
A Complementary Heuristic for the Unbounded

Knapsack Problem

Swarna Chitra Iyer

A thesis submitted in fulfilment of the requirements for the

Masters' degree

Department of Computer and Mathematical Sciences

Victoria University of Technology

December, 1997

FTS THESIS
519.7 IYE
30001005349107
Iyer, Swarna Chitra
A complementary heuristic
for the unbounded knapsack
problem

Declaration

I hereby certify that:

1. the following thesis contains only m y original work,

2. due acknowledgment has been made in the text of the thesis to

all other material used and

3. the thesis is less than 60,000 words in length, exclusive of tables,

figures and footnotes.

Swarna Chitra Iyer

December, 1997

n

ABSTRACT

As a solution algorithm for Unbounded Knapsack Problem, the

performance analysis of density-ordered greedy heuristic, weight-ordered

greedy heuristic, value-ordered greedy heuristic, extended greedy

heuristic and total-value heuristic has been done. Empirical experiments

on different test problems have been analysed and reported. Problem

instances with a very large number of undominated items were generated

in addition to the types of instances suggested by Martello and Toth

(1990). Theoretically, the lower bound on the performance for total-value

heuristic is better than the corresponding lower bounds for the density-

ordered greedy heuristic and the extended greedy heuristic as discussed

by White (1992) and Kohli and Krishnamurti (1992). The computational

tests fail to show clear superiority of any particular heuristic algorithm,

although each heuristic produces good quality solutions. If the

combination of the density-ordered greedy and the total-value greedy

heuristics are considered then the combination shows complementary

effect. A new heuristic algorithm incorporating the structural properties of

the density-ordered greedy heuristic and the total-value greedy heuristic

is developed and its complementary effect studied. It was found that the

combination of the density-ordered greedy heuristic, the extended greedy

heuristic, the total-value greedy heuristic and the new complementary

heuristic gives a better performance result than the single best heuristic in

the combination.

iii

Acknowledgments

I would like to thank:

• m y parents, Sharada and Subramanian

• m y supervisor, Lutfar Khan

• m y colleagues, particularly Mehmet Tat, Tony Sahama, and Damon

Burgess and P. Rajendran (Raj) for their technical support,

and a special thanks to m y husband Soundarajan.

IV

CONTENTS
List of Figures viii

List of Tables ix

1 Fundamentals 1

1.1 Knapsack Problems and its Variants 1

1.1.10-1 Knapsack Problem 3

1.1.2 Unbounded Knapsack Problem 3

1.1.3 Bounded Knapsack Problem 3

1.2 Objective of Study 5

1.3 Organisation of the Thesis 6

2 Literature Review 7

2.1 Exact Versus Heuristic Algorithms 7

2.2 Solution Algorithm for Knapsack Problems 9

2.2.1 0-1 Knapsack Problem 9

2.2.2 Bounded Knapsack Problem 10

2.2.3 Unbounded Knapsack Problem 10

2.3 Heuristic Algorithms for the Unbounded Knapsack

Problem 11

2.3.1 Density-ordered Greedy Heuristic 11

2.3.2 Weight-ordered Greedy Heuristic 13

2.3.3 Value-ordered Greedy Heuristic 14

2.3.4 Extended Greedy Heuristic 15

2.3.5 Total-value Greedy Heuristic 16

2.3.6 Combination of Greedy Heuristics 19

2.4 Meta-Heuristics 20

2.4.1 Simulated Annealing 21

2.4.2 Tabu Search 22

2.4.3 Genetic Algorithms 23

2.4.4 Neural Network 25

i

V

2.5 Martello-Toth Exact Algorithm 26

2.6 Dominance Criteria 28

3. Empirical Analysis of Heuristics for the Unbounded Knapsack

Problem 30

3.1 Computational Design and Data Generation 30

3.2 Effect of Dominance on the Five Problem Classes 33

3.3 Performance Measures and Factors 36

3.3.1 Measuring Performance 36

3.3.2 Factors that Influence the Performance of a Heuristic

Algorithm 38

3.4 Results 38

3.5 Analysis of the Results 53

4. Complementary Effect of Heuristics 61

4.1 Comparison of Heuristics 61

4.2 Complementary Total-value Greedy Heuristic 63

5. Summary and Conclusion 72

5.1 Summary 72

5.2 Conclusion 74

5.3 Further Scope for Research 75

Appendix 76

Appendix A: FORTRAN Codes for Data Generation 76

Appendix B: FORTRAN Implementations of the Heuristic 80

Algorithms

Appendix C: Analysis of Different Ratio Ranges in the

Generation of Class IV Problems 96

VI

Appendix D: Difficult Instances of the Unbounded

Knapsack Problem 99

REFERENCES 105

BIBLIOGRAPHY 112

Vll

List of Figures

3.1a Number of undominated items for Uncorrelated,

Weakly Correlated and Strongly Correlated Class of UKP 35

3.1b Number of undominated items for Very Strongly

and Very Very Strongly Correlated Class of UKP 35

3.2 Very Strongly Correlated Class (Class IV), n = 50 53

3.3 Very Strongly Correlated Class (Class IV), n = 100 54

3.4 Very Strongly Correlated Class (Class IV), n = 500 54

3.5 Very Strongly Correlated Class (Class IV), n = 1000 55

3.6 Very Strongly Correlated Class (Class IV), n = 5000 55

3.7 Very Strongly Correlated Class (Class IV), n = 10000 56

3.8 Very Strongly Correlated Class (Class IV), n = 20000 56

3.9 Very Strongly Correlated Class (Class IV), n = 30000 57

3.10 Very Strongly Correlated Class (Class IV), n = 40000 57

3.11 Very Strongly Correlated Class (Class IV), n = 50000 58

3.12 Very Very Strongly Correlated Class (Class V), n = 100 59

3.13 Very Very Strongly Correlated Class (Class V), n = 500 60

CI Ratio range [5.0,5.2] 97

C2 Ratio range [11.7,12.0] 98

Vlll

List of Tables

2.1 Worst-case bounds for the density-ordered greedy

heuristic and the total-value greedy heuristic 18

3.1 Sample data sets for the five problem classes 32

3.2 Average number of undominated items (average of 5

problem instances for each class and each n) 34

3.3 Comparison of solutions for Hi, A and B (for the five

problem classes, 500 problem instances in each class) 40

3.4(a&b)Computational results for the uncorrelated class

(Class I) of problems 43,44

3.5(a&b)Computational results for the weakly correlated

class (Class IT) of problems 45,46

3.6(a&b)Computational results for the strongly correlated

class (Class III) of problems 47,48

3.7(a&b)Computational results for the very strongly correlated

class (Class IV) of problems 49,50

3.8(a&b)Computational results for the very very strongly

correlated class (Class V) of problems 51, 52

4.1 Number of instances where the heuristics give optimal

solution; 500 instances in each case 62

4.2 Comparison of solutions for C T V G , Hi and T V

for the Class I problems; 50 instances in each row

(5 data sets and 10 different capacities) 67

4.3 Comparison of solutions for C T V G , Hi and T V

for the Class II problems; 50 instances in each row

(5 data sets and 10 different capacities) 67

4.4 Comparison of solutions for C T V G , Hi and T V

for the Class III problems; 50 instances in each row

(5 data sets and 10 different capacities) 68

IX

.5 Comparison of solutions for CTVG, Hi and TV

for the Class IV problems; 50 instances in each row

(5 data sets and 10 different capacities)

4.6 Comparison of solutions for CTVG, Hi and TV

for the Class V problems; 50 instances in each row

(5 data sets and 10 different capacities)

4.7 Number of instances where the heuristics give

optimal solution; 500 instances in each case

CI Average no. of undominated items for

different ratio ranges: total no. of items

considered is 10000

Dl Computational results for n = 100, 200, 300,

400 and 500

X

CHAPTER 1

1. FUNDAMENTALS

Knapsack problems are intensively studied mainly for their simple

structure which, on the one hand allows exploitation of a number of

combinatorial properties and, on the other, facilitates the solution of more

complex optimisation problems through a series of knapsack-type

subproblems.

In the following sections we shall examine in brief, the most common

variants of Knapsack Problems and outline the design of this thesis.

1.1 Knapsack Problems and its Variants

A typical investment problem can be described as follows.

Given an amount of investment capital, a variety of projects with different

capital requirements and expected profits are possible. Some of the

projects are to be selected such that the budget is not exceeded and the

total expected profit is maximum.

This decision problem is an important application model of the Knapsack

Problem (KP).

The name Knapsack Problem comes from its relation to the hitch-hiker's

decision making situation (which is the same as the investment example);

a hitch-hiker packs his knapsack by selecting from among various possible

objects those which will give him maximum utility or profit without

exceeding the weight capacity of the knapsack.

l

Mathematical programming problems like Linear Programming and Integer

Programming have been applied in a number of decision making

situations. A KP can be classified as an integer programming problem.

Because of its combinatorial structure, it is often treated as a combinatorial

optimisation problem.

Mathematically, a KP can be formulated as:

Given a set of n items and a knapsack, with

pj = profit (or value) of item j,

Wj = weight (or volume) of item j,

C = capacity of the knapsack,

select a subset of the items so as to

n

Maximise z = '^_lpjxJ
y=i

n

subject to ^,wjxj - C

Xj = 0 or 1, j e N = {1,2, ... ,n}

where Xj = 1, if item j is selected;

= 0, otherwise.

In the literature this one-constraint, linear pure 0-1 discrete programming

problem is called the 0-1 Knapsack Problem or simply the Knapsack

Problem. It is also known as the Lorie-Savage Problem (1955).

There are different variants of the Knapsack Problem, some are described

in the following.

.. (1)

.. (2)

.. (3)

2

1.1.1 0-1 Knapsack Problem

The problem defined by equations (1), (2), & (3) is called the 0 - 1

Knapsack Problem (0-1 KP). The term 0-1 appears because an item is

either selected or rejected, and at most one piece of each item can

be selected.

1.1.2 Unbounded Knapsack Problem

When it is possible to select any number of pieces of an item, the problem

is called an Unbounded Knapsack Problem (UKP),

i.e., when equation (3) is replaced by

Xj > 0, integer (4)

where Xj = number of units of item j selected, then UKP is the

problem defined by equations (1), (2), & (4).

In this thesis, we will be dealing with the solution algorithms for UKP.

1.1.3 Bounded Knapsack Problem

When for each item there is an upper limit to the number of pieces that can

be selected, the problem is called a Bounded Knapsack Problem (BKP),

i.e., when equation (4) is replaced by

0 < Xj < bj, j G N = {1,2, ... ,n} (5)

Xj integers,

then BKP is the problem defined by equations (1), (2), & (5).

