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ABSTRACT 

As a solution algorithm for Unbounded Knapsack Problem, the 

performance analysis of density-ordered greedy heuristic, weight-ordered 

greedy heuristic, value-ordered greedy heuristic, extended greedy 

heuristic and total-value heuristic has been done. Empirical experiments 

on different test problems have been analysed and reported. Problem 

instances with a very large number of undominated items were generated 

in addition to the types of instances suggested by Martello and Toth 

(1990). Theoretically, the lower bound on the performance for total-value 

heuristic is better than the corresponding lower bounds for the density-

ordered greedy heuristic and the extended greedy heuristic as discussed 

by White (1992) and Kohli and Krishnamurti (1992). The computational 

tests fail to show clear superiority of any particular heuristic algorithm, 

although each heuristic produces good quality solutions. If the 

combination of the density-ordered greedy and the total-value greedy 

heuristics are considered then the combination shows complementary 

effect. A new heuristic algorithm incorporating the structural properties of 

the density-ordered greedy heuristic and the total-value greedy heuristic 

is developed and its complementary effect studied. It was found that the 

combination of the density-ordered greedy heuristic, the extended greedy 

heuristic, the total-value greedy heuristic and the new complementary 

heuristic gives a better performance result than the single best heuristic in 

the combination. 
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CHAPTER 1 

1. FUNDAMENTALS 

Knapsack problems are intensively studied mainly for their simple 

structure which, on the one hand allows exploitation of a number of 

combinatorial properties and, on the other, facilitates the solution of more 

complex optimisation problems through a series of knapsack-type 

subproblems. 

In the following sections we shall examine in brief, the most common 

variants of Knapsack Problems and outline the design of this thesis. 

1.1 Knapsack Problems and its Variants 

A typical investment problem can be described as follows. 

Given an amount of investment capital, a variety of projects with different 

capital requirements and expected profits are possible. Some of the 

projects are to be selected such that the budget is not exceeded and the 

total expected profit is maximum. 

This decision problem is an important application model of the Knapsack 

Problem (KP). 

The name Knapsack Problem comes from its relation to the hitch-hiker's 

decision making situation (which is the same as the investment example); 

a hitch-hiker packs his knapsack by selecting from among various possible 

objects those which will give him maximum utility or profit without 

exceeding the weight capacity of the knapsack. 

l 



Mathematical programming problems like Linear Programming and Integer 

Programming have been applied in a number of decision making 

situations. A KP can be classified as an integer programming problem. 

Because of its combinatorial structure, it is often treated as a combinatorial 

optimisation problem. 

Mathematically, a KP can be formulated as: 

Given a set of n items and a knapsack, with 

pj = profit (or value) of item j, 

Wj = weight (or volume) of item j, 

C = capacity of the knapsack, 

select a subset of the items so as to 

n 

Maximise z = '^_lpjxJ 
y=i 

n 

subject to ^,wjxj - C 

Xj = 0 or 1, j e N = {1,2, ... ,n} 

where Xj = 1, if item j is selected; 

= 0, otherwise. 

In the literature this one-constraint, linear pure 0-1 discrete programming 

problem is called the 0-1 Knapsack Problem or simply the Knapsack 

Problem. It is also known as the Lorie-Savage Problem (1955). 

There are different variants of the Knapsack Problem, some are described 

in the following. 

.. (1) 

.. (2) 

.. (3) 
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1.1.1 0-1 Knapsack Problem 

The problem defined by equations (1), (2), & (3) is called the 0 - 1 

Knapsack Problem (0-1 KP). The term 0-1 appears because an item is 

either selected or rejected, and at most one piece of each item can 

be selected. 

1.1.2 Unbounded Knapsack Problem 

When it is possible to select any number of pieces of an item, the problem 

is called an Unbounded Knapsack Problem (UKP), 

i.e., when equation (3) is replaced by 

Xj > 0, integer (4) 

where Xj = number of units of item j selected, then UKP is the 

problem defined by equations (1), (2), & (4). 

In this thesis, we will be dealing with the solution algorithms for UKP. 

1.1.3 Bounded Knapsack Problem 

When for each item there is an upper limit to the number of pieces that can 

be selected, the problem is called a Bounded Knapsack Problem (BKP), 

i.e., when equation (4) is replaced by 

0 < Xj < bj, j G N = {1,2, ... ,n} (5) 

Xj integers, 

then BKP is the problem defined by equations (1), (2), & (5). 

Strictly speaking, an UKP is a special case of BKP, since replacing bj by oo 

or a value defined by the knapsack capacity and Wj, they are equivalent. 

The 0 - 1 KP, UKP and BKP are generally referred to as Knapsack 

Problems (KP). KPs have been intensively studied as discrete 

programming problems. The reason for such interest basically derives 

from three facts: 
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(a) a KP can be viewed as one of the simplest Integer Programming 

problems; 

(b) it appears as a subproblem in complex problems as in cutting 

stock problem. The solution of knapsack problems in solving 

cutting stock problems (Gilmore and Gomory, 1963) is 

particularly important because of the fact that in the column 

generation procedure that is used for cutting stock problem, 

repeated solution of Unbounded KnapsackProblems are used; 

(c) it represents a great many practical situations such as capital 

budgeting, project selection, loading problems, journal selection 

in a library (Salkin and de Kluyver, 1975). 

There are many other variants of KP and similarly structured 

mathematical models. They can be classified under two categories. 

The knapsack problems, where only one knapsack is to be filled with an 

optimal subset of items are called Single Knapsack Problems. The 0-1 

knapsack problem, the hounded and unbounded knapsack problems, the subset-

sum problem, the change-making problem are all single knapsack problems. 

The knapsack problems where more than one knapsack is available are 

called Multiple Knapsack Problems. The 0-1 multiple knapsack problem, the 

generalised assignment problem and the bin-packing problem can be called 

multiple knapsack problems. 

These problems are discussed in detail in Taha (1975), Salkin and Mathur 

(1989) and Martello and Toth (1990); the last one includes computer codes 

for solving them. 
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1.2 Objective of Study 

Knapsack Problems (KP) are widely used mathematical decision models, 

particularly in the areas of cutting stock, cargo loading, capital investment, 

etc. K P and its variants are in the class of difficult optimisation problems, 

which take up long computational time. The particular variant of K P 

studied in this research, namely the Unbounded Knapsack Problem 

(UKP), was first introduced some decades ago and the density-ordered 

greedy heuristic algorithm has been available since. In the 1990s, a new 

algorithm, called the total-value greedy heuristic appeared, but not fully 

explored in terms of computational time and quality. A detailed report on 

the exact (optimal) solution algorithms was published only lately ( in 

1990). 

In this research all the available heuristic algorithms for UKP have been 

studied. The aims of this research is to generate test problems and 

investigate the performance of the algorithms in solving different 

instances of these problems by varying parameters such as problem size, 

knapsack capacity and profit/ weight ratios. In particular, an extensive 

study of the performance of the density-ordered greedy heuristic, the weight-

ordered greedy heuristic, the value-ordered greedy heuristic, the extended greedy 

heuristic and the total-value greedy heuristic are undertaken by comparing 

the quality of their solutions and the computational time with respect to 

the Martello-Toth exact algorithm. The results are expected to be useful in 

developing algorithms and software in related areas. In the column 

generation technique for solving linear programming problems, the ease 

of solving KPs will be helpful. Although, it has been the practice to take 

the column corresponding to the optimal solution of the KP, it is not 

absolutely necessary to do so. Gilmore and Gomory (1963) observed that 

accepting any feasible solution could be a viable option. 
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1.3 Organisation of the Thesis 

Chapter 2 describes in brief the existing algorithms for the knapsack 

problem. Algorithms for the variants of K P are outlined in Section 2.1 and 

a detailed discussion of the solution algorithms for the unbounded 

knapsack problem is given in Section 2.2. Section 2.3 gives a brief 

description of the meta-heuristics and their likely use in finding solutions 

for knapsack and related problems. Section 2.4 explains Martello-Toth's 

exact algorithm for UKP. Dominance criterion, an important phenomenon 

used to greatly reduce the size of the original problem is discussed in 

Section 2.5. Chapter 3 is a detailed description of the computational 

analysis of the heuristics for UKP. Section 3.1 describes the computational 

design and data generation for the heuristics and gives a few sample 

datasets for the five problem classes generated. Section 3.2 describes the 

performance measures and the factors that are to be recognised in an 

experimental study of heuristics. Section 3.3 and 3.5 reports the 

computational results obtained on the five heuristic algorithms for UKP. 

Sections 4.1 describes the complementary effect of heuristics. Based on the 

behaviour of the existing heuristics, a new complementary heuristic is 

developed and is discussed in Section 4.2. Summary and conclusion is 

given in Chapter 5. The F O R T R A N codes for data generation are given in 

Appendix A and the code for the heuristic algorithms is given in 

Appendix B; in Appendix C, the effect of varying the density ratio range is 

explained for the Class IV problem instances and in Appendix D some 

difficult problem instances of Class V Unbounded Knapsack Problem are 

described. 
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CHAPTER 2 

2. LITERATURE REVIEW 

The sections in this chapter describe the solution algorithms for Knapsack 

Problem in brief and discusses the heuristic algorithms for the Unbounded 

Knapsack Problem at length. The dominance criterion which is an 

important phenomenon in any solution algorithm for UKP is described in 

Section 2.5. 

2.1 Exact Versus Heuristic Algorithms 

The time-complexity or, simply, complexity of an algorithm for solving some 

problem is said to be the maximal number of computational steps that it 

takes to solve any instance of the considered problem of a given size. For 

example, the time-complexity of a given algorithm as a function of the size 

s is the order of f(s), when s -» QO and is denoted by 0(i(s)) or simply 

0(8). 

An algorithm can be classified as good or bad depending on whether or 

not it has polynomial time complexity. Similarly, a problem can be 

classified as 'hard' or 'easy' depending on whether or not it can be solved 

exactly by an algorithm with polynomial time complexity. Based on this 

distinction, an elegant theory of the complexity of problems has been 

developed (Garey and Johnson, 1979). 

Mathematical decision problems can be grouped into two classes, viz., 

easily solvable problems (class P) for which polynomial algorithms are 

known and problems which require considerable computing time (class 

N P ), for which only exponential time exact algorithms are known. A 
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problem type is in the class P if there exists an algorithm that, for any 

instance, has running time (the number of computational steps required) 

that is bounded by a polynomial function of the problem size, i.e., 

problems for which polynoniial-time algorithms have been devised. A 

problem type is in the class N P if it is possible to devise an algorithm for 

each problem, but no polynomial-time algorithm is known for any of 

them. For example, the problem of finding the maximal number among n 

numbers requires n-1 comparisons, thus such a problem is in P. For a 0 -1 

knapsack problem with n items to be solved exactly, we have to check, in 

the worst case, all 2n combinations of items. Such a problem is in NP. 

A problem is termed NP-Complete if (i) it belongs to NP and (ii) it has a 

property that if an efficient algorithm is found for it then an efficient 

algorithm can be found for every problem in NP. In this sense the NP-

Complete problems are the hardest in NP. KPs are NP-Complete problems 

(Garey and Johnson, 1979) and are difficult to solve optimally. Obviously, 

the difficulty rises rapidly if the number of items go up. 

An exact algorithm guarantees an optimal solution to a mathematical 

progranvming problem. The two principal approaches for finding an 

optimal solution to an integer-programming problem are the branch-and-

hound algorithm and the dynamic programming algorithm. Although there 

are noticeable differences among different problems, in general the NP-

Complete problems require a lot of computational time. 

Heuristic algorithms give near - optimal solutions in reasonably short 

computational time. Heuristic solutions to different combinatorial 

problems can be found using a number of heuristics. For a KP, the use of 

a heuristic algorithm may be justified for several reasons. First, it is often 

the case that obtaining exact solutions to a knapsack problem may not be 
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necessary and that one would be content with a solution that is sufficiently 

close to the optimal. This may well be the case, for instance, when the 

profit pj, themselves are only estimates of expected returns or when the 

knapsack problem is only a sub-optimisation of a much larger problem. 

Further as we see that there is no known polynomial algorithm for this 

problem and that there may well not be any such algorithm, restrictions 

on computing time may force one to be satisfied with a heuristic solution 

to large problem instances. 

Although this study deals with UKP, solution methods for very closely 

related problems of 0 - 1 KP and BKP are briefly discussed in the 

following. 

2.2 Solution Algorithms for Knapsack Problems 

Following the notation of complexity as 0(s), it can be said that for a 

KP, s is the number of possible items. In the discussion below, n is the 

number of items and C is the knapsack capacity. 

2.2.1 0 -1 Knapsack Problem 

This problem can be solved exactly by reduction algorithms where the 

number of variables are first reduced before applying the algorithm 

(Ingargiola and Korsh, 1973; Martello and Toth, 1988, 1990 and Nauss, 

1996). It can also be solved heuristically by a method of relaxation and 

upper bounds (Dantzig, 1957), where the computation for the Dantzig 

bound requires 0(n) time if the items are sorted according to non-

increasing values of the profit per unit weight. Other heuristic algorithms by 

0-1 KP include Sahni (1975) and Balas and Zemel (1980), which require 

0(n log n). 
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2.2.2 Bounded Knapsack Problem 

This problem can be solved exactly by branch-and-bound algorithms 

(Martello and Toth, 1977; Ingorgiola and Korsh, 1977 and Bulfin et al., 

1979). Aittoniemi and Oehlandt (1985) gives an experimental comparison 

of these, indicating the Martello and Toth (1977) one as the most effective. 

It can also be solved by dynamic programming (Gilmore and Gomory, 1966; 

Nemhauser and Ullmann, 1969) method requiring 0(nC?) time in the 

worst case and the space complexity is 0(nC) and can only solve problems 

of very limited size. The heuristic solution algorithms are upper bounds and 

approximate algorithms, where the computation time is 0(n). 

2.2.3 Unbounded Knapsack Problem 

The solutions to this problem include exact algorithms based on branch -

and - bound (Martello and Toth, 1977; Cabot, 1970; Gilmore and Gomory, 

1963) and dynamic programming (Garfinkel and Nemhauser, 1972). The 

heuristic algorithms are upper bounds and approximate algorithms (Magazine 

et al, 1975; H u and Lenard, 1975), the time complexity for the computation 

of the upper bounds is 0(n) and the time complexity of the approximate 

(Greedy) algorithm is 0(n), plus 0(n log n) for the preliminary sorting. 

This research focuses on the solution of the Unbounded Knapsack 

Problem (UKP). In the literature, there are five main heuristic algorithms 

for UKP: 

a) Density - ordered greedy heuristic (Dantzig, 1957; Martello and Toth, 

1990), 

b) Weight - ordered greedy heuristic (Horowitz and Sahni, 1978; Kohli and 

Krishnamurti, 1995), 
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c) Value - ordered greedy heuristic (Horowitz and Sahni, 1978; Kohli and 

Krishnamurti, 1995), 

d) Extended greedy heuristic (White, 1991), 

e) Total - value greedy heuristic (White, 1992; Kohli and Krishnamurti, 

1992; Lai, 1993). 

2.3 Heuristic Algorithms for the Unbounded Knapsack Problems 

The aforementioned five heuristic algorithms are discussed in the 

following. 

The solution method of these five greedy heuristics is termed 'greedy' 

because at each step ( except possibly the last one ) w e choose to introduce 

that object which according to one criterion or the other would increase 

the objective function value the most. A n object once selected, stays in the 

knapsack and therefore in the solution. The items can be ordered (a) in 

decreasing order of density pi/wi, (b) in increasing order of the item 

weights Wi, (c) in decreasing order of the profit of the item pi and (d) in 

decreasing order of the total-value Lc/wi J pi. 

2.3.1 Density - ordered Greedy Heuristic (HJ 

This is the classic heuristic for the unbounded knapsack problem. This 

procedure has been discussed in the literature among others, by Garey 

and Johnson (1979) and Martello and Toth (1990). Dantzig (1957) first 

introduced this algorithm. 
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Density-ordered greedy heuristic recursively determines a solution by 

making a variable with smallest marginal unit cost as large as 

possible. 

First, order the items so that 

pi > P2 > > pn-l > Pn 

where, pj = PJ/WJ , 1 < j < n 

Then set 

(a) xi = LC/wJ; 

(b) XJ = L(C - f>,wj/wjj , 2<j<n 
k=\ 

where for z e Z+ , |_zj is the integer part of z. 

Hi gives good results, but the worst case result is poor and it can be 

shown that there are instances where the optimal solution is almost twice 

the greedy solution. Under some restrictive assumptions, the greedy 

algorithm will give optimal solution (Magazine et al, 1975; H u and 

Lenard, 1975; White, 1991). An example of Hi is as follows. 

Example 1 

C = 100 

W2 = 50, wi = 51 

p2 = 99, pi = 102 

pi = 102/51 > p2 = 99/50 

Hi -> x2 = 0, xi = 1, z(Hi) = 102 

Optimal -> x2 = 2, xi = 0, z(opt) =198 

The heuristic solution value is almost half of the optimal solution value. 

