. The timing benchmarks could also be 

improved by rewriting some of the more time-critical components of the software in 

assembly language. 

On average the new algorithm compressed images by a factor of four. Under no 

situations did this factor fall below two, as required by the project aims. 

An optimal combination of hardware and software was proposed. The software 

provided flexibility to the algorithm whereas the hardware provided raw speed. The 

combination of hardware and software also gave a feasible low-cost high-speed 

solution. In this implementation of the algorithm the hardware was limited to 

Conclusions 9-1 



processing the D C T function. The combination of hardware and software was in most 

respects optimal, however, the 80486SX processor used in the test system did limit 

the full potential of the algorithm. These limitations lie in the architecture of the IBM 

PC, the PC/AT bus on to which the DCT hardware was attached was limited to an 

8Mhz bandwidth regardless of the processor speed. This was overcome in later 

systems with the introduction of the local bus where the bus speed could be matched 

with that of the processor speed, this can give rise to a factor of four increase in bus 

bandwidth in the case of a 33Mhz processor. Other limitations exist due to the slow 

I/O data transfer instructions that exist on CISC processors such as the 80486SX, this 

could be overcome by using Direct Memory Access (DMA) techniques to transfer 

data to and from the DCT hardware at the same bandwidth as the bus. 

This algorithm is ideal for use in parallel processing situations. An extremely large 

image can be divided into easy to handle sub-images. The sub-images would then be 

passed through a parallel processing network arranged in a grid formation. As the 

algorithm does not introduce any visible distortion into the reconstructed image, the 

sub-images can be handled completely independently of each other without any fear 

of blocking. Also, as there are no dependencies between the sub-images, no 

calculation bottlenecks are introduced and no inter-communication links are required 

in the parallel network. The result of this is a direct relationship between the execution 

time and the number of parallel processors introduced into the network. For example, 

Conclusions 9-2 



nine parallel processors will compute nine times faster than a single processor with 

the same size image. 

9.1.2 Algorithm Disadvantages 

There are two main disadvantages with the new algorithm. The first is the large 

memory requirement of the algorithm. The algorithm requires a buffer to hold the 

entire transformed image before it can begin to process it. This is because it needs to 

group all like coefficents, to do this all of the blocks must be transformed and stored 

before hand. Further memory is also required to store all of the look-up tables for the 

quantiser. 

The second disadvantage with the algorithm is that it does not perform very well when 

implemented on CISC based processors. The reasons for this have already been 

discussed in chapter 4. 

9.1.3 Algorithm Advantages 

The algorithm requires only simple memory manipulation, addition and subtraction. 

No floating point multiplications or divisions are required by this implementation. All 

complex arithmetic is performed either in hardware or by look-up tables. The nature 

of the algorithm allows it to be easily adapted for DSP (Digital Signal Processing) and 

Reduced Instruction Set Computers (RISC) processors where all the CISC problems 

could be alleviated. This would greatly increase the performance of the algorithm. 

Conclusions 9-3 



The algorithm can be more easily adapted for progressive transmission than 

algorithms such as JPEG and DPCM. In progressive transmission, the quality of the 

image is improved progressively scan by scan until the required quality level is 

reached. This feature is useful if a sneak preview is required of an image, but one does 

not want to wait for the full quality image to be transmitted. This algorithm is ideal for 

this in that it groups all like coefficients together. One group of coefficients can be 

sent in each scan and the image subsequently reconstructed with all of the coefficient 

groups received at that point in time. Once all of the coefficients groups have been 

transmitted, the highest image quality level has been reached. 

The JPEG algorithm is not well adapted to progressive transmission as it stores 

coefficients in block groups. That is, all the coefficients associated for one block are 

grouped together. For this reason, all of the coefficients need to be transferred before a 

full picture can be reconstructed. 

9.2 Suggestions For Future Work 

9.2.1 Adapting the Algorithm For a Different Platform 

To overcome the numerous bottlenecks that exist on the 80486SX test system the 

algorithm could be ported to a system with a greater I/O bandwidth and with greater 

processing power. The simplest alternative would be to use a Pentium based system to 

test this algorithm. The Pentium processor is available in higher clock speeds than the 

80486SX, has a more efficient instruction set and contains an in-built co-processor. 

Conclusions 9-4 



Based on Dhrystone MIPS [HAL95], this should give a at least a factor of six 

improvement in performance. 

Even greater improvements could be made if the OptIC algorithm is ported to an Intel 

i860 or a TMS32040 DSP based system. These systems contain very fast instructions 

for manipulating memory and I/O, they also have extremely fast integer arithmetic 

instructions, e.g. multiply and divide. 

9.2.2 Adapting the Algorithm For Motion Pictures 

At present the algorithm is designed for still images. It is possible that further 

compression can be obtained by considering the time dimension. This could be done 

by incorporating some of the techniques described in section 2.4. 

9.2.3 Adapting the Algorithm For Colour Images 

The current algorithm has been optimised for black and white intensity images. It 

would also be useful to remove some of the redundancies apparent when dealing with 

colour images. Here some of the colour space transformation techniques described in 

section 2.5 could be introduced. 

Conclusions 9-5 



10. Bibliography 

[AHM74] N. Ahmed, T. Natarajan, and K. R. Rao, "Discrete cosine transform", 
IEEE Trans. Comput., vol. C-23, pp. 90-93, Jan. 1974. 

[AM089] H. Amor, D.Biere, A. Tescher, "Technical Issues in Low Rate Transform 
Coding", Optical Engineering, Vol. 28, No. 7, July 1989, 700-707 

[ART88] A. Artieri, S. Kritter, F. Jutand, and N. Demassieux, "A one-chip VLSI for 

real time two-dimensional discrete cosine transform", 1988 Intl. Symp. on 
Circuits and Systems, pp. 701-704, Helsinki, Finland, Jun. 1988. 

[BAR88] M. Barnsley, A. Sloan, "A Better way to Compress Images", Australian 
Personal Computing, Feb. 1988, pp. 75-93 

[CHA87] W. K. Cham, and Y. T. Chan, "Integer Discrete Cosine Transforms", 
ISSPA 87, signal process., theories, implementations and appl., pp.674-
676, 1987. 

[CHE91] D. Chevion, E. D. Karnin, E. Walach, "High Efficiency, Multiplication 

Free Approximation of Arithmetic Coding", IEEE, pp.43-52, 1991. 

[CLA85] R. J. Clarke, "Transform Coding of Images", Academic Press, pp.389-
390, 1985 

[COR90] I. Corbett, "Moving Pictures : Image Processing for 
Telecommunications", IEE Review, July/August, 1990, pp.257-261 

[EKS84] M. P. Ekstrom, "Digital Image Processing Techniques", Academic Press 

Inc., pp. 205-211, 1984. 

[FAI95] J. Fairall, "Data Compression advances bit by bit", Australian Electronics 

Monthly, Vol. 28, No. 7, pp. 80-82, Jul., 1995. 

[GIL95] B. Gillhoff, "Video Research first in Australia", Australian Electronics 

Monthly, Vol. 28, No. 7, pp. 56-57, Jul., 1995. 

[GRU92] L. Grunin, "Something Lossed, Something Gained - Image Compression 

For PC Graphics", PC Magazine, pp. 337-350, Apr. 28, 1992. 

[HAL95] T. R. Halfhill, "Intel's P6", BYTE Magazine, pp. 42-58, Apr., 1995. 

Bibliography 10-1 



[HOS86] K. Hosaka, "A New Picture Quality Evaluation Method", Proc. 

International Picture Coding Symposium, Tokyo, Japan, Apr., 1986. 

[HUA74] T. S. Huang, H. Meyr, H. G. Rosdolsky, "Optimum run-length codes", 
IEEE Trans. Commun., COM-22, pp. 825-835, Jun., 1974. 

[HUF52] D. A. Huffman, "A Method of the Construction of Minimum-Redundancy 

Codes", Proceedings IRE, vol. 40, pp. 1098-1101, Sep. 1952. 

[JUT87] F. Jutand, N. Demassieux, M. Dana, J-P. Durandeau, G. Corcordel, A. 

Artieri, E. Mackowiack, and L. Bergher, "A 13.5MHz single chip 

multiformat discrete cosine transform", Visual Commun. and Image 
Process. II, SPIE, vol. 845, pp. 6-12, Cambridge, MA, Oct. 1987. 

[KAR47] K. Karhunen, "Ueber lineare methoden in der 

Wahrscheinlichkeitsrechnung", Ann. Acad. Sci. Fenn. Ser A.I. Math. 
Phys., vol. 37,1947. 

[KOU89] W. Kou, J. W. Mark, "A New Look at DCT-Type Transforms", IEEE 
Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 

12, Dec. 1989, pp. 1899-1908 

[LEE84] B. G. Lee, "FCT - a fast cosine transform", Intl. Conf. on Acoust., Speech, 

and Signal Process., pp. 38A.3.1-28A.3.3, San Diego, CA, Mar. 1984. 

[LE093] M. Leonard, "JPEG Compression Chip Cuts System Design Tasks", EDN, 

pp. 109-113, Mar. 1993 

[LOE60] M. Loeve, "Probability theory", 2nd Ed., Princeton, NJ, Van Nostrand, 

pp.478, 1960. 

[MIY85] M. Miyahara, K. Kotani, "Block distortion in orthogonal transform coding 
- analysis, minimization, and distortion measure", IEEE Trans. Commun., 

vol. COM-33, pp. 90-96, Jan., 1985. 

[NGA86] K. N. Ngan, K. S. Leong and H. Singh, "Cosine transform coding 
incorporating human visual system model", presented at SPIE Fiber 86, 

Cambridge, MA, pp. 165-171, Sept. 14-20, 1986. 

[PEN90] W. B. Pennebaker, J. L. Mitchell, "JPEG Technical Specifications, 

Revision 5", Joint Photographic Experts Group, Jan. 2, 1990. 

Bibliography 10-2 



[QUI93] R. A. Quinnell, "EDN-Special Report : Hands On Image Compression 
Part 1", EDN, Jan. 21, 1993, pp.62-71 

[RAB89] M. Rabbini, S. Daly, "An Optimized image data compression technique 

utilized in the Kodak SV9600 Still Video Transceiver", SPIE, Optical 
Sensors and Electronic Photography, Vol. 1071, 1989, pp.254-256 

[RAO90] K. R. Rao, and P. Yip, "Discrete Cosine Transform Algorithms, 

Advantages Applications", San Diego, CA.Academic Press, 1990. 

[REZ87] S. M. Rezaul Hasan, "A New VLSI Architecture for Image Data Rate 

Discrete Cosine Transform Processor", ISSPA 87, signal process., 
theories, implementations and appl., pp.750-755 

[SAU94] D. Saupe, R. Hamzaoui, "A Review of the Fractal Image Compression 

Literature", Computer Graphics, Vol. 28, No. 4, pp. 268-276, Nov., 1994 

[SHA48] C. E. Shannon, "A Mathematical Theory of Communication", Bell 

Systems Technical Journal, vol. 27, pp. 379-423, Jul. 1948. 

[SKA94] W. Skarbek, "Banach constructor in fractal compression", Machine 

Graphics & Vision 3, pp.431-441, Jan.-Feb. 1994. 

[STA88] M. K. Stauffer, S. Eidson, "Image Compression with VLSI", Telephony, 
pp.26-30, Jan. 11, 1988. 

[SUE86] N. Suehiro, and M. Hatori, "Fast Algorithms for the DFT and Other 

Sinusoidal Transforms", IEEE Trans. Acoust., Speech, and Signal 
Process., vol. ASSP-34, no. 3, pp. 642-644, Jun. 1986. 

[THE89] L. D. Thede, S. C. Kwatra, "A Hybrid Data Compression Scheme Using 
Quaternary Decomposition and Selective Multistage Vector 

Quantisation", Proc. IEEE, 1989,pp.l901-1905. 

[THI92] A. N. Thiele, "A History of High Definition Television (HDTV) For 
Entertainment Purposes", Monitor, pp. 7-24, Vol. 17, Issue 3, Nov., 1992. 

[TSA89] Y. T. Tsai, "Real-time architecture for error-tolerant color picture 
compression", Digital Image Processing Applications, Vol. 1075, 1989 

[TZ084] K. H. Tzou, T. R. Hsing and J. G. Dunham, "Applications of 

physiological human visual system model to image compression", SPIE 

Proc, vol. 504, pp. 419-424, 1984. 

Bibliography 10-3 



[WAN84] Z. D. Wang, "Fast Algorithms for the Discrete W Transform and for the 

Discrete Fourier Transform", IEEE Trans. Acoustics, Speech, and Signal 
Processing, vol. ASSP-32, no. 4, Aug. 1984. 

[WIT87] I. H. Witten, R. M. Neal, J. G. Cleary, "Arithmetic Coding for Data 

Compression", Communications of the ACM, vol. 30, no. 6, Jun. 1987. 

[W0094] S. Woolley, "Rate/Distortion performance of fractal transforms for image 
compression", Fractals 2, pp. 395-398, Mar. 1994. 

Bibliography 10-4 



Appendix A Image Test Set 

Standard Images (512x512) 

Fig. A-1 Airplane.Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a number of straight line edges. The characters on the 
plane help test the clarity obtained at the output of the 
compression algorithm. The words " G E N E R A L D Y N A M I C S " 
on the tail are only just readible in the original and slight 
distortions can greatly affect the readability of this text. 

Appendix A Image Test Set 



Fig. A-2 Airplane.Y reconstructed image. 

Appendix A Image Test Set A-2 



• • 

Fzg. y4-3 Baboon. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium-High 
Medium 
Contains a large number of high frequency data. These sharp 
contrasts test the algorithms ability to compress high detail 
images. 

Appendix A Image Test Set A-3 



mfs-

" • • • - : < 

Fig. A-4 Baboon.Y reconstructed image. 

Appendix A Image Test Set A-4 



Fig. A-5 Lena. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a large number of smooth intensity transitions (low 
frequency data). The hat feathers also contain high levels of 
medium frequency data. 

Appendix A Image Test Set A-5 



Fig. A-6 Lena.Y reconstructed image. 

Appendix A Image Test Set A-6 



Fig. A-7 Peppers. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a number of low frequency data surrounded with high 
contrast edges. 

Appendix A Image Test Set A-7 



Fig. A-8 Peppers.Y reconstructed image. 

Appendix A Image Test Set A-8 



-Zz 

Fig. A-9 Sailboat. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium-High 
Medium 
The trees in the foreground are extremely dark whereas the 
clouds in the background are fairly bright. The image contains 
several long straight edges along the trunks of the trees, the pine 
needles form high detail and high frequency data. 

Appendix A Image Test Set A-9 



r Ai 

WSBSkmMk 

Fig. A-10 Sailboat.Y reconstructed image. 

-WZ ~ •-: 

JUL 

Appendix A Image Test Set A-10 



I 

Fig. A-ll Splash. Y original image. 

Contrast 
Brightness 
Characteristics 

High 
Medium 
Contains a large number of low frequency areas surrounded by 
high contrast edges. 

Appendix A Image Test Set A-ll 



Fig. A-12 Splash, Y reconstructed image. 

Appendix A Image Test Set A-12 



Fig. A-13 Tiffany. Y original image. 

Contrast 
Brightness 
Characteristics 

L o w 
High 
High average intensity due to the low contrast and high 
brightness of the image. 

Appendix A Image Test Set A-13 



Fig. A-14 Tiffany.Y reconstructed image. 

Appendix A Image Test Set A-14 



Standard Images (256x256) 

Fig. A-15 Beansl. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a low frequency content background. 

Fig. A-16 Beansl. Y reconstructed image. 

Appendix A Image Test Set A-15 



Fig. A-17 Beans2. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a low frequency content background. 

Fig. A-18 Beans2.Y reconstructed image. 

Appendix A Image Test Set 



Fig. A-19 Couple. Y original image. 

Contrast L o w 
Brightness L o w 
Characteristics A very low average intensity due to the low contrast and low 

brightness of the image. 

Fig. A-20 Couple. Y reconstructed image. 

Appendix A Image Test Set A-17 



Fig. A-21 Girll. Y original image. 

Contrast 
Brightness 
Characteristics 

L o w 
L o w 
A very low average intensity due to the low contrast and low 
brightness of the image. 

Fig. A-22 Girll.Y reconstructed image. 

Appendix A Image Test Set A-18 



Fig. A-23 Girl2. Y original image. 

Contrast L o w 
Brightness Medium 
Characteristics Contains a low frequency background. 

Fig. A-24 Girl2. Y reconstructed image. 

Appendix A Image Test Set A-19 



Fig. A-25 Girl3. Y original image. 

<0®^^f:-^:;f-
Brightness 

;:pia||̂ |p|is:;;:: 

High and L o w 
Medium 
Contains high contrast borders surrounding a low contrast, 
medium brightness image. 

Fig. A-26 Girl3. Y reconstructed image. 

Appendix A Image Test Set A-20 



Fig. A-27 House. Y original image. 

Contrast 
Brightness 
Characteristics 

Medium 
Medium 
Contains a low frequency background. 

Fig. A-28 House.Y reconstructed image. 

Appendix A Image Test Set 



Fig. A-29 Tree. Y original image. 

Contrast 
Brightness 
Characteristics 

High 
Medium 
A high contrast image with great detail. 

' * t3mm^mrjBm^mmmm9mt. ' ^ B ^ ^ ^ ^ 

%L 

% ' ' 
... 
•; /:;...';;\;

; ' '• 

• • • - • 

JxW^ ̂ ^w^imF^'^^SBi 

S/Jj 

L Mb*. 

Fig. A-30 Tree.Y reconstructed image. 

Appendix A Image Test Set A-22 



Supplimentary Images 

Fig. A-31 Testpatt. Y original image. 

Contrast 

:: ̂|^i|l3^^Ig: 

Characteristics 

Extremely High 

High and L o w 

A n extremely high contrast artificially generated image. The 
image contains lines of varying angles and widths to test the 

compression algorithm against various two-dimensional 

frequencies. 

Appendix A Image Test Set A-23 



Fig. A-32 Testpatt.Y reconstructed image. 

Appendix A Image Test Set A-24 



Fig. A-33 Wendy 1. Y original image. 

Contrast High 
Brightness Medium 
Characteristics A high contrast scanned photographic image. 

Appendix A Image Test Set A-25 



Fig. A-34 Wendyl.Y reconstructed image. 

Appendix A Image Test Set A-26 



Fig. A-35 Wendy2. Y original image. 

Contrast 
Brightness 
Characteristics 

L o w 
L o w 
A low contrast image with low brightness. The image is from a 
scanned colour photograph. 

Appendix A Image Test Set A-27 



9«mi3''WMM8^*a*'''Shfc» -

Ixx-Px-- 'l[[*x9*f" - ^^^fe 

l^̂ *''"*'%« 

"•• • . , . • 

Fig. A-36 Wendy2. Y reconstructed image. 

Appendix A Image Test Set A-28 



Fig. A-3 7 Wendy3. Y original image. 

Contrast 
Brightness 
Characteristics 

L o w 
L o w 
A low contrast image with low brightness. The image is from a 
scanned colour photograph. 

Appendix A Image Test Set A-29 



Fig. A-38 Wendy3. Y reconstructed image. 

Appendix A Image Test Set A-30 



Appendix B Software D C T Algorithm 

Software DCT Header File - DCT.H 

/****** ****—««*****. **..*...*.....**.....***..«.......*........*..*/ 
/* */ 
/* B.Q. Leo's DCT / IDCT Algorithm Header File */ 

/* */ 
/* Department of Electrical and Electronic Engineering */ 
/* Victoria University of Technology */ 
/* (Footscray Campus) */ 
/* P.O. Box 14428, */ 
/* Melbourne Mail Centre, */ 
/* Melbourne, 3000. */ 

/. */ 
/* Date : July 6, 1994 */ 

/. */ 
/* Author : Emil Lenc */ 

'* .', 
I* File Name : dct.h / 

'* -', 
I* Supervisors : Alec Simcock & Ann Pleasants / 

/* */ 
/* Internet : emil®cabsav.vut.edu.au */ void fdct4_ld (float d[] ) ; 
void fidct4_ld (float d[]) ; 
void fdct8_ld (float d[]) ; 
void fidct8_ld (float d[]) ; 
void fdctl6_ld (float d[]) ; 
void fidctlSld (float d[]) ; 
intslE round (float f) ; 
void fdct (intulS xdct, intul6 ydct, intsl6 i[16][16], intsl6 o[16][16]) ; 
void fidct (intulS xdct, intul6 ydct, intsl6 i[16][16], intsie o[16][16]) ; 
/«***•*****•*.*****************************************************************************/ 

/* End of dct.h */ 

Appendix B Software D Q T Algorithm B 



Software DCT Source File - DCT.C 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/**********************************,****,*»**************************** 
ftinclude <math.h> 
If include <mem.h> 
ft include "types.h" 

Date 

Author 

File Name 

******************************** 

B.O. Lee's DCT / IDCT Algorithm 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 1442 8, 
Melbourne Mail Centre, 
Melbourne, 3000. 