Strictly speaking, an UKP is a special case of BKP, since replacing bj by oo

or a value defined by the knapsack capacity and Wj, they are equivalent.

The 0 - 1 KP, UKP and BKP are generally referred to as Knapsack

Problems (KP). KPs have been intensively studied as discrete

programming problems. The reason for such interest basically derives

from three facts:

3

(a) a KP can be viewed as one of the simplest Integer Programming

problems;

(b) it appears as a subproblem in complex problems as in cutting

stock problem. The solution of knapsack problems in solving

cutting stock problems (Gilmore and Gomory, 1963) is

particularly important because of the fact that in the column

generation procedure that is used for cutting stock problem,

repeated solution of Unbounded KnapsackProblems are used;

(c) it represents a great many practical situations such as capital

budgeting, project selection, loading problems, journal selection

in a library (Salkin and de Kluyver, 1975).

There are many other variants of KP and similarly structured

mathematical models. They can be classified under two categories.

The knapsack problems, where only one knapsack is to be filled with an

optimal subset of items are called Single Knapsack Problems. The 0-1

knapsack problem, the hounded and unbounded knapsack problems, the subset-

sum problem, the change-making problem are all single knapsack problems.

The knapsack problems where more than one knapsack is available are

called Multiple Knapsack Problems. The 0-1 multiple knapsack problem, the

generalised assignment problem and the bin-packing problem can be called

multiple knapsack problems.

These problems are discussed in detail in Taha (1975), Salkin and Mathur

(1989) and Martello and Toth (1990); the last one includes computer codes

for solving them.

4

1.2 Objective of Study

Knapsack Problems (KP) are widely used mathematical decision models,

particularly in the areas of cutting stock, cargo loading, capital investment,

etc. K P and its variants are in the class of difficult optimisation problems,

which take up long computational time. The particular variant of K P

studied in this research, namely the Unbounded Knapsack Problem

(UKP), was first introduced some decades ago and the density-ordered

greedy heuristic algorithm has been available since. In the 1990s, a new

algorithm, called the total-value greedy heuristic appeared, but not fully

explored in terms of computational time and quality. A detailed report on

the exact (optimal) solution algorithms was published only lately (in

1990).

In this research all the available heuristic algorithms for UKP have been

studied. The aims of this research is to generate test problems and

investigate the performance of the algorithms in solving different

instances of these problems by varying parameters such as problem size,

knapsack capacity and profit/ weight ratios. In particular, an extensive

study of the performance of the density-ordered greedy heuristic, the weight-

ordered greedy heuristic, the value-ordered greedy heuristic, the extended greedy

heuristic and the total-value greedy heuristic are undertaken by comparing

the quality of their solutions and the computational time with respect to

the Martello-Toth exact algorithm. The results are expected to be useful in

developing algorithms and software in related areas. In the column

generation technique for solving linear programming problems, the ease

of solving KPs will be helpful. Although, it has been the practice to take

the column corresponding to the optimal solution of the KP, it is not

absolutely necessary to do so. Gilmore and Gomory (1963) observed that

accepting any feasible solution could be a viable option.

5

1.3 Organisation of the Thesis

Chapter 2 describes in brief the existing algorithms for the knapsack

problem. Algorithms for the variants of K P are outlined in Section 2.1 and

a detailed discussion of the solution algorithms for the unbounded

knapsack problem is given in Section 2.2. Section 2.3 gives a brief

description of the meta-heuristics and their likely use in finding solutions

for knapsack and related problems. Section 2.4 explains Martello-Toth's

exact algorithm for UKP. Dominance criterion, an important phenomenon

used to greatly reduce the size of the original problem is discussed in

Section 2.5. Chapter 3 is a detailed description of the computational

analysis of the heuristics for UKP. Section 3.1 describes the computational

design and data generation for the heuristics and gives a few sample

datasets for the five problem classes generated. Section 3.2 describes the

performance measures and the factors that are to be recognised in an

experimental study of heuristics. Section 3.3 and 3.5 reports the

computational results obtained on the five heuristic algorithms for UKP.

Sections 4.1 describes the complementary effect of heuristics. Based on the

behaviour of the existing heuristics, a new complementary heuristic is

developed and is discussed in Section 4.2. Summary and conclusion is

given in Chapter 5. The F O R T R A N codes for data generation are given in

Appendix A and the code for the heuristic algorithms is given in

Appendix B; in Appendix C, the effect of varying the density ratio range is

explained for the Class IV problem instances and in Appendix D some

difficult problem instances of Class V Unbounded Knapsack Problem are

described.

6

CHAPTER 2

2. LITERATURE REVIEW

The sections in this chapter describe the solution algorithms for Knapsack

Problem in brief and discusses the heuristic algorithms for the Unbounded

Knapsack Problem at length. The dominance criterion which is an

important phenomenon in any solution algorithm for UKP is described in

Section 2.5.

2.1 Exact Versus Heuristic Algorithms

The time-complexity or, simply, complexity of an algorithm for solving some

problem is said to be the maximal number of computational steps that it

takes to solve any instance of the considered problem of a given size. For

example, the time-complexity of a given algorithm as a function of the size

s is the order of f(s), when s -» QO and is denoted by 0(i(s)) or simply

0(8).

An algorithm can be classified as good or bad depending on whether or

not it has polynomial time complexity. Similarly, a problem can be

classified as 'hard' or 'easy' depending on whether or not it can be solved

exactly by an algorithm with polynomial time complexity. Based on this

distinction, an elegant theory of the complexity of problems has been

developed (Garey and Johnson, 1979).

Mathematical decision problems can be grouped into two classes, viz.,

easily solvable problems (class P) for which polynomial algorithms are

known and problems which require considerable computing time (class

N P), for which only exponential time exact algorithms are known. A

7

problem type is in the class P if there exists an algorithm that, for any

instance, has running time (the number of computational steps required)

that is bounded by a polynomial function of the problem size, i.e.,

problems for which polynoniial-time algorithms have been devised. A

problem type is in the class N P if it is possible to devise an algorithm for

each problem, but no polynomial-time algorithm is known for any of

them. For example, the problem of finding the maximal number among n

numbers requires n-1 comparisons, thus such a problem is in P. For a 0 -1

knapsack problem with n items to be solved exactly, we have to check, in

the worst case, all 2n combinations of items. Such a problem is in NP.

A problem is termed NP-Complete if (i) it belongs to NP and (ii) it has a

property that if an efficient algorithm is found for it then an efficient

algorithm can be found for every problem in NP. In this sense the NP-

Complete problems are the hardest in NP. KPs are NP-Complete problems

(Garey and Johnson, 1979) and are difficult to solve optimally. Obviously,

the difficulty rises rapidly if the number of items go up.

An exact algorithm guarantees an optimal solution to a mathematical

progranvming problem. The two principal approaches for finding an

optimal solution to an integer-programming problem are the branch-and-

hound algorithm and the dynamic programming algorithm. Although there

are noticeable differences among different problems, in general the NP-

Complete problems require a lot of computational time.

Heuristic algorithms give near - optimal solutions in reasonably short

computational time. Heuristic solutions to different combinatorial

problems can be found using a number of heuristics. For a KP, the use of

a heuristic algorithm may be justified for several reasons. First, it is often

the case that obtaining exact solutions to a knapsack problem may not be

8

necessary and that one would be content with a solution that is sufficiently

close to the optimal. This may well be the case, for instance, when the

profit pj, themselves are only estimates of expected returns or when the

knapsack problem is only a sub-optimisation of a much larger problem.

Further as we see that there is no known polynomial algorithm for this

problem and that there may well not be any such algorithm, restrictions

on computing time may force one to be satisfied with a heuristic solution

to large problem instances.

Although this study deals with UKP, solution methods for very closely

related problems of 0 - 1 KP and BKP are briefly discussed in the

following.

2.2 Solution Algorithms for Knapsack Problems

Following the notation of complexity as 0(s), it can be said that for a

KP, s is the number of possible items. In the discussion below, n is the

number of items and C is the knapsack capacity.

2.2.1 0 -1 Knapsack Problem

This problem can be solved exactly by reduction algorithms where the

number of variables are first reduced before applying the algorithm

(Ingargiola and Korsh, 1973; Martello and Toth, 1988, 1990 and Nauss,

1996). It can also be solved heuristically by a method of relaxation and

upper bounds (Dantzig, 1957), where the computation for the Dantzig

bound requires 0(n) time if the items are sorted according to non-

increasing values of the profit per unit weight. Other heuristic algorithms by

0-1 KP include Sahni (1975) and Balas and Zemel (1980), which require

0(n log n).

9

2.2.2 Bounded Knapsack Problem

This problem can be solved exactly by branch-and-bound algorithms

(Martello and Toth, 1977; Ingorgiola and Korsh, 1977 and Bulfin et al.,

1979). Aittoniemi and Oehlandt (1985) gives an experimental comparison

of these, indicating the Martello and Toth (1977) one as the most effective.

It can also be solved by dynamic programming (Gilmore and Gomory, 1966;

Nemhauser and Ullmann, 1969) method requiring 0(nC?) time in the

worst case and the space complexity is 0(nC) and can only solve problems

of very limited size. The heuristic solution algorithms are upper bounds and

approximate algorithms, where the computation time is 0(n).

2.2.3 Unbounded Knapsack Problem

The solutions to this problem include exact algorithms based on branch -

and - bound (Martello and Toth, 1977; Cabot, 1970; Gilmore and Gomory,

1963) and dynamic programming (Garfinkel and Nemhauser, 1972). The

heuristic algorithms are upper bounds and approximate algorithms (Magazine

et al, 1975; H u and Lenard, 1975), the time complexity for the computation

of the upper bounds is 0(n) and the time complexity of the approximate

(Greedy) algorithm is 0(n), plus 0(n log n) for the preliminary sorting.

This research focuses on the solution of the Unbounded Knapsack

Problem (UKP). In the literature, there are five main heuristic algorithms

for UKP:

a) Density - ordered greedy heuristic (Dantzig, 1957; Martello and Toth,

1990),

b) Weight - ordered greedy heuristic (Horowitz and Sahni, 1978; Kohli and

Krishnamurti, 1995),

10

c) Value - ordered greedy heuristic (Horowitz and Sahni, 1978; Kohli and

Krishnamurti, 1995),

d) Extended greedy heuristic (White, 1991),

e) Total - value greedy heuristic (White, 1992; Kohli and Krishnamurti,

1992; Lai, 1993).