Specifically, z(Hi) = 0.52 z(opt) 
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2.3.2 Weight - ordered Greedy Heuristic (A) 

Horowitz and Sahni (1978) formulated a greedy approach attempting to 

obtain a solution. This method tries to be greedy with the capacity and 

thus requires the objects to be ordered in non-decreasing weights, we try 

to put as many objects as possible with the least weight into the knapsack, 

thus using up as much capacity. This heuristic has arbitrarily bad worst-

case bounds (Horowitz and Sahni, 1978; Kohli and Krishnamurti, 1995) 

though the capacity is used up slowly with the profits coming in rapidly 

enough. Example 2 shows a very bad instance for Heuristic A. 

Example 2 

C = 100 

W2 = 10, wi = 9 

p2 =1000, pi =1 

A -> x2 = 0, xi = 11 

z(A) = 11 

Optimal -> X2 = 10, xi = 0 

z(opt) = 10000 

z(A) = 0.0011 z(opt) 

It is possible to find randomly generated instances where the weight-

ordered greedy heuristic provides the optimal solution value (Example 3). 

In general they are expected to perform poorly. 

Example 3 

C = 20 

W3 = 10, W2 = 15, wi = 18 

p3 = 15, p2 = 24, pi = 25 

A -> x3 = 2, x2 = 0, xi = 0 

z(A) = 30 
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Optimal -> x3 = 2, x2 = 0, xi = 0, z(opt) = 30 

2.3.3 Value - ordered Greedy Heuristic (B) 

This greedy heuristic discussed by Horowitz and Sahni (1978) followed 

by Kohli and Krishnamurti (1995) considers objects in order of non-

increasing profit values. This method too has arbitrarily bad worst-case 

bounds (Horowitz and Sahni, 1978; Kohli and Krishnamurti, 1995) and 

does not usually yield an optimal solution though the objective function 

value takes large increases at each step. The number of steps is reduced as 

the knapsack capacity is used up at a rapid rate. A bad instance is given in 

Example 4. 

Example 4 

C = 100 

W2 = 99, wi = 1 

P2 = 2, pi = 1 

B -> X2 = 1, xi = 1 

z(B) = 3 

Optimal -> x2 = 0, xi = 100 

z(opt) = 100 

z(B) = 0.03 z(opt) 

There are of course instances where the value-ordered greedy heuristic 

gives the optimal solution value (e.g., Example 5). In general, this heuristic 

too is expected to perform poorly. 

Example 5 

C = 80 

w 4 = 20, w 3 = 18, w 2 = 15, wi = 7 
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p4 =36, p3 =20, p2 =20, pi =9 

B -> X4 = 4, x3 = 0, x2 = 0, xi = 0, z(B) = 144 

Optimal -^ X4 = 4, X3 = 0, X2 = 0, xi = 0, z(opt) = 144 

2.3.4 Extended Greedy Heuristic (H2) 

White (1991) discussed an extension of Hi, which he called H2. This 

involves pairs of items rather than a single item as in the density-ordered 

greedy heuristic. It requires that the best combination of the first two 

items (from the ratio sorted list in non - increasing order) be taken and 

then the best combination of the next two items is taken, and so on. 

Unfortunately, neither H2 is always superior to Hi nor indeed is Hi always 

superior to H2. Although the worst case result with a ratio bound of 2 is 

the same for both heuristics, on many occasions the two-at-a-time heuristic 

(H2) can be better. It is possible that Hi gives an optimal solution, with H2 

not giving an optimal solution and also it is possible that H2 gives an 

optimal solution, but Hi does not give an optimal solution. If Hi uses up 

exactly the available resources, then Hi definitely gives the optimal 

solution. But this need not be true with H2. Example 6 is an instance where 

H2 is better than Hi. 

Example 6 

C = 10 

W3 = 3, W2 = 2, Wl = 1 

p3 = 14, p2 = 8, pi = 1 

p3 = 14/3 > p2 = 4 > pi = 1 

Hi -> x3 = 3, x2 = 0, xi = 1, z(Hi) = 43 

H 2 -> x3 = 2, x2 = 2, xi = 0, z(H2) = 44 
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Example 7 is an instance where H2 is worse than Hi. 

Example 7 

C = 10 

W4 =3, W3 = 2, W2 = 1, Wl = 1 

P4 = 20, p3 = 12, p2 = 5, pi = 1 

p4 = 20/3 >p3 = 6>p 2 = 5>pi = l 

Hi -» X4 = 3, X3 = 0, X2 = 1, xi = 0, z(Hi) = 65 

H 2 -> x4 = 2, x3 = 2, x2 = 0, xi = 0, z(H2) = 64 

If combinations of 3 or more items are considered instead of 2, we 

might call them H3, H4, and so on. These, however, clearly increases 

computation time requirements and lose the benefits of obtaining 

solutions quickly. It may be noted that Hn, where n = number of items, is 

in fact an exact algorithm for the original problem. 

2.3.5 Total-Value Greedy Heuristic (TV) 

Total-Value Heuristic (White, 1992; Kohli and Krishnamurti, 1992; Lai, 

1993) is another heuristic solution method for the unbounded knapsack 

problem. 

At step i, the total-value heuristic selects an item for which the values 

PJ LCI/WJJ across all available items j is maximum, where Ci is the 

available knapsack capacity at the beginning of step i. The items need 

not be sorted in a non-increasing order, because all the items have to 

be considered at every step. 
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Example 8 is an instance where the total-value greedy heuristic gives the 

optimal solution value. The density-ordered greedy heuristic and the 

extended greedy heuristic in this instance performs poorly. 

Example 8 

C = 30 

W4 = 12, W3 = 10, W2 = 9, Wl = 8 

p4 = 22, p3 = 21, p2 = 20, pi = 19 

p4 = 22/12 < p3 = 21/10 < p2 = 20/9 < pi = 19/8 

Hi -> X4 = 0, x3 = 0, x2 = 0, xi = 1, z(Hi) = 57 

H 2 -> x4 = 0, x3 = 0, x2 = 2, xi = 1, z(H2) = 59 

TV -» x4 = 0, x3 = 3, x2 = 0, xi = 0, z(TV) = 63 

Optimal -» X4 = 0, X3 = 3, X2 = 0, xi = 0, z(opt) =63 

Lai (1993) called this solution method as Heuristic A. He showed that this 

heuristic has a worst-case performance ratio > 4/7. 

White (1992) and independently Kohli and Krishnamurti (1992) showed 

CO 

that the worst case bound of TV given by 1/ ]JT 1 / h(i) where h(i ) is an 

integer value given by the recursion h(l) = 1, h(2) = k + 1, h(i ) = [h(i -

1)].[h(i - 1)+1] for i > 3, is always better than that of Hi given by k/(k 

+ 1) (Fisher, 1980) where k is the integer part of the ratio of the 

knapsack capacity to the weight of the heaviest item, i.e., k = 

LC/wmaxJ. Hi behaves like TV with the integrality constraint removed 

(i.e., if the fractional amounts of items are allowed to be included in the 

knapsack). The performance of the heuristics depend on k. As k 

increases, the difference between Ll/wJ and 1/wi for i = 1, 2, ..., n is 

reduced, and consequently the ordering due to the total-value heuristic 
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tends to be the ordering due to the density-ordered greedy heuristic. As a 

result the difference between the two worst-case bounds decreases. 

The principal benefit of the total - value heuristic appears to be in the fact 

that it considers all three parameters — unit weight, unit value and 

knapsack capacity — in ordering items, i.e., it selects items in a non-

increasing order of their m a x i m u m possible contribution to the solution 

value given the available knapsack capacity at each step. A consequence of 

considering all three parameters is that T V always gives a better worst-case 

performance than that of Hi for the unbounded knapsack problem as shown 

in Table 2.1. Individual problem instances do however exist where Hi 

gives better results than T V (e.g., Example 9). 

Table 2.1: Worst-case Bounds for Density - ordered Greedy Heuristic and Total-value 
Heuristic. Q7rom Kohli & Krishnamurti, 1992) 

t k 

1 

2 

3 

4 

5 

r(TV) 

0.5913555 

0.7026825 

0.7678212 

0.8101038 

0.8396093 

r(Hi) 

0.5000000 

0.6666667 

0.7500000 

0.8000000 

0.8333333 

W e observe from the above table that the difference between the worst-

case bound for T V and Hi is the largest for k=l. This difference decreases 

as k increases. As k approaches infinity, both heuristics obtain the optimal 

solution. Because of the greater number of operations needed per step, T V 

takes more computational time than Hi. 

t k = number of the largest item that can fit into the knapsack and 

r = (Total profit by heuristic algorithm) / (Total profit by optimal algorithm). 
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Example 9 

C = 41 

W7 = 7 , W6 = 8, W5 = 5, W4 = 4, W3 = 9, W2 = 9, Wl = 3 

p7 =42, p6 = 46, p5 = 26,p4 =20, p3 =38, p2 =32, pi =10 

p7=42/7 > p6=46/8 > p5=26/5 > p4=20/4 > p3=38/9 > p2=32/9 > pi=10/3 

Hi -> x7 = 5, x6 = 0, x5 = 1, X4 = 0, x3 = 0, x2 = 0, xi = 0, z(Hi) = 236 

T V -> x7 = 0, x6 = 5, x5 = 0, x4 = 0, x3 = 0, x2 = 0, xi = 0, z(TV) = 230 

2.3.6 Combination of Greedy Heuristics 

Kohli and Krishnamurti (1995) analysed the worst-case performance of a 

combination of greedy heuristics (density-ordered greedy, weight-ordered 

greedy, value-ordered greedy and the total-value greedy heuristic) for the 

Unbounded Knapsack Problem. 

An analysis of composite heuristics provides insight into why one 

heuristic performs well while the other performs poorly. If the heuristics 

complement each other, the composite solution value can be closer to the 

optimal than the solution value of the individual heuristics. This was 

shown by the composite of the density-ordered and total-value greedy 

heuristics by guaranteeing a tight worst-case bound of (k+l)/(k+2). The 

density-ordered greedy heuristic by itself performs most poorly when the 

densest item leaves a significant capacity of the knapsack unused, also 

leaving an insufficient amount of the weight capacity to fit any other item. 

The total-value greedy heuristic compensates for this limitation by 

choosing items with lower density that fill more of the knapsack and 

hence contribute more to the total solution value. But this heuristic cannot 

discriminate between the items that have the same total-value contribution 

with different densities. Here the density-ordered greedy heuristic is 

better than the total-value heuristic by choosing items that fill the 
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knapsack at a more rapid rate. The density-ordered and total-value greedy 

heuristics appear to complement each other in this sense. However, the 

weight-ordered and value-ordered greedy heuristics use very little 

information regarding the problem so much so that they seem to neither 

complement each other, nor the density-ordered and total-value 

heuristics. The usefulness of the weight-ordered and the value-ordered 

greedy heuristics thus seem insignificant in solving UKPs. A combination 

of the density-ordered and the total-value greedy heuristics can be used to 

provide better lower bounds on the optimal solution value. 

2.4 Meta - Heuristics 

Meta-heuristics (Osman and Kelly, 1996; Reeves, 1993) are recent 

development in approximate search methods for solving complex 

optimisation problems that arise in business, commerce, engineering, 

industry and many other areas. This class of approximate methods 

developed in the early 1980s, was designed to attack hard combinatorial 

optimisation problems where classical heuristics have failed to be effective 

and efficient. They provide general frameworks that allow for creating 

new hybrids by combining different concepts derived from classical 

heuristics, artificial intelligence, biological evolution, neural systems and 

statistical mechanics. The approaches include genetic algorithms, greedy 

search procedure, problem-space search, neural networks, simulated 

annealing, tabu search, threshold algorithms and their hybrids. 

A meta-heuristic can be defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different 

concepts for exploring and exploiting the search spaces using learning 

strategies to structure information in order to find near-optimal solutions 

efficiently. 
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Meta-heuristics have not been used in the solution algorithms for the 

Unbounded Knapsack Problem but the different search methods can 

definitely be incorporated in the heuristic approach because of the 

generation process being iterative. 

Classification of a comprehensive list of references on the theory and 

application of meta-heuristics is provided by Osman and Laporte (1996). 

For completeness, a brief description of the most popular meta-heuristics 

is given in the following. 

2.4.1 Simulated Annealing 

Simulated Annealing came to use in the early 1980s as a heuristic 

technique for combinatorial optimisation problems and was said to be the 

most simple and robust algorithm capable of providing good quality 

solutions to some very difficult problems. 

The algorithm was first published by Metropolis et al. (1953) and later by 

Kirkpatricketal. (1983). 

This algorithm is based on the analogy between the annealing process of 

solids and the problem of solving combinatorial optimisation problems. In 

condensed matter physics, annealing denotes a process in which a solid in 

a heat bath is melted by increasing the temperature of the heat bath to a 

high m a x i m u m value at which all molecules of the solid randomly arrange 

themselves into a liquid phase. 

This approach is regarded as a variant of the well-known heuristic 

technique of local (neighbourhood) search, in which a subset of the 

feasible solutions is explored by repeatedly moving from the current 
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solution to a neighbouring solution. However, this technique needed 

disappointingly long running times even to find the approximate 

convergence to optimum. But a number of experiments and practical 

applications shows that annealing can provide a useful solution method 

for a variety of problems, generally out-performing standard descent 

methods and sometimes competing effectively with specialist heuristics. 

This method is easy to implement, it is applicable to almost any 

combinatorial optimisation problem and it usually provides reasonable 

solutions. W h e n faced with the challenge of designing a heuristic solution 

for a new problem, simulated annealing is certainly worth considering. 

Simulated annealing is applicable in Knapsack Problems (Cagan, 1994; 

Drexl, 1988; Hanafi et al, 1996; Abramson et al, 1996 and Ohlsson et al, 

1993) as well as many other applications. 

2.4.2 Tabu Search 

Tabu search is an iterative meta-heuristic search procedure introduced by 

Glover (1986) for solving optimisation problem. This search is based on 

intelligent problem solving. It shares the ability to guide a subordinate 

heuristic (such as the local neighbourhood search procedure) to continue 

the search beyond a local optimum where the embedded heuristic will 

normally become trapped. The process in which the tabu search method 

seeks to transcend local optimality is based on an aggressive evaluation 

that chooses the best available move at each iteration even when this move 

may result in a degradation of the objective value. This search begins in 

the same way as an ordinary local search, proceeding iteratively from one 

solution to another until a chosen termination criterion is satisfied. Many 

tabu search implementations are largely or wholly deterministic. A n 

exception occurs for the variant called probabilistic tabu search, which 
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selects moves according to probabilities based on the status and 

evaluations assigned to these moves by the basic tabu search principles. 

Tabu search concepts and strategies offer a variety of fruitful possibilities 

for creating hybrid methods in combination with other approaches. 

A tabu search method that incorporates tabu restrictions on the logical 

structure of the generated problem was studied by Dammeyer and Voss 

(1993) and Hanafi et al. (1996) on Knapsack Problems. It finds use in 

Cutting and Packing Problems (Laguna and Glover, 1993). Tabu search is 

also applicable in production scheduling, routing, design, network 

planning, expert systems and a variety of other areas. 

2.4.3 Genetic Algorithms 

Genetic Algorithms are a class of adaptive search methods based on a 

abstract model of natural evolution. It can also be understood as the 

intelligent exploitation of a random search. They were first developed in 

the early 1970s by Holland (1975), and later refined by De Jong (1975), 

Goldberg (1989), and many others. Only recently their potential for 

solving combinatorial optimisation problems has been explored. The most 

early applications were in the realm of Artificial Intelligence — game-

playing and pattern recognition for instance. 

The name Genetic Algorithm originates form the analogy between the 

representation of a complex structure by means of a vector of components, 

and the idea, familiar to biologists, of the genetic structure of a 

chromosome. For example, in the selective breeding of plants or animals, 

offspring are sought which have certain desirable characteristics that are 

determined at the genetic level by the way the parents' chromosomes 
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combine. The basic idea is to maintain a population of candidate solutions 

that evolves under a selective pressure that favours better solutions. 

Generally, Genetic Algorithm is an iterative procedure that operates on a 

finite population of N chromosomes (solutions). The chromosomes are 

fixed strings with binary values (0 or 1) at each position. Each 

chromosome of the population are evaluated according to a fitness 

function. Members of the population are selectively interbred, often in 

pairs to produce offspring. The fitter a member of the population the most 

likely it is to produce an offspring. Genetic operators are used to facilitate 

the breeding process that results in offspring inheriting properties from 

their parents. The offspring are evaluated and placed in the population 

replacing the weaker members of the last generation. The new 

chromosomes resulting from these operations form the population for the 

next generation and the process is repeated until the system ceases to 

improve. 

Genetic Algorithms encounters a number of problems when solving 

combinatorial problems. They fail to find satisfactory solutions for many 

reasons. The genetic algorithm binary encoding/decoding has been found 

unsuitable and normal cross-over operations often lead to many infeasible 

solutions. This can be overcome by using genetic algorithm in 

combination with other techniques such as the branch and bound, local 

search, simulated annealing and tabu search. 

Genetic Algorithm is applicable in many combinatorial problems like the 

Bin Packing and related problems (Falkenauer and Delchambre, 1992; 

Reeves, 1996) and the Knapsack Problems (Fairley and Yates, 1993; Thiel 

and Vob, 1994). 
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2.4.4 Neural Networks 

Neural Networks are models based on the functioning of the human brain. 

They have been successful in solving problems whose structures can be 

exploited by a process linked to those of associated memory. They have 

been successfully used to solve a variety of practical problems in areas 

such as pattern recognition and optimisation. 