: July 6, 1994 

: Emil Lenc 

: dct.c 

******* r * * * * * * * * * * * * * / 

Supervisors : Alec Simcock & Ann PleasantB 

Internet : emil@cabsav.vut.edu.au 

********************/ 

**************************** ************* /**********************! 
/* Various constant parameters required during the transform calculat 
/********************** 
Ii define 
ftdefine 
#define 
Udefine 
#define 
If define 
If define 
If define 
It define 
if define 
If define 
If define 
ft define 
ft define 
ft define 
ft define 

CO 
Cl 
C2 
C3 
C4 
C5 

ce 
C7 
C8 
C9 
CIO 
Cll 
C12 
C13 
C14 
CIS 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
2 
5 

.500000 

.502419 

.509796 

.522499 

.541196 

.566944 

.601435 

.646822 

.707107 

.788155 

.899976 

.060678 

.306563 

.722447 

.562915 

.101149 

r * * * * * * * * * * * * * * * * * * * * * * * * * * • * * * * * + • * * • * I r * * * * * * * * 

**************** 
ions . 

**************** 

******/ 
*/ 

******/ 

/******************************************************************************************/ 
/* Perform a 4 point one-dimensional forward cosine transform on the input vector d (type */ 
/* float). The results of the transform are stored in the same vector. */ 

/******************************************************************************************/ 
void fdct4_ld (float d[]) 

{ 
float tempO, tempi, temp2, temp3 ; 

tempo = d[0] + d[2] ; 
tempi = d[l] + d[3] ; 
temp2 = (d[0] - d[2]) * C4 
temp3 = (d[l] - d[3]) * C12 
d[0] = (tempO + tempi) 
d[l] = (tempo - tempi) 
d[2] = (temp2 + temp3) 
d[3] = (temp2 - temp3) 
d[2] += d[3] ; 

/* First level of butterfly calculations. 

/* Second level of butterfly calculations. 

C8 

C8 

Appendix B Software D C T Algorithm B-2 

mailto:emil@cabsav.vut.edu.au


/*************************************************.**.***,*M....,.»,w,..,1.,„.1,M„<.1.t„i</ 
/* Perform a 4 point one-dimensional inverse cosine transform on the input vector d (type */ 
/* float) . The results of the transform are stored in the same vector */ 

/**.*.******.*.********,*.**.*.*..„ **.*.*****.*****..*.*„..„*„.„„„..„.„„„^„ ' 
void fidct4 ld (float d[]l 

{ float tempo, tempi, temp2, temp3 ; 

d[3] d[2] 
d[l] *= C8 

/* First level of butterfly calculations. 

/* Second level of butterfly calculations. 

} 

I **** ********** .*******.****.***. * ***.******.*************./ 
/* Perform a 8 point one-dimensional forward cosine transform on the input vector d (type */ 
/* float) . The results of the transform are stored in the same vector. */ 

/***************•******************************************»********»**,**** 
void fdct8_ld (float d[] ) 

d[3] *= C8 ; 
tempo = d[0] + 
tempi = d[0] -
temp2 = (d[2] 
temp3 = (d[2] 
d[0] = tempo + 
d[l] = tempi + 
d[2] = tempo -
d[3] = tempi -

d[l] ; 
d[l] ; 
I- d[3]) * C4 
- d[3]) * C12 
temp2 
temp3 
temp2 
temp3 

/ 

{ 
float temp [8] 

temp[0] 
temp[1] 
temp [2] 
temp [3 ] 
temp [4] 
temp[5] 
temp[6] 
temp[7] 

d[0] H 
d[l] -
d[2] . 
d[3] . 
(d[0] 
(dll] 
ld[2] 

d[4] ; 
d[5] ; 
d[6] ; 
dl[7] ; 
- d[4]) 
- d[5]) 

d[6]) 

/* First level of butterfly calculations. 

= (d[3] - d[7]) 

C2 ; 
C6 , 
C14 
CIO 

fdct4_ld (&temp[0]) 
fdct4_ld (&temp[41) 

) 

d[0] 
d[l] 
d[2] 
d[3] 
d[4] 
d[5] 
d[6] 
d[7] 

temp[0] 
temp[l] 
temp [2] 
temp [3] 
temp [4] 
temp [5] 
temp [6] 
temp [7] 

/* Do partial DCT on current data. */ 

/* Complete the transform on entire vector. */ 

temp [6] 
temp [7] 
temp [5] 

/******************************************************************************************/ 
/* Perform a 8 point one-dimensional inverse cosine transform on the input vector d (type */ 
/* float) . The results of the transform are stored in the same vector. */ 

/******************************************************************************************/ 
void fidct8_ld (float d[]) 

{ 
float temp[8], x ; 

x = d[6] + d[4] ,-
d[7] += d[5] ; 
d[5] += d(6] ; 
d[6] = x ; 
fidct4_ld (&d[0]) ; 
fidct4_ld (&d[4]J ; 
temp[0] = d[0] ,-
temp[l] = d[l] ; 
temp [2] = d[2] ; 
temp [3] = d[3] ; 
temp [4] = d[4] * C2 ; 
temp[S] = d[5] * C6 ; 
temp[6] = d[6] * C14 ; 
temp [7] = d[7] * CIO ; 
d[0] = temp[0] + temp[4] 
d[l] = temp[l] + temp [5] 
d[2] = temp[2] + temp[6] 
d[3] = temp[3] + temp[7] 
d[4] = tempCO] - temp[4] 
d[5] = temp[l] - temp[5] 
d[6] = temp [2] - temp [6] 
d[7] = temp[3] - temp[7] 

/* First level of butterfly calculations. */ 

/* Do partial IDCT on current data. */ 

/* Second level of butterfly calculations. */ 

/* Final level of butterfly calculations. */ 

Appendix B Software D C T Algorithm B-3 



/•*****«**.**....*.*.******.***..*********.*Jf.*t.„»t„„i<„„„.t„t„,ll r ( t^1 t^^Il <^< 

/* Perform a 16 point one-dimensional forward cosine transform on the input vector d 
/* (type float) . The results of the transform are stored in the same vector 
j / * * * * * * * * * * * * * * * * * * * * * * * * * * * . * . * . . * ^ * , 

void fdctlSld (float d[]) 
fr*****************************^^ 

{ 
float temp[16] 

temp[0] = 
temp[l] = 
temp [2] = 
temp [3] = 
temp [4] = 
tempts] = 
temp [6] = 
temp [7] = 
temp [8] = 
temp[9] = 
temp[10] 
temp [11] 
temp[12] 
temp[13] 
temp[14] 
temp[15] 
fdct8_ld 
fdct8_ld 
memcpy (d 

d[0] * 
d[l] x 
d[2] •» 
d[3] * 
d[4] x 
d[5] x 
d[6] x 
d[7] x 
(d[0] 
(d[l] 

= (d[2] 
= <d[3l 
= (d[4] 
= (d[S] 
= <d[6] 
= (d[7] 
(&temp[ 
(&t emp [ 
temp 

Cl 
C3 

d[8] = temp [8] 
d[9] = temp[9] 
d[10] 
d[ll] 
d[12] 
d[13] 
d[14] 
d[15] 

temp [10] 
temp [11] 
temp[12] 
temp[13] 
temp[14] 
temp[15] 

d[8] ; 
d[9] ; 
d[10] 
d[ll] 
d[12] 
d[13] 
d[14] 
d[15] 
- d[8]) 
- d[9]) * 
- d[10]) 
- d[ll]) 
- d[12]) 
- d[13]) 
- d[14]) 
- d[15]) 

0]) ; 
8]) ; 
sizeof (temp) >> 
temp [12] ; 
temp[13] ; 
+ temp[14] 
+ temp[15] 
+ temp[10] 
+ temp [11] 
+ temp [9] 

/* First level of butterfly calculations. 

C7 ; 
CS ; 
C15 
C13 
C9 ; 
Cll 

1) 

/* Do partial DCT on current data. */ 

/* Complete the transform on entire vector. */ 

****************** *************** ************************************* /* 
/* Perform a 16 point one-dimensional inverse cosine transform on the input vector d 
/* (type float) . The results of the transform are stored in the same vector. 

/************************************************************************************ 
void fidctl6_ld (float d[] ) 

{ float temp[16], xl, x2, x3 

xl = d[9] + d[14] ; 
x2 = d[10] + d[12] ; 
X3 = d[ll] + d[13] ; 
d[12] += d[8] ; 
d[13] += d[9] ; 
d[14] += d[10] ; 
d[15] += d[ll] ; 
d[9] = xl ; 
d[10] = X2 ; 
d[ll] = X3 ; 
fidct8_ld (&d[0]) ; 
fidct8_ld (&d[8l) ; 
memcpy (temp, d, sizeof (temp) >> 1) 
temp[8] = d[8] * Cl ; 
temp[9] = d[9] * C3 ; 
temp[10] = d[10] * C7 ; 
temp [11] = d[ll] * C5 ; 
temp [12] = d[12] * CIS ; 
temp[13] = d[13] * C13 ; 
temp [14] = d[14] * C9 ; 
temp[15] = d[15] * Cll ; 
d[0] = temp[0] + temp [8] ,-
d[l] = temp[l] + temp[9] ; 
d[2] = temp[2] + temp[10] 

+ temp[11] 
+ temp[12] 
+ temp[13] 
+ temp[14] 
+ temp[15] 
- temp[8] ,-
- temp[9] ; 
- temp[10] 
- temp [11] 
- temp[12] 
- temp[13] 
- temp[14] 
- temp[15] 

/* First level of butterfly calculations. 

/* Do partial IDCT on current data. */ 

/* Second level of butterfly calculations. */ 

temp[0] 
= temp[l] 

temp [2] 
temp [3] 
temp [4] 
temp[5] 
temp [6] 
temp [7] 
temp[0] 
temp Cl] 

d[10] = temp [2] 
d[ll] = temp [3] 
d[12] = temp[4] 
d[13] = temp[S] 
d(14] = temp[6] 
d[15] = temp [7] 

d[3] 
d[4] 
d[5] 
d[6] 
d[7] 
d[8] 
d[9] 

/* Complete the transform on entire vector. */ 

Appendix B Software D C T Algorithm B 



/*******************************.*****.**.**..*..*..*.«,..*„»„»M„„M.^„M4M„^i„„<f/ 
/* Round off the input coefficient to the nearest 12 bit signed integer */ 
/*******•************...*.*.**.*.*.**.**.*****,***..,*.,,.„*„...»*,,...,,. *„,,„„ .,*.*,****/ 

intslG roundcoef (float f) 

{ 
intsi6 temp , 

temp = (f >= 0) ? (intsl6)(f + 0.5) : (intsl6)(f - 0.5) ; 
if (temp > 2047) 

temp = 2 047 ; 
else 

if (temp < -2048) 
temp = -2 048 ; 

return (temp) ; 

} 

/*****************************************************,*****»***,********..****************/ 
/* Round off the input data to the nearest 8 bit signed integer. */ 

/********************************************************»*****,***,*»*,*»***«.**„******„*.»/ 

intsl6 round_data (float f) 

{ 
intBlS temp ,-

temp = (f >= 0) ? (intsl6) (f +0.5) : (intsl6) (f - 0.5) ; 
if (temp > 127) 

temp = 127 ; 
else 

if (temp < -128) 
temp = -128 ; 

return (temp) ; 

} 

/******************************************************************************************/ 
/* Perform an (xdct x ydct) two-dimensional forward discrete cosine transform on the */ 
/* input array and store the results in the output array. The transform i6 of type DCT-II */ 
/* and simulates (approximately) those values which are produced by the SGS-Thomson DCT */ 
/* transform chip - STV3200. */ 

/******************************************************************************************/ 
/* xdct and ydct can only take on the values 4, 8 or 16. */ 
/* The input and output matrices must be 16 x 16 16 bit signed integers. */ 

/******************************************************************************************/ 
void fdct (intul6 xdct, intul6 ydct, intsl6 i[16][16], intsl6 o[16][16]) 

{ 
float y[16] , t[16j [16], t2[16][16] ; 
intsl6 j, jj ; 
switch (xdct) 

{ 
case 4 : for (j = 0 ; j < ydct ; j++) 

{ 
y[0] = i[j] [0] ; 

y[l] = i[j] [1] ; 
y[2] = i[j] [3] ; 
y[3] = i[j] [2] ,-
fdct4_ld (y) ; 
t[j] [0] = y[0)/2 ; 
t[j] [1] = y[2] ; 
t[j] [2] = y[l] ; 
t[j] [3] = y[3] ; 

} 
(j = 0 

y[03 = 
y[i] = 
y[2] = 
y[3] = 
y[4] = 
y[5] = 
y[6] = 
y[7] = 

,- j < ydc 

i[j][0] ; 
i[j][l] ; 
i[j][3] ; 
i[j][2] ; 
i[j][7] ; 
i[j] [6] ; 
i[j][4] ; 
i[j][5] ; 

fdct8 Id (y) ; 
t[j] [0] 
t[j] [1] 
t[j] [2] 
t[j] [3] 
t[j] [4] 
t[j] [5] 
t[j] [6] 
t[j] [7] 

= y[0]/2 
= y[4] ; 
= y[2] ; 
= y[6] ; 
= y[i] ; 
= ytS] ; 
= y[3] ; 
= y(7] ; 

break ; 

/* Perform a 4 point DCT in x dimension. */ 

/•Correct order for input to transform. */ 

/* Transform the input vector. */ 
/* Adjust output after transform. */ 

/* Perform an 8 point DCT in x dimension. */ 

/* Correct order for input to transform. */ 

/* Transform the input vector. */ 
/* Adjust output after transform. */ 

Appendix B Software D C T Algorithm B-5 



case 16 for (j = 

{ 
y[o] 
y[i] 
y[2] 
y[3] 
y[4] 
y[5] 
y[6] 
y[7] 
y[8] 
y[9] 

0 ,- j < ydc 

= i[jj [01 ; 
= i[j] [1] ; 
= i[j] [3] ; 
= i[j] [2] , 
= i[j] [7] ; 
= i[j] [6] ; 
= i[j] [4] ; 
= i[j] [5] ; 
= i[j] [15] 
= i[j] [14] 

y[io] = i[j] [12] 
y[ii] = i[j] [13] 
y[i2] = i[j] [8] 
y(i3] = i[j] [9] 
y[i4] = i[j] [ii] 
y[i5] = i[j] [io] 
fdctl6 id (y) ,• 

t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 
t[j] 

} 
break ; 

[0] = y[0] / 
[1] = y[8] ; 
[2] = y[4] ; 
[3] = y[12] 
[4] = y[2] ; 
[5] = y[10] 
[6] = y[6] ; 
[7] = y[14] 
[8] = y[l] ; 
[9] = y[9] ; 
[10] = y[5] 
[11] = y[13] 
[12] = y[3] 
[13] = y[ll] 
[14] = y[7] 
[IS] = y[15] 

j++) 

> 
switch (ydct) 
{ 

for (j 

{ 

} 
break ; 
for (j 

{ 

y(0] 
y[l] 
y[2] 
y[3] 
fdct4_ld 
t2[0] [j] 
t2[l] [j] 
t2[2] [j] 
t2[3] [j] 

j < xdct ; j++) 

t[0] [j] 
t[l] [j] 
t[3] [j] 
t[2] [j] 

(y) ; 
= y[0] ; 
= y[2]*2 
= y[i]*2 
= y[3]*2 

} 
break 

y[0] 
y[i] 
y[2] 
y[3] 
y[4] 
y[5] 
y[6] 
y[7] 
fdct8_ld 
t2[0] [j] 
t2[l] [j] 
t2[2] [j] 
t2[3] [j] 
t2[4] [j] 
t2[5] [j] 
t2[6] [j] 
t2[7] [j] 

; j < xdct 

t[0] [j] 
t[l] [j] 
t[3] [j] 
t[2] [j] 
t[7] [j] 
t[6] [j] 
t[4] [j] 
t[5] [j] 

(y) ; 
= y[o]/4 
= y[4]/2 
= y[2]/2 
= y[6]/2 
= y[l]/2 
= y[5]/2 
= y[3]/2 
= y[7]/2 

j++) 

/* Perform a 16 point DCT in x dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

/* Transform in the y dimension to complete 
/* the two-dimensional transformation. 
/* Perform a 4 point DCT in y dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

/* Perform a 8 point DCT in y dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

Appendix B Software D C T Algorithm 



for (j = 

{ 
y[o] 
y[i] 
y[2] 
y[3] 
y[4] 
y[5] 
y[6] 
y[7] 

0 ; j < xdc 

= t[0] [j] , 
= t[l] [j] , 
= t[3] [j] , 
= t[2] [j] ; 
= t[7] [j] ; 
= t[6] [j] , 
= t[4] [j] ; 
= t[5] [j] ; 

j++) /* Perform a 16 point DCT in y dimension. 

/* Correct order for input to transform. 

} 
for (j = 0 ; j 

for (jj = 0 
o[jj][j] = 

y[8] = t[15] [j] ; 
y[9] = t[14] [j] ; 
y[io] = t[12] [j] ; 
y[il] = t[13] [j] ; 
y[l2] = t[8] [j] ; 
y[13] = t(9] [j] ; 
y[i4] = t[ll] [j] ; 
y[is] = t[io] [j] ; 
fdctl6_ld (y) ; 
t2[0] [j] = y[0] / 16 
t2[l] [j] = y[8] / 8 ; 
t2[2] [j] = y[4] / 8 ; 
t2[3] [j] = y[12] / 8 
t2[4] [j] = y[2] / 8 ; 
t2[5] [j] = y[10] / 8 
t2[6] [j] = y[6] / 8 ; 
t2[7] [j] = y[14] / 8 
t2[8] [j] = y[l] / 8 ; 
t2[9] [j] = y[9] / 8 ; 
t2[10] [j] = y[5] / 8 
t2[ll] [j] = y[13] / 8 
t2[12] [j] = y[3] / 8 
t2[13] [j] = y[ll] / 8 
t2[14] [j] = y[7] / 8 
t2[15] [j] = y[15] / 8 

} 
break ,-

j < ydct ; j++) 
• jj < xdct ; jj++) 
roundcoef (t2[j][jj]) ; 

*/ 

Transform the input vector. 
Adjust the output after the transform. 

/* Convert the output to signed integers. 

***************** ************************* *********************************** / 
/* Perform an (xdct x ydct) two-dimensional inverse discrete cosine transform on the 
/* input array and store the results in the output array. The transform is of type 
/* IDCT-II and simulates (approximately) those values which are produced by the 
/* SGS-Thomson DCT transform chip - STV3200. 

/************************************************************************************< 
/* xdct and ydct can only take on the values 4, 8 or 16. 
/* The input and output matrices must be 16 x 16 16 bit signed integers. 