2.3 Heuristic Algorithms for the Unbounded Knapsack Problems

The aforementioned five heuristic algorithms are discussed in the

following.

The solution method of these five greedy heuristics is termed 'greedy'

because at each step (except possibly the last one) w e choose to introduce

that object which according to one criterion or the other would increase

the objective function value the most. A n object once selected, stays in the

knapsack and therefore in the solution. The items can be ordered (a) in

decreasing order of density pi/wi, (b) in increasing order of the item

weights Wi, (c) in decreasing order of the profit of the item pi and (d) in

decreasing order of the total-value Lc/wi J pi.

2.3.1 Density - ordered Greedy Heuristic (HJ

This is the classic heuristic for the unbounded knapsack problem. This

procedure has been discussed in the literature among others, by Garey

and Johnson (1979) and Martello and Toth (1990). Dantzig (1957) first

introduced this algorithm.

11

Density-ordered greedy heuristic recursively determines a solution by

making a variable with smallest marginal unit cost as large as

possible.

First, order the items so that

pi > P2 > > pn-l > Pn

where, pj = PJ/WJ , 1 < j < n

Then set

(a) xi = LC/wJ;

(b) XJ = L(C - f>,wj/wjj , 2<j<n
k=\

where for z e Z+ , |_zj is the integer part of z.

Hi gives good results, but the worst case result is poor and it can be

shown that there are instances where the optimal solution is almost twice

the greedy solution. Under some restrictive assumptions, the greedy

algorithm will give optimal solution (Magazine et al, 1975; H u and

Lenard, 1975; White, 1991). An example of Hi is as follows.

Example 1

C = 100

W2 = 50, wi = 51

p2 = 99, pi = 102

pi = 102/51 > p2 = 99/50

Hi -> x2 = 0, xi = 1, z(Hi) = 102

Optimal -> x2 = 2, xi = 0, z(opt) =198

The heuristic solution value is almost half of the optimal solution value.

Specifically, z(Hi) = 0.52 z(opt)

12

2.3.2 Weight - ordered Greedy Heuristic (A)

Horowitz and Sahni (1978) formulated a greedy approach attempting to

obtain a solution. This method tries to be greedy with the capacity and

thus requires the objects to be ordered in non-decreasing weights, we try

to put as many objects as possible with the least weight into the knapsack,

thus using up as much capacity. This heuristic has arbitrarily bad worst-

case bounds (Horowitz and Sahni, 1978; Kohli and Krishnamurti, 1995)

though the capacity is used up slowly with the profits coming in rapidly

enough. Example 2 shows a very bad instance for Heuristic A.

Example 2

C = 100

W2 = 10, wi = 9

p2 =1000, pi =1

A -> x2 = 0, xi = 11

z(A) = 11

Optimal -> X2 = 10, xi = 0

z(opt) = 10000

z(A) = 0.0011 z(opt)

It is possible to find randomly generated instances where the weight-

ordered greedy heuristic provides the optimal solution value (Example 3).

In general they are expected to perform poorly.

Example 3

C = 20

W3 = 10, W2 = 15, wi = 18

p3 = 15, p2 = 24, pi = 25

A -> x3 = 2, x2 = 0, xi = 0

z(A) = 30

13

Optimal -> x3 = 2, x2 = 0, xi = 0, z(opt) = 30

2.3.3 Value - ordered Greedy Heuristic (B)

This greedy heuristic discussed by Horowitz and Sahni (1978) followed

by Kohli and Krishnamurti (1995) considers objects in order of non-

increasing profit values. This method too has arbitrarily bad worst-case

bounds (Horowitz and Sahni, 1978; Kohli and Krishnamurti, 1995) and

does not usually yield an optimal solution though the objective function

value takes large increases at each step. The number of steps is reduced as

the knapsack capacity is used up at a rapid rate. A bad instance is given in

Example 4.

Example 4

C = 100

W2 = 99, wi = 1

P2 = 2, pi = 1

B -> X2 = 1, xi = 1

z(B) = 3

Optimal -> x2 = 0, xi = 100

z(opt) = 100

z(B) = 0.03 z(opt)

There are of course instances where the value-ordered greedy heuristic

gives the optimal solution value (e.g., Example 5). In general, this heuristic

too is expected to perform poorly.

Example 5

C = 80

w 4 = 20, w 3 = 18, w 2 = 15, wi = 7

14

p4 =36, p3 =20, p2 =20, pi =9

B -> X4 = 4, x3 = 0, x2 = 0, xi = 0, z(B) = 144

Optimal -^ X4 = 4, X3 = 0, X2 = 0, xi = 0, z(opt) = 144

2.3.4 Extended Greedy Heuristic (H2)

White (1991) discussed an extension of Hi, which he called H2. This

involves pairs of items rather than a single item as in the density-ordered

greedy heuristic. It requires that the best combination of the first two

items (from the ratio sorted list in non - increasing order) be taken and

then the best combination of the next two items is taken, and so on.

Unfortunately, neither H2 is always superior to Hi nor indeed is Hi always

superior to H2. Although the worst case result with a ratio bound of 2 is

the same for both heuristics, on many occasions the two-at-a-time heuristic

(H2) can be better. It is possible that Hi gives an optimal solution, with H2

not giving an optimal solution and also it is possible that H2 gives an

optimal solution, but Hi does not give an optimal solution. If Hi uses up

exactly the available resources, then Hi definitely gives the optimal

solution. But this need not be true with H2. Example 6 is an instance where

H2 is better than Hi.

Example 6

C = 10

W3 = 3, W2 = 2, Wl = 1

p3 = 14, p2 = 8, pi = 1

p3 = 14/3 > p2 = 4 > pi = 1

Hi -> x3 = 3, x2 = 0, xi = 1, z(Hi) = 43

H 2 -> x3 = 2, x2 = 2, xi = 0, z(H2) = 44

15

Example 7 is an instance where H2 is worse than Hi.

Example 7

C = 10

W4 =3, W3 = 2, W2 = 1, Wl = 1

P4 = 20, p3 = 12, p2 = 5, pi = 1

p4 = 20/3 >p3 = 6>p 2 = 5>pi = l

Hi -» X4 = 3, X3 = 0, X2 = 1, xi = 0, z(Hi) = 65

H 2 -> x4 = 2, x3 = 2, x2 = 0, xi = 0, z(H2) = 64

If combinations of 3 or more items are considered instead of 2, we

might call them H3, H4, and so on. These, however, clearly increases

computation time requirements and lose the benefits of obtaining

solutions quickly. It may be noted that Hn, where n = number of items, is

in fact an exact algorithm for the original problem.

2.3.5 Total-Value Greedy Heuristic (TV)

Total-Value Heuristic (White, 1992; Kohli and Krishnamurti, 1992; Lai,

1993) is another heuristic solution method for the unbounded knapsack

problem.

At step i, the total-value heuristic selects an item for which the values

PJ LCI/WJJ across all available items j is maximum, where Ci is the

available knapsack capacity at the beginning of step i. The items need

not be sorted in a non-increasing order, because all the items have to

be considered at every step.

16

Example 8 is an instance where the total-value greedy heuristic gives the

optimal solution value. The density-ordered greedy heuristic and the

extended greedy heuristic in this instance performs poorly.

Example 8

C = 30

W4 = 12, W3 = 10, W2 = 9, Wl = 8

p4 = 22, p3 = 21, p2 = 20, pi = 19

p4 = 22/12 < p3 = 21/10 < p2 = 20/9 < pi = 19/8

Hi -> X4 = 0, x3 = 0, x2 = 0, xi = 1, z(Hi) = 57

H 2 -> x4 = 0, x3 = 0, x2 = 2, xi = 1, z(H2) = 59

TV -» x4 = 0, x3 = 3, x2 = 0, xi = 0, z(TV) = 63

Optimal -» X4 = 0, X3 = 3, X2 = 0, xi = 0, z(opt) =63

Lai (1993) called this solution method as Heuristic A. He showed that this

heuristic has a worst-case performance ratio > 4/7.

White (1992) and independently Kohli and Krishnamurti (1992) showed

CO

that the worst case bound of TV given by 1/]JT 1 / h(i) where h(i) is an

integer value given by the recursion h(l) = 1, h(2) = k + 1, h(i) = [h(i -

1)].[h(i - 1)+1] for i > 3, is always better than that of Hi given by k/(k

+ 1) (Fisher, 1980) where k is the integer part of the ratio of the

knapsack capacity to the weight of the heaviest item, i.e., k =

LC/wmaxJ. Hi behaves like TV with the integrality constraint removed

(i.e., if the fractional amounts of items are allowed to be included in the

knapsack). The performance of the heuristics depend on k. As k

increases, the difference between Ll/wJ and 1/wi for i = 1, 2, ..., n is

reduced, and consequently the ordering due to the total-value heuristic

17

tends to be the ordering due to the density-ordered greedy heuristic. As a

result the difference between the two worst-case bounds decreases.

The principal benefit of the total - value heuristic appears to be in the fact

that it considers all three parameters — unit weight, unit value and

knapsack capacity — in ordering items, i.e., it selects items in a non-

increasing order of their m a x i m u m possible contribution to the solution

value given the available knapsack capacity at each step. A consequence of

considering all three parameters is that T V always gives a better worst-case

performance than that of Hi for the unbounded knapsack problem as shown

in Table 2.1. Individual problem instances do however exist where Hi

gives better results than T V (e.g., Example 9).

Table 2.1: Worst-case Bounds for Density - ordered Greedy Heuristic and Total-value
Heuristic. Q7rom Kohli & Krishnamurti, 1992)

t k

1

2

3

4

5

r(TV)

0.5913555

0.7026825

0.7678212

0.8101038

0.8396093

r(Hi)

0.5000000

0.6666667

0.7500000

0.8000000

0.8333333

W e observe from the above table that the difference between the worst-

case bound for T V and Hi is the largest for k=l. This difference decreases

as k increases. As k approaches infinity, both heuristics obtain the optimal

solution. Because of the greater number of operations needed per step, T V

takes more computational time than Hi.

t k = number of the largest item that can fit into the knapsack and

r = (Total profit by heuristic algorithm) / (Total profit by optimal algorithm).