The interest in using neural networks in combinatorial optimisation 

problems was pioneered by the work of Hopfield and Tank (1985) and 

later developed by Aarts and Korst (1989). This is best used in any class of 

problems because of its robustness, generalisation capabilities, and speed 

of operation through hardware implementability of inherent parallel 

structures. 

The networks consist of a set of competing connected elements. The 

competing elements are logic units with binary states and are linked by 

symmetric connections. Each connection is associated with a weight 

representing the interconnections between units when both are 'on'. A 

consensus function assigns to each configuration of the network a real 

value. The units may change their state in order to maximise the 

consensus. A state change of an individual unit is determined by a 

deterministic response function of the states of its adjacent units. If the 

response function is a probability function, then the randomised version of 

the network is called the Boltzmann machine. The challenge of the model 

is to choose appropriate network structure and corresponding connection 

strengths such that the problem of finding near optimal solutions of the 

optimisation problem is equivalent to finding maximal configurations of a 

network. 

Neural networks find their application in Knapsack Problems (Glover, 

1994; Ohlsson et al, 1993) and many other combinatorial problems, like the 
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Cutting and Packing Problems (Bahrami and Dagli, 1994) and the 

Assignment Problems (Kurokawa and Kozuka, 1994). 

2.5 Martello - Toth Exact Algorithm 

An U K P being an NP-Complete problem requires a lot of computational 

time. The various approaches to its exact solution include branch-and-

bound algorithm proposed by Gilmore and Gomory (1963), Cabot (1970) 

and Martello and Toth (1978). 

Many instances of UKP can be solved by branch-and-bound algorithms for 

very large values of n . For these problems, the preliminary sorting of the 

items requires, on average, a comparatively high computing time. This 

was overcome by Balas-Zemel algorithm (1980) which is based on the 

"core problem". The idea of Balas-Zemel algorithm is to first solve, 

without sorting, the continuous relaxation of UKP, thus determining the 

Dantzig upper bound, and then searching for heuristic solutions of 

approximate core problems giving the upper bound value for UKP. When 

such attempts fail, the reduced problem is solved through two effective 

exact procedures, the Fayard-Plateau algorithm (1982) and the Martello-

Toth algorithm (1988). 

Martello-Toth algorithm is easily the best of the two. The procedure can be 

sketched as follows: 

Step 1: Choose a cut off value for pj / Wj to select a core (which is a 

subset of the original problem). This would be a very small 

fraction of n. 
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Step 2: Solve the core problem optimally. This solution is an 

approximate solution to the original problem. 

Step 3: If this solution value equals that of the upper bound computed 

for the original problem, the optimal value is found. 

Step 4: Otherwise, include a variable not in the core that has the 

potential to improve the existing solution. 

Step 5: The core with the new variable is solved again and the process 

continued until an optimum is found. 

Martello-Toth algorithm is an improvement over the Fayard-Plateau 

algorithm in many respects. Here, the approximate solution determined, is 

more precise (often optimal). This is obtained through a more careful 

definition of the approximate core and through exact (instead of heuristic) 

solution of the corresponding problem. The probability of obtaining such 

an approximate solution that is optimal is high because of a tighter upper 

bound computation. Finally, the exact solution of the subproblems are 

obtained by adapting an effective Martello-Toth branch-and-bound 

algorithm (1978). 

Although the Martello-Toth (1990) algorithm is efficient, it still takes quite 

some time for finding the exact solution. In our study, great difficulty 

arose for problem instances with problem size n = 500. Problem with 

larger sizes were easily solved within reasonable computational time. The 

difficult instances are further investigated (see Appendix D) but the reason 

for such huge running time is not clear. A sample data set is included in 

that appendix for further research. 
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2.6 Dominance Criteria 

One very important aspect in any solution algorithm for UKP is the 

phenomenon of dominance discussed by Martello and Toth (1990); 

Dudzinski (1991), Johnston and Khan (1995) and Zhu and Broughan 

(1996). 

The domination of items can be defined as follows: 

Item i dominates item j if there exists positive integer r such that nvi < Wj 

and rpi > pj. An example follows. The implication of this is that an optimal 

solution to an instance of UKP obtained using only the undominated items 

cannot be worse than any other solution that contains one or more 

dominated items. The dominated items therefore can be eliminated and 

the problem size greatly reduced. 

Martello and Toth (1990) and Dudzinski (1991) reported that with p and w 

randomly generated from a uniform distribution, the number of 

undominated items is extremely small. For instance, Dudzinski's (1991) 

computational result shows that the average number of undominated 

items for an uncorrelated problem (items are defined to be uncorrelated if 

there is no relation between the profits and the corresponding weights of 

the items) of size 500 is in fact 2.3 and our computation yields on average 

2.2 undominated items. A theoretical analysis supporting this result in 

regard to item dominance is available in Johnston and Khan (1995). Hence, 

a knapsack problem can be reduced to a very small size and solving it 

would take negligible computational time. If p and w are correlated, there 

are many undominated items and by maintaining a very strong 

correlation, problem instances with a large number of undominated items 

can be constructed. In this research, the dominance phenomenon is 

studied on five different classes with varying correlation. 
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Example 10 

W4 = 15, W3 = 13, W2 = 11, Wl = 5 

p4 = 60, p3 = 55, p2 = 39, pi = 20 

Item 1 dominates item 2 (where r = 2) and hence item 2 can be eliminated. 

Similarly, item 1 dominates item 4 (r = 3) and hence item 4 can be 

eliminated. The remaining undominated items are items 1 and 3. The 

capacity of the knapsack should obviously be such that it must 

accommodate at least one unit of the largest item. 
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CHAPTER 3 

3. EMPIRICAL ANALYSIS OF HEURISTICS FOR THE 
UNBOUNDED KNAPSACK PROBLEM 

The heuristic methods have always been helpful in solving problems that 

were too large or complex for developing algorithms. The effectiveness of 

a heuristic for solving a given class of problems can be demonstrated by 

empirical testing. 

3.1 Computational Design and Data Generation 

W e analyse the experimental behaviour of exact and approximate 

algorithms for the Unbounded Knapsack Problem on a set of randomly 

generated test problems. The heuristics are evaluated by experimenting 

with a series of problem instances using different selection of problem 

classes and setting various performance parameters. They are often used 

to identify "good" approximate solutions to difficult problems in less time 

than is required for an exact algorithm to uncover an exact solution. The 

computational testing is done to compare the performance of the five 

heuristics - the density-ordered greedy, the weight-ordered greedy, the 

value-ordered greedy, the extended greedy and the total-value greedy 

with the optimal solution algorithm (obtained by Martello-Toth 

algorithm). W e compare the FORTRAN 77 implementations of the five 

heuristics. All runs have been executed on a 200 M H z Pentium Pro with 

option "-o" for the FORTRAN compiler. 

A set of 2500 test problems was randomly generated with size n equal to 

50, 100, 500, 1000, 5000, 10000, 20000, 30000, 40000 and 50000 (250 

problems of each size). These test problems were generated with varying 
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degrees of correlation between the constraint and the objective function 

coefficients, i.e., between the profits and weights of the items, as described 

in sections 2.10 and 3.5 of Martello and Toth (1990) with an additional two 

types of problem instances with stronger correlation. All the data sets 

were randomly generated as described in the following. The FORTRAN 

codes for data generation are given in Appendix A. The sample data sets 

are shown in Table 3.1. 

Uncorrelated 

(Class I) 

Wj uniformly random in [10, 9999] 

pj uniformly random in [1, 9999] 

Weakly Correlated 

(Class II) 

Wj uniformly random in [10, 9999] 

PJ uniformly random in 

[WJ - 100, WJ + 100] 

Strongly Correlated 

(Class III) 

Wj uniformly random in [10, 9999] 

pj = Wj + 100 

Very Strongly Correlated 

(Class TV) 

Wj uniformly random in [1, 9999] 

PJ uniformly random in [1, 9999] 

2.0 < pj/wj < 2.5 t 

Very Very Strongly Correlated : Wj uniformly random in [1, 99999] 

(Class V) pj = Wj * {(WJ - min Wj + 1)/ (max Wj 

- min WJ + 1)} * 100 

The right hand side C of the knapsack constraints, the knapsack capacity is 

the integer value e [100000,1000000] satisfying the condition max Wj < C. 

t The pj/wj ratio is limited to the range (2.0, 2.5) so as to get a large number of 
undominated items. Investigation on different ratio ranges is given in Appendix 

C. 
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Table 3.1: Sample data sets for the five problem classes 

Class I 

Ratio 

1.502 

0.227 

6.914 

0.047 

0.473 

0.636 

0.688 

0.299 

1.917 

2.525 

wi 

yi<bi 

1791 

570 

2912 

4953 

3506 

2982 

4335 

2378 

1247 

Pi 

4898 

406 

3941 

136 

2341 

2229 

2053 

1295 

4558 

3149 

Class II 

Ratio 

1.012 

0.746 

0.987 

0.994 

1.009 

0.998 

1.001 

0.995 

1.012 

0.986 

Wj 

8375 

118 

5729 

5698 

3365 

3802 

3807 

8134 

8202 

1231 

Pi 

8474 

88 

5652 

5662 

3395 

3795 

3811 

8097 

8301 

1214 

Class III 

Ratio 

1.024 

1.028 

1.095 

1.022 

1.075 

1.030 

1.077 

1.031 

1.032 

1.030 

Wj 

4254 

3561 

1052 

4570 

1333 

3330 

1294 

3212 

3088 

3307 

Pi 

4354 

3661 

1152 

4670 

1433 

3430 

1394 

3312 

3188 

3407 

Class IV 

Ratio 

2.129 

2.287 

2.427 

2.095 

2.351 

2.019 

2.443 

2.245 

2.309 

2.016 

Wj 

3836 

1211 

724 

569 

2016 

4718 

3367 

4270 

4103 

3717 

Pi 

8168 

2769 

1757 

1192 

4740 

9524 

8224 

9585 

9474 

7495 

Class V 

Ratio 

35.830 

92.717 

14.031 

55.743 

18.894 

47.336 

91.378 

47.973 

65.183 

91.399 

Wj 

35830 

92716 

14031 

55742 

18894 

47336 

91377 

47973 

65182 

91398 

Pi 

1283801 

8596343 

196870 

3107201 

356986 

2240719 

8349839 

2301431 

4248735 

8353678 

By increasing the correlation, w e can decrease the difference between 

maxj { PJ/WJ } - minj { PJ/WJ }. This will increase the expected difficulty of 

the corresponding problems. By identifying the dominated items and then 

applying the heuristic algorithms to the undominated items, the 

computational time can be greatly decreased. The dominance 

phenomenon on the above five classes have been extensively studied in 

Section 3.2. The first three problem classes (Class I, II and III) discussed by 

Martello and Toth (1990) gives very few undominated items whereas the 

fourth and the fifth classes are generated with stronger correlation so as to 

give a large number of undominated items. The Class IV is in fact similar 

to the value-independent (sum-of-subset in Martello-Toth's terminology) 

knapsack problem, where the density ratios are same for all items; in this 

class of problem, the ratio range is narrow, but not constant. The problem 

instances in Class V have been generated where the ratios are proportional 

to the respective item weights. The reason for this scheme is as follows. 
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As evident from the definition of the dominance criterion, items of higher 

weight are usually dominated by those of lower weight (the items with the 

lowest weight is never dominated). This is avoided for this class of 

problems by ensuring that items of higher weight have proportionally 

higher density ratios. Indeed, it is found that, for this class of problems, 

only a small fraction of items are dominated. 

Problem instances with smaller size n are generated with smaller w and p 

range and large size problem instances are generated with larger w and p 

range to obtain data sets with n as large as possible. Taking large w range 

for smaller problem size would give fewer undominated items. Problem 

instances in Class V are generated with w in the range [1, 99999] so as get 

large number of undominated items. Despite these minor modifications in 

the data generation for different n, the results should be comparable 

because the problem instances were unchanged across different 

algorithms. 

3.2 Effect of Dominance on the Five Problem Classes 

To study the dominance phenomenon on the five problem classes, the 

number of undominated items is found for 2500 test problems. 

Table 3.2 shows the average number of undominated items for the five 

problem classes. The first three types of correlation discussed by Martello 

and Toth (1990) results in few undominated items (Figure 3.1a) where as 

the fourth and the fifth classes are generated with stronger correlation so 

as to give many undominated items (Figure 3.1b). 
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Table 3.2: Average number of Undominated items (average of 5 problem instances for each 
class and each n ) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

Number of undominated items, N 

Uncorrelated 

(Class I) 

2.0 

1.7 

2.2 

2.6 

3.4 

2.6 

2.8 

2.8 

3.2 

1.8 

Weakly 

Correlated 

(Class II) 

1.8 

2.1 

4.6 

2.8 

3.4 

2.6 

4.6 

4.2 

3.6 

3.4 

Strongly 

Correlated 

(Class III) 

2.4 

2.9 

5.8 

7.2 

8.6 

6.0 

5.0 

6.0 

6.2 

6.6 

Very Strongly 

Correlated 

(Class IV) 

18.0 

26.0 

49.8 

83.4 

173.4 

241.2 

285.2 

377.6 

399.6 

401.8 

Very Very 

Strongly 

Correlated 

(Class V) 

37.8 

97.0 

389.8 

954.8 

4882.2 

9491.4 

18123.0 

25869.2 

32908.0 

39322.2 

W e see that as the number of items, n, increases, there is no well defined 

increase in the number of undominated items, N, for the Uncorrelated, 

Weakly Correlated and Strongly Correlated classes of problems where as, 

the number of undominated items increases with n for the Very Strongly 

Correlated and the Very Very Strongly Correlated classes of problems. 

This behaviour is illustrated in the figures 3.1a and 3.1b. 
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Figure 3.1a: Number of Undominated items for Uncorrelated, Weakly Correlated and 

Strongly Correlated class of UKPi 

Correlation 

Very Strongly 

(Class IV) 
i 

Very Very Strongly 

(Class V) 

Total Number of Items, n 

Figure 3.1b: Number of Undominated items for Very Strongly Correlated and Very 

Very Strongly Correlated class of UKP 

* Note: All the five classes of problems are not shown in the same figure 

because of huge difference in scales. 
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3.3 Performance Measures and Factors 

This section discusses the ways in which to obtain high-quality solution 

based on the attributes that are well recognised as valid criteria for the 

comparison of heuristic algorithms. 

3.3.1 Measuring Performance 

The most important decision one makes in an experimental study of 

heuristics is the characterisation of algorithm performance (Barr et al., 

1995). For the Unbounded Knapsack Problem, the following questions 

often arise when testing a given heuristic on a specific problem instance. 

1. What is the quality of the best solution found? 

2. H o w long does it take to determine the best solution? 

3. H o w quickly does the algorithm find a good solution? 

4. H o w robust is the method? 

5. What is the tradeoff between feasibility and solution quality? 

The quality of the solutions obtained by the heuristics of UKP has been the 

most important consideration in our study. The quality of a solution is 

judged by comparing it with the corresponding optimal solution obtained 

by the exact algorithm of Martello-Toth (1990). 

The running time required by the heuristic algorithm to solve a given 

problem is often a crucial consideration in choosing between competing 

algorithms. This has not been particularly experimented for the heuristics 

of U K P in our study as all the existing heuristics take a small fraction of 

computation time when compared with the execution time of Martello-

Toth exact algorithm. The time taken by each run has been recorded. 
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The algorithms tested in this study are all greedy type, and in general, 

they all yield good solutions quickly. Therefore, the time to find good 

solutions is not very important. The feasibility of the solutions is not 

relevant for UKP. The robustness of the algorithms have been indirectly 

tested by testing them on problem instances of varying structure and size. 

There are other factors that need to be considered before selecting a 

heuristic algorithm. Ease of implementation is an important consideration. 

Difficult-to-code algorithms that require substantial amounts of computer 

time m a y not be worth the effort if they only marginally outperform an 

easy-to-code algorithm that is extremely efficient. The algorithm should 

also be flexible, in the sense that it should be able to handle all problem 

variations. A heuristic for U K P that can solve only small problems, is 

clearly, not as flexible as the one that can solve both small and large UKPs. 

Simplicity is another important consideration. Simply stated algorithms 

are more appealing to the user than cumbersome algorithms and they 

more readily lend themselves to various kinds of analysis. 

The five heuristic solutions - the density-ordered greedy, the weight-

ordered greedy, the value-ordered greedy, the extended greedy and the 

total-value greedy heuristic solutions are obtained for the five classes of 

problem instances and this is compared to the optimal solution (obtained 

from Martello and Toth algorithm, M T U 2 ) . The ratio between the heuristic 

solution value and the optimal solution value are reported. Also, the total 

run time taken for the execution of the algorithms excluding the time 

taken for input and output over a wide range of test problems are 

recorded. Thus, the quality, speed and the robustness of the heuristics are 

effectively measured. 
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3.3.2 Factors that Influence the Performance of the Heuristic 

Algorithm 

The factors that affect the performance of an algorithm are the problem 

parameters and the test environment. The most important problem 

parameter is the size of the problem, n. The other parameters considered 

are the correlation between the profit (p,) and the weight (WJ), the 

knapsack capacity (C) and the profit/weight ratio of the item. 