/************************************************************************************* 
void fidct (intulS xdct, intul6 ydct, intsl6 i[16][16], intsl6 o[16][16]) 

{ 
float y[16], t[16][16], t2[16][16] ; 
intsis j, jj ; 

«7 
*/ 
*/ 
*/ 
*/ 

•*..*/ 

*/ 
*/ 

* • * * * * / 

switch (xdct 

{ 
case 4 : 

) 
for (j = 0 ; j < ydct ; j++) / 

/ 
y[0] = i[j] [0] ; 
y[l] = i[j] [2] ; 
y[2] = i[j] [1] ; 
y[3] = i[j] [3] ; 
fidct4 ld (y) ,-
t[j] [0] = y[0] ; 
t[j] [1] = y[l] ; 
t[j] [2] = y[3] ; 
t[j] [3] = y[2] ; 

/ 

/ 
/ 

Perform a 4 point IDCT in x dimension. */ 

Correct order for input to transform. */ 

Transform the input vector. */ 
Adjust the output after the transform. */ 

break 

Appendix B Software D C T Algorithm B 



for 

{ 

case 16 

} 

(j = 0 

yto] = 
yCi] = 
y[2] = 
y[3] = 
y[4] = 
y[5] = 
y[s] = 
y[7] = 
fidct8_ 
t[j] [0] 
t[j] [1] 
t[j] [2] 
t[j] [3] 
t[j] [4] 
t[j] [5] 
t[j] [6] 
t[j] [7] 

; j < ydct 

i[jH0] ; 
i[j][4] ; 
i[j][2] ; 
i[j][6] ; 
i[j] [1] ; 
i[j][5] ; 
i[j][3] ; 
i[j][7] ; 
ld (y) , 
= y[o] ; 
= y[l) ; 
= y[3] ; 
= y[2] ; 
= y[6] ; 
= y[7] ; 
= y[5] ; 
= y[4] ; 

j++) /* Perform a 8 point IDCT in x dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

> 
switch (ydct) 

{ 
case 4 

break ; 
for (j = 

{ 
y[0] 
ytl] 
y[2] 
y[3] 
y[4] 
y[5] 
y[6] 
y[7] 
y[8] 
y[9] 
y(io] 
y [ n ] = 
y[l2] = 
y[l3] = 
y[l4] = 
y[l5] = 
fidctl6 
t[j] [0]" 
t[j] [l] 
t[j] [2] 
t[j] [3] 
t[j] [4] 
t[j] [5] 
t[j] [6] 
t[j] [7] 
t[j] [8] 
t[j] [9] 
t[j] [10] 
t[j] [11] 
t[j] [12] 
t[j] [13] 
t[j] [14] 
t[j] [15] 

} 
break ; 

j < ydct 

i[j] [0] 
i[j] [8] 
i[j] [4] 
i[j] [12] 
i[j][2] ; 
i[j] [10] 
i[j] [6] ; 
i[j] [14] 
i[j][l] ; 
i[j][9] ; 
i[j] [5] 
i[j] [13] 
i[j] [3] 
i[j] Cll] 
i(j] [7] 
i[j] [15] 
ld (y) 
= y[0] 
= y[l] 
= y[3] 
= y[2] 
= y[6] 
= y[7] 
= y[s] 
= y[43 
= y[i2] 
= y[l3] 
= y d s ] 
= y[i4] 
= y[io] 
= ytii] 
= y[9] 
= y[8] 

for 

{ 
(j xdct 

} 
break 

y[0] = 
y[l] = 
y[2] = 
y[3] = 
fidct4_ 
t2[0] [j] 
t2[l] [j] 
t2[2] [j] 
t2[3] [j] 

t[0] [j] 
t[2] [j] 
t[l] [j] 
t[3] [j] 
ld (y) ; 

y[0]/8 
y[l]/8 
y[3]/8 
y[2]/8 

j++) /* Perform a 16 point IDCT in x dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

j++) /* Perform a 4 point IDCT in y dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

Appendix B Software D C T Algorithm 



case 16 

for (j = 0 ; j < xdct ; 

{ 
y[o] = t[o] [j] ; 
y[i] = t[4] [j] 
y[2] = t[2] [j] 
y[3) = t[6] [j] 
y[4] = t[i] [j] 
y(s] = t[5] [j] 
y[6] = t[3] [j] 
y[7] = t[7] [j] 
fidct8 ld (y) ; 
t2[01 [j] = y[0]/8 ; 
t2[l] [j] = y[l]/8 ; 
t2[2] [j] = y[3]/8 ,• 
t2[3] [j] = y[2]/8 ; 
t2[4] [j] = y[6]/8 ; 
t2[5] [j] = y[7]/8 ; 
t2[6] [j] = y[5]/8 ; 
t2[7] [j] = y[4]/8 ; 

> 
break ; 
for (j = 0 ; j < xdct ; 

{ 
y[o] = t[o] [j] ; 
y[i] = t[8] [j] 
y[2] = t[4] [j] 
y[3] = t[12] [j] ; 
y[4] = t[2] [j] ; 
y[5] = t[10] [j] ; 
y[6] = t[6] [j] ; 
y[7] = t[14] [j] ; 
y[8] = t[l] [j] ; 
y[9] = t[9] [j] ; 
y[10] = t[5] [j] ; 
y[ll] = t[13] [j] ; 
y[12] = t[3] [j] ; 
y[13] = t[ll] [j] ; 
y[14] = t[7] [j] ; 
y[lS] = t[15] [j] ; 
fidctl6 ld (y) ; 
t2[0] [j] = y[0]/8 ; 
t2[l] [j] = y[l]/8 ; 
t2[2] [j] = y[3]/8 ; 
t2[3] [j] = y[2]/8 ; 
t2[4] [j] = y[6]/8 ; 
t2[5] [j] = y[7]/8 ; 
t2[6] [j] = y[5]/8 ; 
t2[7] [j] = y[4]/8 ; 
t2[8] [j] = y[12]/8 
t2[9] [j] = y[13]/8 
t2[10] [j] = y[15]/8 
t2[ll] [j] = y[14]/8 
t2[12] [j] = y[10]/8 
t2[13] [j] = y[ll]/8 
t2[14] [j] = y[9]/8 
t2[15] [j] = y[8 1-

j++) 

} 
for (j = 0 ; j < ydct ; j + + ) 

for (jj = 0 ,- jj < xdct ; jj++) 
o[jj] [j] = rounddata (t2[j][jjl) 

/* Perform a 8 point IDCT in y dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

j++) /* Perform a 16 point IDCT in y dimension. 

/* Correct order for input to transform. 

/* Transform the input vector. 
/* Adjust the output after the transform. 

/* Convert the output to signed integers. 

/*. 
/* 

*************************** 
End of dct.c 

********** ******** *********** 
/ * * * * * * * * * + * • * ******** ************ ************** 

Appendix B Software D C T Algorithm B-9 



Appendix C Hardware DCT Interface 

Schematic Diagram ofSTV3200 Interface 

J> n xt n N --
-i -i -n in -i -i 

(->r- E * 
Z U 1 U J 
> L J CJ 

ss —•rN > ,_ 

CD CD CD QOOoaQOOO n QI^Q 

xT\JlxD~x-aVxEl-*-xx 

V 

3 r*-

ft ,=r± 

t» 
o o o o o o o 

« « « « 

¥ ^ a . C L D . i i o o o a o 
_ I _ I Z J E Z Z - N - \ ^ - \ > 

(J l_J — — — . — .— — •— *-.— 

ra r*- o JJ a- n ^»— 

« « « ^ 

A-^/ /yy. 

J CD CD in ai II ra m 

IT 

/////<!Z/ 

Appendix C Hardware D C T Interface C 



IBM Decoder Contents for STV3200 Interface 

Emil Lenc 
Electrical Engineering V.U.T. 
14 January 1992 
1.00 
B 
EP600 
Address decoding for the I.B.M. - STV3200 interface 

OPTIONS: SECURITY 
PART: EP60 0 

OFF 

INPUTS : 

A082, A1311, A2S14, A3@23, A4@3, 
AS84, A6@5, A7@6, A8@7, A9@8, 
SBHE815, IORDS2 2, IOWR&21, AEN@10 

OUTPUTS: 

IOCS1692 0, OUTCS919, INCSS18, 
DCTOE917, DCTCLKS16, DBENS9 

NETWORK: 

A0 
Al 
A2 
A3 
A4 
AS 
A6 
A7 
A8 
A9 
SBHE 
IORD 
IOWR 
AEN 

IOCS16 
OUTCS 
INCS 
DCTOE 
DCTCLK 
DBEN 

INP(AO) 
INP(Al) 
INP (A2) 
INP (A3) 
INPIA4) 
INP (A5) 
INP (AS) 
INP(A7) 
INP(AS) 
INP (A9) 
INP(SBHE) 
INP(IORD) 
INP(IOWR) 
INP(AEN) 

CONF(IOCS16,VCC) 
CONF(OUTCS,VCC) 
CONF(INCS,VCC) 
CONF(DCTOE,VCC) 
CONF(DCTCLK,VCC) 
CONF(DBEN,VCC) 

EQUATIONS: 

address 

DCTOE 
DCTCLK 

OUTCS 
INCS 

IOCS16 
DBEN 

A9 fc A8 fc !A7 fc !A6 fc !A5 fc !A4 & !A3 fc IA2 fc !AEN 

!(address & !A1 fc !IORD fc 1SBHE) ; 
address fc IA1 fc ! IOWR fc ! SBHE ; 

! (address & Al fc !A0 fc ! IOWR) ; 
! (address fc Al & !A0 & !IORD) ; 

! (address & !Al) ,-
!(!DCTOE + DCTCLK + !OUTCS + !INCS) ; 

ENDS 

Appendix C Hardware D C T Interface C-2 



STV3200 Driver Header File - HDCT.H 

/.. 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/*, 

********** **************************** 

Date 

Author 

File Name 

STV32 00 Driver Header File 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 14428, 
Melbourne Mail Centre, 
Melbourne, 3 000. 

: July 6, 1994 

: Emil Lenc 

: hdct.h 

Supervisors : Alec Simcock & Ann Pleasants 

Internet : emil@cabsav.vut.edu.au 

***************************** ******** 

((define FDCT 
(tdefine IDCT 

0x08 
0x00 

void setup_DCT (intulS x_size, intul6 y_size, intul6 DCT_type) ; 
void initDCT 0 ; 
void fdct (intul6 xdct, intul6 ydct, intsS far * source, intsl6 far *destination) 
void fidct (intulS xdct, intul6 ydct, intsl6 far *source, ints8 far *destination) 

******************************************************* 
End of dct.h 

******************************************************* 

******** 

Appendix C Hardware D C T Interface 

mailto:emil@cabsav.vut.edu.au


STV3200 Driver Source File - HDCT.C 

/** 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/*** ************ 
((include <dos . h> 
((include <stdio.h> 
ftinclude < s t dlib.h > 
ft include " types, h" 
# include "memtype.h" 

*************** 

STV3200P Driver For IBM PC 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 1442 8, 
Melbourne Mail Centre, 
Melbourne, 3000. 

Date : July 6, 1994 

Author : Emil Lenc 

File Name : hdct.c 

Supervisors : Alec Simcock fc Ann Pleasants 

Internet : emil@cabsav.vut.edu.au 

•*/ 

*/ 
•7 
*/ 
*/ 
*/ 
*l 
*/ 
'/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

************* ********* /********! 
/* Various constant parameters specific for the STV3200 Board. 

/* 

((define DCT_base 0x300 
((define DCT_data DCT_base 
(tdefine DCTcontrol DCT_base+2 
((define DCTstatus DCT_base+2 

#define size_16xl6 0x00 
((define size_8xl6 0x80 
((define size_16x8 0x40 
((define size_8x8 OxCO 
((define size_4x8 0x2 0 
((define size_8x4 OxAO 
((define size_4x4 0x60 

((define DCT_chip_enable 0x0 0 
((define DCT_chip_disable 0x04 

((define FDCT 
((define IDCT 

0x08 
0x00 

/* Base address of the STV3200 Interface. */ 
/* Data address of the STV3200 Interface. */ 
/* Control address of the STV3200 Interface.*/ 
/* Status address of the STV3200 Interface. */ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

Control 
Control 
Control 
Control 
Control 
Control 
Control 

mask 
mask 
mask 
mask 
mask 
mask 
mask 

for 
for 
for 
for 
for 
for 
for 

16x16 transforms 
8x16 transforms. 
16x8 transforms. 
8x8 transforms. 
4x8 transforms. 
8x4 transforms. 
4x4 transforms. 

((define DCT_PR_low 0x00 
((define DCT PR high 0x10 

/* Chip enable for the STV3200. 
/* Chip disable for the STV3200. 

/* Control mask for forward transform. 
/* Control mask for inverse transform. 

/* Rounding control for the STV3200. 

Appendix C Hardware DCT Interface 

mailto:emil@cabsav.vut.edu.au


/**********.*.**..*****.******.**********.„,,.^„.„.<r,t *.•.,«*.**..*„.„„,,„,„..,„„,,• 

/* setupDCT sets up the STV3200 to operate with the given size block size and initializes*/ 
/* the device for the given type of transform : Forward / Inverse. */ 
/************. ****************************************,»»»**„»#4.»t»»ii<.1t„»4„<ti4»„i»„i j 

void setupDCT (intul6 xsize, intul6 ysize, intul6 DCTtype) 

intu32 DCTsize ; 

switch (xsize) /* Determine the DCTsize mask according to */ 
\ /* x_size and y_size. */ 

case 4 : switch (y_size) 

{ 
case 4 : DCT_size = size_4x4 ; 

break ; 
case 8 DCTsize = size_4x8 ; 

break ; 
default : fprintf (stderr, "Size Error\n") ; 

exit (1) ; 

} 
break ; 
case 8 : switch (ysize) 

{ 
case 4 DCT_size = size 8x4 ; 

break ; 
case 8 DCTsize = size_8x8 ; 

break ,-
case 16 DCT_size = size 8x16 ; 

break ; 
default : fprintf (stderr, "Size Error\n") ; 

exit (1) ; 

) 
break ; 

case 16 switch (y_size) 

{ 
case 8 DCT_size = size_16x8 ; 

break ; 
case 16 : DCT_size = size 16x16 ; 

break ; 
default : fprintf (stderr. "Size Error\n") ; 

exit (1) -

) 
) 

outportb (DCT_control, DCT_size+DCT_chip_enable+DCT_type+DCT_PR_low) ; 

/******************************************************************************************/ 
/* Initialize the DCT as described in data sheets for the STV3200 device. */ 

/******************************************************************************************/ 

void init_DCT 0 

{ 
intul6 x ; 

setup DCT (16, 16, FDCT) ; /* Assume a 16x16 forward transform. */ 
for (x = 0 ; X < 13 0 ; x++) 

outport (DCTdata, 0x200) ; /* Output 130 valueB to device to clear it. */ 

> 

Appendix C Hardware DCT Interface 



********** ************** ***************** /*************************** 
/* Perform a forward DCT on the source data and output the results in the destination. 
/ • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

********************* 

void fdct (intul6 xdct. intuie ydct, ints8 far *source, intsl6 far *destination) 

{ 
intul6 array_size ; 

setupDCT (xdct, ydct, FDCT) ; 
arraysize = xdct * ydct ; 

asm PUSH 
asm PUSH 
asm LDS 
asm LES 
asm MOV 

DS 
ES 
SI,source 
DI,destination 
DX,DCT data 

/* Set up the DCT size. 

/* Save segment registers. 

/* Get the source address. 
/* Get the destination address 
/* Point to the STV32 00 data register. 

*../ 
*/ 

*** / 

M0VE1: 

asm 
asm 
asm 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 
asm 

M0VE2: asm 
asm 

CLD 
MOV 
DEC 

LODSB 
CBW 
AND 
OUT 
LODSB 
CBW 
OR 
OUT 
LOOP 

MOV 
MOV 
MOV 
OUT 

CX, array_size 

cx 

AH,0x01 
DX,AX 

AH,0x02 
DX,AX 
M0VE1 

CX,131 
AX,0x200 
BX,AX 
DX,AX 

/* Move the entire array to the STV32 00. 

/* Get a byte from the source. */ 
/* Convert it to a signed word. */ 
/* First word needs bit 9 low. */ 
/* Output the data to the STV3200. */ 
/* Get a byte from the source. */ 
/* Convert it to a signed word. */ 
/* Successive words need bit 9 set. */ 
/* Output the data word to the STV32 00. */ 
/* Repeat until entire block sent. */ 

/* Dummy writes to flush out the output. */ 

LOOP M0VE2 

asm 
M0VE3: asm 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 

MOVEP: 
MOVE4: 

MOV 
IN 
TEST 
JE 
OR 
JMP 
AND 
STOSW 
MOV 
OUT 
LOOP 

POP 
POP 

CX,arraysize 
AX, DX 
AH, 0x08 
MOVEP 
AH, OxFO 
M0VE4 
AH, 0X0F 

AX,BX 
DX,AX 
MOVE3 

ES 
DS 

/* Get the data from the STV3200. */ 
/* Perform sign extension of the 12 bit data*/ 

/* A dummy write to clock next data out. */ 

/* Restore registers, */ 

Appendix C Hardware D C T Interface 



/********************** 
/* Perform an inve 

I* **************** 
rse DCT on the source data and output the results in the destinat 

•••*"•• * * * * * * * * * * * * * * * xf, * + 
ion 

* * * * * * * * * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * 

yoid fidct (intulS xdct, intulS ydct, intsl6 far *source, intsS far 'destination) 

intul6 array_size ; 
setupDCT (xdct, ydct, IDCT) 
arraysize = xdct * ydct ; 

M0VE1: 

MOVE3: 

M0VE4: 

M0VE5: 

asm 
asm 
asm 
asm 
asm 

asm 
asm 

asm 

asm 
asm 
asm 
asm 
asm 
asm 

asm 

asm 
asm 
asm 
asm 
asm 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 

PUSH 
PUSH 
LDS 
LES 
MOV 

CLD 
MOV 
DEC 

LODSW 
AND 
OUT 
LODSW 
OR 
OUT 
LOOP 

MOV 
MOV 
MOV 
OUT 
LOOP 

MOV 
IN 
TEST 
JE 
CMP 
JA 
MOV 
JMP 
CMP 
JB 
MOV 
STOSB 
MOV 
OUT 
LOOP 

POP 
POP 

DS 
ES 
SI,source 
DI,destination 
DX,DCT_data 

CX, array size 
CX 

AH, OxOF 
DX,AX 

AH,0X10 
DX.AX 
MOVE1 

CX,131 
AX,0X1000 
BX,AX 
DX,AX 
MOVE2 

CX,arrays i ze 
AX,DX 
AH,0x01 
MOVE4 
AL,0x80 
MOVE5 
AL,0x80 
MOVES 
AL,0x80 
MOVES 
AL,0x7F 

AX,BX 
DX,AX 
MOVE 3 

ES 
DS 

/* Set up the DCT size. 

/* Save segment registers. 

/* Get the source address. 
/* Get the destination address. 
/* Point to the STV32 00 data register. 

/* Move the entire array to the STV3200. 

/* Get a byte from the source. 
/* Bit 12 must be zero for first word. 
/* Output the word. 
/* Get a byte from the source. 
/* Successive words have bit 12 set. 
/* Output a word. 
/* Continue until entire block- sent. 

/* Dummy writes to flush out the output. 

/* Get the results from the STV3200. 
/* Clip the 9 bit data to 8 bits. 

/* Store the data in the destination. 

/* Output a dummy value to get next word. 

/* Restore registers. 