18

Example 9

C = 41

W7 = 7 , W6 = 8, W5 = 5, W4 = 4, W3 = 9, W2 = 9, Wl = 3

p7 =42, p6 = 46, p5 = 26,p4 =20, p3 =38, p2 =32, pi =10

p7=42/7 > p6=46/8 > p5=26/5 > p4=20/4 > p3=38/9 > p2=32/9 > pi=10/3

Hi -> x7 = 5, x6 = 0, x5 = 1, X4 = 0, x3 = 0, x2 = 0, xi = 0, z(Hi) = 236

T V -> x7 = 0, x6 = 5, x5 = 0, x4 = 0, x3 = 0, x2 = 0, xi = 0, z(TV) = 230

2.3.6 Combination of Greedy Heuristics

Kohli and Krishnamurti (1995) analysed the worst-case performance of a

combination of greedy heuristics (density-ordered greedy, weight-ordered

greedy, value-ordered greedy and the total-value greedy heuristic) for the

Unbounded Knapsack Problem.

An analysis of composite heuristics provides insight into why one

heuristic performs well while the other performs poorly. If the heuristics

complement each other, the composite solution value can be closer to the

optimal than the solution value of the individual heuristics. This was

shown by the composite of the density-ordered and total-value greedy

heuristics by guaranteeing a tight worst-case bound of (k+l)/(k+2). The

density-ordered greedy heuristic by itself performs most poorly when the

densest item leaves a significant capacity of the knapsack unused, also

leaving an insufficient amount of the weight capacity to fit any other item.

The total-value greedy heuristic compensates for this limitation by

choosing items with lower density that fill more of the knapsack and

hence contribute more to the total solution value. But this heuristic cannot

discriminate between the items that have the same total-value contribution

with different densities. Here the density-ordered greedy heuristic is

better than the total-value heuristic by choosing items that fill the

19

knapsack at a more rapid rate. The density-ordered and total-value greedy

heuristics appear to complement each other in this sense. However, the

weight-ordered and value-ordered greedy heuristics use very little

information regarding the problem so much so that they seem to neither

complement each other, nor the density-ordered and total-value

heuristics. The usefulness of the weight-ordered and the value-ordered

greedy heuristics thus seem insignificant in solving UKPs. A combination

of the density-ordered and the total-value greedy heuristics can be used to

provide better lower bounds on the optimal solution value.

2.4 Meta - Heuristics

Meta-heuristics (Osman and Kelly, 1996; Reeves, 1993) are recent

development in approximate search methods for solving complex

optimisation problems that arise in business, commerce, engineering,

industry and many other areas. This class of approximate methods

developed in the early 1980s, was designed to attack hard combinatorial

optimisation problems where classical heuristics have failed to be effective

and efficient. They provide general frameworks that allow for creating

new hybrids by combining different concepts derived from classical

heuristics, artificial intelligence, biological evolution, neural systems and

statistical mechanics. The approaches include genetic algorithms, greedy

search procedure, problem-space search, neural networks, simulated

annealing, tabu search, threshold algorithms and their hybrids.

A meta-heuristic can be defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different

concepts for exploring and exploiting the search spaces using learning

strategies to structure information in order to find near-optimal solutions

efficiently.

20

Meta-heuristics have not been used in the solution algorithms for the

Unbounded Knapsack Problem but the different search methods can

definitely be incorporated in the heuristic approach because of the

generation process being iterative.

Classification of a comprehensive list of references on the theory and

application of meta-heuristics is provided by Osman and Laporte (1996).

For completeness, a brief description of the most popular meta-heuristics

is given in the following.

2.4.1 Simulated Annealing

Simulated Annealing came to use in the early 1980s as a heuristic

technique for combinatorial optimisation problems and was said to be the

most simple and robust algorithm capable of providing good quality

solutions to some very difficult problems.

The algorithm was first published by Metropolis et al. (1953) and later by

Kirkpatricketal. (1983).

This algorithm is based on the analogy between the annealing process of

solids and the problem of solving combinatorial optimisation problems. In

condensed matter physics, annealing denotes a process in which a solid in

a heat bath is melted by increasing the temperature of the heat bath to a

high m a x i m u m value at which all molecules of the solid randomly arrange

themselves into a liquid phase.

This approach is regarded as a variant of the well-known heuristic

technique of local (neighbourhood) search, in which a subset of the

feasible solutions is explored by repeatedly moving from the current

21

solution to a neighbouring solution. However, this technique needed

disappointingly long running times even to find the approximate

convergence to optimum. But a number of experiments and practical

applications shows that annealing can provide a useful solution method

for a variety of problems, generally out-performing standard descent

methods and sometimes competing effectively with specialist heuristics.

This method is easy to implement, it is applicable to almost any

combinatorial optimisation problem and it usually provides reasonable

solutions. W h e n faced with the challenge of designing a heuristic solution

for a new problem, simulated annealing is certainly worth considering.

Simulated annealing is applicable in Knapsack Problems (Cagan, 1994;

Drexl, 1988; Hanafi et al, 1996; Abramson et al, 1996 and Ohlsson et al,

1993) as well as many other applications.

2.4.2 Tabu Search

Tabu search is an iterative meta-heuristic search procedure introduced by

Glover (1986) for solving optimisation problem. This search is based on

intelligent problem solving. It shares the ability to guide a subordinate

heuristic (such as the local neighbourhood search procedure) to continue

the search beyond a local optimum where the embedded heuristic will

normally become trapped. The process in which the tabu search method

seeks to transcend local optimality is based on an aggressive evaluation

that chooses the best available move at each iteration even when this move

may result in a degradation of the objective value. This search begins in

the same way as an ordinary local search, proceeding iteratively from one

solution to another until a chosen termination criterion is satisfied. Many

tabu search implementations are largely or wholly deterministic. A n

exception occurs for the variant called probabilistic tabu search, which

22

selects moves according to probabilities based on the status and

evaluations assigned to these moves by the basic tabu search principles.

Tabu search concepts and strategies offer a variety of fruitful possibilities

for creating hybrid methods in combination with other approaches.

A tabu search method that incorporates tabu restrictions on the logical

structure of the generated problem was studied by Dammeyer and Voss

(1993) and Hanafi et al. (1996) on Knapsack Problems. It finds use in

Cutting and Packing Problems (Laguna and Glover, 1993). Tabu search is

also applicable in production scheduling, routing, design, network

planning, expert systems and a variety of other areas.

2.4.3 Genetic Algorithms

Genetic Algorithms are a class of adaptive search methods based on a

abstract model of natural evolution. It can also be understood as the

intelligent exploitation of a random search. They were first developed in

the early 1970s by Holland (1975), and later refined by De Jong (1975),

Goldberg (1989), and many others. Only recently their potential for

solving combinatorial optimisation problems has been explored. The most

early applications were in the realm of Artificial Intelligence — game-

playing and pattern recognition for instance.

The name Genetic Algorithm originates form the analogy between the

representation of a complex structure by means of a vector of components,

and the idea, familiar to biologists, of the genetic structure of a

chromosome. For example, in the selective breeding of plants or animals,

offspring are sought which have certain desirable characteristics that are

determined at the genetic level by the way the parents' chromosomes

23

combine. The basic idea is to maintain a population of candidate solutions

that evolves under a selective pressure that favours better solutions.

Generally, Genetic Algorithm is an iterative procedure that operates on a

finite population of N chromosomes (solutions). The chromosomes are

fixed strings with binary values (0 or 1) at each position. Each

chromosome of the population are evaluated according to a fitness

function. Members of the population are selectively interbred, often in

pairs to produce offspring. The fitter a member of the population the most

likely it is to produce an offspring. Genetic operators are used to facilitate

the breeding process that results in offspring inheriting properties from

their parents. The offspring are evaluated and placed in the population

replacing the weaker members of the last generation. The new

chromosomes resulting from these operations form the population for the

next generation and the process is repeated until the system ceases to

improve.

Genetic Algorithms encounters a number of problems when solving

combinatorial problems. They fail to find satisfactory solutions for many

reasons. The genetic algorithm binary encoding/decoding has been found

unsuitable and normal cross-over operations often lead to many infeasible

solutions. This can be overcome by using genetic algorithm in

combination with other techniques such as the branch and bound, local

search, simulated annealing and tabu search.

Genetic Algorithm is applicable in many combinatorial problems like the

Bin Packing and related problems (Falkenauer and Delchambre, 1992;

Reeves, 1996) and the Knapsack Problems (Fairley and Yates, 1993; Thiel

and Vob, 1994).

24

2.4.4 Neural Networks

Neural Networks are models based on the functioning of the human brain.

They have been successful in solving problems whose structures can be

exploited by a process linked to those of associated memory. They have

been successfully used to solve a variety of practical problems in areas

such as pattern recognition and optimisation.

The interest in using neural networks in combinatorial optimisation

problems was pioneered by the work of Hopfield and Tank (1985) and

later developed by Aarts and Korst (1989). This is best used in any class of

problems because of its robustness, generalisation capabilities, and speed

of operation through hardware implementability of inherent parallel

structures.

The networks consist of a set of competing connected elements. The

competing elements are logic units with binary states and are linked by

symmetric connections. Each connection is associated with a weight

representing the interconnections between units when both are 'on'. A

consensus function assigns to each configuration of the network a real

value. The units may change their state in order to maximise the

consensus. A state change of an individual unit is determined by a

deterministic response function of the states of its adjacent units. If the

response function is a probability function, then the randomised version of

the network is called the Boltzmann machine. The challenge of the model

is to choose appropriate network structure and corresponding connection

strengths such that the problem of finding near optimal solutions of the

optimisation problem is equivalent to finding maximal configurations of a

network.

Neural networks find their application in Knapsack Problems (Glover,

1994; Ohlsson et al, 1993) and many other combinatorial problems, like the

25

Cutting and Packing Problems (Bahrami and Dagli, 1994) and the

Assignment Problems (Kurokawa and Kozuka, 1994).

2.5 Martello - Toth Exact Algorithm

An U K P being an NP-Complete problem requires a lot of computational

time. The various approaches to its exact solution include branch-and-

bound algorithm proposed by Gilmore and Gomory (1963), Cabot (1970)

and Martello and Toth (1978).

Many instances of UKP can be solved by branch-and-bound algorithms for

very large values of n . For these problems, the preliminary sorting of the

items requires, on average, a comparatively high computing time. This

was overcome by Balas-Zemel algorithm (1980) which is based on the

"core problem". The idea of Balas-Zemel algorithm is to first solve,

without sorting, the continuous relaxation of UKP, thus determining the

Dantzig upper bound, and then searching for heuristic solutions of

approximate core problems giving the upper bound value for UKP. When

such attempts fail, the reduced problem is solved through two effective

exact procedures, the Fayard-Plateau algorithm (1982) and the Martello-

Toth algorithm (1988).