The test problems randomly generated for the five problem classes are 

solved for 10 different n for the five heuristic algorithms and the exact 

solution algorithm. Each problem is further solved for 10 knapsack 

capacities in the range [100000,1000000] with an increment of 100000. The 

codes are executed on small as well as large instances (largest n = 50000 ) 

so as to yield accurate predictions for more realistic problems. The six 

FORTRAN 77 codes are run on the same test problems and on the same 

computer configuration. 

3.4 Results 

The five heuristics are compared with the optimal solution algorithm to 

characterise their performance. 

Table 3.3 compares the density-ordered greedy heuristic (Hi), the weight-

ordered greedy heuristic (A) and the value-ordered greedy heuristic (B) 

for UKP. W e see that heuristics A and B are no better than Hi for the five 

problem classes. Our idea is to compare the five heuristics with the 

optimal solution to characterise their performance. Tables 3.4a, 3.4b, 3.5a, 

3.5b, 3.6a, 3.6b, 3.7a, 3.7b, 3.8a and 3.8b summarise the results of the three 

heuristic algorithms Hi, H2 and TV and the exact algorithm M T U 2 
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(Martello and Toth, 1990) for the UKP on the generated 2500 test problems 

across the five problem classes. 

For all problems, C e [100000, 1000000] increment of 100000 for n = 50, 

100, 500,1000, 5000,10000, 20000,30000,40000 and 50000. 

We compare the FORTRAN 77 implementations of the following 

algorithms. 

Code 

DGREEDY 

WGREEDY 

VGREEDY 

EXTGREED 

TOT_VAL 

MTU2 

Algorithm 

Density-Ordered Greedy Heuristic (HI) 

Weight-Ordered Greedy Heuristic (A) 

Value-Ordered Greedy Heuristic (B) 

Extended Greedy Heuristic (H2) 

Total-Value Greedy Heuristic (TV) 

Martello-Toth Optimal Algorithm 

The codes are provided in Appendix B. 

All runs have been executed on the 200MHz Pentium Pro computer. For 

each data set and value of n, the tables give the average running times, 

expressed in seconds, computed over 5 problem instances for each of the 

five problem classes. Sorting and dominance check times are also 

separately shown. 

As shown in Table 3.3, the density-ordered greedy heuristic outperforms 

the weight-ordered greedy heuristic (A) and the value-ordered greedy 

heuristic (B) in terms of the quality of solution. The performance 

comparison between heuristics A and B shows that B is slightly better, 

particularly if p and w are very strongly correlated and thereby resulting 

in a large number of undominated items. For problems of Class III, 
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heuristic A performs better than heuristic B, possibly because of the fact 

that the profits (values) play insignificant role and the contribution of an 

item is influenced by the insertion of many (small) items. For problems 

with high N, i.e., a large number of undominated items, the value-ordered 

greedy heuristic (B) is better than the weight-ordered greedy heuristic (A) 

since there are many possible good combinations of items for assigning to 

the knapsack, and these are largely determined by the values of items. 

Table 3.3: Comparison of solutions for H „ A and B (for the five problem classes, 500 
problem instances in each class). 

Number of 
items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

Uncorrelated 

(Class I) 

Hi = B > A 

Hi = B > A 

Hi > A > B 

Hi > B > A 

Hi > B > A 

Hi = B > A 

Hi - B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Weakly 
Correlated 

^Class II) 

Hi = B > A 

Hi > B > A 

Hi > B > A 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Strongly 
Correlated 

(Class III) 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Hi = A > B 

Very Strongly 
Correlated 

(Class IV) 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Hi > B > A 

Very Very 
Strongly 
Correlated 
(Class V) 

Hi = B > A§ 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

Hi = B > A 

The following ten tables summarise the computational results of the five 

problem classes and ten problem sizes. The performance of the heuristics 

in terms of increase in the capacity, increase in problem size, difference in 

the p/w (density) ratio range, the running time of the heuristics in 

comparison to the running time of the exact solution algorithm, and the 

effect of dominance, is looked at. 

§ Hi = B > A means the solution by Hi and the solution by B are equal and is 
better than the solution by A. Other relations are similarly defined. 
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The notations of the symbols used in the Tables are as below. 

r = Average of Ri (R2, R3) for 5 problem instances, where 

Ri = 106 - (z(Hi) / z(opt)) * 106; R2 = 106 - (z(H2) / z(opt)) * 106 

R3 = 106 - (z(TV) / z(opt)) * 106 

For example, let z(opt) = 249574; z(Hi) = 249510 

then Ri = 106 - (249510/249574) * 106 = 106 - 0.999744 * 106 = 256 

For the Class I (Table 3.4a, 3.4b) and Class II (Table 3.5a, 3.5b) problem 

instances and for all the problem sizes, as the capacity of the knapsack 

increases, the three heuristic algorithms (Hi, H2 and TV) give near optimal 

solution value and sometimes the exact solution value and take negligible 

amount of running time. The number of undominated items is very low 

thus requiring negligible running time. Since the ps and ws of problem 

classes I and II have no strong correlation, the difference in the density 

ratios does not show any clear effect in the performance of heuristics. 

Martello-Toth exact solution algorithm also solves the problem instances 

in negligible time. 

For the Class III (Table 3.6a. 3.6b) class of UKP, density-ordered greedy 

and total-value greedy heuristics give near optimal solution as the 

capacity of the knapsack increases and give the optimal solution as the 

size of the problem increases. The extended greedy heuristic outperforms 

the other two heuristics and give the optimal solution value in almost all 

the problem instances irrespective of the size of the problem or the density 

range or the knapsack capacity. All the three heuristics take negligible 

time as there are only a few undominated items, whereas the exact 

solution algorithm takes some seconds ( approximately 0.8 seconds ) as n 

increases. 

For the Class IV (Table 3.7a, 3.7b) class of UKP, the heuristics are far from 

optimal by a very small percentage. In comparison to Hi and TV, H2 is 

reasonably close to optimal. The running time for Hi and T V are negligible 
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but H 2 takes a few hundred seconds as the capacity of the knapsack or the 

problem size increases. Also, as n increases, the time taken to solve the 

problem optimally, increases. The density ratio for this class was restricted 

to the limit [2.0, 2.5] so as to generate problem instances that give many 

undominated items. Problem instances with different ratio ranges were 

generated and the performance of the three heuristics were studied (see 

Appendix C). It was found that as the density ratio values increased, total-

value greedy heuristic gives the optimal solution value in neglible time 

whereas the exact solution algorithm used up a few seconds as the 

problem size increased. 

For the Class V (Table 3.8a, 3.8b) class of UKP generated with a very large 

proportion of undominated items making the problem instances 

apparently difficult, the three heuristics give the optimal solution value for 

all n except for n = 100 and 500. The execution time for the heuristics is 

negligible when compared to the time taken to find the optimal solution 

value. But the time taken to solve the problems of size 100 by H2 increases 

as the capacity of the knapsack increases. This is outlined in Table Dl in 

Appendix D where the performance ratio and the running time for all the 

heuristics are given. Time taken to solve the problem instances optimally 

increases as the capacity of the knapsack and the problem size increase. 

For n = 500 **, the solution time is more than that for n = 50000. 

The time taken for dominance check increases as n increases, which is 

expected; and also the number of undominated items increases as n 

increases for all the problem classes, except Class I. However, as 

mentioned earlier, the rate of growth of the number of undominated items 

is substantial only in Class IV and Class V problems. 

** This is further investigated and presented in Appendix D. 
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3.5 Analysis of the Results 

This section focuses on the analysis based on computational experience 

and comparison of heuristics. 

The figures 3.2 to 3.13 show the performance of the three heuristics for 

Class IV and Class V problem instances for some small and large problem 

sizes. 

For the first three classes Class I, Class II and Class III all the heuristics are 

either close to optimal or give the optimal solution value. 

Capacity of the Knapsack 

Figure 3.2 : Very Strongly Correlated Class (Class IV), n = 50 t 

t The vertical scale has coded values. RI = 170 refers to the case where the 
heuristic solution is only 0.000170% worse than the known optimal. The smaller 
the value of RI, R2 and R3, the closer the heuristic is to the optimal solution 

value. 
Rl=106-(z{Hi)/z(opt))n06,R2=106-(z(H2)/z(opt))*106,R3=106-(z(TV)/z(opt))*106 
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Figure 3.3 : Very Strongly Correlated Class (Class IV),n = 100 
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Figure 3.4 : Very Strongly Correlated Class (Class IV), n = 500 
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Figure 3.5 : Very Strongly Correlated Class (Class IV), n = 1000 

Capacity of the Knapsack 

Figure 3.6 : Very Strongly Correlated Class (Class IV),n = 5000 
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Figure 3.7 : Very Strongly Correlated Class (Class TV), n = 10000 
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Figure 3.8 : Very Strongly Correlated Class (Class IV), n = 20000 
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Capacity of the Knapsack 

Figure 3.9 : Very Strongly Correlated Class (Class IV), n = 30000 
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Figure 3.10 : Very Strongly Correlated Class (Class IV), n = 40000 
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Figure 3.11 : Very Strongly Correlated Class (Class IV), n = 50000 

For the Class IV problem instances, the extended greedy heuristic 

performs better than the other two heuristics for all problem sizes except 

for n = 50 where the total-value greedy heuristic performs better than the 

extended greedy heuristic for smaller capacities. Where total-value greedy 

fails, the extended greedy heuristic is good and where the extended 

greedy performs poorly, the total-value greedy heuristic performs better. 

As the capacity C of the knapsack increases, all the three heuristics come 

close to the optimal solution value. 

The problems in Class V that are generated to give a large number of 

undominated items give the optimal solution value by all the three 

heuristics for large problem sizes, but for n = 100 and 500, the heuristics 

have varying performance. More specifically, for n = 100, the density-

ordered greedy heuristic and the total-value greedy heuristic give near 

optimal solution value or sometimes the optimal solution value. Where 



these two heuristics fail, the extended greedy heuristic is better. For n = 

500 and smaller knapsack capacities, density-ordered greedy and 

extended greedy performs better and the total-value heuristic performs 

poorly. As the capacity of the knapsack increases all the three heuristics 

perform well giving the optimal solution value. 

The values of n and the problem classes for which there were no 

noticeable difference among the solution values given by the heuristics, 

have not been shown in the figures. 

CN co •<r 55 <D r— oo 

Capacity of the Knapsack 

Figure 3.12 : Very Very Strongly Correlated Class (Class V), n = 100 
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Figure 3.13 : Very Very Strongly Correlated Class (Class V), n = 500 
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CHAPTER 4 

4. COMPLEMENTARY EFFECT OF HEURISTICS 

As mentioned earlier, the total-value greedy heuristic has been shown to 

have a better worst-case bound result in comparison to the standard 

density-ordered greedy heuristic and can be used in a complementary 

mode to the density-ordered greedy heuristic, performing well where the 

density-ordered greedy heuristic performs poorly. 

The joint performance of the density-ordered greedy and the total-value 

greedy heuristic has been discussed by Kohli and Krishnamurthi (1995). It 

has been shown that the combination gives a better performance result 

than the individual heuristics in the combination. 

The following sections investigate the complementary effect of the 

density-ordered greedy, the extended greedy and the total-value greedy 

heuristics and also a new complementary heuristic that incorporates the 

structural properties of both the density-ordered greedy and the total-

value greedy heuristic. 

4.1 Comparison of Heuristics 

A n analysis was done to empirically investigate the complementary effect 

of the three efficient heuristic algorithms: Hi, H2 and TV. 

Table 4.1 presents the number of instances where each of the three 

heuristics (Hi, H 2 and T V ) gives the best solution and also the number of 

instances where the combination of two heuristics, Hi and H2, Hi and TV, 
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H2 and TV and finally the combination of all the three is better than the 

individual heuristic. 

This is applied to 2500 UKPs across the 5 problem classes for which 

reasonable lower bounds on the optimal solutions are known. 

Table 4.1: Number of instances where the heuristics give optimal solution; 500 instances in 
each case 

Problem 
Class 

Class I 

Class II 

Class III 

Class IV 

Class V 

Total No. of 
Instances 

Percentage 
of problems 

solved 

optimally 

H, 

335 

400 

374 

66 

484 

1659 

66.36% 

H2 

335 

413 

494 

273 

474 

1989 

79.56% 

TV 

383 

399 

310 

103 

481 

1676 

67.04% 

Hj + H 2 

335 

421 

494 

279 

484 

2013 

80.52% 

H, + TV 

383 

400 

374 

111 

484 

1752 

70.08% 

H2 + TV 

383 

421 

494 

289 

484 

2071 

82.84% 

+ TV 

383 

421 

494 

292 

484 

2074 

82.96% 

The complementary effect of Hi and H 2 stands out for Class II and Class IV 

and the complementary effect of Hi and TV is seen in Class IV. For 

instance, for Class II problem, 400 instances are solved optimally by Hi, 

413 by H2, but a combination of Hi and H2 solves 421 problem instances. 

H2 and TV complements each other in Class II, Class IV and Class V and the 

complementary effect of the combination of all the three heuristics is 

substantial in Class IV though it is noticeable for the other four problem 

classes. 
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From the performance percentage figures of the three heuristics alone and 

their combination for the five problem classes, w e see that the joint 

performance of one with H2 outperforms the individual heuristics and the 

combination of all the three heuristics gives a much better performance 

result. This is mainly due to the involvement of H2 in the combination. In 

some cases where H2 performs rather poorly, each of Hi and T V gives a 

better performance, thus complementing each other. However, as H2 

requires more computing time for large problem instances, particularly in 

Class IV and Class V problem instances, the combination of Hi and T V can 

be recommended to solve a U K P within a reasonable computing time. It 

m a y be noted that Kohli and Krishnamurthi (1995) have theoretically 

shown that the worst-case performance of the combination of Hi and T V is 

better than the worst-case performance of each heuristics in the 

combination. The empirical investigation undertaken in this study appears 

to support this. However, it must be stated that the strength of the 

complementary effect is not observed to be very high. Combining 

heuristics gave better results, but not always improved the results to 

optimality. 

To further investigate the complementary effect of Hi and TV, an 

algorithm that involves the characteristics of both these heuristics is 

developed. This heuristic can be called the complementary total-value greedy 

heuristic and is discussed in the following section. 

4.2 Complementary Total-value Greedy Heuristic (CTVG) 

This algorithm can be sketched as follows. 

Step 1. Sort the items in the non-increasing order of the ratios. 

Step 2. Find the total-value for every item in the sorted list. 
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Step 3. Choose the item with the largest total-value. Let this be the 

;th item of the sorted list. 

Step 4. If; = 1, select item;'. 

If j * 1, find item k which has the second best total-value (it 

m a y be that the total-value of item; = total-value of item k). 

N o w , if k = 1, select item 1. If fc -* 1, then select item;'. 

Step 5. Update the knapsack capacity and the list of remaining items 

and repeat step 1 to step 4. 

The FORTRAN implementation of this algorithm (CTVG) is given in 

Appendix B. 

This complementary heuristic improves upon the individual heuristics in 

two respects. 

The poor performance of the density-ordered greedy heuristic when the 

densest item leaves a significant capacity of the knapsack unused is 

somewhat compensated in each step by the total-value greedy heuristic 

that chooses items that fill more of the capacity and contribute more to the 

total solution value. 

The total-value greedy heuristic's lack of ability to discriminate between 

the items that have the same total-value contribution with different 

densities is a demerit identified by Kohli and Krishnamurti (1995), the 

proposed heuristic overcomes this to some extent. 
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Example 1 is an instance where the new complementary total-value 

greedy heuristic is better than the other four greedy heuristics. 

Example 1 

C = 760 

ws = 210, w 4 = 90, w 3 = 80, w 2 = 60, wi = 65 

ps = 690, p4 = 260, p3 = 230, p2 = 170, pi = 175 

p5 = 690/210 > p4 = 260/90 > p3 = 230/80 > p2 = 170/60 > pi = 175/65 

Iteration 1: 

Ratio 

3.286 

2.889 

2.875 

2.833 

2.692 

w(j) 

210 

90 

80 

60 

65 

Iteration 2: 

C = 130 

Ratio 

3.286 

2.889 

2.875 

2.833 

2.692 

w(j) 

210 

90 

80 

60 

65 

pffl 

690 

260 

230 

170 

175 

pffl 

690 

260 

230 

170 

175 

Total-value 

2070 -> 

2080 

2070 

2040 

1925 

Total-value 

0 

260 

230 

340 

350 -> 

selected (capacity left = 130) 

selected (capacity left = 0) 

CTVG -» x5 = 3, x4 = 0, x3 = 0, x2 = 0, xi = 2 

z(CTVG) = 2420 

TV -» x5 = 0, x4 = 8, x3 = 0, x2 = 0, xi = 0 

z(TV) = 2080 

65 



Hi -> X5 = 3, X4 = 1, X3 = 0, X2 = 0, Xl = 0 

z(Hi) = 2330 

H2->x5 = 3, X4 = l, X3 = 0, X2 = 0, Xl = 0 

z(H2) = 2330 

Optimal -> x5 = 3, x4 = 0, x3 = 0, x2 = 0, xi = 2 

z(opt) = 2420 

Example 2 below is an instance where the complementary total-value 

greedy heuristic performs as badly as the other heuristics. 