/**, 
/* 
/**** 

************************ ********* ******************************* 

********* 
End of hdct.c 

*********************************** 

Appendix C Hardware DCT Interface 



Appendix D Algorithm Software 

WINDCT.DEF - Definition File 

NAME 
EXETYPE 
STUB 
CODE 
DATA 
HEAPSIZE 
STACKSIZE 
EXPORTS 

windct 
WINDOWS 
' WINSTUB . EXE ' 
PRELOAD MOVEABLE 
PRELOAD MOVEABLE MULTIPLE 
1024 
5120 
WndProc 

Appendix D Algorithm Software D-1 



WINDCT.RC - Resource File 

WINDCT.RC 
produced by Borland Resource Workshop 

*********************************.*.**.****.*.****,******,„**,,»„̂ „̂ ,.,̂  

Kinclude "windct.h" 
((define IC0N_1 1 
#define MENU_1 1 

windct MENU 

{ 
POPUP "fcFile" 

{ 
MENUITEM "fcOpen", IDMFILEOPEN 
MENUITEM "fcSave Compressed", IDMSAVECOMPRESSED, GRAYED 
MENUITEM "Stave Decompressed", IDMSAVEDECOMPRESSED, GRAYED 
MENUITEM SEPARATOR 
MENUITEM "Efcxit", IDM_FILEEXIT 

> 
POPUP "fcTools" 

{ 
MENUITEM "fcCompresS", IDM_TOOLSCOMPRESS, GRAYED 
MENUITEM "fcDecompress", IDMTQOLSDECOMPRESS, GRAYED 
MENUITEM "fcFull Cycle", IDMTOOLSFULLCYCLE, GRAYED 

} 
} 
windct ICON "windct.ico" 
DIALOGJPEG DIALOG 74, 41, 166, 55 
STYLE DSMODALFRAME | WSPOPUP | WS_VISIBLE | WS_CAPTION 
CAPTION "JPEG Quality Level" 
FONT 8, "MS Sans Serif" 

{ 
DEFPUSHBUTTON "OK", IDOK, 14, 37, SO, 14, BS_DEFPUSHBUTTON | NOT WSTABSTOP 
PUSHBUTTON "Cancel", IDCANCEL, 101, 37, 50, 14, WSTABSTOP 
CTEXT "Quality Level", -1, 37, 4, 55, 8, SS_CENTER | NOT WS_GROUP 
SCROLLBAR IDC_HSCROLLl, 19, 15, 92, 9, SBS_HORZ | WSGROUP 
EDITTEXT IDCEDIT1, 117, 13, 22, 13, WSBORDER | WSGROUP | WSTABSTOP 

} 

Appendix D Algorithm Software D-2 



WINDCT.CPP - Main Program 

n 
u 
n 
n 
u 
n 
11 

n 
u 
u 
11 
11 

u 
n 
n 
u 
n 
n 
u 
n 
u 
a 

Image Compression Software For The IBM PC 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 14428, 
Melbourne Mail Centre, 
Melbourne, 3 000. 

Date : July 7, 1994 

Author : Emil Lenc 

File Name : windct. cpp 

Supervisors : Alec Simcock fc Ann Pleasants 

Internet : emil8cabsav.vut.edu.au 

((define STRICT 

// 

// strict type checking 

//Define macro to store a byte in the specified buffer and automatically increment the 
// pointer such that it points to the next byte in the buffer. 

// 
((define mput (buffer, value) (*( (buffer)++) = (value)) 

// 
// Define macro to get a byte from the specified buffer and automatically increment the 
// pointer such that it points to the next byte in the buffer. 

// 
((define mget (buf f er) (*( (buffer)++) ) 

((include 
((include 
((include 
tt include 
((include 
((include 
((include 

<windows ,h> 
<commdlg.h> 
<dos.h> 
<math.h> 
<memory.h> 
<string.h> 
"windct.h" 

// include file for all windows apps 
// for GetOpenFileName0 
// DOS functions 
// Math functions 
// Memory functions 
// String functions 

// 
// Various constant parameters specific for the STV3200 Board 

// 
((define DCTbase 0x300 
((define DCTdata DCTbase 
((define DCT_control DCT_base+2 
((define DCTstatus DCT_base+2 

((define size 16x16 0x00 

((define FDCT 0x08 
((define IDCT 0x00 

((define BUFFERSIZE 256 
((define TRANSFORM BUFFERSIZE 32768L 

// Base address of the STV320P Interface 
// Data address of the STV32 00 Interface 
// Control address of the STV3200 Interface 
// Status address of the STV3200 Interface 

// Control mask for 16x16 transforms 

// Control mask for forward transform 
// Control mask for inverse transform 

// Buffer size 
// Transformation Buffer Size 

// Quantiser type definitions for each coefficient 

cons 
0, 
1, 
1, 
2, 
2, 
2, 
3, 
3, 
3, 
3, 
3, 
3, 
4, 
5, 
6, 
7, 

t int 
1, 
2, 
2, 
2, 
3, 
3, 
4, 
4, 
4, 
5, 
5, 
6, 
7, 
7, 
7, 
7, 

1, 
2, 
2, 
2, 
3, 
3, 
4, 
4, 
4, 
5, 
5, 
6, 
7, 
7, 
7, 
7, 

quant_ 
2, 
2, 
2, 
3, 
3, 
3, 
4, 
4, 
5, 
5, 
5, 

6, 
6, 
7, 
7, 
7, 

2, 
3, 
3, 
3, 
3, 
4, 
4, 
4, 
5, 
5, 
5, 
6, 
6, 
6, 
7, 
7, 

type [256] = 

2, 
3, 
3, 
3, 
4, 
4, 
4, 
5, 
5, 
5, 
6, 
6, 
6, 
6, 
7, 
7, 

3, 
4, 
4, 
4, 
4, 
4, 
5, 
5, 
5, 
5, 
6, 
6, 
6, 
6, 
7, 
7, 

3, 
4, 
4, 
4, 
4, 
5, 
5, 
S, 
5, 
6, 
6, 
S, 
6, 
6, 
7, 
7, 

3, 
4, 
4, 
S, 
5, 
S, 
5, 
S, 
6, 
6, 
6, 
6, 
6, 
7, 
7, 
7, 

{ 
3, 
5, 
5, 
5, 
5, 
S, 
5, 
6, 
6, 
6, 
6, 
6, 
6, 
7, 
7, 
7, 

3, 
5, 

s, 
5, 
5, 
6, 
6, 
6, 
6, 
6, 
6, 

6, 
7, 
7, 
7, 
7, 

3, 
6, 

-, 
-, 
~, 
6, 
6. 
6, 
6, 
6. 
6, 
7, 
7, 
7, 
7, 
7, 

4, 
7, 
7, 
6, 
6, 
6, 
6, 
6, 
6, 
6, 
7, 
7, 
7, 
7, 
7, 
7, 

S, 
7, 
7, 
7, 
6, 
6, 
6, 
6, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 

6, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 

7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7, 
7 } 

Appendix D Algorithm Software D-3 

http://emil8cabsav.vut.edu.au


-uniform quantiser linear Begment definitions. 

int quant_x [8][8] = { 

{ °. 
{ °< 
{ °< 
{ 0, 
{ °< 
{ °. 
{ °< 
{ °. 

2048, 

24, 

6, 

6, 

6, 

6, 

64, 
128, 

t quant y 

{ 6< 
{ 2-
{ 2, 
{ 2, 
( 2> 
{ 2, 
{ 8< 
{ 32, 

6, 

3, 

4, 

6 

3, 

3, 

16, 

64, 

2048, 

255, 

34, 

36, 

38, 

38, 

128, 

2048, 

8] [8] 

6, 

4, 

10, 

20, 

12, 
20, 

32, 

64, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

• ( 
6, 

4, 

10, 

20, 

12, 

20, 

32, 

64, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

6, 

4, 

10, 
20, 

12, 
20, 

32, 

64, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

6, 

4, 

10, 
20, 

12, 
20, 

32, 

64, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

2048, 

6, 

4, 

10, 

20, 

12, 
20, 

32, 
64, 

2048 }, 

2048 }, 

2048 }, 

2048 ), 

2048 }, 

2048 }, 

2048 }, 

2048 } 

6 }, 
4 }, 
10 }, 
20 }, 

12 }, 
20 }, 

32 } , 

64 } 

// Order in which the coefficients are stored. 

int coeff 

16, 

64, 

97, 

70, 

41, 

118, 

134, 

59, 

0 

65 

38 

24 

B7 

103 

12 0 

177 

166,122 

108,183 

224, 

29, 

155 

47 

194,210 

211,216 

221,174 

218,250 

icientOrder 

1, 32, 17 

80, 36, 51 

83, 53, 68 

114, 55,100 

,102,131,145 

,133, 73,161 

,149,105,176 

, 90,178, 60 

76,152 

14,184 

,156,186,125 

, 61, 30, 62 

,126,243,172 

,220,143,229 

,187,205,188 

,206,191,238 

107, 

139, 

[256] 

, 48, 

4, 

, 23, 

,115, 

. 26, 

58, 

,135, 

,179, 

,101, 

,124, 

,200, 

, 31, 

,157, 

,217, 

,236, 

,223, 

= { 
2, 33, 

66, 21, 

54, 98. 

40,129, 

72,117, 

147,148, 

164, 10, 

75,106, 

167, 92, 

212, 93, 

214,215, 

94, 78, 

127,245, 

230,247, 

228,190, 

222,251, 

18, 

81, 

69, 

7, 

57, 

119, 

150, 

121, 

182, 

198, 

171, 

110, 

232, 

159, 

234, 

249, 

49, 

37, 

99, 

101, 

128, 

9, 

11, 

136, 

77, 

154, 

185, 

63, 

246, 

2 04, 

235, 

207, 

34, 19, 

67, 52, 

112,113, 

25, 71, 

146,144, 

89,104, 

192,208, 

151,165, 

196,168, 

199,140, 

201, 44, 

209,193, 

242,244, 

231,142, 

203,219, 

254,239, 

3, 

82, 

84, 

86, 

8, 

162, 

12, 

91,180 

153,123 

109,213 

28, 45 

111, 95 

173,189 

227,233 

175,225 

252,253 

35, 20, 

5, 22, 

85, 39, 

116,130, 

42,132, 

163,160, 

27, 43, 

137,195, 

138,197, 

169,170, 

240, 46, 

241, 79, 

226,141, 

158,202, 

237,248, 

15,255 

const int BlockSize 

const int DCTSetup = 
= 16 ; 
size 16x16 

// Size of DCT Block Size 

// Set up value for Hardware DCT 

PSTR szProgName = "windct"; // application name 

HGLOBAL hlmageln, hlmageDCT, hlmageOut, hForward[8], hBackward[8] 

HGLOBAL hlmageRunLength, hlmageCompressed ; 

int huge *hpForward [8] , huge *hpBackward [8] ; 

int blockorder [1024] ; 

DWORD coefforder [256] ; 

DWORD dwImageSize, dwImageWidth, dwRLCodeLength, dwCodeLength ; 

BOOL blmageLoaded = FALSE ; 

BOOL blmageCompressed = FALSE ; 

BOOL blmageDecompressed = FALSE ; 

((pragma argsused 

((include "huffadap.cpp" 

// ignore unused arguments 

// Statistical Coder to use 

Appendix D Algorithm Software D-4 



// 
// Output the code for the particular symbol and run-length. 

void output_code ,i„t symbol, unsigned long length ^ ^ ^^ 

union rdata { 
unsigned long full ; 
unsigned char part [4] ; 

} rdata ; 

// Handle the -3 symbol 

OxFD) 

0x80) 

((length - 2) << 5))) 

1>) 

0x0FFD 

switch (symbol) { 
case -3 

Bwitch (length) { 
case 1 : mput (*dest, 

break • 
case 2 : mput (*dest, 

break ; 
default : 

if (length < lo) { 
mput (*dest, 0x88) ; 
mput (*dest, (char)(OxlD | 

} else if (length < 257) { 
mput (*dest, 0x89) ; 
mput (*dest, OxFD) ; 

mput (*dest, (char)(length 
} else { 
mput (*dest, 0x8A) ; 
rdata.full = ((length - 1) « 12) 
mput (*dest, rdata.part[0]) ; 
mput (*dest, rdata.part[1]) ; 
mput (*dest, rdata.part[2]) ; 
mput (*dest, rdata.part[3]) ; 

} 
break ; 

case -2 
switch (length) { 

case 1 : mput (*dest, OxFE) ; 
break ; 

case 2 : mput (*dest, 0x81) ; 
break ; 

default : 
if (length < 10) { 

mput (*dest, 0x88) ; 

mput (*dest, (char)(OxlE | ((length - 2) « 5))) 
} else if (length < 257) { 

mput (*dest, 0x89) ; 
mput (*dest, OxFE) ; 
mput (*dest, (char)(length -1)) ; 

} else { 
mput (*dest, 0x8A) ; 
rdata.full = ((length - 1) << 12) | OxOFFE ; 
mput (*dest, rdata.part[0]) 
mput (*dest, rdata.part[1]i 
mput (*dest, rdata.part[2]) 
mput (*dest, rdata.part[3] ) 

// Handle the -2 symbol 

} 
break ; 

case -1 
switch (length) { 

mput (*dest, OxFF) 

// Handle the -1 symbol 

mput (*dest, 0x82) 

mput (*dest, 0x86) 

((length - 2) « 5))) 

case 1 
break 

case 2 : 
break 

case 3 : 
break 

default : 
if (length < 10) { 

mput (*dest, 0x88) ; 
mput (*dest, (char)(OxlF | 

} else if (length < 257) { 
mput (*dest, 0x89) ; 
mput (*dest, OxFF) ; 
mput (*dest, (char)(length - 1)) ; 

} else { 
mput (*dest, 0x8A) ; 
rdata.full = ((length - 1) « 12) | OxOFFF 
mput (*dest, rdata.part[0] ) 
mput (*dest, rdata.part[1]) 
mput (*dest, rdata.part[2] ) 
mput (*dest, rdata.part[3]) 

> 
} 
break 

Appendix D Algorithm Software 



case 0 
if (length == 1) 

mput (*dest, 0x00) ; 
else 

if (length < 10) 

mput (*dest, (char)(0x7F - length + 
else 

if (length < 266) { 
mput (*dest, 0x77) ; 
mput (*dest, (char)(length - 10!) 
else { 

// Handle the 0 symbol 

2)) 

} 
mput (*dest, 0x8A) ; 
rdata.full = ((length - 1) 
mput (*dest, rdata.part[0]) 
mput (*dest, rdata.part[1] ) 
mput (*dest, rdata.part[2] ) 
mput (*dest, rdata.part[3]) 

break ,-
case 1 : 

switch (length) { 
case 1 : mput (*dest, 0x01) 

break ; 
mput (*dest, 0x33) 

12) 

// Handle the 1 symbol 

mput (*dest, 0x87) 

case 2 
break 

case 3 
break 

default 
if (length < 10) { 

mput (*dest, 0x88) ; 
mput (*dest, (char)(0x01 

} else if (length < 257) { 
((length - 2) << 5) ) ) 

mput 
mput 
mput 
else 
mput 

•dest, 0x89) 
*dest, 0x01) ; 
'dest, (char) (length - 1)) 

(*dest, 
rdata. full = 
mput (*dest, 

(*dest mput 
mput 
mput 

0x8A) ; 
((length - 1) << 
rdata.part[0]) 
rdata.part[1]) 

(*dest, rdata.part[2]) 
(*dest, rdata.part[3]) 

12) | 0X0001 

} 
break 

case 2 
switch (length) 

case 1 : mput (*dest, 0x02) 
break ; 

case 2 
break 

default : 
if (length < 10) { 

mput (*dest, 0x88) 

{ 

mput (*dest, 0x84) 

// Handle the 2 symbol 

mput 
else 
mput 
mput 
mput 
else 
mput 

(•dest, (char) (0x02 
if (length < 257) { 

| ((length - 2) << 5))) 

(*dest, 
(*dest, 
(*dest, 

{ 
(*dest, 

rdata. full = 
mput (*dest, 
mput (*dest, 
mput (*dest, 
mput (*dest. 

0x89) ; 
0x02) ; 
(char) (length - 1)) 

0x8 A) ; 
((length - 1) << 
rdata.part[0]) 
rdata.part[1]) 
rdata.part[2]) 
rdata.part[3]) 

12) 0x0002 

} 
break 

Appendix D Algorithm Software D-6 



0x03) 

0x85) 

case 3 

switch (length) { 
case 1 : mput (*dest 

break ; 
case 2 : mput (*dest 

break ,• 
default : 

if (length < 10) { 
mput (*dest, 0x88) ; 
mput (*dest, (char)(0x03 

} else if (length < 257) { 
mput (*dest, 0x89) ; 

(*dest, 
(*dest. 

// Handle the 3 symbol 

| ((length - 2) « 5))) 

{ 
(*dest, 

0x03) ; 
(char)(length - 1)) 

} 

mput 
mput 
else 
mput (*dest, 0x8A) 
rdata.full = ((length - 1) << 12) 
mput (*dest, rdata.part[0] ) 
mput (*dest, rdata.part[1] ) 
mput (*dest, rdata.part[2] ) 
mput (*dest, rdata.part[3]) 

| 0x0003 

break ; 
default 

if (length == 1) { 
if (symbol > -118 fcfc symbol < 118) 

mput (*dest, (char)(symbol)) ; 

// Handle all other symbols 

else { 
mput (*dest, 
rdata.full = 
mput (*dest, 
mput (*dest, 

} 

0x76) ; 
(symbol << 4) , 
rdata.part[0]) 
rdata.part[1]) 

} else if (length == 2 && symbol > -118 fcfc symbol < 118) { 
mput 
mput 

} else if (length < 10 fcfc symbol > -17 fcfc symbol < 16) { 
mput 
mput 

} else if (length < 257 fcfc symbol > 
mput 
rdata 
mput 
mput 

mput 
rdata 
mput 
mput 
else 
mput 
rdata 
mput 
mput 
mput 
mput 

rdest, 
dest, 

symbol) 
symbol) 

*dest, 
dest, 

0x88) 
(char)(((symbol & OxlF) | ((length 

*dest, 0x89) ; 
full = ((length - 1) << 
*dest, rdata.part[0]) ; 
*dest, rdata.part[1] ) ; 

8) I 

•12 9 fcfc symbol < 

(symbol & OxFF) 

2) « 5)))) 
128) { 

} else if (length < 16) { 
*dest, 
full = 
*dest, 
*dest, 

0x76) 
(symbol << 4) 
rdata.part[0]) 
rdata.part[1]) 

(length - 1) 

*dest, 0x8A) ; 
full = ((length - 1) « 12) 
*dest, rdata.part[0] ) 
*dest, rdata.part[1] ) 
•dest, rdata.part[2] ) 
*dest, rdata.part[3] ) 

| (symbol fc OxOFFF) 

Appendix D Algorithm Software D-7 



// 
// The run-length coder 

// 
DWORD RunLengthCode (int huge *indata, char huge *outdata, DWORD inputsize) 

{ 
int last_code, next_code ; 
unsigned long runlength ; 
char huge *o = outdata ; 

run_length = 0 ; // Reset the run length of the current data. 
for (; ;) { // Process all the input data. 

if (! run_length) { //Is the current run length = 0 ? 
if (!(input_size--)) // If nothing left to code then exit 

break ; 
last_code = *(indata++) ; // Otherwise start up a new run. 
run length++ ; // The run length is now one greater. 

if (!(inputsize--)) { // If so then code it. 
output_code (lastcode, run_length, fco) ; 
break ; // and exit. 

next_code = *(indata+ + ) ; // Get the next byte from the source data. 
if (last code == next_code) // Is the new data the same as the last ? 

run length** ,- // If BO then the run length is one greater. 
else 7 // Otherwise output the previous run. 

outputcode (last_code, run_length, fco) ; 
last code = next code ; // Start a new run of the the new data. 
runlength = 1 ;~ // The run is of length 1 so far. 

} 

return (DWORD)(o - outdata) ; 

} 

II 
II Output a run-length of a given symbol. 

void outputrun (int symbol, DWORD long length, int huge **dest) 

for (int i = 0 ; i < length ; i++) 
mput (*dest, symbol) ; 

} 

// 
// The run-length decoder. 