Martello-Toth algorithm is easily the best of the two. The procedure can be

sketched as follows:

Step 1: Choose a cut off value for pj / Wj to select a core (which is a

subset of the original problem). This would be a very small

fraction of n.

26

Step 2: Solve the core problem optimally. This solution is an

approximate solution to the original problem.

Step 3: If this solution value equals that of the upper bound computed

for the original problem, the optimal value is found.

Step 4: Otherwise, include a variable not in the core that has the

potential to improve the existing solution.

Step 5: The core with the new variable is solved again and the process

continued until an optimum is found.

Martello-Toth algorithm is an improvement over the Fayard-Plateau

algorithm in many respects. Here, the approximate solution determined, is

more precise (often optimal). This is obtained through a more careful

definition of the approximate core and through exact (instead of heuristic)

solution of the corresponding problem. The probability of obtaining such

an approximate solution that is optimal is high because of a tighter upper

bound computation. Finally, the exact solution of the subproblems are

obtained by adapting an effective Martello-Toth branch-and-bound

algorithm (1978).

Although the Martello-Toth (1990) algorithm is efficient, it still takes quite

some time for finding the exact solution. In our study, great difficulty

arose for problem instances with problem size n = 500. Problem with

larger sizes were easily solved within reasonable computational time. The

difficult instances are further investigated (see Appendix D) but the reason

for such huge running time is not clear. A sample data set is included in

that appendix for further research.

27

2.6 Dominance Criteria

One very important aspect in any solution algorithm for UKP is the

phenomenon of dominance discussed by Martello and Toth (1990);

Dudzinski (1991), Johnston and Khan (1995) and Zhu and Broughan

(1996).

The domination of items can be defined as follows:

Item i dominates item j if there exists positive integer r such that nvi < Wj

and rpi > pj. An example follows. The implication of this is that an optimal

solution to an instance of UKP obtained using only the undominated items

cannot be worse than any other solution that contains one or more

dominated items. The dominated items therefore can be eliminated and

the problem size greatly reduced.

Martello and Toth (1990) and Dudzinski (1991) reported that with p and w

randomly generated from a uniform distribution, the number of

undominated items is extremely small. For instance, Dudzinski's (1991)

computational result shows that the average number of undominated

items for an uncorrelated problem (items are defined to be uncorrelated if

there is no relation between the profits and the corresponding weights of

the items) of size 500 is in fact 2.3 and our computation yields on average

2.2 undominated items. A theoretical analysis supporting this result in

regard to item dominance is available in Johnston and Khan (1995). Hence,

a knapsack problem can be reduced to a very small size and solving it

would take negligible computational time. If p and w are correlated, there

are many undominated items and by maintaining a very strong

correlation, problem instances with a large number of undominated items

can be constructed. In this research, the dominance phenomenon is

studied on five different classes with varying correlation.

28

Example 10

W4 = 15, W3 = 13, W2 = 11, Wl = 5

p4 = 60, p3 = 55, p2 = 39, pi = 20

Item 1 dominates item 2 (where r = 2) and hence item 2 can be eliminated.

Similarly, item 1 dominates item 4 (r = 3) and hence item 4 can be

eliminated. The remaining undominated items are items 1 and 3. The

capacity of the knapsack should obviously be such that it must

accommodate at least one unit of the largest item.

29

CHAPTER 3

3. EMPIRICAL ANALYSIS OF HEURISTICS FOR THE
UNBOUNDED KNAPSACK PROBLEM

The heuristic methods have always been helpful in solving problems that

were too large or complex for developing algorithms. The effectiveness of

a heuristic for solving a given class of problems can be demonstrated by

empirical testing.

3.1 Computational Design and Data Generation

W e analyse the experimental behaviour of exact and approximate

algorithms for the Unbounded Knapsack Problem on a set of randomly

generated test problems. The heuristics are evaluated by experimenting

with a series of problem instances using different selection of problem

classes and setting various performance parameters. They are often used

to identify "good" approximate solutions to difficult problems in less time

than is required for an exact algorithm to uncover an exact solution. The

computational testing is done to compare the performance of the five

heuristics - the density-ordered greedy, the weight-ordered greedy, the

value-ordered greedy, the extended greedy and the total-value greedy

with the optimal solution algorithm (obtained by Martello-Toth

algorithm). W e compare the FORTRAN 77 implementations of the five

heuristics. All runs have been executed on a 200 M H z Pentium Pro with

option "-o" for the FORTRAN compiler.

A set of 2500 test problems was randomly generated with size n equal to

50, 100, 500, 1000, 5000, 10000, 20000, 30000, 40000 and 50000 (250

problems of each size). These test problems were generated with varying

30

degrees of correlation between the constraint and the objective function

coefficients, i.e., between the profits and weights of the items, as described

in sections 2.10 and 3.5 of Martello and Toth (1990) with an additional two

types of problem instances with stronger correlation. All the data sets

were randomly generated as described in the following. The FORTRAN

codes for data generation are given in Appendix A. The sample data sets

are shown in Table 3.1.

Uncorrelated

(Class I)

Wj uniformly random in [10, 9999]

pj uniformly random in [1, 9999]

Weakly Correlated

(Class II)

Wj uniformly random in [10, 9999]

PJ uniformly random in

[WJ - 100, WJ + 100]

Strongly Correlated

(Class III)

Wj uniformly random in [10, 9999]

pj = Wj + 100

Very Strongly Correlated

(Class TV)

Wj uniformly random in [1, 9999]

PJ uniformly random in [1, 9999]

2.0 < pj/wj < 2.5 t

Very Very Strongly Correlated : Wj uniformly random in [1, 99999]

(Class V) pj = Wj * {(WJ - min Wj + 1)/ (max Wj

- min WJ + 1)} * 100

The right hand side C of the knapsack constraints, the knapsack capacity is

the integer value e [100000,1000000] satisfying the condition max Wj < C.

t The pj/wj ratio is limited to the range (2.0, 2.5) so as to get a large number of
undominated items. Investigation on different ratio ranges is given in Appendix

C.

31

Table 3.1: Sample data sets for the five problem classes

Class I

Ratio

1.502

0.227

6.914

0.047

0.473

0.636

0.688

0.299

1.917

2.525

wi

yi<bi

1791

570

2912

4953

3506

2982

4335

2378

1247

Pi

4898

406

3941

136

2341

2229

2053

1295

4558

3149

Class II

Ratio

1.012

0.746

0.987

0.994

1.009

0.998

1.001

0.995

1.012

0.986

Wj

8375

118

5729

5698

3365

3802

3807

8134

8202

1231

Pi

8474

88

5652

5662

3395

3795

3811

8097

8301

1214

Class III

Ratio

1.024

1.028

1.095

1.022

1.075

1.030

1.077

1.031

1.032

1.030

Wj

4254

3561

1052

4570

1333

3330

1294

3212

3088

3307

Pi

4354

3661

1152

4670

1433

3430

1394

3312

3188

3407

Class IV

Ratio

2.129

2.287

2.427

2.095

2.351

2.019

2.443

2.245

2.309

2.016

Wj

3836

1211

724

569

2016

4718

3367

4270

4103

3717

Pi

8168

2769

1757

1192

4740

9524

8224

9585

9474

7495

Class V

Ratio

35.830

92.717

14.031

55.743

18.894

47.336

91.378

47.973

65.183

91.399

Wj

35830

92716

14031

55742

18894

47336

91377

47973

65182

91398

Pi

1283801

8596343

196870

3107201

356986

2240719

8349839

2301431

4248735

8353678

By increasing the correlation, w e can decrease the difference between

maxj { PJ/WJ } - minj { PJ/WJ }. This will increase the expected difficulty of

the corresponding problems. By identifying the dominated items and then

applying the heuristic algorithms to the undominated items, the

computational time can be greatly decreased. The dominance

phenomenon on the above five classes have been extensively studied in

Section 3.2. The first three problem classes (Class I, II and III) discussed by

Martello and Toth (1990) gives very few undominated items whereas the

fourth and the fifth classes are generated with stronger correlation so as to

give a large number of undominated items. The Class IV is in fact similar

to the value-independent (sum-of-subset in Martello-Toth's terminology)

knapsack problem, where the density ratios are same for all items; in this

class of problem, the ratio range is narrow, but not constant. The problem

instances in Class V have been generated where the ratios are proportional

to the respective item weights. The reason for this scheme is as follows.

32

As evident from the definition of the dominance criterion, items of higher

weight are usually dominated by those of lower weight (the items with the

lowest weight is never dominated). This is avoided for this class of

problems by ensuring that items of higher weight have proportionally

higher density ratios. Indeed, it is found that, for this class of problems,

only a small fraction of items are dominated.

Problem instances with smaller size n are generated with smaller w and p

range and large size problem instances are generated with larger w and p

range to obtain data sets with n as large as possible. Taking large w range

for smaller problem size would give fewer undominated items. Problem

instances in Class V are generated with w in the range [1, 99999] so as get

large number of undominated items. Despite these minor modifications in

the data generation for different n, the results should be comparable

because the problem instances were unchanged across different

algorithms.

3.2 Effect of Dominance on the Five Problem Classes

To study the dominance phenomenon on the five problem classes, the

number of undominated items is found for 2500 test problems.

Table 3.2 shows the average number of undominated items for the five

problem classes. The first three types of correlation discussed by Martello

and Toth (1990) results in few undominated items (Figure 3.1a) where as

the fourth and the fifth classes are generated with stronger correlation so

as to give many undominated items (Figure 3.1b).

33

Table 3.2: Average number of Undominated items (average of 5 problem instances for each
class and each n)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

Number of undominated items, N

Uncorrelated

(Class I)

2.0

1.7

2.2

2.6

3.4

2.6

2.8

2.8

3.2

1.8

Weakly

Correlated

(Class II)

1.8

2.1

4.6

2.8

3.4

2.6

4.6

4.2

3.6

3.4

Strongly

Correlated

(Class III)

2.4

2.9

5.8

7.2

8.6

6.0

5.0

6.0

6.2

6.6

Very Strongly

Correlated

(Class IV)

18.0

26.0

49.8

83.4

173.4

241.2

285.2

377.6

399.6

401.8

Very Very

Strongly

Correlated

(Class V)

37.8

97.0

389.8

954.8

4882.2

9491.4

18123.0

25869.2

32908.0

39322.2

W e see that as the number of items, n, increases, there is no well defined

increase in the number of undominated items, N, for the Uncorrelated,

Weakly Correlated and Strongly Correlated classes of problems where as,

the number of undominated items increases with n for the Very Strongly

Correlated and the Very Very Strongly Correlated classes of problems.