Example 2 

C = 120 

w 7 = 51, w 6 = 50, w 5 = 48, w 4 = 50, w 3 = 35, w 2 = 32, wi = 20 

p7 = 103, p6 = 99, p5 = 89, p4= 61, p3 = 70, p2= 63, pi = 25 

The relative performance of the new complementary total-value greedy 

heuristic, the density-ordered greedy heuristic and the total-value greedy 

heuristic are discussed below. The weight-ordered greedy heuristic and 

the value-ordered greedy heuristic are not considered in the discussion of 

the performance of heuristics as both the heuristics perform poorly in 

comparison to the density-ordered greedy heuristic and the total-value 

greedy heuristic. The extended greedy heuristic is also ignored in the 

study of the complementary effect of heuristics as this heuristic requires 

more computational time for large problem instances. 

The complementary total-value greedy heuristic is run on the existing 

2500 data sets that were randomly generated as described in section 3.1, 

Chapter 3. All runs have been executed on the same 200MHz pentium Pro 

with option "-o" for the FORTRAN compiler. 
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Tables 4.2, 4.3, 4.4, 4.5 and 4.6 compare the complementary total-value 

greedy heuristic, the density-ordered greedy heuristic and the total-value 

greedy heuristic for UKP. 

Table 4.2: Comparison of solutions for C T V G , H t and T V for Class I problems; 50 instances 

in each row ( 5 data sets and 10 different capacities) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

CTVOHi* 

C T V O T V 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi<CTVG 

=TV 

0 

0 

0 

0 

0 

0 

0 

0 

7 

0 

CTVG<Hi 

CTVG<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi>CTVG 

=TV 

0 

0 

10 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

=TV 

50 (401) 

50 (50) 

40(34) 

50 (35) 

50 (20) 

50 (37) 

50 (28) 

50 (35) 

43 (43) 

50(42) 

Table 4.3: Comparison of solutions for C T V G , H, and T V for Class II problems; 50 

instances in each row (5 data sets and 10 different capacities) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

C T V O H i 

C T V O T V 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi<CTVG 

=TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CTVG<Hi 

CTVG<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi>CTVG 

=TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

=TV 

50 (47) 

50 (50) 

50 (36) 

50(44) 

50 (33) 

50 (43) 

50 (40) 

50 (36) 

50(47) 

50 (50) 

* C T V G > Hi means the solution by C T V G is better than the solution by Hi. Other 

relations are similarly defined. 

t The numbers in the bracket is the number of instances that gives the optimal solution 

value. 
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Table 4.4: Comparison of solutions for C T V G , H, and T V for Class III problems; 50 

instances in each row ( 5 data sets and 10 different capacities) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

C T V O H i 

C T V O T V 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi<CTVG 

=TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CTVG<Hi 

CTVG<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi>CTVG 

=TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

<TV 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

=TV 

50(34) 

50 (16) 

50 (23) 

50 (32) 

50 (30) 

50 (41) 

50(27) 

50 (32) 

50 (36) 

50 (32) 

Table 4.5: Comparison of solutions for C T V G , H, and T V for Class IV problems; 50 
instances in each row ( 5 data sets and 10 different capacities) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

C T V O H i 

C T V O T V 

5 

0 

0 

6(1) 

0 

3 

1 

2 

2 

0 

Hi<CTVG 

=TV 

21(1) 

11 

12 

5(1) 

10(2) 

12(2) 

6 

13(2) 

15(8) 

13 (11) 

CTVG<Hi 

CTVG<TV 

0 

0 

1 

0 

1 

1 

0 

2 

3 

0 

Hi>CTVG 

=TV 

4 

2 

3 

23 

24 

16 

19 

26(4) 

8(1) 

15(2) 

Hi=CTVG 

<TV 

0 

0 

9 

0 

3(1) 

2(1) 

2 

4(2) 

5(3) 

1(1) 

Hi=CTVG 

=TV 

20 (13) 

37 (13) 

25 

16(1) 

12 

16 (10) 

22(11) 

3 

17(4) 

21 (20) 
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Table 4.6: Comparison of solutions for C T V G , H, and T V for Class V problems; 50 

instances in each row (5 data sets and 10 different capacities) 

Number of 

items, n 

50 

100 

500 

1000 

5000 

10000 

20000 

30000 

40000 

50000 

C T V O H i 

C T V O T V 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi<CTVG 

=TV 

0 

1 

2 

0 

0 

0 

0 

0 

0 

0 

CTVG<Hi 

CTVG<TV 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

Hi>CTVG 

=TV 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

<TV 

1(1) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Hi=CTVG 

=TV 

49 (35) 

49 (40) 

46 (40) 

49 (49) 

50 (50) 

50 (50) 

50 (50) 

50 (50) 

50 (50) 

50 (50) 

To summarise the computational results of Tables 4.2 to 4.6 on the five 

problem classes, we look at the performance of the complementary total-

value greedy heuristic in comparison to the density-ordered greedy 

heuristic and the total-value greedy heuristic. 

For Class I (Table 4.2) there are 7 instances of the total 500 problem 

instances where CTVG performs as good as TV and in these instances H, 

performs poorly. In 10 problem instances Hj outperforms CTVG which is 

as good as TV. The other 483 instances are cases where CTVG performs 

equally good as H, and TV of which for 364 instances an optimal solution 

value is obtained. 

In Class II (Table 4.3) and Class III (Table 4.4), all the three heuristics 

perform equally well of which 426 instances in Class II and 303 instances in 

Class III gives the optimal solution value. 

In Class IV (Table 4.5), CTVG outperforms H, and TV in 19 instances (of 

which the optimal solution is reached by 1 problem instance) and 
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performs poorly in 8 problem instances. There are 118 problem instances 

(optimal solution value is found by 27 instances) which are solved by 

CTVG giving solutions equal to TV and better than H, and 140 instances ( 7 

problem instances giving the optimal solution value) are solved by H, 

whose solution value is better than that of CTVG and TV. There are also 26 

instances where CTVG performs as well as H, but poorly in comparison to 

TV. In 189 problem instances, CTVG performs as good as the other two 

heuristics with 72 instances giving the optimal solution value. The 

usefulness of CTVG is best illustrated in Class IV problems. 

In Class V (Table 4.6) problems, CTVG outperforms H, in 3 instances and 

H, outperforms CTVG in 2 instances. There is just 1 instance where CTVG 

is poor in comparison to both H, and TV. 493 problem instances are solved 

by all the three heuristics equally well of which 464 instances give the 

optimal solution value. 

Table 4.7 presents the number of instances where each of Hi, H2, TV and 

CTVG give the best solution and also the number of instances where the 

combination of three Hi, H2 and TV and the combination of all four Hi, 

H2, TV and CTVG is better than the individual heuristic. 

Table 4.7: Number of instances where the heuristics give optimal solution; 500 instances in 
each case 

Problem 
Class 

Class I 

Class II 

Class III 

Class IV 

Class V 

Total No. of 

Instances 

Percentage 

of problems 

solved 

optimally 

Hi 

335 
400 

374 

66 

484 

1659 

66.36% 

H2 

335 
413 

494 

273 

474 

1989 

79.56% 

TV 

383 
399 

310 

103 

481 

1676 

67.04% 

CTVG 

364 
426 

303 

100 

464 

1657 

66.28% 

Hi + H 2 + 
TV 

383 
421 

494 

292 

484 

2074 

82.96% 

Hi + H 2 + 
TV + 
CTVG 

383 
426 

494 

292 

484 

2079 

83.16% 

70 



W e see that the performance percentage of the individual heuristic is 

improved when the combination of all the four heuristics are considered. 

To conclude we can see that no heuristic show any clear superiority in 

performance but they complement each other. Thus, while none of the 

heuristics takes a lot of computing time, they perform as well as the exact 

solution algorithm in most problem classes and where they fail to perform 

individually, the performance is bettered by considering the combination 

of the heuristics. Therefore, any of the heuristics by itself or in 

combination with another can be used to solve any large Unbounded 

Knapsack Problem or at least provide a lower bound for it. 
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CHAPTER 5 

5. SUMMARY AND CONCLUSION 

5.1 Summary 

A n investigation has been done on the performance of the five greedy 

heuristics that have been suggested in the literature for the Unbounded 

Knapsack Problem. Though Martello-Toth algorithm is good in finding 

the optimal solution to an Unbounded Knapsack Problem, the heuristic 

algorithms are much faster giving near optimal solution values. This is 

largely because of the greedy structure of the algorithm. The phenomenon 

of dominance plays a very important role; the problem size is reduced by 

dominance criterion resulting in efficient solution. The performance of the 

heuristics is studied by varying parameters such as the number of items, 

knapsack capacity and the density ratios. 

As expected for any combinatorial optimisation problem, the larger the 

number of items, the more difficult an U K P is to solve. However, the 

phenomenon of dominance necessitates redefining this statement as: the 

larger the number of undominated items, the more difficult it is to solve. This 

pattern was consistently seen in all the problem instances. 

Regarding the capacity of the knapsack, it was observed that the larger the 

capacity, the smaller the difference between the optimal solution and a 

heuristic solution. This is an expected result as with larger capacities, the 

difference between the z-values for one item or another is not appreciable. 

The knapsack capacity indirectly takes into account the parameter k, the 

m a x i m u m number of the largest item that can be assigned to a knapsack. 

As Kohli and Krishnamurthi (1992) showed, with larger k, the difference 
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between the worst-case bounds of the density-ordered greedy and the 

total-value greedy algorithms diminishes. 

As regards the density ratios (p/w ratios), the ratios themselves do not 

influence the solution quality directly. However, if the density ratios of the 

items are all in a narrow range, it is more likely that there would be a large 

number of undominated items and thus the solution would be relatively 

difficult. This was the case in our study. The ratio range was particularly 

relevant in Class IV type of problems, where it was observed that for 

smaller ratio ranges, Hi and H2 performs well and come close to the 

optimal solution value as the capacity increases and for larger ratio ranges, 

TV gives the optimal solution value where as Hi and H2 performs poorly. 

Computational analysis of the five heuristics shows that H2 outperforms 

the other four greedy heuristics in most problem instances and where H2 

fails, in some cases it is either Hi or TV performing better. Table 4.1 shows 

that with the combination of Hi, H2 and TV, a better performance result 

can be obtained. Since the computational time requirement of H2 is the 

highest for large problem instances, particularly in the Class IV and Class V 

problems, the combination of Hi and TV can be looked at. Kohli and 

Krishnamurti (1995) have theoretically proved that the worst-case 

performance of the combination of Hi and TV is better than the worst-case 

performance of the single best heuristic in the combination. This is 

supported by the empirical findings of this study. 

The suggested combination of Hi and TV was further studied by 

developing an algorithm that combines the characteristics of both the 

individual heuristics. This complementary heuristic was called the 

complementary total-value greedy heuristic (CTVG). 
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CTVG was executed on the same data sets and it was found that this 

heuristic performs as well as the other two heuristics in most problem 

instances and outperforms both Hi and TV only in a few instances. It 

should also be mentioned that CTVG performs poorly for a few instances. 

Thus, it can be said that though CTVG does not show any clear superiority 

in the relative performance for the five problem classes, the combination 

of CTVG with Hi, H2 and TV improves the performance result. 

5.2 Conclusion 

In this thesis, we have analysed the performance of the five greedy 

heuristics that have been suggested in the literature for the unbounded 

knapsack problem. It has been found that all the heuristics perform well in 

comparison to the optimal solution algorithm. The running time for the 

density-ordered greedy heuristic, the total-value greedy heuristic, the 

weight-ordered greedy heuristic and the value-ordered greedy heuristic is 

negligible in comparison to the exact solution which takes a few hundred 

seconds for large problems in Class IV and takes a few hours for problem 

instances of Class V, particularly when the problem size n is around 500. 

The extended greedy heuristic takes a few seconds for large problems, but 

often gives better solutions than other heuristics. 

By generating problem instances that can give many undominated items, 

the difficulty of solving the problems was increased. For these difficult 

problem instances, the heuristic solutions were not far from the optimal 

solutions. 

It can be concluded that Hi, H2, TV and CTVG perform well in comparison 

to the exact solution algorithm and they exhibit some complementary 

effect. As has been suggested by White (1992), combining heuristics is a 

good method for solving hard combinatorial problems. Also, using a 
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number of cheap heuristics to calculate bounds for a hard combinatorial 

problem is a sound practice (Davies, 1974). The investigation in this study 

confirms this for the Unbounded Knapsack Problem. 

5.3 Further Scope for Research 

1. Meta-heuristics, like genetic algorithm, simulated annealing or tabu 

search are the most recent development in approximate search 

methods for solving complex optimisation problems. These are 

designed to attack hard combinatorial optimisation problems where 

classical heuristics have failed to be effective and efficient. Meta-

heuristic search methods are used in many applications including the 

0-1 Knapsack Problems but so far very little, if any, has been done for 

the Unbounded Knapsack Problem. Although the suggested heuristics 

for the Unbounded Knapsack Problem are fast and give close to 

optimal solutions, meta-heuristics can definitely be looked at because 

of its iterative generation process approach. 

2. A combination of the density-ordered greedy heuristic and the total-

value greedy heuristic (complementary total-value greedy heuristic, CTVG) 

was shown to improve the performance of the heuristic in comparison 

to the individual heuristic in the combination. More algorithms of this 

type can be developed and evaluated. 

3. Characterisation of the problem instances for the complementary total-

value greedy heuristic and other heuristics of this kind with respect to 

the difficulty of the solution is worth considering. Also the relation 

between the heaviest item (largest w) that can fit into the knapsack, and 

the difficulty of solving U K P can be investigated. 
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APPENDIX 

Appendix A : FORTRAN Codes for Data Generation 

The following are the FORTRAN codes for generating data for the 

Uncorrelated (Class I), Weakly Correlated (Class IT), Strongly Correlated 

(Class III), Very Strongly Correlated (Class IV) and Very Very Strongly 

Correlated (Class V) Class of problems. 

Uncorrelated (Class T) 

c program uncorr.for 
c program to create pairwise uncorrelated data randomly 

c w(i) is uniformly random in [1,9999] 

c p(i) is uniformly random in [1, 9999] 

real p(50000), w(50000), ratio 

character * 15 dfnamel 
write (*, * ) ' write the name of the datafile to be generated:' 

read (*, 55) dfnamel 

55 format (al5) 
open (unit = 9, file = dfnamel) 

write (*, * ) ' write the number of datapairs: ' 

read (*, *) n 

randm = rrand() 
write (*, *) ' write the range of data: p-values (1, 9999)' 

read (*, *) iminp, imaxp 
write (*, *) ' write the range of data: w-values (1,9999)' 

read (*, *) iminw, imaxw 

do 51 i = 1, n 

41 p(i) = int(rnd() * imaxp) 
if (p(i) .It. iminp) goto 41 

42 w(i) = int(rnd() * imaxw) 

if (w(i) .It. iminw) goto 42 

ratio = float (p(i) / w(i)) 

write (9,101) ratio, w(i), p(i) 

51 continue 
101 format (f7.3, il2, 2(2x,il0), 4x) 

close (unit = 9, file = dfnamel) 

stop 

end 
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Weakly Correlated (Class TT) 

c program wkcorr.for 

c program to create weakly correlated data randomly 
c w(i) is uniformly random in [10,9999] 

c p(i) is uniformly random in [w(i) -100, w(i) + 100] 
real p(50000), w(50000), ratio 

character * 15 dfnamel 

write (*, * ) ' write the name of the datafile to be generated: 
read (*, 55) dfnamel 

55 format (al5) 

open (unit = 9, file = dfnamel) 

write (*, *) ' write no. of datapairs: ' 
read (*, *) n 

randm = rrand() 

write (*, *) ' write the range of data: w-values (10, 9999)' 
read (*, *) iminw, imaxw 

do 51 i = 1, n 

41 w(i) = int(rnd() * imaxw) 

if (w(i) .It. iminw) goto 41 

iminp = w(i) - 100 

imaxp = w(i) + 100 

42 p(i) = int(rnd() * imaxp) 

if (p(i) .It. iminp) goto 42 

ratio = float (p(i) / w(i)) 

if (ratio .eq. 0) goto 41 

write (9,101) ratio, w(i), p(i) 

51 continue 

101 format (£7.3, ill, 2(2x, ilO), 4x) 

close (unit = 9, file = dfnamel) 

stop 

end 

Strongly Correlated (Class III) 

c program sgcorr.for 
c program to create strongly correlated data randomly 

c w(i) is uniformly random in [10,9999] 

c p(i) = w(i) + 100 
real p(50000), w(50000), ratio 

character * 15 dfnamel 
write (*, * ) ' write the name of the datafile to be generated: 

read (*, 55) dfnamel 

55 format (al5) 
open (unit = 9, file = dfnamel) 
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write (*, *) • write no. of datapairs: ' 
read (*, *) n 

randm = rrand() 

write (*, *) 'write range of data: w-values (10, 9999)' 

read (*,*) iminw, imaxw 
do 51 i = 1, n 

41 w(i) = int(rnd() * imaxw) 
iw = w(i) 

if (w(i) .It. iminw .or. w(i) .gt. imaxw) goto 41 
p(i) = iw + 100 

ratio = float (p(i) / w(i)) 

write (9,101) ratio, w(i), p(i) 