DWORD RunLengthDecode (char huge *indata, int huge *outdata, DWORD inputsize) 

int huge *dest = outdata ; 
int tempi ,-
union _rdata { 

DWORD full ; 
unsigned char part [4] ; 

} rdata ; 

for (,;) { 
if (!(input_size--)) 

break ; 
rdata.full = *(indata++) ; 
switch (rdata.part [0]) { 

case 0x80 : 
outputrun (OxFFFD, 2, fcdest) ; 
break ; 

case 0x81 : 
output_run (OxFFFE, 2, fcdest) ; 
break ; 

case 0x82 : 
outputrun (OxFFFF, 2, fcdest) ; 
break ; 

case 0x83 
output_run (0x0001, 2, fcdest) ; 
break ; 

case 0x84 : 
outputrun (0x0002, 2, fcdest) ; 
break ,-

case 0x85 : 
output_run (0x0003, 2, fcdest) ; 

break j 
case 0x86 : 

outputrun (OxFFFF, 3, fcdest) ; 
break ; 

case 0x87 : 
output_run (0x0001, 3, fcdest) ; 
break ; 

Appendix D Algorithm Software 



case 0x88 
rdata.full = 0 ; 
rdata.part [0] = *(indata++) ; 
input_size-- ; 
tempi = (int)(rdata.part[0] fc OxlF) ; 
tempi |= (tempi & 0x10)?OxFFFO:0x0000 ; 
output_run (tempi, (rdata.full >> 5) + 2, fcdest) 
break ; 

case 0x89 
tempi = *(indata++) , 
rdata.full = 0 ; 
rdata.part [0] = *(indata++) ; 
inputsize -= 2 ; 
tempi |= (tempi & 0x80)?0xFF80:0x0000 ; 
output_run (tempi, rdata. full + 1, fcdest) ,-
break ; 

case 0x8A : 
rdata.part[0] = *(indata++) 
rdata.part[1] = *(indata++) 
rdata.part[2] = *(indata++) 
rdata.part[3] = *(indata++) 
input_size -= 4 ; 
tempi = (int)(rdata.full fc OxOFFF) ; 
tempi |= (tempi fc 0x0800)?0xF800:0x0000 ; 
output run (tempi, (rdata.full >> 12) + 1, fcdest) ; 
break ; 

case 0x76 : 
rdata.part£0] = *(indata++) ; 
rdata.part[1] = *(indata++) ; 
input_size -= 2 ; 
tempi = (int)(rdata.full >> 4) ; 
tempi |= (tempi fc 0x0800)?0xF800:0x0000 ; 
output_run (tempi, (rdata.part [0] fc OxOF) + 1, fcdest) ; 
break , 

case 0x77 
rdata.full = 0 ; 
rdata.part [0] = *(indata++) ; 
input_size-- ; 
outputrun (0x0000, rdata.full + 10, fcdest) ; 
break ; 

case 0x78 : 
output_run (0x0000, 9, fcdest) ; 
break ; 

case 0x79 
outputrun (0x0000, 8, fcdest) ; 
break ; 

case 0x7A : 
output_run (0x0000, 7, fcdest) ; 
break ; 

case 0x7B : 
outputrun (0x0000, 6, fcdest) ,-
break ; 

case 0x7C : 
output run (0x0000, 5, fcdest) ; 
break ; 

case 0x7D : 
output_run (0x0000, 4, fcdest) ; 
break ; 

case 0x7E : 
output_run (0x0000, 3, fcdest) ; 
break ; 

case 0x7F : 
outputrun (0x0000, 2, fcdest) ; 
break ; 

default : 
rdata.full |= (rdata.full fc 0x80)?OxFF80:0x0000 ; 
outputrun ( (int) rdata. full, 1, fcdest) ,-

> 

return ((DWORD)(dest - outdata)) ; 

} 

// Create the block ordering for the current image. 

void CreateBlockOrder (int width) 

{ 
int *cp ; 
int x, y, numBlocks ; 

cp = blockorder ; 
numBlocks = (width / 16) * (width / 16) ; 
for (y = 0 ; y < width / 16 ; y++) 

fO.r«ip.:.0=;,yMwIdth/l^6+''.(;
+i 1, 7 ( (Width/16) -X-I,:x, , 

^coefforder W " (DWOR^coef f icientOrder [y] ' (DWORD, numBlocks 

> 

Appendix D Algorithm Software D-9 



// 
// Create the quantiser table 

// 
void genquant (int *qf, int *qb, int *qx, int *qy) 

int xx =0, s, SB = o, x ; 

for (x = -2048 ; X < 2048 ; x++) 

qf [x + 2048] = 0 ; 
if (x >= 0) 

qb [x + 2048] = 2047 ; 
else 

qb [x + 2048] = -2048 : 

} 
qb [2048] = 0 ; 
for (X = 0 ; X < 2 048 ; X++) 

{ 
if (x > *qx) { 

qx++ ; 
s = *(qy++) ; 

} 
6S + + ; 
qftx + 2048] = XX ; 
qf [2048 - x] = -XX ; 
if (ss == s) { 

BS = 0 ; 
qb [xx + 2048 + l ] = x + ( s + l ) / 2 + l ; 
qb [2048 - xx - 1] = -x - (s + 1) / 2 - 1 ; 
XX++ ; 

} 
} 
qf [0] = qf [1] ; 

} 
// 
// Adjust the appearance of the menus depending on the current status of the algorithm 

// 
void ModifyMenus (HWND hWnd, BOOL SAVECOM, BOOL SAVEDCOM, BOOL COM, BOOL DCOM, BOOL FULL) 

( 
HMENU hMenu, hFile, hTools ; 

hMenu = GetMenu (hWnd) ; 
hFile m GetSubMenu (hMenu, 0) ; 
hTools = GetSubMenu (hMenu, 1) ; 
if (SAVECOM) 
EnableMenuItem (hFile, IDMSAVECOMPRESSED, MFBYCOMMAND | MF_ENABLED) ; 

else 
EnableMenuItem (hFile, IDMSAVECOMPRESSED, MFBYCOMMAND | MF_GRAYED) ; 

if (SAVEDCOM) 
EnableMenuItem (hFile, IDMSAVEDECOMPRESSED, MF_BYCOMMAND | MFENABLED) ; 

else 
EnableMenuItem (hFile, IDMSAVEDECOMPRESSED, MF_BYCOMMAND | MFGRAYED) ; 

if (COM) 
EnableMenuItem (hTools, IDMTOOLSCOMPRESS, MF_BYCOMMAND | MFENABLED) ; 

else 
EnableMenuItem (hTools, IDMTOOLSCOMPRESS, MFBYCOMMAND | MFGRAYED) ; 

if (DCOM) 
EnableMenuItem (hTools, IDMJTOOLSDECOMPRESS, MFBYCOMMAND | MFENABLED) ; 

else 
EnableMenuItem (hTools, IDMJTOOLSDECOMPRESS, MFBYCOMMAND | MF_GRAYED) ; 

if (FULL) 
EnableMenuItem (hTools, IDMTOOLSFULLCYCLE, MFBYCOMMAND | MF_ENABLED) ; 

else 
EnableMenuItem (hTools, IDMTOOLSFULLCYCLE, MFBYCOMMAND | MF_GRAYED) ; 

} 

// 
// Initialize the DCT as described in data sheets for the STV3200 device. 

// 
void InitDCT (void) 

{ 
WORD x, z ; 

outportb (DCT_control, FDCT) ; // Assume a 16x16 forward transform. 

for (x = 0 ; x < 13 0 ; x++) 
outport (DCTdata, 0x200) ; // Output 130 values to device to clear it. 

for (x = 0 ,- x < 8 ; x+ + ) 
genquant (hpForward[x] , hpBackward[x] , quantx [x] , quant_y [x]) ; 

> 

Appendix D Algorithm Software D-10 



// 
// Load the image into memory. 
// The image must be in the PPM format 

// 
int Loadlmage (HWND hWnd, LPCSTR szFileName) 

HFILE hFileIn ; 
char huge* hplmageln ; 
DWORD dwBytesRead ; 
char 8512x512 [] = { 'P', '5', OxOA, '5', 

char S256X256 [] = { 'P', '5', OxOA, '2', 

char sHeader [15] ; 

'2', OxOA, '2' 

'6', OxOA, '2' 

'5', OxOA 

'5', OxOA 

hFileln = lopen (szFileName, OFREAD) ; 
if (hFileln == HFILEERROR) 

return NULL ; 

dwBytesRead = _lread (hFileln, sHeader, sizeof (sHeader)) ; 
if (dwBytesRead != sizeof (sHeader)) 

return NULL ; 
if (strncmp (s512x512, sHeader, sizeof (s512x512)) == 0) 

dwlmageWidth = 5 1 2 ; 
else 

if (strncmp (s256x256, sHeader, sizeof (s256x256)) == 0) 
dwImageWidth = 256 ; 

else 
return NULL ; 

if (blmageLoaded) 

{ 
GlobalFree (hlmageOut) ; 
GlobalFree (hlmageDCT) ; 
GlobalFree (hlmageln) ; 
GlobalFree (hlmageRunLength) ; 
GlobalFree {hImageCompreseed) ; 
blmageLoaded = FALSE ; 

} 
dwImageSize = (DWORD)dwImageWidth * (DWORD)dwImageWidth ; 
hlmageln = GlobalAlloc (GMEM MOVEABLE, dwImageSize) ; 
hlmageDCT = GlobalAlloc(GMEM_MOVEABLE, dwImageSize << 1) ; 
hlmageOut = GlobalAlloc (GMEM MOVEABLE, dwImageSize) ; 
hlmageRunLength = GlobalAlloc (GMEM_MOVEABLE, dwImageSize) ; 
hImageCompressed = GlobalAlloc (GMEMMOVEABLE, dwImageSize) ; 
if(!hlmageDCT || !hlmageln || !hlmageOut || !hlmageRunLength | 

{ 
I hlmageCompressed) 

MessageBox(hWnd, "Error Allocating Memory", szProgName, MBSYSTEMMODAL | MBOK) 
return NULL ; 

} 
hplmageln = (char huge*)GlobalLock(hlmageln) ; 
if (hread (hFileln, hplmageln, dwImageSize) != dwImageSize) 

return NULL ; 
lclose (hFileln) ; 

GlobalUnlock (hlmageln) ; 
blmageLoaded = TRUE ; 
blmageDecompressed = bImageCompressed = FALSE ; 
CreateBlockOrder ((int)dwImageWidth) ; 
return 1 ; 

Appendix D Algorithm Software D-ll 



// 
// Provide the window interface to open an image file. 

int OpenFile (HWND hWnd) 

{ 
char szPath[BUFFERSIZE]; // buffer for path and file name 
char szTitle[BUFFER_SIZE] ; // buffer for file name only 
char szString[BUFFER_SIZE] ; // buffer for various strings 
OPENFILENAME ofn; 
LPCSTR szFiltert] = { "Intensity files (*.Y)", "*.Y", 

"Green files (*.G)", "*.G", 
"All files (*.*)", "*.*", 
M * \ , 

szPath[0] = '\0'; // empty the name field 
memsetffcofn, 0, sizeof(OPENFILENAME)); // zero the structure 
ofn.lStructSize = sizeof(OPENFILENAME); 
ofn.hwndOwner = hWnd; // owner is main window 
ofn.lpstrFilter = szFilter[0]; // filter string array 
ofn.IpstrFile = szPath; // path+name buffer 
ofn.nMaxFile = BUFFERSIZE; // size of above 
ofn.lpstrFileTitle = szTitle; // file name buffer 
ofn.nMaxFileTitle = BUFFER_SIZE; // size of above 
ofn. Flags = OFNPATHMUSTEXIST j OFN_FILEMUSTEXIST; 
if(!GetOpenFileName (fcofn)) // get the path+name 

return NULL; // UBer pressed Cancel 
if (ILoadlmage (hWnd, szPath)) 

{ 
MessageBox (NULL, "Error: Cannot open file", szProgName, MB_OK | MB_ICONINFORMATION) , 
return NULL; 

} 
ModifyMenus (hWnd, FALSE, FALSE, TRUE, FALSE, TRUE) ; 
return 1 ; 

> 
// 
// The window interface to save the final compressed image to disk. 

// 
int SaveCompressed (HWND hWnd) 

{ 
HFILE hFileOut ; 
char huge* hpImageCompressed ; // pointer to memory (note: huge) 
char szPath [BUFFERSIZE] ; // buffer for path and file name 
char szTitle[BUFFER_SIZE] ; // buffer for file name only 
char szString [BUFFER_S1ZE] ; // buffer for various strings 
OPENFILENAME sfn ; 
LPCSTR szFilterU = { "Compressed Image files (*.AC)", "*.AC", 

"All files (*.*)", "*.*", 
•• } ; 

szPath[0] = '\0' ; // empty the name field 
memset(fcsfn, 0, sizeof(OPENFILENAME)) ; // zero the structure 
sfn.lStructSize = sizeof (OPENFILENAME) ,-
sfn.hwndOwner = hWnd ; // owner is main window 
sfn.lpstrFilter = szFilter[0] ; // filter string array 
sfn.IpstrFile = szPath ; // path+name buffer 
Bfn.nMaxFile = BUFFER_SIZE ; // size of above 
sfn.lpstrFileTitle = szTitle ; // file name buffer 
sfn.nMaxFileTitle = BUFFER_SIZE ; // size of above 
sfn. Flags = OFN_PATHMUSTEXIST | OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT ; 
if(!GetSaveFileName (fcsfn)) // get the path+name 
return NULL; // user pressed Cancel 

hpImageCompressed = (char huge*) GlobalLock (hlmageCompressed) ; 

hFileOut = _lcreat (szPath, 0) ; 
if (!hFileOut) 

( MessageBox (hWnd, "Error Opening Output File", szProgName, MB_SYSTEMMODAL | MB_OK) ; 

return NULL 

: (hwrite (hFileOut, hpImageCompressed, dwCodeLength) != dwCodeLength) 

{ «.„„«.»«« fhllnd. "Error Writing Output File", szProgName, MB_SYSTEMMODAL | MB_OK) MessageBox(hWnd, "Error Writing Output File" 

return NULL ; 

} 
_lclose (hFileOut) ; 
GlobalUnlock (hlmageDCT) 
return 1 ; 

Appendix D Algorithm Software D-12 



// 
// The window interface to store the reconstructed image onto disk. 

int SaveDecompressed (HWND hWnd) 

{ 
HFILE hFileOut ; 
char huge *hplmage0ut ; 
char szPath[BUFFER_SIZE] ; 
char szTitle [BUFFER_SIZE] ; 
char szString [BUFFERSIZE] ; 
OPENFILENAME ofn ; 
DWORD dwBytesWrite ; 
LPCSTR szFilter[] = { "Reconstructed Image files (*.NEW)" 

"All files (*.*)", "*.*", 

" } , 
char 8512x512 [] = { "P', ' 5 ', OxOA, "5 ', • 1' , • 2 • 

char s256x256 [] = { 'P','5•,OxOA, •2','5•,'6' 

// buffer for path and file name 
// buffer for file name only 
// buffer for various strings 

'.NEW" 

,5,,'1,,,2',OxOA,'2',' 5 ' ,'5',OxOA } 
'2','5',•6',OxOA,•2',,5,,'5',OxOA } 

szPath[0] = '\0' ; // empty the name field 
memsetlfcofn, 0, sizeof(OPENFILENAME)) ; // zero the structure 
ofn.lStructSize = sizeof(OPENFILENAME) ; 
ofn.hwndOwner = hWnd ; 
ofn.lpstrFilter = szFilter[0] ; 
ofn.IpstrFile = szPath ; 
ofn.nMaxFile = BUFFER_SIZE ; 
ofn.lpstrFileTitle = szTitle ; 
ofn.nMaxFileTitle = BUFFER SIZE 

// owner is main window 
// filter string array 
// path+name buffer 
// size of above 
// file name buffer 
// size of above 

ofn.Flags = OFNPATHMUSTEXIST | OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT 
// get the path+name 
// user pressed Cancel 

if(!GetSaveFileName (fcofn)) 
return NULL; 

hpImageOut = (char huge *)GlobalLock (hlmageOut) 
hFileOut = _lcreat (szPath, 0) ; 
if (!hFileOut) 
{ 
MessageBox(hWnd, 
return NULL ; 

"Error Opening Output File", szProgName, MBSYSTEMMODAL | MB_OK) 

if (dwImageSize = = 65536L) 
dwBytesWrite = _hwrite (hFileOut, B256x256, Bizeof (B256X256) ) ; 

else 
dwBytesWrite = _hwrite (hFileOut, 8512x512, sizeof (s512x512)) ; 

if (dwBytesWrite != sizeof (s256x256) || 
hwrite (hFileOut, hpImageOut, dwImageSize) != (dwImageSize)) 

{ 
MessageBox(hWnd, "Error Writing Output File", szProgName, MBSYSTEMMODAL | MB_OK) 
return NULL ; 

} 
lclose (hFileOut) ; 
GlobalUnlock (hlmageOut) ; 
return 1 ; 

Appendix D Algorithm Software D-13 



// 
// Assembly coded routine to perform a DCT on a section of image, 

void BlockDCT (char huge 'source, int huge *destination) 

WORD Countl = BlockSize * BlockSize + 131 ; 
WORD Count2 = TRANSFORMBUFFERSIZE - Countl ; 

a s m pOSH DS // save segment registers. 
PUSH ES 
LDS SI, source // Get the source address. 
LES DI,destination // Get the destination address 
MOV DX,DCT_data // Point to the STV3200 data register. 

asm 
asm 
asm 
asm 

asm 
asm 
asm 

CLD 
MOV 
DEC 

CX,Countl 
CX 

// Move the entire array to the STV3200. 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

MOV 
INC 
SUB 
CBW 
AND 
OUT 
MOV 
INC 
SUB 
CBW 
OR 
OUT 
LOOP 

AL, [SI] 
SI 
AL,0x80 

AH,0x01 
DX,AX 
AL, [SI] 
SI 
AL,0x80 

AH, 0x02 
DX.AX 
MOVE1 

// Get a byte from the source. 

// Add a negative bias to input data. 
// Convert it to a signed word. 
// First word needs bit 9 low. 
// Output the data to the STV32 00. 
// Get a byte from the source. 

// Add a negative bias to input data. 
// Convert it to a signed word. 
// Successive words need bit 9 set. 
/•/ Output the data word to the STV3200. 
// Repeat until entire block sent. 

MOVE3. 
asm 
asm 

MOVEP: 
MOVE4: 

MOVE5: 

MOVEO: 
MOVES; 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 

MOV 
IN 
TEST 
JE 
OR 
JMP 
AND 
MOV 
ADD 
MOV 
INC 
SUB 
CBW 
OR 
OUT 
LOOP 

MOV 
MOV 
IN 
TEST 
JE 
OR 
JMP 
AND 
MOV 
ADD 
MOV 
OUT 
LOOP 

POP 
POP 

CX,Count2 
AX, DX 
AH, 0x08 
MOVEP 
AH, OxFO 
MOVE4 
AH, OxOF 
ES: [DI] ,AX 
DI,2 
AL, [SI] 
SI 
AL,0x80 

AH,0x02 
DX,AX 
MOVE3 

CX,Countl 
BX,0x0200 
AX,DX 
AH, 0x08 
MOVEO 
AH,OxFO 
MOVE 6 
AH,OxOF 
ES: [DI] 
DI,2 
AX,BX 
DX,AX 
MOVES 

// Get the data from the STV32C0. 
// Perform sign extension of the 12 bit data 

AX 

// Get a byte from the source. 

// Add a negative bias to input data. 
// Convert it to a signed word. 
// Successive words need bit 9 set. 
// Output the data word to the STV3200. 

// Get the data from the STV3200. 
// Perform sign extension of the 12 bit data 

ES 
DS 

// A dummy write to clock next data out. 

// Restore registers. 