This behaviour is illustrated in the figures 3.1a and 3.1b.

34

g

8

z:

Si
— 6

c 5

E
o

•1
»

/

II
*%»°

*
*

X ^
.^*

I »»***- ~"

'-4
- 1 — • • • • * • — ! • • • • —

Correlation
• • • • i

None (Class 1)

Weakly (Class II)
•MB • 1

Strongly (Class III)
8 8

Total Number of Items, n

Figure 3.1a: Number of Undominated items for Uncorrelated, Weakly Correlated and

Strongly Correlated class of UKPi

Correlation

Very Strongly

(Class IV)
i

Very Very Strongly

(Class V)

Total Number of Items, n

Figure 3.1b: Number of Undominated items for Very Strongly Correlated and Very

Very Strongly Correlated class of UKP

* Note: All the five classes of problems are not shown in the same figure

because of huge difference in scales.

35

3.3 Performance Measures and Factors

This section discusses the ways in which to obtain high-quality solution

based on the attributes that are well recognised as valid criteria for the

comparison of heuristic algorithms.

3.3.1 Measuring Performance

The most important decision one makes in an experimental study of

heuristics is the characterisation of algorithm performance (Barr et al.,

1995). For the Unbounded Knapsack Problem, the following questions

often arise when testing a given heuristic on a specific problem instance.

1. What is the quality of the best solution found?

2. H o w long does it take to determine the best solution?

3. H o w quickly does the algorithm find a good solution?

4. H o w robust is the method?

5. What is the tradeoff between feasibility and solution quality?

The quality of the solutions obtained by the heuristics of UKP has been the

most important consideration in our study. The quality of a solution is

judged by comparing it with the corresponding optimal solution obtained

by the exact algorithm of Martello-Toth (1990).

The running time required by the heuristic algorithm to solve a given

problem is often a crucial consideration in choosing between competing

algorithms. This has not been particularly experimented for the heuristics

of U K P in our study as all the existing heuristics take a small fraction of

computation time when compared with the execution time of Martello-

Toth exact algorithm. The time taken by each run has been recorded.

36

The algorithms tested in this study are all greedy type, and in general,

they all yield good solutions quickly. Therefore, the time to find good

solutions is not very important. The feasibility of the solutions is not

relevant for UKP. The robustness of the algorithms have been indirectly

tested by testing them on problem instances of varying structure and size.

There are other factors that need to be considered before selecting a

heuristic algorithm. Ease of implementation is an important consideration.

Difficult-to-code algorithms that require substantial amounts of computer

time m a y not be worth the effort if they only marginally outperform an

easy-to-code algorithm that is extremely efficient. The algorithm should

also be flexible, in the sense that it should be able to handle all problem

variations. A heuristic for U K P that can solve only small problems, is

clearly, not as flexible as the one that can solve both small and large UKPs.

Simplicity is another important consideration. Simply stated algorithms

are more appealing to the user than cumbersome algorithms and they

more readily lend themselves to various kinds of analysis.

The five heuristic solutions - the density-ordered greedy, the weight-

ordered greedy, the value-ordered greedy, the extended greedy and the

total-value greedy heuristic solutions are obtained for the five classes of

problem instances and this is compared to the optimal solution (obtained

from Martello and Toth algorithm, M T U 2) . The ratio between the heuristic

solution value and the optimal solution value are reported. Also, the total

run time taken for the execution of the algorithms excluding the time

taken for input and output over a wide range of test problems are

recorded. Thus, the quality, speed and the robustness of the heuristics are

effectively measured.

37

3.3.2 Factors that Influence the Performance of the Heuristic

Algorithm

The factors that affect the performance of an algorithm are the problem

parameters and the test environment. The most important problem

parameter is the size of the problem, n. The other parameters considered

are the correlation between the profit (p,) and the weight (WJ), the

knapsack capacity (C) and the profit/weight ratio of the item.

The test problems randomly generated for the five problem classes are

solved for 10 different n for the five heuristic algorithms and the exact

solution algorithm. Each problem is further solved for 10 knapsack

capacities in the range [100000,1000000] with an increment of 100000. The

codes are executed on small as well as large instances (largest n = 50000)

so as to yield accurate predictions for more realistic problems. The six

FORTRAN 77 codes are run on the same test problems and on the same

computer configuration.

3.4 Results

The five heuristics are compared with the optimal solution algorithm to

characterise their performance.

Table 3.3 compares the density-ordered greedy heuristic (Hi), the weight-

ordered greedy heuristic (A) and the value-ordered greedy heuristic (B)

for UKP. W e see that heuristics A and B are no better than Hi for the five

problem classes. Our idea is to compare the five heuristics with the

optimal solution to characterise their performance. Tables 3.4a, 3.4b, 3.5a,

3.5b, 3.6a, 3.6b, 3.7a, 3.7b, 3.8a and 3.8b summarise the results of the three

heuristic algorithms Hi, H2 and TV and the exact algorithm M T U 2

38

(Martello and Toth, 1990) for the UKP on the generated 2500 test problems

across the five problem classes.

For all problems, C e [100000, 1000000] increment of 100000 for n = 50,

100, 500,1000, 5000,10000, 20000,30000,40000 and 50000.

We compare the FORTRAN 77 implementations of the following

algorithms.

Code

DGREEDY

WGREEDY

VGREEDY

EXTGREED

TOT_VAL

MTU2

Algorithm

Density-Ordered Greedy Heuristic (HI)

Weight-Ordered Greedy Heuristic (A)

Value-Ordered Greedy Heuristic (B)

Extended Greedy Heuristic (H2)

Total-Value Greedy Heuristic (TV)

Martello-Toth Optimal Algorithm

The codes are provided in Appendix B.

All runs have been executed on the 200MHz Pentium Pro computer. For

each data set and value of n, the tables give the average running times,

expressed in seconds, computed over 5 problem instances for each of the

five problem classes. Sorting and dominance check times are also

separately shown.

As shown in Table 3.3, the density-ordered greedy heuristic outperforms

the weight-ordered greedy heuristic (A) and the value-ordered greedy

heuristic (B) in terms of the quality of solution. The performance

comparison between heuristics A and B shows that B is slightly better,

particularly if p and w are very strongly correlated and thereby resulting

in a large number of undominated items. For problems of Class III,

39

heuristic A performs better than heuristic B, possibly because of the fact

that the profits (values) play insignificant role and the contribution of an

item is influenced by the insertion of many (small) items. For problems

with high N, i.e., a large number of undominated items, the value-ordered

greedy heuristic (B) is better than the weight-ordered greedy heuristic (A)

since there are many possible good combinations of items for assigning to

the knapsack, and these are largely determined by the values of items.

Table 3.3: Comparison of solutions for H „ A and B (for the five problem classes, 500
problem instances in each class).

Number of
items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

Uncorrelated

(Class I)

Hi = B > A

Hi = B > A

Hi > A > B

Hi > B > A

Hi > B > A

Hi = B > A

Hi - B > A

Hi = B > A

Hi = B > A

Hi = B > A

Weakly
Correlated

^Class II)

Hi = B > A

Hi > B > A

Hi > B > A

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Strongly
Correlated

(Class III)

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Hi = A > B

Very Strongly
Correlated

(Class IV)

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Hi > B > A

Very Very
Strongly
Correlated
(Class V)

Hi = B > A§

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

Hi = B > A

The following ten tables summarise the computational results of the five

problem classes and ten problem sizes. The performance of the heuristics

in terms of increase in the capacity, increase in problem size, difference in

the p/w (density) ratio range, the running time of the heuristics in

comparison to the running time of the exact solution algorithm, and the

effect of dominance, is looked at.

§ Hi = B > A means the solution by Hi and the solution by B are equal and is
better than the solution by A. Other relations are similarly defined.

40

The notations of the symbols used in the Tables are as below.

r = Average of Ri (R2, R3) for 5 problem instances, where

Ri = 106 - (z(Hi) / z(opt)) * 106; R2 = 106 - (z(H2) / z(opt)) * 106

R3 = 106 - (z(TV) / z(opt)) * 106

For example, let z(opt) = 249574; z(Hi) = 249510

then Ri = 106 - (249510/249574) * 106 = 106 - 0.999744 * 106 = 256

For the Class I (Table 3.4a, 3.4b) and Class II (Table 3.5a, 3.5b) problem

instances and for all the problem sizes, as the capacity of the knapsack

increases, the three heuristic algorithms (Hi, H2 and TV) give near optimal

solution value and sometimes the exact solution value and take negligible

amount of running time. The number of undominated items is very low

thus requiring negligible running time. Since the ps and ws of problem

classes I and II have no strong correlation, the difference in the density

ratios does not show any clear effect in the performance of heuristics.

Martello-Toth exact solution algorithm also solves the problem instances

in negligible time.

For the Class III (Table 3.6a. 3.6b) class of UKP, density-ordered greedy

and total-value greedy heuristics give near optimal solution as the

capacity of the knapsack increases and give the optimal solution as the

size of the problem increases. The extended greedy heuristic outperforms

the other two heuristics and give the optimal solution value in almost all

the problem instances irrespective of the size of the problem or the density

range or the knapsack capacity. All the three heuristics take negligible

time as there are only a few undominated items, whereas the exact

solution algorithm takes some seconds (approximately 0.8 seconds) as n

increases.

For the Class IV (Table 3.7a, 3.7b) class of UKP, the heuristics are far from

optimal by a very small percentage. In comparison to Hi and TV, H2 is

reasonably close to optimal. The running time for Hi and T V are negligible

41

but H 2 takes a few hundred seconds as the capacity of the knapsack or the

problem size increases. Also, as n increases, the time taken to solve the

problem optimally, increases. The density ratio for this class was restricted

to the limit [2.0, 2.5] so as to generate problem instances that give many

undominated items. Problem instances with different ratio ranges were

generated and the performance of the three heuristics were studied (see

Appendix C). It was found that as the density ratio values increased, total-

value greedy heuristic gives the optimal solution value in neglible time

whereas the exact solution algorithm used up a few seconds as the

problem size increased.

For the Class V (Table 3.8a, 3.8b) class of UKP generated with a very large

proportion of undominated items making the problem instances

apparently difficult, the three heuristics give the optimal solution value for

all n except for n = 100 and 500. The execution time for the heuristics is

negligible when compared to the time taken to find the optimal solution

value. But the time taken to solve the problems of size 100 by H2 increases

as the capacity of the knapsack increases. This is outlined in Table Dl in

Appendix D where the performance ratio and the running time for all the

heuristics are given. Time taken to solve the problem instances optimally

increases as the capacity of the knapsack and the problem size increase.