51 continue 

101 format (£73, il2, 2(2x, ilO), 4x) 

close (unit = 9, file = dfnamel) 

stop 

end 

Very Strongly Correlated (Class IV) 

c program vscorrb.for 

c program to create very strongly correlated data randomly 

c w(i) is uniformly random in [1, 9999] 

c p(i) is uniformly random in [1, 9999] 

c 2 <= p(i)/w(i) <= 2.5 

real p(50000), w(50000), ratio 

real min_rat, max_rat 

character * 15 dfnamel 

write (*, * ) ' write the name of the datafile to be generated 

read (*, 55) dfnamel 

55 format (al5) 
open (unit = 9, file = dfnamel) 

write (*, * ) ' write no. of datapairs: ' 

read (*, *) n 

randm = rrand() 

write (*, * ) ' write range of data: p-values (1, 9999)' 

read (*, *) iminp,imaxp 

write (*, * ) ' write the range of the ratios (e.g., 2.0,2.5) ' 

read (*, *) min_rat, max_rat 

do 51 i = 1, n 

42 p(i) = int(rnd() * 10000) 
w(i) = int(rnd() * 10000) 

if (p(i) .It. iminp .or. p(i) .gt. imaxp) goto 42 

if (w(i) .It. 1) goto 42 

ratio = float (p(i) / w(i)) 
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if (ratio .le. max_rat .and. ratio .ge. minjrat) then 

write (9,101) ratio, w(i), p(i) 
else 

go to 42 
end if 

51 continue 

101 format (£7.3, il2, 2(2x,il0), 4x) 

close (unit = 9, file = dfnamel) 
stop 

end 

Very Very Strongly Correlated (Class V) 

c program vvscorr.for 

c program to create very very strongly correlated data randomly 
c w(i) is uniformly random in [1, 99999] 

c p(i) = w(i) * ((w(i) - wmin + 1) / (wmax - wmin + 1)) * 100 

real p(50000), w(50000), ratio 

character * 15 dfnamel 

write (*, * ) ' write the name of the datafile to be generated : ' 

read (*, 55) dfnamel 

55 format (al5) 

open (unit = 9, file = dfnamel) 

write (*, *) 'write no. of datapairs: ' 

read (*, *) n 

randm = rrand() 

write (*, *) 'write range of data: w-values (1, 99999)' 

read (*, *) iminw,imaxw 

do 51 i = 1, n 

42 w(i) = int(rnd() * imaxw) 

if (w(i) .It. iminw .or. w(i) .gt. imaxw) goto 42 

if (w(i) .It. 1) goto 42 
p(i) = w(i) * ((w(i)-iminw+l) / (imaxw-iminw+1)) * 100 

if (p(i) .It. 1) goto 42 

ratio = float (p(i) / w(i)) 

write (9,101) ratio, w(i), p(i) 

51 continue 
101 format (£7.3, ill, 2(2x,il0), 4x) 

close (unit = 9, file = dfnamel) 

stop 

end 
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Appendix B : FORTRAN Implementations of the Heuristic 

Algorithms 

The following are the FORTRAN implementations of the five heuristic 

algorithms as described in Chapter 3, Section 3.4. 

The Fortran code for dominance check is included. 

Sorting of the items is done by bubble sort. 

DGREEDY (Density Ordered Greedy Heuristic) 

c icheck = a check for elimination of dominated items. 

c if icheck = 1 or more, the input data will go through a stage 
c of elimination of dominated items. 

integer w(50000), p(50000) 

integer low_c, high_c, incre 

real ratio(50000) 

character * 15 dfnamel 

character * 15 dfname2 

character * 30 string 

print *, 'input the number of items, n: ' 

read *, n 

if (n .gt. 50000) stop 01 

write (*, *) 'write the name of the datafile :' 

read (*, 2) dfnamel 

open (unit = 2, file = dfnamel) 

2 format (al5) 

do 3 i = 1, n 
read (2, '(f7.3, 2il2)') ratio(i), w(i), p(i) 

3 continue 

rewind unit = 2 

close (unit = 2) 
write (*, *) 'write the name of the output file :' 

read (*, 4) dfname2 

4 format (al5) 
write (*, *) 'do you like to check for dominance? l(yes), 0(no):' 

read (*, *) icheck 

call fdate (string) 
write (*, * ) ' starting time : ', string 

if (icheck .ge. 1) call domcheck (n, ratio, w, p) 

call fdate (string) 
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write (*, * ) ' finished time :', string 

write (*, *) 'would you like to sort by density (decreasing) the 

+datafile? l(yes), 0(no):' 
read (*, *) n u m 

call fdate (string) 

write (*, * ) ' starting time :', string 

if (num .eq. 1) call dsort (n, ratio, w, p) 

call fdate (string) 

write (*, * ) ' finished time :', string 

print *, 'input the capacity range low-c, high-c of the knapsack:' 

read *, low_c, high_c 

print *, 'input the increment for the capacity: ' 

read *, incre 

call fdate (string) 

write (*, * ) ' starting time :', string 

do 11 ic = low_c, high_c, incre 

11 call greedy (n, w, p, ic, ratio, dfname2) 

close (unit = 3) 

end 

subroutine greedy (n, w, p, ic, ratio, dfname2) 

integer w(50000), p(50000), ow(50000), op(50000), cjeft 

integer x(50000) 

real ratio(50000), oratio(50000) 

character * 30 string 

character * 15 dfname2 

integer ctr 

do 10 j = 1, n 

ow(j) = w(j) 

op(j) = p(j) 
oratio(j) = ratio(j) 

10 continue 
open (unit = 3, file = dfname2) 

c_left = ic 

write (3,20) n, ic 

ctr = 0 

dol2j = l,n 

ctr = ctr + 1 
x(ctr) = int(c_left / ow(j)) 

cjeft = cjeft - x(ctr) * ow(j) 

12 continue 

t = 0 
do 13 j = 1, n 

t = t + (x(j) * op(j)) 
13 continue 
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write (*, *) t 

call fdate (string) 

write (*, * ) ' finished time : ', string 
write (3,30) 

20 format ( ' density-ordered greedy heuristic;', 
+' n (undominated) =' i6,'; ', 'c = 'i8) 

30 format(' item number weight profit ratio') 
do 14 j = 1, n 

if (x(j) .It. 1) goto 14 

write (3, '(2x, 4110, 2x, f7.3)') j, x(j), ow(j), op(j), oratio(j) 
14 continue 

write (3,40) 

40 format(' z(hl) = ') 

write (3, *) t 

write (3,50) 

50 format (53h ) 

return 

end 

W G R E E D Y (Weight Ordered Greedy Heuristic) 

c icheck = a check for elimination of dominated items. 

c if icheck = 1 or more, the input data will go through a stage 

c of elimination of dominated items. 

integer w(50000), p(50000) 

integer low_c, high_c, incre 

real ratio(50000) 

character * 15 dfnamel 

character * 15 dfname2 

character * 30 string 

print *, 'input the number of items, n:' 

read *, n 

if (n .gt. 50000) stop 01 

write (*, *) 'write the name of the datafile :' 

read (*, 2) dfnamel 

open (unit = 2, file = dfnamel) 

2 format (al5) 

do 3 i = 1, n 

read (2, '(f7.3, 2112)') ratio(i), w(i), p(i) 

3 continue 

rewind unit = 2 

close (unit = 2) 
write (*, *) 'write the name of the output file :' 

read (*, 4) dfname2 
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4 format (al5) 

write (*, *) 'do you like to check for dominance? l(yes), 0(no):' 
read (*, *) icheck 

call fdate (string) 

write (*, * ) ' starting time : ', string 

if (icheck .ge. 1) call domcheck (n, ratio, w, p) 

call fdate (string) 

write (*, * ) ' finished time :', string 

write (*, *) 'would you like to weight-sort (acsending) the 
+datafile? 1 (yes), 0(no):' 
read (*, *) num 

call fdate (string) 

write (*, * ) ' starting time : ', string 

if (num .ge. 1) call wtsort (n, ratio, w, p) 
call fdate (string) 

write (*, * ) ' finished time : ', string 

print *, 'input the capacity range low-c, high-c of the knapsack:' 
read *, low_c, high_c 

print *, 'input the increment for the capacity:' 

read *, incre 

call fdate (string) 

write (*, *) ' starting time : ', string 

do 11 ic = low_c, high_c, incre 

11 call wtgreedy (n, w, p, ic, ratio, dfname2) 

close (unit = 3) 

end 

subroutine wtgreedy (n, w, p, ic, ratio, dfname2) 

integer w(50000), p(50000), ow(50000), op(50000), cjeft 

integer x(50000) 

real ratio(50000), oratio(50000) 

character * 30 string 

character * 15 dfname2 

integer ctr 

do 10 j = 1, n 

ow(j) = w(j) 

OP0) = P(j) 
oratio(j) = ratio(j) 

10 continue 

open (unit = 3, file = dfhame2) 

c_left = ic 

write (3, 20) n, ic 

ctr = 0 

do 12 j = 1, n 
ctr = ctr + 1 
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x(ctr) = int(c_left / ow(j)) 
cjeft = cjeft - x(ctr) * ow(j) 

12 continue 
t = 0 
do 13 j = 1, n 
t = t + (x(j) * op(j)) 

13 continue 
write (*, *) t 
call fdate (string) 
write (*, * ) ' finished time :', string 
write (3,30) 

20 format ( ' weight-ordered greedy heuristic;', 
+' n (undominated) =' i6,'; ', 'c = 'i8) 

30 format(' item number weight profit ratio') 
do 14 j = 1, n 
if (x(j) .It. 1) goto 14 
write (3, '(2x, 4il0,2x, f7.3)') j, x(j), ow(j), op(j), oratio(j) 

14 continue 
write (3,40) 

40 format(' z(h3) = ') 
write (3, *) t 
write (3,50) 

50 format (53h ) 
return 
end 

V G R E E D Y (Value Ordered Greedy Heuristic) 

c icheck = a check for elimination of dominated items. 
c if icheck = 1 or more, the input data will go through a stage 
c of elimination of dominated items. 

integer w(50000), p(50000) 
integer low_c, high_c, incre 
real ratio(50000) 
character * 15 dfnamel 
character * 15 dfname2 
character * 30 string 
print *, 'input the number of items, n: ' 
read *, n 
if (n .gt. 50000) stop 01 
write (*, *) 'write the name of the datafile :' 
read (*, 2) dfnamel 
open (unit = 2, file = dfnamel) 

2 format (a!5) 
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do 3 i = 1, n 

read (2, '(f7.3,2il2)') ratio(i), w(i), p(i) 

3 continue 

rewind unit = 2 

close (unit = 2) 

write (*, *) 'write the name of the output file :' 
read (*, 4) dfname2 

4 format (al5) 

write (*, *) 'do you like to check for dominance? l(yes), 0(no):' 
read (*, *) icheck 

call fdate (string) 

write (*, * ) ' starting time : ', string 

if (icheck .ge. 1) call domcheck (n, ratio, w, p) 
call fdate (string) 

write (*, *) ' finished time : ', string 

write (*, *) 'would you like to sort the datafile by profit 

+(descending)? l(yes), 0(no):' 

read (*, *) n u m 

call fdate (string) 

write (*, * ) ' starting time : ', string 

if (num .ge. 1) call vlsort (n, ratio, w, p) 

call fdate (string) 

write (*, * ) ' finished time :', string 

print *, 'input the capacity range low-c, high-c of the knapsack:' 

read *, low_c, high_c 

print *, 'input the increment for the capacity: ' 

read *, incre 

call fdate (string) 

write (*, * ) ' starting time : ', string 

do 11 ic = low_c, high_c, incre 

11 call vlgreedy (n, w, p, ic, ratio, dfname2) 

close (unit = 3) 

end 

subroutine vlgreedy (n, w, p, ic, ratio, dfname2) 

integer w(50000), p(50000), ow(50000), op(50000), cjeft 

integer x(50000) 

real ratio(50000), oratio(50000) 

character * 30 string 

character * 15 dfname2 

integer ctr 

dol0j = l,n 

ow(j) = w(j) 

op(j) = pO) 
oratio(j) = ratio(j) 
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10 continue 

open (unit = 3, file = dfname2) 
cjeft = ic 

write (3,20) n, ic 

ctr = 0 

do 12 j = 1, n 

ctr = ctr + 1 

x(ctr) = int(cJeft / ow(j)) 

cjeft = cjeft - x(ctr) * ow(j) 

12 continue 

t = 0 
do 13 j = 1, n 

t = t + (x(j) * op(j)) 
13 continue 

write (*, *) t 

call fdate (string) 

write (*, * ) ' finished time :', string 

write (3,30) 

20 format ( ' value-ordered greedy heuristic ;', 

+' n (undominated) =' i6,'; ', 'c = 'i8) 

30 format (' item number weight profit ratio') 

do 14 j = 1, n 

if (x(j) .It. 1) goto 14 

write (3, '(2x, 4il0, 2x, f7.3)') j, x(j), ow(j), op(j), oratio(j) 

14 continue 

write (3,40) 

40 format(' z(h4) = ') 

write (3, *) t 

write (3,50) 

50 format (53h ) 

return 

end 

E X T G R E E D (Extended Greedy Heuristic) 

c w = weight of an item. 

c p = profit of an item. 

c low_c = lowest capacity. 

c high_c = highest capacity. 

c incre = increment in the capacity. 

c ratio = profit/weight of an item. 

c dfnamel = name of the datafile. 

c n = number of items. 
c n u m = a check for sorting the undominated items. 

c if n u m = 1 or more, the undominated items will be sorted in 
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c decreasing order of the ratios. 

c ic = incremented capacity. 

c ismall = smallest item weight. 

c icheck = a check for elimination of dominated items. 

c if icheck = 1 or more, the input data will go through a stage 

c of elimination of dominated items. 

integer w(50000), p(50000) 

integer low_c, high_c, incre 

real ratio(50000) 

character * 15 dfnamel 

character * 15 dfname2 

character * 30 string 

print *, 'input the number of items, n:' 

read *, n 

if (n .gt. 50000) stop 01 

write (*, *) 'write the name of the datafile :' 

read (*, 2) dfnamel 

open (unit = 4, file = dfnamel) 

2 format (al5) 

do 3 i = 1, n 

rewind unit =4 

read (4, '(f7.3, 2112)') ratio(i), w(i), p(i) 

3 continue 

close (unit = 4) 
write (*, *) 'write the name of the output file :' 

read (*, 9) dfname2 

9 format (al5) 
write (*, *) 'do you like to check for dominance? l(yes), 0(no):' 

read (*, *) icheck 

call fdate (string) 
write (*, *),' starting time : ', string 
if (icheck .ge. 1) call domcheck (n, ratio, w, p, ismall) 

call fdate (string) 
write (*, *),' finished time : ', string 
write (*, *) 'would you like to sort the datafile? l(yes), 0(no):' 

read (*, *) num 
if (num .ge. 1) call sort (n, ratio, w, p) 
print *, 'input the capacity range low-c, high-c of the knapsack:' 

read *, low_c, high_c 
print *, 'input the increment for the capacity:' 

read *, incre 

call fdate (string) 
write (*, *),' starting time :', string 

do 11 ic = low_c, high_c, incre 
11 call extgreed (n, w, p, ic, ismall, ratio, dfname2) 
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end 

subroutine extgreed (n, w, p, ic, ismall, ratio, dfname2) 

c n = number of items in the knapsack. 
c w, ow = weight of an item. 

c p, op = profit of an item. 

c x = number of units of an item selected. 
c cjeft = capacity left. 

c ic = incremented capacity. 

c ismall = smallest item weight. 

integer w(50000), p(50000), ow(50000), op(50000), x(50000) 
integer cjeft 

real ratio(50000), oratio(50000) 
character * 15 dfname2 

character * 30 string 

do 10 m = 1, n 
ow(m) = w(m) 
op(m) = p(m) 
oratio(m) = ratio (m) 

10 continue 

m = n 
if (mod (n, 2) .ne. 0) then 

m = m + 1 
ow(m) = 999 
op(m) = 1 

end if 

open (unit = 7, file = dfname2) 

cjeft = ic 

write (7, 20) n, cjeft 

profit = 0 

store = 0 

do 12 m m = 1, m - 1, 2 
mml = m m + 1 
maxl = int (cjeft / ow(mm)) 

max2 = int (cjeft / ow(mml)) 

lar_profit = 0 

bestJteml = 0 

bestJtem2 = 0 

do 13 i = maxl, 0, -1 

do 14 j = 0, max2 
isum = (i * ow(mm) + j * ow(mml)) 

if (isum .gt. cjeft) goto 17 

profit = (i * op(mm)) + (j * op(mml)) 

if (profit .gt. lar_profit) then 

lar_profit = profit 
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bestJteml = i 

bestJtem2 = j 
end if 

14 continue 

goto 13 

17 left = cjeft - ow(mm) * (i + 1) 

lprofit = int((left - l)/((ow(mml) + 1) * op(mml))) 
if (lprofit .It. op(mm)) goto 18 

13 continue 

18 x(mm) = bestjteml 

x(mml) = bestjtem2 

cjeft = cjeft - (x(mm) * ow(mm)) - (x(mml) * ow(mml)) 

store = store + x(mm) * op(mm) + x(mml) * op(mml) 
if (cjeft .It. ismall) goto 15 

12 continue 

15 write (7,30) 