Appendix D Algorithm Software D-14 



// 
// Assembly coded routine to perform an IDCT on a section of image coefficients 

// 
void BlocklDCT (int huge *source, char huge *destination) 

WORD Countl = BlockSize * BlockSize + 131 ; 
WORD Count2 = TRANSFORM_BUFFER_SIZE - Countl ; 

asm PUSH DS // Save segment registers. 
asm PUSH ES 
asm LDS SI, source // Get the source address. 
asm LES DI,destination // Get the destination address. 
asm MOV DX,DCT data 

asm 
asm 
asm 

asm 
asm 
asm 
asm 

MOVE1: asm 
asm 
asm 
asm 
asm 

asm 
M0VE3: asm 

asm 
asm 
asm 
asm 
asm 
asm 

M0VE4: asm 
asm 
asm 

MOVES: asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

asm 
asm 

M0VE2: asm 
asm 
asm 
asm 
asm 
asm 
asm 

MOVE6: asm 
asm 
asm 

M0VE7: asm 
asm 
asm 
asm 
asm 
asm 
asm 
asm 

CLD 
MOV 
DEC 

MOV 
ADD 
AND 
OUT 
MOV 
ADD 
OR 
OUT 
LOOP 

MOV 
IN 
TEST 
JE 
CMP 
JA 
MOV 
JMP 
CMP 
JB 
MOV 
ADD 
MOV 
INC 
MOV 
ADD 
OR 
OUT 
LOOP 

MOV 
MOV 
IN 
TEST 
JE 
CMP 
JA 
MOV 
JMP 
CMP 
JB 
MOV 
ADD 
MOV 
INC 
MOV 
OUT 
LOOP 
POP 
POP 

CX,Countl 
CX 

AX, [SI] 
SI,2 
AH, OxOF 
DX,AX 
AX, [SI] 
SI,2 
AH,0x10 
DX,AX 
MOVE1 

CX,Count2 
AX,DX 
AH, 0x01 
MOVE4 
AL,0x7F 
MOVE 5 
AL,0x80 
MOVE5 
AL,0x80 
MOVES 
AL,0x7F 
AL,0x80 
ES:[DI],AL 
DI 
AX, [SI] 
SI,2 
AH, 0x10 
DX,AX 
MOVE3 

BX,0x1000 
CX,Countl 
AX.DX 
AH,0x01 
MOVE 6 
AL,0x80 
MOVE 7 
AL,0x80 
MOVE 7 
AL,0x80 
MOVE7 
AL,0x7F 
AL,0x80 
ES:[DI],AL 
DI 
AX,BX 
DX,AX 
MOVE2 
ES 
DS 

// Move the entire array to the STV3200. 

// Get a word from the source. 

// Bit 12 must be zero for first word. 
// Output the word. 
// Get a byte from the source. 

// Successive words have bit 12 set. 
// Output a word. 
// Continue until entire block sent. 

// Get the data from the STV3200. 
// Clip the 9 bit data to 8 bits. 

// Get a byte from the source. 

// Bit 12 must be set 
// Output the data word to the STV3200. 

// Get the results from the STV3200. 
// Clip the 9 bit data to 8 bit6. 

// Store the data in the destination. 

// Output a dummy value to get next word. 

// Restore registers. 

// // Order and dequantise the DCT coefficients after a run-length decode. 

// void OrderlDCT (int huge *hpSource, int huge *hpDestination, int blockStart) 

{ 
WORD i, block ; 
unsigned char x = 0 ; 
int huge *hpSrc ; 

block = blockStart ; , 
= 0 ; i < TRANSFORM_BUFFER_SIZE ; 1++, X++) for (i 

{ 
0, X 

hpSrc = hpsource + blockorder [block] + coefforder [x] ; 

MKstinatioJ+rfhpBackward [qua„t_type [x] ] [^Destination + 2048] 

if (x == 255) 
block++ 

) 

Appendix D Algorithm Software D-15 



// 
// Perform the reverse DCT on an entire image. 

int ExecutelDCT (HWND hWnd, int huge* hpDCT, char huge* hplmage) 

int y, x, yy, xx, blockNumber, blockStart ; 
unsigned int c ; 
int huge *hpLineIn ; 
HGLOBAL hLineln, hLineOut ; 
char huge *hpLineOut ; 
char huge *1 ; 

outportb (DCT_control, IDCT + DCTSetup) ; 

hLineln = GlobalAlloc (GMEMMOVEABLE, TRANSFORMBUFFERSIZE << 1) ; 
hLineOut = GlobalAlloc (GMEMMOVEABLE, TRANSFORMBUFFER SIZE) ; 
ifUhLineln || IhLineOut) 

{ 
MessageBox (hWnd, "Can't allocate memory", szProgName, MB SYSTEMMODAL I MB OK) 
return NULL ; """ 

} 
hpLineln = (int huge*)GlobalLock (hLineln) ; 
hpLineOut = (char huge *)GlobalLock (hLineOut) ; 
blockNumber = (dwImageWidth / 16) * (dwImageWidth / 16) ; 
for (x = blockNumber - 1 ; x > 0 ; x--) 
hpDCT [x - 1] = hpDCT [x - 1] + hpDCT [x] ; 

for (y = c = blockNumber = blockStart = 0 ; y < dwImageWidth ; y += BlockSize) 
for (x = 0 ; x < dwImageWidth ; x += BlockSize) 

{ 
if ((c * TRANSFORMBUFFER SIZE) == 0) 

{ 
OrderlDCT (hpDCT, hpLineln, blockNumber) ; 
BlocklDCT (hpLineln, hpLineOut) ; 
1 = hpLineOut ; 
blockStart = blockNumber + 1 ; 

} 
for (yy = 0 ; yy < BlockSize ; yy++) 

for (xx = 0 ; xx < BlockSize ; xx++) 
hplmage [(y + yy) * dwImageWidth + xx + x] = *(1++) ; 

blockNumber++ ; 
c += 256 ; 

} 
GlobalUnlock (hLineOut) ; 
GlobalFree (hLineOut) ; 
GlobalUnlock (hLineln) ; 
GlobalFree (hLineln) ; 
return 1 ; 

> 
// 
// Quantise and order the coefficients in preparation for the run-length coder. 

// 
void OrderDCT (int huge *hpSource, int huge *hpDestination, int blockStart) 

{ 
WORD i, block ; 
unsigned char x = 0 ; 
int huge *hpDest ; 

block = blockStart ; 
for (i = 0 ; i < TRANSFORMBUFFERSIZE ; i++, X++) 

{ 
hpDest = hpDestination + blockorder [block] + coefforder [x] ; 
*hpDest = *(hpSource++) ; 
*hpDest = hpForward [quanttype [x] ] [*hpDest + 2048] ; 
if (x == 255) 

block++ ; 

Appendix D Algorithm Software D-16 



// 
// Perform a forward DCT on the entire image. 

// 
int ExecuteDCT (HWND hWnd, char huge *hplmage, int huge *hpDCT) 

char huge *hpLineIn, huge *1 ; 
int huge *hpLineOut ; 
int x, y, xx, yy, blockNumber, blockStart ; 
unsigned int c ; 
HGLOBAL hLineln, hLineOut ,• 

outportb (DCTcontrol, FDCT + DCTSetup) ; 
hLineln = GlobalAlloc (GMEMMOVEABLE, TRANSFORMBUFFERSIZE) ; 
hLineOut = GlobalAlloc (GMEMMOVEABLE, TRANSFORM_BUFFER_SIZE << 1) ; 
if(!hLineln || !hLineOut) 

{ 
MessageBox (hWnd, "Can't allocate memory", szProgName, MBSYSTEMMODAL | MBOK) ; 
return NULL ; 

} 
1 = hpLineln = (char huge *)GlobalLock (hLineln) ; 
hpLineOut = (int huge *)GlobalLock (hLineOut) ; 
for (y = c = blockNumber = blockStart = 0 ; y < dwImageWidth ; y += BlockSize) 
for (x = 0 ; x < dwImageWidth ; x += BlockSize) 

{ 
for (yy = 0 ; yy < BlockSize ; yy++) 
for (xx = 0 ; xx < BlockSize ; xx++) 
*(1++) = hplmage [(y + yy) * dwImageWidth + xx + x] ; 

c += 256 ; 
if ((c * TRANSFORM_BUFFER_SIZE) == 0) 

{ 
BlockDCT (1 = hpLineln, hpLineOut) ; 
OrderDCT (hpLineOut, hpDCT, blockStart) ; 
blockStart = blockNumber + 1 ; 

} 
blockNumber++ ; 

blockNumber = (dwImageWidth / 16) * (dwImageWidth / 16) ; 
for (x = 1 ; x < blockNumber ; x++) 
hpDCT [x - 1] = hpDCT [x - 1] - hpDCT [x] ; 

GlobalUnlock (hLineOut) ; 
GlobalFree (hLineOut) ; 
GlobalUnlock(hLineln) ; 
GlobalFree(hLineln) ; 
return 1 ; 

y 
// Perform the full compression algorithm on an image. 

// 
int Compress (HWND hWnd) 

{ 
int huge *hpImageDCT ; 
char huge *hplmageln, huge *hpImageRunLength, huge *hpImageCompressed ; 

hpImageDCT = (int huge *)GlobalLock (hlmageDCT) ; 
hplmageln = (char huge *)GlobalLock (hlmageln) ; 
ExecuteDCT (hWnd, hplmageln, hpImageDCT) ; 
GlobalUnlock (hlmageln) ; 
hpImageRunLength = (char huge *) GlobalLock (hlmageRunLength) ; 
dwRLCodeLength = RunLengthCode (hpImageDCT, hpImageRunLength, dwImageSize) ; 
GlobalUnlock (hlmageDCT) ; 
hpImageCompressed = (char huge *) GlobalLock (hlmageCompressed) ,-
dwCodeLength = StatisticalCode (hpImageRunLength, hpImageCompressed, dwRLCodeLength) ; 
GlobalUnlock (hlmageCompressed) ; 
GlobalUnlock (hlmageRunLength) ; 
ModifyMenUS (hWnd, TRUE, FALSE, TRUE, TRUE, TRUE) ; 
hlmageCompressed = TRUE ; 
blmageDecompressed = FALSE ; 

return 1 ; 

> 

Appendix D Algorithm Software D-17 



II 
// Perform the entire image decompression procedure for an image compressed by 
// this algorithm. 

// 
int Decompress (HWND hWnd) 

{ 
int huge *hpImageDCT ; 
char huge *hpImageOut, huge *hpImageRunLength, huge *hpImageCompressed ; 

hpImageRunLength = (char huge *) GlobalLock (hlmageRunLength) ; 
hpImageCompressed = (char huge *) GlobalLock (hlmageCompressed) ; 
dwRLCodeLength = StatisticalDecode (hpImageCompressed, hpImageRunLength, dwCodeLength) ; 
GlobalUnlock (hlmageCompressed) ; 
hpImageDCT = (int huge *)GlobalLock (hlmageDCT) ; 
dwImageSize = RunLengthDecode (hpImageRunLength, hpImageDCT, dwRLCodeLength) ; 
hpImageOut = (char huge *) GlobalLock (hlmageOut) .-
GlobalUnlock (hlmageRunLength) ; 
ExecutelDCT (hWnd, hpImageDCT, hpImageOut) ; 
GlobalUnlock (hlmageDCT) ; 
GlobalUnlock (hlmageOut) ; 
ModifyMenus (hWnd, TRUE, TRUE, TRUE, TRUE, TRUE) ; 
blmageDecompressed = TRUE ; 

return 1 ; 

} 

// 
// Process a command issued by a menu item. 

// 
void MenuCommand (HWND hWnd, WPARAM wMenuID) 

{ 
switch (wMenuID) 

{ 
case IDMFILEOPEN : 

OpenFile (hWnd) ; 
break ; 

case IDMTOOLSCOMPRESS : 
Compress (hWnd) ; 
break ; 

case IDM_SAVECOMPRESSED : 
SaveCompressed (hWnd) ; 
break ; 

case IDM_SAVEDECOMPRESSED : 
SaveDecompressed (hWnd) ; 
break ; 

case IDM_TOOLSDECOMPRESS : 
Decompress (hWnd) ; 
break ; 

case IDMJTOOLSFULLCYCLE : 
Compress (hWnd) ; 
Decompress (hWnd) ; 
break ; 

case IDM_FILEEXIT : 
if (blmageLoaded) 

{ 
GlobalFree (hlmageOut) ; 
GlobalFree (hlmageDCT) ; 
GlobalFree (hlmageln) ; 
GlobalFree (hlmageRunLength) ; 
GlobalFree (hlmageCompressed) ; 

> 
PostQuitMessage(O) ; 
break ; 

} 
> 

Appendix D Algorithm Software D-18 



// 
// main window procedure -- receives messages 

// 
LRESULT CALLBACK WndProc (HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) 

{ 
int i ; 

switch(msg) 

{ 
case WMCREATE : 

for (i = 0 ; i < 8 ; i++) 

{ 
hForward [i] = GlobalAlloc (GMEMMOVEABLE, 8192) ; 
hpForward [i] = (int huge *)GlobalLock (hForward [i]) ; 
hBackward Ci] = GlobalAlloc (GMEM_MOVEABLE, 8192) ; 
hpBackward Ci] = (int huge *)GlobalLock (hBackward [i]) ; 

} 
InitDCT 0 ; 
break ; 

case WMCOMMAND : 
MenuCommand (hWnd, wParam) ; 
break ; 

case WMDESTROY : 
for (i = 0 ; i < 8 ; i++) 

{ 
GlobalFree (hForward [i]) ; 
GlobalFree (hBackward [i]) ; 

} 
if (blmageLoaded) 

{ 
GlobalFree (hlmageOut) ; 
GlobalFree (hlmageDCT) ; 
GlobalFree (hlmageln) ; 
GlobalFree (hlmageRunLength) ; 
GlobalFree (hlmageCompressed) ; 

} 
PostQuitMessage(0) ; 
break ; 

default : 
return (DefWindowProc(hWnd, msg, wParam, lParam)) ; 

} 
return OL ; 

> 

Appendix D Algorithm Software D-19 



// Windows main program. 

// 
int PASCAL WinMain (HINSTANCE hlnstance, // which program are we? 

HINSTANCE hPrevInst, // is there another one? 
LPSTR lpCmdLine, // command line arguments 
int nCmdShow) // window size (icon, etc) 

( 
HWND hWnd; 
MSG msg; 
WNDCLASS wndclass; 

// window handle from CreateWindow 
// message from GetMessage 
// window class structure 

if (ihPrevInst) 

{ 
wndclass.style 
wndclass.lpfnWndProc 
wndclass.cbClsExtra 
wndclass.cbWndExtra 
wndclass.hlnstance 

wndclass.hCursor 

wndclass.hlcon 
wndclass.IpszMenuName 

wndclass.hbrBackground 
wndclass.IpszClassName 

// if this is first such window 

CS_HREDRAW | CS_VREDRAW; // style 
(WNDPROC)WndProc; // WndProc address 
0; // no extra class data 
0; / / n o extra window data 
hlnstance; // which program? 

// stock arrow cursor 
LoadCursor (NULL, IDCARROW) ; 

// stock blank icon 
Loadlcon(NULL, IDIAPPLICATION); 
szProgName; // menu name 

// white background 
(HBRUSH)GetStockObject(WHITEBRUSH); 
szProgName; // window class name 

RegisterClass(fcwndclass) ; // register the class 
// end if 

hWnd = CreateWindow(szProgName, 
szProgName, 
WS_OVERLAPPEDWINDOW, 
CWUSEDEFAULT, 
CW_USEDEFAULT, 
CW_USEDEFAULT, 
CW_USEDEFAULT, 
NULL, 
NULL, 
hlnstance, 
NULL) ; 

// window class name 
// caption 
// style 
// default x position 
// default y position 
// default width 
// default height 
// parent's handle 
// menu handle 
// which program? 
//no init data 

ShowWindowlhWnd, nCmdShow); // make window visible 

// message loop 
while( GetMessage(fcmsg,0,0,0) ) // get message from Windows 

TranslateMessage(fcmsg); 
DispatchMessage(fcmsg); 

} 
return msg.wParam; 

// convert keystrokes 
// call windows procedure 

// return to Windows 
// end WinMain 

Appendix D Algorithm Software D-20 



Huffman Coder - Fixed 

u 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
n 
u 
u 
11 

u 
u 
n 
u 
11 

Date 

Author 

File Name 

Fixed Huffman Coder 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 1442 8, 
Melbourne Mail Centre, 
Melbourne, 3 000. 

: July 7, 1994 

: Emil Lenc 

: hufffix.cpp 

Supervisors : Alec Simcock fc Ann Pleasants 

Internet : emil@cabsav.vut.edu.au 

// Definition of Huffman Codes 

i eigne 
3 
145 
1404 
3676 
3349 
2551 
2530 
2548 
195 
2544 
2531 
2807 
2547 
3455 
1196 
71 

d int t 
,0 
,439 
,3678 
,742 7 
, 1152 
,14018 
,2265 
,29435 
,194 
,9225 
,30068 
,10186 
,4615 
,5075 
,3666 
,208 

sym [256] = 
,8 
,319 
,1834 
,7335 
,5623 
,9583 
,9255 
,10119 
,119 
,29433 
,29337 
,9274 
,13801 
,5613 
,3674 
,73 

,3 
,303 
,1835 
,7355 
,6696 
,13803, 
,14662 
,30009 

,16 
,29323, 
,29718 
,10148 
,14858 
,5621 
,3756 
,173 

{ 
,23 
,936 
,3719 
,7354 
,2253 
,13403 
,9272 
,29719 
,172 
,4482 
,4532 
,112.61 
,13804 
,5612 
,3759 
,228 

,56 
,871 , 
,3351 
,7426 
,2242 . 
,13800, 
,10149 
,29322 
,174 
,28041. 
,10187 
,10138 
,13802 
,7359 , 
,567 
,235 

,42 
,836 
,2545 
,6697 
,14669 
,6903 
,4533 
,43 0 

,302 

,29749 

,30065 

,10115 

,14875 

,7425 

,1406 

, 99 

, 118 

,599 

,2536 

,5629 

,2264 
,15035 
,4483 
,38 
,297 
,26805 
,10139 
,11216 
,14702 
,7008 
,172 6 
,106 

,19 
,282 
,2805 
,6908 
,15006 
,14021 
,10112 
,877 
,465 
,28040 
,9279 
,9580 
,2252 
,7500 
,1753 
,18 

,105 
,1836 
,2541 
,5628 
,14663 
,14849 
,9275 
,296 
,7011 
,4535 
,11240 
,10198 
,15005 
,7436 
,1874 
,115 

,96 
,1724 
,2394 
,5609 
,15033 
,14660 
,29434 
,434 
,1858 
,9254 
,29336 
,10185 
,5058 
,2316 
,577 
,40 

-34 
,1271 , 
,7501 
,5622 
,13805 
,11263 
,9581 
,150 
,26804 
,10114 
,29432 
,10199 
,2240 
,1127 
,700 
,55 

,233 
,1269 
,7428 
,2317 
,14848 
,11262 
, 9278 
,218 
,20236 
,4534 
, 9582 
,13400 
,2243 
,2312 
,870 
,22 

,216 
,562 
,7350 
,1266 
,14019 
,4613 
,30069 
,98 
,20237 
,13401 
,9224 
,11241 
,5098 
,2535 
,938 
,2 

.78 
,561 
,7431 
, 1157 
,4626 
,15007 
,30064 
,41 
,10113 
,30008 
,9228 
,11217 
,4638 
,2540 
,298 
,5 

,214 
.3757 , 
,7430 , 
,6909 , 
,14703, 
,3664 , 
,9229 , 
,25 
,29748, 
,10184, 
,9273 , 
,11260, 
,5068 , 
,2550 , 
,419 , 

•15 } 

// Huffman Code Lengths 

char len [256] = { 
3 ,3 ,4 ,4 ,5 ,6 ,6 ,7 ,6 ,7 ,7 ,7 ,8 ,8 ,7 ,8 ,8 ,9 ,9 ,9 ,10,10,10,10,10,11,11,11,11,11,11,12, 
11,12 , 11, 11, 12 ,12 , 12 , 12 , 12 , 12 , 12 , 13 , 13 , 13 ,13 , 13 , 12 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 12 , 11, 11, 13 , 

12 ,11, 13 , 13 , 13 , 13 , 14 , 13 , 14 , 14 , 14 , 14 , 14 , 14,13 , 14 ,12 ,14, 14,14 , 14, 14,13 , 14 , 14 , 14 , 14 ,14 , 14 , 13 , 14 , 12 , 
12,13,14,14,14,14,14,14,14,14,15,14,14,15,15,14,12,15,14,15,15,15,9 ,6 ,10,9 ,9 ,8 ,8 ,7 ,6 ,5 , 
8 ,8 ,7 ,6 ,8 ,8 ,9 ,9 ,9 ,13,11,15,15,15,14,15,12,14,15,15,14,15,15,15,15,14,14,14,14,14,15,14, 
12 ^15^15^15, 14, 14, 15, 14, 14, 14, IS, 15, 14, 14, 14, 14, 12, 14, 14, 14, 14, 14, 14,14, 14,14, 14, 14, 14, 14, 14, 14, 
12 , 13 , 14, 14, 14 , 14 , 14 , 14 , 13 , 14 , 13 , 13 , 13 , 13 ,13 ,13 , 12 ,13 , 13 ,13 , 13 , 13 , 13 , 13 , 13 , 13 , 12 , 12 , 12 , 12 , 12 ,12 , 
ll'l2,12',12,12,ll,ll,ll,ll,ll,10,10,10,10,9 ,9 ,8 ,8 ,7 ,8 ,8 ,8 ,7 ,7 ,6 ,7 ,6 ,6 ,5 ,4 ,4 ,4 } 

unsigned long int outbuffer = 0 ; 
int buflength = 0 ,-
unsigned char convert [16] [2048] ; 

// Temporary output buffer 
// Number of bits stored in temporary output buffer. 
// Conversion from Huffman code to original symbol. 