For n = 500 **, the solution time is more than that for n = 50000.

The time taken for dominance check increases as n increases, which is

expected; and also the number of undominated items increases as n

increases for all the problem classes, except Class I. However, as

mentioned earlier, the rate of growth of the number of undominated items

is substantial only in Class IV and Class V problems.

** This is further investigated and presented in Appendix D.

42

<n

E
3
u
a. 0
o ©
^ 1—1

^ -o

O
a
n

t» o
es » H

U ©
<n ^ II

rr
el
ai

fo
r
n

Q
U '—'
>£ ON
t) ON

ON
4»

A — 4^
^^

c2 oi

•w Q .

re
su

9
]

;

— ON
eB o \

at
io
n

10
,

a
a w
u *
ed

f)
0)

J2
03

H

o
o
©
in II a

«2
—,
ON
O N
O N
Tt

1-H

III

a.

O N

os
o\
TT

©
»—1

111

£

en

o
bJ.

<U
• rH

1/1

Tl
3
01

MH
O
01
u
t3

S
n
T3
o>
o>
> "-3

1-H

01

s
o
4-

m
're

s
•J3

O

>

•r> T3
01
01

0)
3
f3
r*

ra

o
H

>̂
OI
01

U
Oi

-a s
OI 44

X
w

rH

a
£
Tt
01
01
Wl

U
01
Ul
Oi

•a
*H

o

en
3
01

0

N

£

IN

PH

£

o
o o
in

o
o
o
rH
O
O
in

o
o
r-l

O

m

o
o «* O ci
in

o o NO
O CM
rH

2 tv
O *j rH ,H

m <N

o
O ci
m

o O NO
O CM TH

° CM

g^

R^s
r-t ^

o q
in «N

o O "*
O ci

m

o O NC
O ri
rH

in N

O =>
in CM
+-

K
n
a
p
s
a

C
a
p
a
c
i

CM
o

CM
o

o

d

«-; °

ri°

2°

<^o

s°

N r-,
O

N o
o

s<=

3°

*>. o
o

ON
CM NO ST-

^ ~
CO

o
o .—.

R
o
NO

K

CM

R~
in o

R~
CM

rH
ON

rH

*

rH S.

in o

m o

-o o
—

3°

rH o

m o_

in o

r-> "*

en ^
ri o
—'

22 o

- f

° s

CO o"
IH *

++

o
o o o o rH

rH

m
m NO

CO

ON

5!
!-H
IN

rH

R
rH

3
in
TH
in
in
in
rH
NO
O
tl
rH
ON
CM

ON

CO

CO

o

o

ON

CO

CO

o

o

CI

CO

o

o

g

&

g

g

o

o

o

_̂̂ o
'—'

o

o

o

„

o

, o

o

o

o

^

o)

o"

o
n o ©
o fN

IH

CO
CO
00
ON
NO
m
o

R CN
CO

00

o
SI
rH
CO

R
CN
CO
00
oo

in

rH

rH

O

O

in

rH

rH

O

O

r-l

rH

O

O

o.

g

g

g

^

o.

o

o

,_̂ o
—

o

o

d

o

(-»v
o

o

o

_̂, CM

d

§

d

o~

O
o o o o en

oo
m

rH
rH
CO
rH

O
NO

co
rH
X
ON
00

CM
CN
NO

o
CO

5! ON
CN

a
O
rH
rH
rH
CO
CN

°o.
CM
X
in

VO

CM

rH

O

O

NO

CM

rH

O

O

NO

CM

rH

O

O

o

g

o]

S^

S^

o_

o

o

_̂̂ o
*—'

o

o

o

_̂̂ o

o

o

o

^

o]

o

o
o o o o t̂

ts.
ON
00 NO
U0
X
CO NO
rH

"? ON
IN
NO

a
VO

CO
in
CO
X
CO

o
X
NO
CO
m
o
CM

R
X
CO
rH

IN
in
in
in
X

R
CO

rH

rH

O

O

CO

rH

rH

O

O

CO

rH

rH

O

O

o.

&

g

ST

cT

o.

o

o

_̂̂ o

o

o

o

„

o

^ o

o

o

o

d

CM~

d

o~

o
o o o o in

X
rH
m NO
NO
NO ON
rH

m
rH

«K
O

s
rH 5
R
rH
in
in
NO
NO
rH

O
CM
NO

X

CO

o

o

o

CM

CO

o

o

o

CM

CI

o

o

o

CM

o_

g

o)

cT

^

o.

o

o

J0m^
o

o

o

d

d

_̂̂ o

o

o

o
—

&

^

o~

o
o o O
o <D

o
ON
X

ON

a
rH

o
in

NO
in
CM
in rH
in
co
CM

o
rH
CO

3
rH

CO
CM
X
ON
ON
rH
O
rH
CM

rH

O

O

O

CM

rH

O

o

o

CM

rH

O

O

O

O ,

S^

g

^

^

o^

o

o

^^. o

o

o

d

_̂̂ o

o

o~

o
""

^

s^

o~
**-*

o
o o O
o K

IN

r-l
O

a NO
CM

^
9
X
ON
in
<*
X
rH
CO
NO
X
X X
in
in

3
NO

o

9
rH
X
ON
VO
in
VO
rH
rH
rH

O

rH

O

CM

rH

O

rH

O

CM

rH

O

rH

O

CM

O,

g

o]

g

g

o_

o

o

.̂̂ o

o

o

d

o

_̂̂ o

o

o

o

§

g

o*
—

o
o o o O
X

X
ON

X
ON
ON

ON
CM
in

3
X
o
CM
in

NO
ON
VO

R
CN NO
NO
CM
rH
X
CM
X
ON

SI 3
CM
rH
rH
CO
rH

CM

O

rH

O

O

CM

O

rH

O

O

CM

O

rH

O

O

o_

o)

^

g

&

o.

o

o

_ o

o

o

o

„

o

_̂̂ o

o

o

^—V

CM

d.

o)

o"
—

o
o o o o OS

in

R in

CM
CO

rH
VO
ON
CO

m
CM IN
X

rH
X
O

R
ON

m
X

CM
O
rH
CO

m
tf
rH

rH

rH

O

o

rH

rH

rH

O

o

rH

rH

rH

O

O

r-t

O,

g

S^

g

g

o.

o

o

^̂ o

o

o

o

o

_̂̂ o

o

o

o

s^

^

o~
"

o
o
o
o
© 1

u
01

p-H

ra
E
01
X

Oi
T3 «
° 3

s >
a o
O 3

il
ue
s

a
l
s
o
]

> S
oi "J3
•s %
v/> 01

ns
ta
nc
e

is
 t
o
th

b
l
e
m
i

ur
is
ti
c

o o>

o >-

R
a
f

lo
se

M <-l
O QJ

tf*

» MH
N4H O
O OJ

oi 3
So -5
2 gl
S? oi

n
>H

4-1

3
4-*

3
0
T3
C
ra

3

c • pH

ca
4-1 ra

3
ra
4-1
in
Oi
44
01
u
3 ra
3
• rH

E
o
T3 bC
3
•PH
4 4

>-
0
en

3
•3
3
u
X
Oi V
en
"3
3
o
u
o>
en 5
PH

u
ra
44

o
44

II

a; 3
"J
>
3
o
•Si

3 r-H

o

s
-"J Uc
o
II
N

N

3

o u
o> m
3
•rH

4-t

X*

o
rH

+-»
OH

O
N

*̂. >
H
^N,

VO

O
rH
II

c2

o
rH
*

fX

N
"̂

I
N
I

VO

O rH
II
IN

B5
v O S

o rH

*
44

OH

O
N to

"TH

a
•

vo

O rH

ci

x
u
01
en

en

g
OI
44
• -H
N+H

o
IH
Oi

B
3
3 O
H

en

6
Oi
44
•-H

01
44

ra
3

en
01 ^
H- en
01 u
u o>
3 JS.
3 "> rH 3 "J

a 3 -a SI
)H)H

o o
<+4 <*H

3 3
o> oi
« ra
44 44

oi oi

s s
• rH. -rH

H H
II ll

3 Z ^ 42

3 Z 4-7 -2

V,

E
3
o
•-
a

j

cu
-e , ,

S -

,o

LU

i» —

^2
— OS
e« ON

e
.2 ©

• n
44 ^—

3

a
S
r i P
—

3
re

H

en

s
r3
44
• IH
»H

o bf.

3
CO

3
01

<+H

o
OI

u 3
re

£
u
O

N+4
)H
01

Pi o> >
• rH
44

re
01

CM]

£

^
3
O
441

3
o CD

*re

s
• IH
44

3.
0

>
H
v

73
01
01
)H

01

3
re
>
re
44

o
H

£

01
01
»H

O
73
0)

71 3
01
44 X
w

J

01
01

U
73
0)
»H
01

73
IH

o
en

3 01

D

N

£

P?

o o
o o in

o
o
o
o

o
o
o o en

o
o
o
o

CN

o
o
o
O
rH

O

o ̂
m
o
<=> CM

o m

o
o N
en

o
<=> no

© • "
CN

o
o
O *
O CM rH

O

S x O "•
o "-1

m o
2 CM
o D o m

©

o N

en
o
§3
o N CN
O

o O "*
© CM
rH

O

§2
o ^
m o

o ">
1<

o

o M

en

o

CN

o o O **
O CM

51
-i t ~

K
n
a
p
s
a

Ca
pa
ci

VO

d

CM

VO

d

d

CM

d

,-; o

,2 o

S°

2°

l o
o

«? o
o

"M o
o

s»

2 =

<H r,
o

X T
O CM

^D CO

5!°

in

So
X

rH
rH
CO jj-
rH H;
ON O

«N

R ~
F8 2.