20 format (' extended greedy heuristic ;', 

+' n (undominated) =' i6,'; ', 'c = ' i8) 

30 format (' item number weight profit ratio') 
do 16 ii = 1, m 

if (x(ii) .It. 1) goto 16 

write (7, '(2x, 4il0,2x, f7.3)') ii, x(ii), ow(ii), op(ii), 

+oratio(ii) 

16 continue 

write (*, *) store 

call fdate (string) 

write (*, *),' finished time :', string 

write (7,40) 

40 format(' z(h2) =') 

write (7, *) store 

write (7, 50) 

50 format (53h ) 

do 90 jj = 1, m 

ow(jj) = w(m) 

°P(JJ) = P( m) 
x(jj) = 0 

90 continue 

return 

end 

TOT V A L (Total Value Heuristic) 

c this program solves the unbounded knapsack problem 

c by the algorithm of white (see ejor, 62(1992), pp.85-95) 
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c n = number of items 

c ic = initial capacity of knapsack 

c p(j) = value of jth item 

c w(j) = weight of jth item 

c t = total value of the solution 

c cjeft = remaining capacity of knapsack 

c iaa(j) = number of item j in the knapsack 

c icheck = a check for elimination of dominated items 

c if icheck = 1 or more, the input data will go through a stage of 
c elimination of dominated items 

integer t, w(50000), p(50000), iaa(50000), ind(50000) 

integer iflag(50000) 

real ratio(50000) 

integer low_c, high_c, incre 

character * 15 dfname 

character * 15 dfname2 

character * 30 string 

write (*, *) 'input the number of items, n:1 

read *, n 

print*, 'input the capacity range low-c, high-c of the knapsack: 

read *, low_c, high__c 

print *, 'input the increment for the knapsack capacity:' 

read *, incre 

write (*, *) 'write the name of the datafile: ' 

read (*, 10) dfname 

10 format (al5) 

if (n .gt. 50000) stop 01 

open (unit = 7, file = dfname) 

write (*, *) 'write the name of the output file :' 

read (*, 2) dfname2 

open (unit = 9, file = dfname2) 

2 format (al5) 

do 21 j = 1, n 

rewind unit =7 

read (7, '(f7.3,2112)') ratio(j), w(j), p(j) 

21 continue 

close (unit = 7) 
write (*, *) 'do you like to check for dominance? l(yes), 0(no)' 

read *, icheck 
if (icheck .ge. 1) call domcheck (n, w, p) 

call fdate (string) 
write (*, * ) ' starting time :', string 

do 11 ic = low_c, high_c, incre 

cjeft = ic 
write (9,101) n, ic 
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101 format(' total value heuristic;',' n (undominated) ='i6, 
+'; ', 'c = ' 18) 

do 22 j = 1, n 
22 iflag (j) = 1 

do 23 j = 1, n 
23 iaa(j) = 0 

do24j = l,n 
24 ind(j) = 0 

t = 0 
51 maxind = 0 

ienter = 0 
do 25 j = 1, n 
if (iflag(j) .It. 0) goto 25 
ind(j) = p(j) * int(cJeft / w(j)) 
if (maxind .It. ind(j)) then 
maxind = ind(j) 
ienter = j 

end if 
25 continue 

if (ienter .le. 0) goto 52 
iaa(ienter) = int(cJeft / w(ienter)) 
iflag(ienter) = -9 
cjeft = cjeft - (iaa(ienter) * w(ienter)) 
t = t + (p(ienter) * iaa(ienter)) 
write (*, *) t 

call fdate (string) 
write (*, *) ' finished time : ', string 

goto 51 
52 write (9,102) 
102 format (' item number weight profit ratio') 

do 26 j = 1, n 
if (iaa(j) .It. 1) goto 26 
write (9, '(2x,4110,2x,f7.3)') j, iaa(j), w(j), p(j), ratio(j) 

26 continue 
write (9,103) t 

103 format ( ' z(tv) = ', x, ilO) 
write (9,104) 

104 format (53h ) 
11 continue 

goto 99 
99 stop 

end 
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CTVG (Complementary Total-Value Greedy Heuristic) 

c n = number of items 

c ic = initial capacity of knapsack 

c p(j) = value of jth item 

c w(j) = weight of jth item 

c tvl, tv2 = total value of the solution 

c cjeft = remaining capacity of knapsack 

c iaa(j) = number of item j in the knapsack 

c icheck = a check for elimination of dominated items 

c if icheck = 1 or more, the input data will go through a stage of 

c elimination of dominated items 

c ismall = smallest item weight 

integer w(10000), p(10000), iaa(lOOOO), num(lOOOO) 

integer iflag(lOOOO) 

real ratio(lOOOO) 

integer low_c, high_c, incre 

character * 15 dfnamel, dfname2 

character * 11 result 

write (*, *) 'input the number of items, n:1 

read *, n 
print*, 'input the capacity range low-c, high-c of the knapsack: 

read *, low_c, high_c 
print *, 'input the increment for the knapsack capacity:' 

read *, incre 
write (*, *) 'write the name of the datafile to be sorted: ' 

read (*, 10) dfnamel 

10 format (al5) 
if (n .gt. 10000) stop 01 
open (unit = 4, file = dfnamel) 

do 11 j = 1, n 
11 read (4, '(f7.3,2112)', err=91) (ratio(j), w(j), p(j)) 

close (unit = 4, file = dfnamel) 

call densort (n, ratio, w, p) 
write (*, *) 'write the name of the sorted datafile: ' 

read (*, 12) dfname2 

12 format (al5) 
open (unit = 5, file = dfname2) 

open (6, file = 'ctot_val.out') 

do 21 j = 1, n 
21 read (5, '(f7.3, 2il2)', err=91) (ratio®, w(j), p(j)) 

close (unit = 5, file = dfname2) 
write (*, *) 'do you like to check for dominance? l(yes), 0(no)' 

read *, icheck 
if (icheck .ge. 1) call domcheck (n, w, p, ismall) 
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call time (result) 

write (*, *) • starting time :', result 

do 13 ic = low_c, high_c, incre 
cjeft = ic 

write (6,101) n, cjeft 

write (6,102) 

do22j = l,n 

22 iflag(j) = l 
do 23 j = 1, n 

23 iaa(j) = 0 

do 24 j = 1, n 

24 num(j) = 0 

ctotval = 0 

51 large = 0 

seclarge = 0 

ienterl = 0 

ienter2 = 0 

t = 0 
tvl = 0 

tv2 = 0 

do 25 j = 1, n 

if (iflag(j) .It. 0) goto 25 

n u m ® = p(j) * int(cJeft / w(j)) 

if ((num(j) .ge. large) .and. ( n u m ® .ge. seclarge)) then 

if (large .ge. seclarge) then 

seclarge = large 

large = n u m ® 

ienter2 = ienterl 

ienterl = j 

else 

large = n u m ® 

ienterl = j 

end if 
else if ((num® .le. large) .and. ( n u m ® .ge. seclarge)) then 

seclarge = n u m ® 

ienter2 = j 

end if 

25 continue 
if ((ienterl .eq. 0) .and. (ienter2 .eq. 0)) goto 52 

iaa(ienterl) = int(cJeft / w(ienterl)) 

iaa(ienter2) = int(cJeft / w(ienter2)) 

iflag(ienterl) = -9 

iflag(ienter2) = -9 

tvl = tvl + (p(ienterl) * iaa(ienterl)) 

tv2 = tv2 + (p(ienter2) * iaa(ienter2)) 
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+ 

if (ienterl .eq. 1) then 

t = tvl 

write (*, *) t 

cjeft = cjeft - (iaa(ienterl) * w(ienterl)) 

write (6, '(2x,4il0,2x,f7.3)') ienterl, iaa(ienterl), 
w(ienterl), p(ienterl), ratio(ienterl) 
else if (ienter2 .eq. 1) then 

t = tv2 

write (*, *) t 

cjeft = cjeft - (iaa(ienter2) * w(ienter2)) 

write (6, '(2x,4il0,2x,f7.3)') ienter2, iaa(ienter2), 
+ w(ienter2), p(ienter2), ratio(ienter2) 

else 

t = tvl 

write (*, *) t 

cjeft = cjeft - (iaa(ienterl) * w(ienterl)) 

write (6, '(2x,4il0,2x,f7.3)') ienterl, iaa(ienterl), 
+ w(ienterl), p(ienterl), ratio (ienterl) 

end if 

ctotval = ctotval + t 

call time (result) 

write (*, * ) ' finished time :', result 

if (cjeft .It. ismall) goto 52 

goto 51 

52 write (6,103) ctotval 

101 format (' complementary total value heuristic ;', 

+' n (undominated) =' i5,';', 'c = ' i7) 

102 format (' item number weight profit ratio') 

103 format ( ' z(ctvg) =', x, ilO) 

write (6,104) 

104 format (53h ) 

13 continue 

goto 99 

91 write (*, * ) ' please check your datafile and rerun' 

99 stop 

end 

Dominance Check Subroutine 

subroutine domcheck (n, w, p) 

c this program eliminates the dominated items 

integer w(50000), p(50000), dw(50000), dp(50000) 

open (8, file = 'domi.out') 

do 1 j = 1, n 

dw® = w® 
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dp(j) = P® 
1 continue 

write (8, *) 
c dominance tests 

do 2 i = 1, n -1 
if (dw(i) .le. 0) goto 2 
do 3 j = i + 1, n 
if (dw® .le. 0) goto 3 
if (int(dw(i) / d w ® ) * dp® .ge. dp(i)) then 

dw(i) = -9 
go to 2 

end if 
if (int(dw® / dw(i)) * dp(i) .ge. dp®) then 

dw(j) = -9 
go to 3 

end if 
3 continue 
2 continue 

k = 0 
do 4 i = 1, n 
if (dw(i) .le. 0) goto 4 
k = k + 1 
w(k) = dw(i) 
p(k) = dp(i) 

4 continue 
write (8, * ) ' data (after dominance test)1 

write (8,106) 
106 format (8x, 'no.1, 9x, 'w1, 9x, 'p') 

do 5 i = 1, k 
5 write (8,105) i, w(i), p(i) 

write (8,107) n, k 
n = k 
return 

104 format (' no. of items:1, i6,' number', 
+' w p') 

105 format (3(ill)) 
107 format(' out of', i6,' items', i6,' are undominated') 

end 
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Appendix C : Analysis of Different Ratio Ranges in the 

Generation of Class IV Problems 

The performance of the density-ordered greedy heuristic (Hi), the 

extended greedy heuristic (H2) and the total-value greedy heuristic (TV) 

for the Class IV problems with varying ratio ranges is discussed in this 

Appendix. The data sets for this class was randomly generated with Wj 

uniformly random in [1, 9999] and p; uniformly random in [1, 9999] such 

that the ratio pj / Wj lies in different ratio ranges. The ratio ranges 

considered are [2.0, 2.5], [3.0, 3.3], [5.0, 5.2], [7.0, 7.1], [11.7, 12.0], [13.1, 

13.3] and [16.0, 16.1]. A set of 665 (5 problem instances in the 7 different 

ratio ranges and 19 knapsack capacities, C e [10000, 100000] with an 

increment of 5000 units) test problems with a problem size of 10000 items 

was randomly generated. The dominance behaviour as shown in Table CI 

and the performance of Hi, H2 and TV with respect to the optimal solution 

value are analysed. 

Table CI: Average number of undominated items for different ratio ranges: Total number 
of items considered is 10000 

Ratio Range 

[2.0,2.5] 

[3.0,3.3] 

[5.0, 5.2] 

[7.0, 7.1] 

[11.7,12.0] 

[13.1,13.3] 

[16.0,16.1] 

Number of 

Undominated 

Items, N 

200.4 

365.4 

484.8 

556.2 

272.8 

398.8 

312.4 
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W e see form Table CI that with smaller ratio and narrow range, a large 

number of undominated items are found. As the ratio range is increased 

and so is the width in the range, only a few undominated items can be 

found. 

For the ratio range of [2.0, 2.5], [3.0, 3.3], [5.0, 5.2] and [7.0, 7.1], Hi and H2 

comes close to optimal as the capacity of the knapsack increases and T V 

performs poorly. For the ratio range of [11.7, 12.0], [13.1, 13.3] and [16.0, 

16.1], T V performs better than Hi and H2 and in fact T V gives the optimal 

solution value for all the knapsack capacities. Thus, it can be concluded 

that for smaller ratio range number and smaller difference in the range, Hi 

and H2 performs better than T V with respect to the optimal solution value 

and for bigger ratio range number and smaller ratio range difference, T V 

outperforms Hi and H2 and gives the optimal solution value. Figures 1 

and 2, for example, show the performance of the three heuritics. 

o 1.000 | 1 

Capacity of the Knapsack 

Figured: Ratio range [5.0,5.2] t 

t HI = 0.999685 refers to the case where the heuristic solution is only 0.000315 
units away from the optimal. A value close to 1 means the heuristic is close to 

optimal solution value. 
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1.0001 

H1 
3 I 

H2 
• I 

TV 

Capacity of the Knapsack 

Figure C2: Ratio range [11.7,12.0] 
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Appendix D : Difficult Instances of Unbounded Knapsack 

Problem 

The exact algorithm of Martello-Toth (1990) is a very efficient algorithm. 

But it has been found that for some instances, it is not very efficient. Some 

such instances are discussed in this Appendix. 

In our study, we have found the Martello-Toth algorithm very efficient for 

the first four problem classes (Class I to IV). The role of dominance seems 

to be very crucial. 

The fifth class, the very very strongly correlated knapsack problem is 

generated with a high degree of correlation between the item weights and 

item profits. 

Here, Wj is uniformly random in [1, 999] 

pj = Wj * {(WJ - min Wj + 1) / (max Wj - min Wj + 1)} * 100 

The idea behind generating problem instances with stronger correlation, is 

to increase the expected difficulty of corresponding problems, because of 

an increased number of undominated items. 

The UKP is solved by Martello-Toth exact algorithm for different problem 

sizes ( n = 50,100, 200,300,400, 500,1000, 5000,10000, 20000, 30000, 40000, 

50000) and 10 knapsack capacities C, in the range [100000, 1000000] with 

an increment of 100000. 

For low n (n < 300) and for high n (n > 1000), the time to solve optimally by 

Martello-Toth algorithm was reasonable. The greatest difficulty in terms of 

computational time arose for problem instances with problem size n = 500. 
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For one particular instance with capacity 400000 units, Martello-Toth exact 

algorithm took 55 hours and 36 minutes whereas, the three heuristic 

algorithms gave near optimal and sometimes optimal solutions in 

negligible time. This time requirement was consistent across different 

problem instances with n = 500, although in a few cases, the optimal 

solution was obtained within hours, or even within a few seconds. 

Running problems with n = 400 and n = 600 also showed similar time 

requirements, but the peak appears to be at n = 500. 

Table Dl: Computational results for n = 100,200,300, 400 and 500. 

Knapsack 

Capacity 

100000 

200000 

300000 

400000 

500000 

600000 

700000 

800000 

900000 

1000000 

t n = 100 
N = 97 
S = 0 
D = 0.12 

Hi 

to 
(14) 

0 

(3) 

0 

(24) 

0 

(0) 

0 

(2) 

0 

(11) 

0 

(5) 

0 

(0) 

0.12 

(5) 

0 

(0) 

Hz 

0 

(14) 

0 

(3) 

0.12 

(17) 

0.12 

(46) 

0.12 

(164) 

0.48 

(91) 

0.48 

(0) 

0.72 

(90) 

0.84 

(87) 

1.32 

(0) 

TV 

0 

(14) 

0 

(4) 

0 

(24) 

0 

(203) 

0 

(1) 

0 

(11) 

0 

(5) 

0 

(1) 

0 

(5) 

0 

(0) 

MTU; 

(sec) 

0.24 

0.24 

0.12 

0 

0 

0.12 

0.24 

0.24 

0 

0 

n 

N 

S 

D 

Hi 

0 

(0) 

0 

(0) 

0.2 

(14) 

0 

(0) 

0 

(12) 

0 

(2) 

0 

(0) 

0 

(3) 

0.2 

(3) 

0 

(0) 

= 

H2 

0 

(0) 

0.2 

(0) 

0 

(14) 

0 

(0) 

0 

(12) 

0 

(2) 

0 

(0) 

0 

(3) 

0 

(3) 

0 

(0) 

200 

179 

0 

0.2 

TV 

0 

(1100) 

0 

(0) 

0 

(14) 

0 

(0) 

0 

(12) 

0 

(2) 

0 

(0) 

0 

(3) 

0 

(3) 

0 

(0) 

MTU: 

(sec) 

13.4 

4 

8.2 

15.2 

6.8 

1 

21.2 

0 

14.8 

5.2 

n 

N 

S 

D 

Hi 

0.2 

(0) 

0 

(0) 

0 

(5) 

0 

(1) 

0 

(2) 

0.2 

(1) 

0.2 

(0) 

0 

(4) 

0 

(2) 

0 

(0) 

= 

H2 

0 

(0) 

0 

(0) 

0 

(5) 

0 

(1) 

0 

(2) 

0 

(1) 

0 

(0) 

0 

(4) 

0.2 

(2) 

0 

(0) 

300 

261 

0 

0.24 

TV 

0 

(1100) 

0 

(0) 

0 

(5) 

0 

(276) 

0 

(2) 

0 

(1) 

0 

(0) 

0 

(4) 

0 

(2) 

0 

(0) 

MTU2 

(sec) 

61.4 

6356.6 

265.4 

916.6 

15.6 

497.8 

7346.4 

238.6 

168 

35.8 

n 

N 

S 

D 

Hi 

0 

(0) 

0 

(0) 

0 

(5) 

0 

(1) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(1) 

0 

(0) 

= 

H2 

0 

(0) 

0 

(0) 

0 

(5) 

0 

(1) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(1) 

0 

(0) 

400 

331 
0 

0.4 

TV 

0 

(429) 

0 

(0) 

0 

(5) 

0 

(1) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(1) 

0 

(0) 

MTU2 

(sec) 

326 

11299.* 

660.8 

4214.8 

3.4 

12.6 

13585.* 

601.8 

255.8 

45.6 

n 

N 

S 

D 

Hi 

0.4 

(1) 

0 

(0) 

0 

(5) 

0.2 

(0) 

0 

(0) 

0.2 

(0) 

0.2 

(0) 

0 

(1) 

0 

(0) 

0 

(0) 

= 

H2 

0.2 

(1) 

0 

(0) 

0 

(5) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(1) 

0 

(0) 

0 

(0) 

500 

399 

0 * 

0.4 

TV 

0 

(430) 

0 

(0) 

0 

(5) 

0 

(202) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(1) 

0 

(0) 

0 

(0) 

MTU2 

(sec) 

5244.8 

21009.4 

4945 

200131.6 

2.8 

73.6 

24520.6 

4483.4 

4150.2 

355.6 

= Total number of items 
= Number of undominated items 
= time taken for sorting in sees 
= time taken for Dominance test in sees 

t 
(r) 

= total CPU-seconds 
= coded value of heuristic/optimal 

Ex., r = 14 m e a n s the solution is 0.000014% 
smaller than optimal 
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The average running times of the F O R T R A N 77 implementations of 

algorithms DGREEDY, EXTGREED, TOT_VAL and MTU2 computed over 50 

problem instances (expressed in seconds) are shown. Sorting times and 

time taken for the dominance check are also shown separately for each 

value of n. These times are not included in the running time for heuristic 

algorithms but are included in the Martello-Toth exact algorithm, MTU2. 