// Output the required code of given length to the destination buffer. 

void output (unsigned char huge **dest, unsigned long int S, int L) 

{ 
outbuffer <<= L ; 
out_buffer |= S ; 
buf_length += L ; 
while (buf_length > 7) { 
mput (*dest, out_buffer >> (buf_length -8)) ; 
buf_length -= 8 ; 

} 
} 
// Output any remaining bits to the output buffer. 

void flushbuffer (unsigned char huge **dest) 

{ 
out_buffer <<= 11 ; 
out_buffer |= 0x72C ; 
buf_length += 11 ; 
mput (*dest, out_buffer » (buflength - 8)) ; 
out_buffer = 0 ; 
buf length = 0 ; 

Appendix D Algorithm Software D-21 

mailto:emil@cabsav.vut.edu.au


the Huffman coding on the given input source of given size. 

DWORD StatisticalCode (unsigned char huge *source, unsigned char huge 'destination, DWORD length) 

unsigned char huge *d ; 
unsigned char c ; 
unsigned long int total = 0 ; 

} 

out_buffer = 0 ; 
buf_length = 0 ; 
d = destination ; 

while (1==1) { 
if (total == length) 

break ; 
c = mget (source) • 
total++ ; 
output (fcd, sym [c] , len [c]) 

> 
if (buf_length) 

flushbuffer (fcd) ; 

return (DWORD)(d - destination) 

// Clear the temporary output buffer. 

// Make a copy of the destination pointer. 

// If no more to read then exit 

// Get the next byte. 

// Convert the byte to the appropriate code. 

// Anything still left in the buffer ? 
// If so flush it out 

// Return the length of the coded data. 

// Perform the Huffman decoding on the given input source of given length. 

DWORD StatisticalDecode (unsigned char huge *source, unsigned char huge *destination, DWORD length) 

{ 
int i, j ; 
unsigned char huge *d ; 
unsigned char c ; 

d = destination ; 
out_buffer = 0 ; 
buflength = 0 ; 
for (i = 0 ; i < 16 ; I++) 

for (j = 0 ; j < 2048 ; j++) 
convert [i] [j] = 0 ; 

for (j = 0 ; j < 256 ; j++) { 
i = convert [len[j ] ] [sym[j ] fc 0x7FF] ; 
if (i == 0) 

convert [len [j] ] [sym[j] & 0x7FF] = j 

> 
while (1==1) { 

c = mget (source) ; 
if (length-- == 0) 

break ; 
for (i = 0 ; i < 8 ; i++) 

// Make a copy of the destination pointer. 
// Clear the temporary output buffer. 

// Set up the conversion table. 

// Read data from the input buffer 

// Search for a valid code 

) 

out_buffer = (outbuffer << 1) | ((c & 0x80)?1:0) ; 

c <<= 1 ,-
buf_length++ ; 
if (buf length == 3) { 

if (outbuffer ==3) { 
mput (d, 0) ; 
buflength = 0 ; 
outbuffer = 0 ; 

} else if (out_buffer == 0) { 
mput (d, 1) ; 
buf_length = 0 ; 
out_buffer = 0 ; 

} else if (convert [buf_length][out_buffer & 0x7FF] != 0) 
j = convert [buf_length][out_buffer fc 0x7FF] ; 

mput (d, j) ; 
buf_length = 0 ; 
out_buffer = 0 ; 

} 

return (DWORD)(d - destination) 

Appendix D Algorithm Software D-



Huffman Coder - Adaptive 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

Date 

Author 

File Name 

Superviso 

Internet 

Adaptive Huffman Coder 

Department of Electrical and Electronic Engineering 

Victoria University of Technology 

(Footscray Campus) 

P.O. Box 1442 8, 

Melbourne Mail Centre, 

Melbourne, 3000. 

: July 7, 1994 

: Emil Lenc 

huffadap.cpp 

: Alec Simcock fc Ann Pleasants 

: emilacabsav.vut.edu.au 

// Define the Huffman symbol codes. 

unsigne 

3 

18 

214 

430 

870 

567 

3349 

3666 

6908 

2252 
14669 

14660 

10113 

9228 

11260 

20236 

d int 
, 0 

,40 

, 145 

,296 

,93 8 

, 1406 

,2551 

,3674 

,5628 

,5058 
1500S 

11263 

9225 

9273 

13801 

20237 

sym [256] = 

,8 

,55 

, 150 

,434 

,1836 

,1726 

,3 664 

,3756 

,5609 

,2240 

,14663 

,11262 

,4482 

,10186 

,14858 

,29748 

,3 

,118 

,218 

,302 

,1724 

,1753 

,2530 

,3759 

,5622 

,2243 

15033 

15007 

4535 

9274 

13 804 

29433 

{ 
,2 

,105 

,195 

,297 

,1271 

,1874 

,2548 

,7501 

,6909 

,5098 

,13805 

,9255 

,9254 

,10148 

,13802 

,29323 

,5 

,96 

,194 

,465 

,1269 

,3757 

,2544 

,7428 

,5623 

,4638 

14848 

14662 

10114 

11261 

14875 

28041 

,15 

,34 

,172 

,298 

,562 

,3678 

,2531 

,7350 

,6696 

,5068 

14019 

9272 

4534 

10138 

14702 

29749 

,23 

, 78 

,174 

,419 

,561 

,3719 

,2807 

,7431 

,2253 

,5075 

14703 

10149 

13401 

10115 

15005 

26805 

,25 

, 98 

,71 

,936 

, 1404 

,3351 

,2547 

7430 

2242 

5613 

14018 

4533 

10184 

11216 

29434 

28040 

,22 

,119 

,208 

,871 

,1834 

,2545 

,3455 

,7427 

,2264 

,5621 

9583 

4483 

4532 

9580 

30069 

30008 

,56 

, 73 

,173 

,836 

,1835 

,2536 

,2316 

,7335 

,4626 

,5612 

,13803 

,10112 

,10187 

,10198 

30064 

30068 

,42 

, 99 

,228 

,599 

,1266 

,2805 

, 1127 

,7355 

,6903 

,7359 

13403 

9275 

10139 

10185 

29435 

29337 

, 19 

, 106 

,235 

,282 

,1157 

,2541 

,2312 

,7354 

,4613 

,7425 

13800 

9581 

9279 

10199 

30009 

2 9718 

,38 

,115 

,439 

,877 

,1152 

,2394 

,2535 

,742 6 

,2265 

,7008 

,15035 

9278 

11240 

13400 

29719 

30065 

,41 
,233 

,319 

,577 

, 1858 

, 3676 

,2540 

, 6697 

,7011 

, 7500 

14021 

9229 

9582 

11241 

29322 

29336 

, 16 

, 216 

,303 

, 700 

, 1196 

,2317 

,2550 , 

,5629 

,4615 , 

,743 6 , 

14849, 

10119, 

9224 , 

11217, 

26804, 

29432} 

// Define the statistical qualities of the image test set. 

15022' IL,1369' t4L,13S< 184L, 79 162L ,77323L , 71507L 70378L ,49048L 
46263L ,45308L ,29924 ,29221 ,21927 ,21158 ,21090 ,20346 , 
18545 

11808 

7370 

5621 

3199 

2086 

1150 

832 

586 

506 

3 84 

339 

298 

244 

233 

190 

175 

144 

134 

119 

109 

98 

90 

84 

80 

76 

72 

67 

62 

56 

,18249 

,11704 

, 6850 

,5591 

,3167 

,1994 

,1112 

,810 

,572 

,473 

,358 

,337 

,297 

,240 

,229 

,187 

,172 

,140 

,133 

,117 

,109 

, 97 

,88 

,83 

,80 

,76 

,71 

67 

60 

55 

,17184 

,11460 

,6617 

,5040 

,2804 

,1786 

,1013 

,738 

,567 

,470 

,357 

,335 

,291 

,240 

,219 

,187 

,165 

,140 

,130 

,117 

,108 

,95 

,87 

,82 

,79 

,75 

,70 

,66 

,60 

,55 

,17133 

,10240 

,6334 

,4830 

,2535 

,1709 

,975 

,732 

,542 

,465 

,348 

,329 

,276 

,239 

,217 

,185 

,161 

,13 7 

,130 

,114 

,102 

,95 

,87 

,81 

,79 

,75 

,70 

,65 

,59 

,54 

,16984 

,9525 

,5988 

,4614 

,2530 

,1697 

,928 

,677 

,542 

,452 

,346 

,326 

,256 

,239 

,215 

,184 

,160 

,137 

,129 

,112 

,102 

,95 

,87 

,81 

,78 

,74 

,70 

,64 

,59 

,53 

,15996 

,8743 

,5844 

,3943 

,2502 

,1506 

,920 

, 660 

,535 

,438 

,343 

,321 

,253 

,237 

,210 

,182 

,152 

,137 

,126 

,111 
,102 

,94 

,86 

,81 

,78 

,74 

,70 

,64 

,59 

,45 

,12590 

,8734 

,5791 

,3554 

,2484 

,1386 

,916 

,648 

,530 

,434 

,339 

,321 

,24 7 

,236 

,210 

,181 

,147 

,136 

,120 

,109 

,100 

,94 

,85 

,80 

,77 

,73 

, 68 

, 63 

,57 

,43 

,12526 , 

,8227 

,5663 

,3345 

,2381 

,1273 

,879 

,609 

,524 

,400 

,339 

,309 

,246 

,236 

,191 

,177 

,145 

,134 

,119 

,109 

,98 

,92 

,84 

,80 

,76 

,72 

, 67 

,63 

,57 

-37 } ; 

Appendix D Algorithm Software D-23 

http://emilacabsav.vut.edu.au


// Define the size of the Huffman codes. 

char len [256] = { 
3 ,3 ,4 ,4 ,4 ,4 ,4 ,5 ,5 ,5 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,6 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,8 ,8 
B ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,8 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,10,10,10,10,10,10,10,10, 
10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,121 
12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12, 12, 12 , 12 , 12 , 12 ,12 , 12 , 12 ,12 , 12 , 13 , 13 , 13 , 13 , 13 ,13, 13 , 13 , 13 , 13 , 13 , 13 , 
13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 , 13 ,13 ,13 ,13 ,13 ,13 ,13 , 13 , 13 , 13 , 13 ,13 , 13 , 13 , 13 , 13 , 13 , 13 ,13 ,13 ,13 ,13 ,13 ,13 ' 
14 , 14 , 14 , 14 , 14 ,14 , 14 , 14 , 14 ,14,14, 14 , 14 , 14 , 14 , 14 , 14, 14 ,14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14, 14 , 
14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 , 14 ,14, 14 , 14 , 14 , 14 , 14, 14 , 14, 14 , 14 , 14 , 14, 14 , 14 , 14 , 14 ,14 , 14 , 14 , 14 , 14, 
14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15} 

// Define the initial index to symbol convertion table. 

unsigned char init_ind2sym [256] = { 
0 ,1 ,255,2 ,254,3 ,253,127,4 ,252,5 ,251,6 ,126,250,119, 
8 ,248,131,130,7 ,249,247,9 ,246,125,10 ,14 ,242,11 ,245,12 , 
244,124,13 ,15 ,241,128,129,133,243,132,123,16 ,240,136,17 ,122, 
118,239,18 ,19 ,134,238,135,121,237,20 ,120,21 ,236,22 ,235,23 , 
234,24 ,233,138,25 ,35 ,34 ,232,231,26 ,230,32 ,27 ,28 ,61 ,224, 
62 ,65 ,229,30 ,29 ,228,31 ,227,36 ,33 ,48 ,226,225,95 ,208,37 , 
64 ,176,40 ,80 ,223,112,144,38 ,192,41 ,222,39 ,221,96 ,160,42 , 
60 ,218,220,219,43 ,216,217,46 ,47 ,44 ,49 ,53 ,214,213,52 ,51 , 
45 ,50 ,137,215,63 ,56 ,86 ,54 ,67 ,57 ,55 ,66 ,59 ,211,210,212, 
58 ,205,209,207,202,206,78 ,193,93 ,97 ,71 ,200,68 ,204,69 ,203, 
87 ,74 ,72 ,94 ,201,198,195,76 ,89 ,199,79 ,70 ,73 ,99 ,81 ,90 , 
77 ,88 ,75 ,83 ,196,197,194,85 ,84 ,157,91 ,188,92 ,191,180,189, 
169,190,187,183,185,165,177,159,186,101,179,114,167,181,182,104, 
142,155,82 ,172,107,184,168,178,108,105,100,175,154,98 ,111,174, 
145,173,153,164,156,102,103,148,109,161,166,110,115,158,150,143, 
116,163,113,146,10 6,171,170,162,147,117,149,152,151,139,141,140 } ; 

unsigned long int outbuffer = 0 ; 
int buflength = 0 ; 
int char_to_index [256] ; 
unsigned char indextochar [256] ; 
unsigned int freq [256] ; 
int huge convert [13][2048] ; 

// Initialise the Huffman coder variables. 

void initcoder () 

{ 
int i ; 

for (i = 0 ; i < 256 ; i++) { 
indextochar [i] = init_ind2sym [i] ; 
chartoindex [index_to_char [i]] = i ; 
freq [i] = P [i] >> 8 ; 

} 
> 

// Update the statistics of the current image data. 

void updatefreq (int s) 

{ 
int s2 ; 
unsigned int tempi, temp2 ; 

if (freq [s] == 1024) 
for (s2 = 0 ; S2 < 256 ; S2++) 

freq [s2] >>= 1 ; 
for (s2 = s ; freq [s2] == freq [s2 

if (s2 < s) { 
tempi = index_to_char [s] ; 
temp2 = indextochar [s2] ; 
indextochar [s] = temp2 ; 
indextochar [s2] = tempi ; 
char_to_index [tempi] = s2 ; 
char_to_index [temp2] = s ; 

} 
freq [s2]++ ; 

> 

// Output the code of given length to the output buffer. 

void output (unsigned char huge **dest, unsigned long int S, int L) 

{ 
out_buffer <<= L ; 
outbuffer |= S ; 
buf_length += L ; 
while (buf length > 7) { 

mput (*dest, outbuffer >> (buf_length - 8)) ; 
buf length -= 8 ; 

} 
> 

// To index from character 
// To character from index 

// Check if rescaling is required to forget 
// older data which is now not used. 

1] ; s2--) 
// Check if data position should be moved. 
// If so, then move it. 

// Update the frequency of the current symbol. 

Appendix D Algorithm Software D-24 



// Flush out any remaining bits in the output buffer. 

void flushbuffer (unsigned char huge **dest) 

) 

outbuffer <<= 11 ; 
outbuffer |= 0x72C ; 
buf_length += 11 ; 
mput (*dest, outbuffer >> (buflength 
out_buffer = 0 • 
buflength = 0 ; 

8)) 

// Perform the Huffman coding of the given source data of given length. 

DWORD StatisticalCode (unsigned char huge 'source, unsigned char huge *destinat ion, DWORD length) 

unsigned char huge *d ; 
unsigned char c ; 
unsigned long int total = 0 ; 

outbuffer = 0 ; 
buflength = 0 ; 
d = destination ; 
init_coder 0 ; 
while (1==1) { 

if (total == length) 
break ; 

c = mget (source) ; 
c = char_to_index [c] ; 
update_freq (c) ; 
total++ ; 
output (fcd, sym [c] , len [c] ) 

} 
if (buflength) 

flushbuffer (fcd) ; 

return (DWORD)(d - destination) 

// Clear the temporary output buffer. 

// Make a copy of the destination pointer. 
// Initialise the coder 

// If no more data then exit 

// Get a byte from the input buffer. 
// Convert to an index. 
// Update the image statistics. 

// Output the Huffman Code. 

// Any more bits in the output buffer ? 
// If so, then flush them out. 

// Return the length of the coded data. 

// Perform the Huffman decoding of the given source data of given length. 

DWORD StatisticalDecode (unsigned char huge 'source, unsigned char-huge 'destination, DWORD length) 

int i, j ; 
unsigned char huge *d ; 
unsigned char c ; 

d = destination ; 
initcoder () ; 
out_buffer = 0 ; 
buf_length = 0 ; 
for (i = 0 ; i < 13 ; I++) 

for (j = 0 ; j < 2048 ; j++) 
convert [i] [j] = -1 ; 

for (j = 0 ; j < 256 ; j++) 
convert [len[j ] -3] [sym[j] fc 0x7FF] = j 

while (1==1) { 
c = mget (source) ; 
if (length-- == 0) 
break ; 

for (i = 0 ; i < 8 ; i++) { 
out_buffer = (outbuffer « 1) | ((c fc 0x80)71:0) 
C <<= 1 ; 
buf_length++ ; 
if (buf length > 2] 

if (convert [buf_length-3][outbuffer fc 0x7FF] != -1) { 
j = convert [buf_length-3][outbuffer fc 0x7FF] 
mput (d, index_to_char [j]) ; 

updatefreq (j) ; 
buf_length = 0 ; 
out buffer = 0 ; 

// Make a copy of the destination pointer. 
// Initialise the coder. 
// Clear the temporary output buffer. 

// Initialise the conversion table 

// Get a byte from the input source 

// Search for a Huffman code 

) 
} 

} 
return (DWORD)(d - destination) ; 

Appendix D Algorithm Software D-25 



Arithmetic Coder - Fixed 

11 

u 
n 
u 
n 
n 
n 
n 
n 
u 
u 
n 
u 
n 
n 
11 

n 
11 

n 
u 
n 
11 

Fixed Arithmetic Coder 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 
(Footscray Campus) 
P.O. Box 14428, 
Melbourne Mail Centre, 
Melbourne, 3 000. 

Date : July 7, 1994 

Author : Emil Lenc 

File Name : aritfix.cpp 

Supervisors : Alec Simcock & Ann Pleasants 

Internet : emil@cabsav.vut.edu.au 

// Size of Arithmetic Code Values 

((define Code_value_bits 16 
typedef DWORD code value ; 

// Number of bits in a code value 
// Type of an arithmetic code value 

Sdefine Topvalue (((DWORD)l<<Code_value_bits)-1) 

// Half and quarter points in the code value range. 

// Largest code value 

((define Firstqtr (Top_value/4 + l) 
((define Half (2*First_qtr) 
((define Third_qtr (3*First_qtr) 

// The set of symbols that may be encoded. 