The reason for such huge running time is not clear for these difficult 

problem instances and needs further investigation. However, a sample 

data set is included for reference. 

As shown in Table Dl, the heuristics Hi, H2 and TV are much faster than 

MTU2 and also gives optimal solution value in most instances. 

The following is a sample data set of Class V with 500 items. 

Ratio W] M Ratio wj M Ratio wj M 

17.918 
20.120 
11.512 
26.226 
43.143 
45.445 
43.744 
40.841 
76.777 
45.145 
42.442 
13.714 
18.018 
51.952 
69.570 
6.206 

58.759 
20.521 
27.928 
97.898 
93.994 
79.680 
24.324 
11.612 
89.590 

179 
201 
115 
262 
431 
454 
437 
408 
767 
451 
424 
137 
180 
519 
695 
62 

587 
205 
279 
978 
939 
796 
243 
116 
895 

3207 
4044 
1323 
6871 
18594 
20632 
19116 
16663 
58887 
20360 
17995 
1878 
3243 
26963 
48350 
384 

34491 
4206 
7791 

95744 
88260 
63425 
5910 
1346 
80182 

74.975 
31.331 
37.237 
62.763 
4.805 

78.078 
40.641 
39.039 
21.221 
73.774 
63.063 
47.447 
33.834 
75.976 
13.714 
70.170 
26.326 
13.914 
69.870 
92.693 
80.280 
29.630 
91.792 
12.713 
61.662 

749 
313 
372 
627 
48 
780 
406 
390 
212 
737 
630 
474 
338 
759 
137 
701 
263 
139 
698 
926 
802 
296 
917 
127 
616 

56156 
9806 
13852 
39352 

230 
60900 
16500 
15225 
4498 
54371 
39729 
22490 
11435 
57665 
1878 

49189 
6923 
1934 

48769 
85833 
64384 
8770 
84173 
1614 
37983 

44.645 
92.492 
6.707 
60.060 
52.753 
88.088 
8.408 
42.543 
22.122 
93.393 
71.572 
86.386 
91.091 
65.265 
91.592 
31.832 
64.665 
95.896 
98.298 
27.728 
98.098 
73.974 
77A77 
7.608 
68.068 

446 19911 
924 85463 
67 449 
600 36036 
527 27800 
880 77517 
84 706 
425 18080 
221 4888 
933 87136 
715 51173 
863 74551 
910 82892 
652 42552 
915 83806 
318 10122 
646 41773 
958 91868 
982 96528 
277 7680 
980 96136 
739 54666 
774 59967 
76 578 
680 46286 
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Ratio 

77.678 

77.3,77 

96.897 

52.052 

30.731 

5.405 

93.894 

26.927 

73.173 

20.821 

19.219 

30.931 

42.543 

98.498 

52.152 

68.468 

65.465 

14.014 

59.560 

28.829 

34.735 

36.236 

48.749 

55.556 
94.494 

12.913 
31.231 

5.105 

83.183 

96.997 

54.755 

64.064 

30.531 
87.588 

65.265 

59.359 
92.192 

3.604 

77.878 

71.672 

32.533 

7.508 

57.758 
37.437 

29.830 
45.846 

69.870 

8.108 

wj 

776 
773 
968 
520 
307 
54 
938 
269 
731 
208 
192 
309 
425 
984 
521 
684 
654 
140 
595 
288 
347 
362 
487 
555 
944 
129 
312 
51 
831 
969 
547 
640 
305 
875 
652 
593 
921 
36 
778 
716 
325 
75 
577 
374 
298 
458 
698 
81 

PJ 
60277 

59812 
93796 

27067 

9434 

291 
88072 

7243 

53489 

4330 

3690 

9557 

18080 

96922 

27171 

46832 

42814 

1961 

35437 

8302 

12052 
13117 

23740 

30833 

89202 
1665 

9744 

260 
69125 

93990 

29950 

41001 

9311 

76639 

42552 
35200 
84909 

129 
60588 

51316 

10573 

563 
33326 

14001 
8889 

20997 
48769 

656 

Ratio 

89.089 

73.373 

8.809 

85.285 

95.996 

50.150 

13.614 

48.348 

60.661 

2.102 

64.264 

84.685 

12.212 

94.695 

73.574 

22.723 
52.052 

17.618 

19.219 

3.003 

62.863 

65.766 

9.810 

3.804 

32.733 
11.111 

16.416 

15.415 

85.586 

40.641 

71.772 
10.110 

13.614 

72.172 
73.373 

23.624 
35.235 

85.385 

67.568 

34.835 

33.834 

64.665 

65.465 

4.304 
13.413 

21.121 
68.268 

70.270 

wj 

890 
733 
88 
852 
959 
501 
136 
483 
606 
21 
642 
846 
122 
946 
735 
227 
520 
176 
192 
30 
628 
657 
98 
38 
327 
111 
164 
154 
855 
406 
717 
101 
136 
721 
733 
236 
352 
853 
675 
348 
338 
646 
654 
43 
134 
211 
682 
702 

PJ 
79289 

53782 

775 
72663 

92060 

25125 

1851 

23352 

36760 
44 

41257 

71643 

1489 

89581 

54076 

5158 
27067 

3100 
3690 

90 
39477 

43208 

961 
144 

10703 

1233 
2692 

2373 

73175 

16500 
51460 

1021 

1851 
52036 

53782 

5575 
12402 

72833 

45608 

12122 

11435 

41773 

42814 

185 
1797 

4456 
46558 

49329 

Ratio 

49.449 

0.400 

85.385 
59.459 

90.691 

79.680 
34.134 

84.184 

39.740 

22.723 

20.220 

12.713 
90.691 

59.860 

50.450 

83.884 
91.892 

76.677 

49.249 

76.276 

20.320 

79.980 

29.229 
80.180 

76.376 
77177 

84.484 

29.830 
48.749 

80.781 

21.221 

50.250 

64.965 
75.976 

18.919 

52.553 
86.086 

15.516 

92.292 

73.173 

50.851 

21.121 

86.887 

74.474 

36.336 

59.259 
70.671 

32.232 

wj 

494 
4 

853 
594 
906 
796 
341 
841 
397 
227 
202 
127 
906 
598 
504 
838 
918 
766 
492 
762 
203 
799 
292 
801 
763 
771 
844 
298 
487 
807 
212 
502 
649 
759 
189 
525 
860 
155 
922 
731 
508 
211 
868 
744 
363 
592 
706 
322 

PJ 
24428 

1 
72833 

35318 

82165 

63425 
11639 

70798 

15776 
5158 

4084 

1614 

82165 

35796 

25427 

70294 
84356 

58734 

24230 
58122 

4125 

63904 

8534 
64224 

58275 

59503 
71304 

8889 
23740 

65190 

4498 

25225 
42162 

57665 

3575 

27590 
74034 

2404 

85093 

53489 

25832 

4456 

75417 

55409 

13190 

35081 
49893 
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Ratio 

53.754 

3.604 

77.077 

72.773 

22.623 

0.901 

81.481 

50.050 

89.590 

53.353 

40.240 

90.490 

36.837 

39.840 

48.949 

34.234 

40.140 

44.845 

30.230 

25.225 

28.729 

19.520 

74.274 

79.880 

91.091 

53.253 

94.895 

12.212 

34.334 

13.514 

47.748 
24.424 

84.885 

50.951 

16.817 

23.423 

58.258 

1.001 
20.821 

24.124 

70.370 

39.339 

31.632 

49.950 
65.065 

14.615 
4.004 

9.610 

537 
36 
770 
727 
226 
9 

814 
500 
895 
533 
402 
904 
368 
398 
489 
342 
401 
448 
302 
252 
287 
195 
742 
798 
910 
532 
948 
122 
343 
135 
477 
244 
848 
509 
168 
234 
582 
10 
208 
241 
703 
393 
316 
499 
650 
146 
40 
96 

28865 

129 
59349 

52905 

5112 

8 
66325 

25025 

80182 

28437 

16176 

81803 

13555 

15856 

23936 

11708 

16096 

20090 

9129 

6356 

8245 

3806 

55111 

63744 
82892 

28330 

89960 
1489 

11776 

1824 

22775 

5959 

71982 

25934 

2825 

5481 

33906 
10 

4330 

5813 

49470 
15460 

9995 

24925 
42292 

2133 
160 
922 

Ratio 

33.033 

77.878 

75.976 

3.303 
83.784 

45.245 

57.357 

88.188 

94.695 

0.701 

70.671 

13.514 

25.125 

71.271 

72.973 

67.568 

49.650 
49.449 

58.959 

25.325 

31.031 

88.388 

83.784 

24.024 

72.873 

8.208 

68.969 
22.222 

44.545 

57.558 

2.703 

60.561 

34.034 

3.504 

29.029 

26.527 

59.159 

78.078 
53.754 

65.966 

16.817 

60.761 
54.054 

6.106 
44.144 

7.808 
25.225 

2.803 

M- M Ratio W] VI 

330 10900 

778 60588 

759 57665 

33 109 
837 70127 

452 20450 

573 32865 

881 77693 

946 89581 
7 

706 

135 

251 

4 

49893 

1824 

6306 

712 50745 
729 53197 

675 45608 
496 24626 

494 24428 

589 34726 
253 6407 

310 9619 

883 78046 

837 70127 

240 5765 

728 53051 

82 673 
689 47519 

222 4933 

445 19822 

575 33095 

27 72 

605 36639 

340 11571 

35 

290 

265 

122 

8418 

7029 

591 34963 

780 60900 

537 28865 

659 43471 

168 2825 
607 36881 

540 29189 

61 372 
441 19467 

78 
252 

28 

609 

6356 

78 

33.734 

1.201 

28.028 

79.680 
79.980 

23.524 

65.365 

18.018 

45.646 

45.245 

48.248 

67.968 

77A77 

9.309 

6.306 
47.447 

53.453 
65.666 

27.928 

5.205 

15.015 
40.641 

12.312 

45.345 

75.075 
76.677 

7.668 
64.264 

23.223 

74.975 

6.306 

60.861 

29.229 

39.239 

38.539 

61.762 

68.569 

27.528 

95.596 

66.667 

41.542 

5.906 

71.071 

94.695 
41.942 

93.994 

84.685 

29.930 

337 
12 
280 
796 
799 
235 
653 
180 
456 
452 
482 
679 
774 
93 
63 
474 
534 
656 
279 
52 
150 
406 
123 
453 
750 
766 
676 
642 
232 
749 
63 
608 
292 
392 
385 
617 
685 
275 
955 
666 
415 
59 
710 
946 
419 
939 
846 
299 

11368 

14 
7847 

63425 
63904 

5528 

42683 

3243 
20814 

20450 

23255 

46150 

59967 

865 
397 

22490 
28544 

43076 
7791 

270 
2252 

16500 
1514 

20541 

56306 
58734 

45743 
41257 

5387 

56156 

397 
37003 

8534 

15381 
14837 

38107 

46969 

7570 

91293 

44400 

17239 

348 
50460 

89581 

17573 

88260 

71643 

8949 
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Ratio 

23.223 

83.984 

44.044 

60.160 

48.348 

84.985 

54.154 

97.097 

57.057 

6.006 

23.624 

43.944 

40.841 

41.041 

34.234 

48.549 

77.477 

23.223 

49.750 

73.073 

16.917 

78.579 

76.076 

46.046 

12.613 

67.968 

87.688 

9.209 

8.909 

28.529 

10.310 

67.768 

89.890 

33.634 

27.427 

22.122 

86.386 

79.379 

87.487 

26.026 

94.595 

16.717 

13.714 

76.877 

61.662 

12.212 

wj 

232 
839 
440 
601 
483 
849 
541 
970 
570 
60 
236 
439 
408 
410 
342 
485 
774 
232 
497 
730 
169 
785 
760 
460 
126 
679 
876 
92 
89 
285 
103 
677 
898 
336 
274 
221 
863 
793 
874 
260 
945 
167 
137 
768 
616 
122 

pj 

5387 

70462 

19379 

36156 

23352 

72152 

29297 

94184 

32522 

360 
5575 

19291 

16663 

16826 

11708 

23546 
59967 

5387 

24725 

53343 

2858 

61684 

57817 

21181 

1589 

46150 
76814 

847 
792 
8130 

1061 

45878 

80721 

11300 

7515 

4888 

74551 

62947 

76464 

6766 

89391 

2791 

1878 
59041 

37983 
1489 

Ratio 

28.929 

54.254 

16.617 

61.161 

11.712 

77.277 

36.637 

6.406 

87.888 

47.247 

52.252 

52.953 
86.787 

8.208 
56.957 
70.671 

39.239 
10.511 

23.023 

29.530 

8.609 

54.254 

48.248 
74.174 

35.636 
76.777 

41.942 

97.598 

18.819 

22.122 

92.993 

45.546 

97.097 

80.380 

92.793 
31.732 

89.289 

77377 

80.480 
4.304 

95.195 

2.603 

93.794 

90.090 
20.721 

90.791 

Ratio 

79.980 

45.646 

45.245 

95.696 

76.376 
91.792 

47.748 
32.432 

1.902 

40.941 

30.831 
44.044 

40.040 

42.943 
91.992 

69.169 
39.139 

9.910 

6.707 

93.493 

43.043 

0.400 

4.605 
68.068 

77.978 
21.522 

1.502 

29.229 

17.818 

62.162 

44.845 

21.622 

10.811 

85.886 

13.213 
17.818 

82.783 

65.666 

40.040 
31.331 

46.747 

76.476 

16.216 
55.055 

58.458 

wj 

799 
456 
452 
956 
763 
917 
477 
324 
19 
409 
308 
440 
400 
429 
919 
691 
391 
99 
67 
934 
430 
4 
46 
680 
779 
215 
15 
292 
178 
621 
448 
216 
108 
858 
132 
178 
827 
656 
400 
313 
467 
764 
162 
550 
584 

P^ 

63904 

20814 

20450 

91485 

58275 

84173 

22775 

10508 

36 
16744 

9495 

19379 
16016 
18422 

84540 
47795 

15303 
981 
449 

87322 

18508 

1 
211 

46286 

60744 
4627 
22 

8534 

3171 

38602 

20090 

4670 
1167 

73690 
1744 

3171 

68461 

43076 

16016 

9806 

21830 

58428 
2627 

30280 

34139 

WJ 

289 
542 
166 
611 
117 
772 
366 
64 
878 
472 
522 
529 
867 
82 
569 
706 
392 
105 
230 
295 
86 
542 
482 
741 
356 
767 
419 
975 
188 
221 
929 
455 
970 
803 
927 
317 
892 
773 
804 
43 
951 
26 
937 
900 
207 
907 

PJ 

8360 

29405 

2758 
37369 

1370 

59658 

13409 

410 
77165 

22300 

27275 

28012 

75244 

673 
32408 
49893 

15381 
1103 

5295 
8711 

740 
29405 

23255 

54963 

12686 
58887 

17573 
95157 

3537 

4888 

86390 

20723 

94184 

64545 

86018 
10058 

79646 

59812 

64706 
185 

90530 

67 
87884 

81081 
4289 
82347 
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