Kdefine No_of_chars 256 
((define EOFsymbol No_of_chars 
((define Noofsymbols (No_of_chars+l) 
((define Max frequency 163 83 

// Cumulative frequency table 

int cum_freq [No_of_symbols +1] ; 

// Bit input routines 

int bit_buffer ; 
int bits_to_go ; 
int garbage_bits ; 

codevalue low, high ; 
code_value value ; 
int bits_to_follow ; 

int freq [No_of_symbols] = { 

// Point after first quarter 
// Point after first half 
// Point after third quarter 

// Number of character symbols 
// Index of EOF symbol 
// Total number of symbols 
// Maximum allowed frequency count 2*14-1 

// Cumulative symbol frequencies 

// Bits waiting to be input 
// Number of bits still in buffer 
// Number of bits past end-of-file 

// Ends of the current code region 
// Currently-seen code value 
// Number of opposite bits to output after 
// the next bit. 
// Symbol frequencies 

1767,1611,931,841,544,352,257,199,218,147,134,102,96,77,12 0,74, 
56,41,32,29,23,20,17,14,13,10,9,7,7,6,6,6, 
2,2, 
2, 
8,5,10,10,5 
5,2,2,2,2,2 
4,6,2,2,1,1 
4,1,1,1,1,1 
3,1,1,1,1,1 
4,1,1,1,1,1 

,4,3,3,3,2,2, 
,2,2,2,3,7,6, 

,3,3 
,2,2 
,1,1,1,1,1,1,1,1,1, 
,1,1,1,1,1,1,1,1,5, 
1,1,1,1,1,1,1,1,1, 
,3 7,23 9,21,2 8,39,59,80,13 7,248,577, 
68,68,201,202,65,66,29,29,46,2,11,1,1,1,1,1, 
3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
3,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1, 
5,1,2,2,2,2,2,2,2,2,3,3,3,3,3,4, 
7,5,5,6,6,6,8,9,10,11,13,16,19,24,29,37, 
54,70,112,66,86,102,13 8,148,214,188,248,343,533,827,909,1593,1 

// 
// Initialize the arithmetic encoder output strea 

// 
void start_outputing_bits 0 

{ 
bit_buffer = 0 ; 

bits_to_go = 8 ; 

} 

// Buffer is empty to start with 

Appendix D Algorithm Software D-26 

mailto:emil@cabsav.vut.edu.au


// 
// Output a bit to the destination buffer. 

// 
void output_bit (DWORD bit, unsigned char huge **destination) 
{ 
bitbuffer >>= 1 ; 
if (bit) 

bit_buffer |= 0x80 
if (!(--bits_to_go)) 

{ 
mput('destination, bit_buffer) 
bits_to_go - 8 ; 

// Shift the current bits down one bit. 

// If new bit is a '1' add it to buffer. 
// Is the byte buffer full ? 
// Output buffer to destination if it is. 

// 
// Flush out any remaining bits upon completion of the arithmetic coding process 

// 
void done_outputing_bits (unsigned char huge "destination) 
{ 
mput(*destination, bit_buffer >> bits_to_go) ; 

// 
// Output bits plus following opposite bits. 

// 
void bit_plus_follow (DWORD bit. unsigned char huge **destination) 

{ outputbit (bit, destination) ; 
while (bitstofollow) 

{ 
output_bit (!bit, destination) 
bits to follow-- ; 

// Output the bit. 

// Output bits to follow opposite bits. 
// Set bits_to_follow to zero. 

// 
// Initialize the encoder. 

// 
void start encoding 0 
{ 
low = 0 ; 
high = Top_value ; 
bitstofollow = 0 ; 

// Full code range. 

// No bits to follow next. 

// 
// Encode the given symbol into the destination buffer. 

// 
void encodesymbol (int symbol, int cum_freq[], unsigned char huge "destination) 

{ 
DWORD range ; // Size of the current code region. 

range = (DWORD)(high - low) + 1 ; 
// Narrow the region for the current symbol. 

high = low + (range * cum_freq [symbol]) / cumfreq [0] - 1 ; 
low = low + (range * cumfreq [symbol + 1] ) / cumfreq [0] ; 
for (;;) 

I 1/ Loop to output bits. 
if (high < Half) 

bit_plus_follow (0, destination) ; // Output 0 if in low half. 
else 

if (low >= Half) 
{ // Output 1 if in high half. 
bit_plus_follow (1, destination) ; 
low -= Half ; 
high -= Half ; // Subtract offset to top. 

} 
el Be 

if (low >= First_qtr fcfc high < Thirdqtr) 
( // Output opp. bit later if in middle half. 
bits_to_follow++ ; 
low -= First_qtr ; // Subtract offset to middle. 
high -= Firstqtr ; 

else 
break ; 

low <<= 1 ; 
high = (high << 1) + 1 

// Otherwise exit loop. 

// Scale up code range. 

Appendix D Algorithm Software D-27 



// 
// Initialize the adaptive source model. 

// 
void start_fixed model() 

{ 

cumfreq [No_of_symbols] = 0 ; 
for (i = No_of_symbols-l ; i >= -) 

cum_freq [i] = cumfreq [i + 1] + freq [i] ; 
// Reset the frequency counts. 

// 
// Complete the encoding process. 

// 
void doneencoding (unsigned char huge "destination) 

{ 
bits_to_follow++ ; 
if (low < First_qtr) 

bit_plus_follow (0, destination) ; 
else 

bitplusfollow (1, destination) ; 

// Output two bits that select the quarter 
// that the current code range contains. 

// 
// Perform arithmetic coding of the source data of length 'length' and store the coded 
// results in the destination buffer. 

// 
DWORD StatisticalCode (unsigned char huge *source, unsigned char huge *destination, DWORD length) 

{ 
int symbol ; 
unsigned char huge *d ; 

d = destination ; 
start_fixed_model (1 ; 
start_outputing_bits () ; 
startencoding () ; 
for (;;) 

{ 
if (!(length--)) 

break ; 
symbol = mget(source) ; 
encode symbol (symbol. cum_freq, &d) 

} 
encodesymbol (EOF_symbol, cum_freq, fcd) 
done encoding (fcd) ; 
done_outputing__bits (fcd) ; 
return (DWORD)(d - destination) ; 

// Make a copy of the destination pointer. 
// Initialize the arithmetic coder. 

// Loop through the input buffer. 

// Has all the data been coded ? 
// If so then exit. 
// Get the next available byte of data. 
// Encode that symbol. 

// Encode the EOF symbol. 
// Send the last few bits. 

// Return the length of the coded data. 

// 
// Initialize the arithmetic decoder. 

// 
void start_inputing_bits () 

{ b i t s t o g o = 0 ; 
garbage_bits = 0 

// Buffer starts out with no bits in it. 

// 
// Get a bit from the source buffer. 

// 
int input_bit (unsigned char huge "source) 

{ 
int t ; 

if (!bits_to_go) 

{ 
bitbuffer = mget(*source) ; 
bits_to_go = 8 ; 

} 
t = bit_buffer fc 1 ; 
bit_buffer >>= 1 ; 
bits_to_go -= 1 ; 
return t ; 

// Any bits in the current buffer ? 

// If not read a full 8 bits of data. 

// Return the next bit from the bottom of 
// the byte. 

Appendix D Algorithm Software D-28 



// 
// Start the decoding process. 

// 
void Btartdecoding (unsigned char huge "source) 

int i ; 

value = 0 • j/ Input bits to fill h value 
for ( 1 = 1 ; i <= Codevaluebits ; i++) u 

value = (value << 1) + inputbit (source) ; 

}°v= ° '" // Full code range. 
high = Top value ; 

} 

// 
// Decode the next symbol from the source data 

// 
int decodesymbol (int cum_freq[] , unsigned char huge "source) 

DWORD range ; // size of current code region 

int cum ; // cumulative frequency calculated 
int symbol ; // S y m b o l d e c o d e d . 

range = (DWORD)(high-low) + 1 ; 

// Find cumulative frequency for value. 
cum = ( ( (DWORD) (value - low) + 1) * cum_freq [0] - 1) / range ; 

for (symbol = 1 ; cum_freq [symbol] > cum ; symbol++) 
' // Then find symbol. 

symbol-- ; 
II Narrow down the code region. 

high = low + (range * cumfreq [symbol] ) / cumfreq [0] - 1 ; 
low = low + (range * cumfreq [symbol + 1] ) / cum freq [0] • 
for (;;) ~ 

\ II Loop to get rid of bits. 
if (high >= Half) // Expand low half. 

if (low >= Half) 
{ // Expand high half. 
value -= Half ; 
low -= Half ; // subtract offset to top. 
high -= Half ; 

} 
else 

if (low >= First_qtr fcfc high < Third_qtr) 
V // Expand middle half. 
value -= First_qtr ; 
low -= Firstqtr ; // Subtract offset to middle. 
high -= First qtr ; 

} 
else 

break ; // otherwise exit loop. 
low <<= 1 ; 
high = (high << 1) + 1 ; // Scale up code range. 
value = (value << 1) + input_bit (source) ; // Move in next input bit. 

return symbol ; 

} 

// 
// Perform arithmetic decoding of the source data and store the decoded results in the 
// destination buffer. 

// 
DWORD StatisticalDecode (unsigned char huge 'source, unsigned char huge 'destination, DWORD length) 

int symbol ; 
unsigned char huge *d ; 

d = destination ; 
startfixedmodel () ; // Initialize the arithmetic coder. 
startinputingbits 0 ; 
start_decoding (fcsource) ; 
for (;;) // Loop through characters. 

{ 
symbol = decodesymbol (cumfreq, fcsource) ;// Decode next symbol. 
if (symbol == EOFsymbol) 

break ; // Exit loop if EOF symbol. 
mput(d, symbol) ; // Store it in the destination buffer. 

} 
return (DWORD) (d - destination) ; // Return the length of the decoded data. 

Appendix D Algorithm Software D-29 



Arithmetic Coder - Adaptive 

II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II 

] 

Date 

Author 

File Name 

Supervisors 

Internet 

Adaptive Arithmetic Coder 

Department of Electrical and Electronic Engineering 
Victoria University of Technology 

(Footscray Campus) 
P.O. Box 14428, 

Melbourne Mail Centre, 
Melbourne, 3 000. 

July 7, 1994 

Emil Lenc 

aritadap.cpp 

Alec Simcock & Ann Pleasants 

emil@cabsav.vut.edu.au 

// Size of Arithmetic Code Values. 

#define Code_value_bits 16 
typedef DWORD code_value ; 

// Number of bits in a code value 
// Type of an arithmetic code value 

ftdefine Topvalue (((DWORD)l<<Code_value_bits)-1) 

// Half and quarter points in the code value range. 

// Largest code value 

ftdefine Firstqtr (Top_value/4+l) 
^define Half (2*First_qtr) 
fcdefine Third_qtr (3*First_qtrJ 

// The set of symbols that may be encoded. 

#define No_of_chars 256 
#define E0F_symbol N o o f c h a r s 
tfdefine No_of_symbols (No_of_chars+l) 
#define Max_frequency 16383 

// Point after first quarter 
// Point after first half 
// Point after third quarter 

// Number of character symbols 
// Index of EOF symbol 
// Total number of symbols 
// Maximum allowed frequency count 2*"14-1 

// Translation tables between character and symbol indexes. 

int char_to_index [No_of_chars] ; 
unsigned char index_to_char [No_of_symbols] 

// Cumulative frequency table 

int cum_freq [No_of_symbols + 1] ; 

// Bit input routines 

int bit_buffer ; 
int bits_to_go ; 
int garbage_bits ; 

code_value low, high ; 
code_value value ; 
int bits_to_follow ; 

int freq [No_of_symbols] ; 

// To index from character 
// To character from index 

// Cumulative symbol frequencies 

// Bits waiting to be input 
// Number of bits still in buffer 
// Number of bits past end-of-file 

// Ends of the current code region 
// Currently-seen code value 
// Number of opposite bits to output after 
// the next bit. 
// Symbol frequencies 

// 
// Initialize the arithmetic encoder output stream. 

// 
void startoutputingbits 0 

{ 
bitbuffer = 0 
bits_to_go = 8 

// Buffer is empty to start with 

Appendix D Algorithm Software D-30 

mailto:emil@cabsav.vut.edu.au


// 
// Output a bit to the destination buffer. 

// 
void outputbit (DWORD bit, unsigned char huge "destination) 

{ 
bitbuffer >>= 1 ; 
if (bit) 

bit_buffer |= 0x80 ; 
if (!(--bits_to_go)) 

{ 
mput(*destination, bit_buffer) 
bits_to_go = 8 ; 

// Shift the current bits down one bit. 

// If new bit is a '1' add it to buffer. 
// Is the byte buffer full ? 
// Output buffer to destination if it is. 

// 
// Flush out any remaining bits upon completion of the arithmetic coding process. 

// 
void done_outputing_bits (unsigned char huge **destination) 

{ mput ('destination, bitbuffer >> bits_to_go) ; 

// 
// Output bits plus following opposite bits. 

// 
void bit_plUB_follow (DWORD bit, unsigned char huge "destination) 
{ 
output_bit (bit, destination) ; 
while (bits_to_follow) 

{ 
outputbit (!bit, destination) 
bits to follow-- ; 

// Output the bit. 

// Output bits to follow opposite bits. 
// Set bits_to_follow to zero. 

// 
// Initialize the encoder. 

// 
void startencoding 0 
{ 

low = 0 ; 
high = Topvalue ; 
bits to follow = 0 

// Full code range. 

// No bits to follow next. 

// 
// Encode the given symbol into the destination buffer. 

void encodesymbol (int symbol, int cumfreqH, unsigned char huge "destination) 

{ 
DWORD range ; 

range = (DWORD)(high - low) + 1 ; 

// Size of the current code region. 

// Narrow the region for the current symbol. 

high = low + (range * cum_freq [symbol]) / cum_freq [0] - 1 ; 
low = low + (range * cum_freq [symbol + 1)) / cum_freq [0] ; 

for (;;) 

{ 
if (high < Half) 

bit_plus_follow (0, destination) ; 
else 

if (low >= Half) 

{ 
bit_plus_follow (1, destination) 

low -= Half ; 
high -= Half ; 

// Loop to output bits. 

// Output 0 if in low half. 

// Output 1 if in high half. 

// Subtract offset to top. 

else 
if (low >= First qtr fcfc high < Third_qtr) 

r ~~ // Output opp. bit later if in middle halt. 
bits to follow++ ; 

low -= First_qtr ; // Subtract offset to middle. 
high -= First_qtr ; 

} 
else 

break • // Otherwise exit loop. 
low <<= 1 ; 
high = (high « 1) + 1 ; // Scale up code range. 

Appendix D Algorithm Software D-31 



// 
// Initialize the adaptive source model 

// 
void start_adaptive_model() 

int i ; 

for (i = 0 ; i < No of chars ; i++) 

{ " " 
chartoindex [i] = i ; 
index_to_char [i] = i ; 

} 
for (i = 0 ; i < No of symbols ; i++) 

{ 
freq [i] = 1 ; 
cum_freq [i] = No of symbols - i ; 

> 
cumfreq [i] = 0 ; 

} 

d = destination ; 
start_adaptive_model () ; 
start_outputing_bits () ; 
start_encoding () ; 
for (;,) 

{ 
if (!(length--)) 

break ; 
ch = mget(source) ; 
symbol = char_to_index [ch] ; 
encodesymbol (symbol, cum_freq, fcd) ; 
update_adaptive_model (symbol) ; 

) 
encode_symbol (EOFsymbol, cumfreq, fcd) ; 
done_encoding (fcd) ; 
done_outputing_bits (fcd) ; 
return (DWORD)(d - destination) ; 

} 

// Set up tables that translate between the 
// symbol indexes and the characters. 

// Reset the frequency counts. 

// Make a copy of the destination pointer. 
// Initialize the arithmetic coder. 

// Loop through the input buffer. 

// Has all the data been coded ? 
// If so then exit. 
// Get the next available byte of data. 
// Translate to an index. 

; // Encode that symbol. 
// Update the model. 

; // Encode the EOF symbol. 
// Send the last few bits. 

// Return the length of the coded data. 

// 
// Update the adaptive model for the new symbol data 

// 
void updateadaptive model (int symbol) 

{ 
int 1 ; 
int cum ; 
int ch_i, ch_symbol 

// New index for symbol. 

if (cumfreq [0] == Max_frequency) 
for (cum = 0, i = No_of_symbols - 1 

cum_freq [i] = cum += (freq [i] = 
for (i = symbol ; freq [i] == freq [i 

if (i != symbol) 

{ 
c h i = indextochar [i] ; 
ch_symbol = index_to_char [symbol] 
indextochar [i] = chsymbol 
index_to_char [symbol] = ch_i 
char_to_index [ch_i] = symbol 
char_to_index (chsymbol] = i 

> 
freq [i]++ ; 
while (i > -1) 

cum_freq [i--]++ ; 

// Scale the frequency counts if necessary. 

; i >= 0 ; i--) 
(freq [i] + 1) >> 1) ; 
- 1] fcfc i ; i--) 

// Find symbol's new index. 
// Swap the indexes if they have changed. 

// Increment the frequency count for the 
// symbol and update the cumulative 
// frequencies. 

// 
// Complete the encoding process. 

// 
void doneencoding (unsigned char huge "destination) 
{ 
bits_to_follow++ ; 
if (low < First_qtr) 

bit_plus_follow (0, destination] 
else 

bitplusfollow (1, destination) 

// Output two bits that select the quarter 
// that the current code range contains. 

// 
// Perform arithmetic coding of the source data of length 'length' and store the coded 
// results in the destination buffer. 

// 
DWORD StatisticalCode (unsigned char huge *source, unsigned char huge *destination, DWORD 

{ 
int ch, symbol ; 
unsigned char huge *d 

Appendix D Algorithm Software D-32 



// 
// Initialize the arithmetic decoder. 

// 
void startinputing bits () 

{ 
bits_to_go = 0 ; // Buffer starts out with no bits in it. 
garbagebits = 0 ; 

> 

// Get a bit from the source buffer. 

// 
int input_bit (unsigned char huge **source) 

{ 
int t ; 

if (Ibitstogo) // Any bits in the current buffer ? 

{ 
bitbuffer = mget(*source) ; // If not read a full 8 bits of data. 
bits_to_go = 8 ; 

> 
t = bit_buffer &. 1 ; // Return the next bit from the bottom of 
bit_buffer >>= 1 ; // the byte. 
bits_to_go -= 1 ; 
return t ; 

} 

// 
// Start the decoding process. 

// 
void startdecoding (unsigned char huge "source) 

{ 
int i ; 

value = 0 ; // Input bits to fill the code value. 
for (i = 1 ,- i <= Code_value_bits ; i+ + ) 

value = (value << 1) + inputbit (source) ; 
low = 0 ; // Full code range. 
high = Topvalue ; 

} 

// 
// Decode the next symbol from the source data. 

// 
int decodesymbol (int cum_freq[], unsigned char huge "source) 

DWORD range ; // Size of current code region. 
int cum ; // Cumulative frequency calculated. 
int symbol ; // Symbol decoded. 

range = (DWORD)(high-low) + 1 ; 
// Find cumulative frequency for value. 

cum = (((DWORD)(value - low) + 1) * cumfreq [0] - 1) / range ; 
for (symbol = 1 ; cumfreq [symbol] > cum ; symbol+ + ) 

// Then find symbol. 

symbol-- ; 
// Narrow down the code region. 

high = low + (range * cumfreq [symbol]) / cumfreq [0] - 1 ; 
low = low + (range * cumfreq [symbol + 1] ) / cum_freq [0] ; 

for (; ;) 
( // Loop to get rid of bits. 

if (high >= Half) // Expand low half. 
if (low >= Half) 

; // Expand high half. 
value -= Half ; 

low -= Half ; // Subtract offset to top. 
high -= Half ; 

} 
else 

if (low >= First_qtr fcfc high < Thirdqtr) 
/ // Expand middle half. 

value -= Firstqtr ; 
low -= First qtr ; // Subtract offset to middle. 

high -= Firstqtr ; 

} 
else 

break • // Otherwise exit loop. 
low <<= 1 ; 

high = (high « 1) + 1 ; // Scale up code range. 
value = (value << 1) + inputbit (source) ; // Move in next input bit. 

> 
return symbol ; 

> 

Appendix D Algorithm Software D-33 



// 
// Perform arithmetic decoding of the source data and store the decoded results in the 
// destination buffer. 
// 
DWORD StatisticalDecode (unsigned char huge *source, unsigned char huge 'destination, DWORD length) 

int ch, symbol ; 
unsigned char huge 'd ; 

d = destination ; 
start_adaptive_model () ,-
start_inputing_bits () ; 
startdecoding (fcsource) ; 
for (;;) // Loop through characters. 

{ 
symbol = decodesymbol (cumfreq, fcsource) ,-// Decode next symbol. 
if (symbol == EOFsymbol) 
break ; // Exit loop if EOF symbol. 

ch = index_to_char [symbol] ; // Translate to a character. 
mputld, ch) ; // Store it in the destination buffer. 
update_adaptive_model (symbol) ; // Update the model. 

} 
return (DWORD) (d - destination) ,- // Return the length of the decoded data. 

Appendix D Algorithm Software D 