*

0 S

—̂v
CO O

CM S]

^ d

O O

° 5

«*> ,-;

"I
CM O

0 ^
0

0 ^
0,

CO <?
O

CM &

* 2

,—. CM

<= d
++

O
©
O
O
O
rH

vo

3
9
rH
CM

rH

X
rH
O

<*
ON
X
NO
rH

CM
CO
rH
rH

F1
rH

X

R
3
ON < *
in rH

CM
rH

O IN
P IN
CO
rH

m
rH

CI

m
rH

CO
rH

CM

m
rH

CI

m
rH

CM

m

ro

m
rH

CO
rH

CN

O

*—'

O

—

&

o"
*—'

&

*~, O

&

^̂ O

O

O

^̂ O

O

O

O

CM
O ,

o"

S

&

0

0
0
0
0
0
CN

IN
vo
m
3
rH

P LN
CM

O
O
0 CM
ON

3
in CM

ON

m rH
CM CO
X

81
in
X

R
7*. CM
CO
CM

IN
rH
in
NO
NO
O
NO
O
CM

CO

O

in

X

CO

ro

O

in

X

CO

ro

n

in

X

ro

O
* • — '

O

S"
—'

o~

o*
V " - — "

g

—̂̂ 0

&

_̂̂ 0

0

0

_̂̂ 0

0

0

0

o~

o~

&

&

0

0
0
0
©
0
en

**
rH
U)

a 3
CO

NO

ON

uu X
R
CO CO

3
CM
X
rM
•̂1*
M*
CO

CN

s
R
ON

ON
O CO

m
ON
ON VO
in r-s

r* IN
CM

O

r^

CO

in

CM

0

rH

CO

in

CM

0

rH

CO

in

(N

o~
*—'

0

o"
™̂̂

o~

o~
—

g

^m^

0

^

^̂ 0

0

0

_̂̂ 0

0

0

0

o"

o~

&

&

0

0
0
0
©
0
»*

rH
VO
ON
IN

O CO
m in
**
»
rH
O vi;
X
f

S «H1

rH
X VO
in
CO m 0
CO

m
X
0
in
VO IN

X CO

X
rH
X
r*
NO
IN
in
CO

CM

CM

*t<

rH

O

rM

CM

«*

rH

O

CM

rM

*»<

rH

O

o"

O

o"
"-~*

s^

s~

§

,_̂ 0

&

^^ 0

0

0

_̂̂ 0

0

0

0

o"

o~

0)

&

0

0
0
0
0
0
in

0
VO
rH

rt
CO
VO
<tf m
0
0
0
0
<3\
IN

CM

m
X
ON
0
CO

NO
NO
rH

m
CM
in
0
ON

m
ON NO

>*
X
X
CO
NO
CO
rH
CM
rH
*r

0

0

rH

O

O

O

O

rH

O

O

O

O

rH

O

O

o"

CM

0"

o~

o~

&

— 0

o|

„

0

0

0

-̂̂ 0

0

0

0

o~

o~

g

&

0

©
©
0
0
©
NO

IN
ON
ON
CM
ro «* tN
CO
NO

VO
m
ON O
X

rH
ON
in

CM
rH
X
ON

N CN
O

vo

m
it
CM
<HH
m
vo
NO
X
VO
CM
on
0
X
i<

0

0

rH

O

O

O

O

rH

O

O

O

O

rH

O

O

o"

O

o*

o"

o~

o]

. 0

&

_ 0

0

0

_̂̂ 0

0

0

0

o~

o"
—

g

&

0

0
©
©
©
0
tN

in
vo
t
in
ON

3
CM
IN

X
rH
O
X
N ON

R
VO

in
NO rM
IN

X
X
X
NO

R
0
IN
ON
ON

VO

ON
ON
IN
m
in
ON
«tf m

0

rH

CM

O

O

O

r4

CM

O

O

O

rH

CM

O

O

o~

O

0 s

0"

s^

_̂̂ 0

&

0

0

0

^̂ 0

0

0

0

o~

o~
'*-'

&

&

0
s.—'

0
0
0
0
0
oo

3
NO
X

ON

X

0
0
0 NO
Is

3
vn IN

O

ON

3
ON
*t

R
3
*t
rH

K
VO

a VO

CM
X

VO

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

o~

-0

s^

„

0

0

0

_̂̂ 0

0

0

0

o~

S"
—

0]

d

0

*—'

O
O
O
O
O
Ov

0
in
0 ^

0

ON

vo
in
ON CM ^-N
tN O
ON ^^

X

CN

K
SS1

rH
VO
X

m
ON
O
in ^
CO 0

s
CM

NO .—.

NO

NO

0 o"

^̂ O O

° S

^ O O

rH O

O O

_̂̂ O O

O O

O O

rH O

O O*

0 o~

~

O S

° S

rH O
1—

O
O
O
O
O
O
rH

cu

» 4-t

3
0-

01 3
O
-3
3
ra

-3
01

13 « -
2 5 &
re - "-1

?*> 5 re
CH O 4-
<44 4 4 W

0 3 ^
en * Q 73

^ S
're « H-

oi -J3 *-
r3 CL, <U

SR sy «
H-1 o

g .2 73
"H (J K>,

S <° -rH

- -a -S
rQ 3 O
O <U en
01 3
u •*- 73
O u 3
<*4 <U r H

en v-i

O X
r-H 01

>* W .»
o 01 3
•N ,3 3
at 43 3
** v O
r* 34 «

1—1
 "*H en

<4H O

O
rH

*

O

>

1
vo

O

o
rH

3-
O

X

3?

cu
3
^^
re
>

o £

I 8

1

° 01 -.
cu 3 t-1

b0-H CH

< * °
II II
>H 44

re 3

R 01

&H J
o -0
II II
N 44

O
rH

*
3H

-iS
1

VO

O
rH
II

a

s Z 4-r 4-?

6»

5
OI

3
o
k.

a.
o

1
—
U
13
Si _

We
ak
ly

Co
rr
el
a

10
0,

W
j
+

1
0
0

5
«« UJ

S
on •"

pu
ta

ti
on

al
 r
e

[
 1
0,

99
9
]

5 gr

re

—

3 re
H

en

s
4 4
• 44
?H

o
bJC

»-H

<
u
• 44
44

en
• IH
)H

3
OI

X
M H

O
01
u
3
re

6
>H

O
>+H
)H

o>
C H

01

>
•rH

13
i — i

01

3
H

s
-?
o
-44

^3
"o
en
"re
&
•44
4 4

n.

O

>

73
ell
01
>H

o
cu
3
r-H

re
S>
r H

«
44

o
H

a

01
Oi
s-

u
73
Oi

73

3
CU
44

X

w
TH

73
CU
OI
»H

u
73
01
IH

01
73
u
O
•4H

en

3
01

D

N

(2

3?

3?

o
o
o
m
o
©

o
rH

O
©

m

o
o
rH

O

m

o
o t «>
O ci d

m
o
O « IN
O rid
rH
© v© vo
in "* o

g <NO

O ^ o
m rH

o
2 H! *• o
O co o

m o
O CM O
rH

2 VO NO _

2. CM O °

2 "• o o
in rH ° °

O "* ». o
O CO O
in

o
O CM O
rH

2 VO NO _
in ̂ °

g r I N -
° C M d °

+-

re -fH

X u

rH

3 CM
£ o
ON -w.

X

X
rH

g o
CT\
IN

rH
CO

CM
NO

CM
ON

m 2
m
m
VO

o
X . .
<* o
IN *-̂

*
o o

"1
CO o

° 2.

R
NO . .

X o
ON • •
tN
rH
rH
VO

X —'
m
rH

3
VO ^-.

X o
Kf <•—
CM
rH

8~
rH O
rH •—'
rH
rH

m
rH _

S o"
ON î--

3
H =

rH O

rH O

° 2-

O S vo &

° 2

m o]

rH g

° 2

° 2

2

NO o]

m o]

~ CM*
2

o S"

++

©
©
©
©
O
rH

ag

rH &

° 2

o &

NO o]

as

rH O ^

"l
°l
NO S]

O
©
©

o
©
CN

CM
rH
O .—.
X O
Ov ^ "
NO
CM

VO

R~
CO
CM

IN

m , .
S e"1

Ro
x —
rH VO

m
x .—.
VO o
VO '—'
VO
rH
rH

m
*t ^-.
«* O
CN — '

<*
rH

VO O

rH O

O O

° 2

° 2

NO ©]

° 2

° §

° 2

° S

NO ©]

rH g

° i2

° 2

° 2

o
o
o
o
o
en

X
VO
CO .—.
IN O
ON *~
in
CO

ON
VO
ON . .
O O
VO '—'
rH
CO

VO
ON
CO ^
IN O
ON ' '
«*l
CM

o
X

3 2

R
CM — ^
ON O
ON '—•
X
rH

CO o

rH O

rH O

° 2

° 2

CO &

° 2

° 2

° 2

° 2

co S]

r* 2

rH &

° 2

° 2

o
o
o
©

o

X

R~
VO o
ON ' •

5 IN
rH

rH O

m -^
ON
CO

O

rH
CO

CM
rH

x o"

R~
CM

3
O .—.
*t o
CN *—'

"i
CM

CM O

rH O

O O

° 2

CM S

CM §!

° 2

° 2

° 2

CM §

CM S

rH f~T
2

o §

° 2

CM S

O
O

o
o
o
m

CO
X
o .—.
VO O
Ov *-'
CO

m
R

c?~
<*

rH .—.
VO O

R w

CO

5~
CO o
CO •—'
CO
CO
rH

co
Ov .—.

X o

<* —•
X
(N
CM O

o o

o o

° 2

° 2

CM &

° 2

° 2

° 2

° 2

CM S]

° 2

° 2

° 2

° 2

o
o
o
o
o
NO

o

in o
ON ^
CM
VO

vo
CM
IN ^
rH O
CO '—'
in
in

CM
VO
«t ^

o o
[N ^ ^

co
«t

VO

c o - ^
ON O
x •—•
X
co o
vo
IN *-.

co o
CM ^
to
CO

rH O

O O

rH O

° 2

° 2

rH S

° 2

° 2

° 2

° 2

rH &,

° 2

rH &

° 2

° 2

o
©

o
o

g

o
ON
CN ^ ^

rr o
ON — '

R
NO
in
ON .—.
rH O
CM -"
CO
VO

8S
X .—.
<t o
ON ' •
ON
<t

VO
ON
ON ^

o o
ON ' •
CO
*t
ON
VO

m ^
X o
ON •
CN
CO

rH O

O O

O O

° 2

rH 2

rH 3 !

° 2

° 2

° 2

rH S

rH &

O S

° 2

O &

rH 2

O
©
O
O
O
CO

CN
Tfl
rH .—.
*t O
OS '—'
O
X
CM

r ^ l
R
X
X
rH .—.
ON O
rH '—'
VO

m

CM
NO ̂ -.
O O
O ^ "
O
m Ov
ON
CO .—.
CO O
IN "-^
CM

0 0

0 0

0 0

0 2

0 &

0 2

0 &

0 2

° 2

° 2

° 2

° 2

0 §

° 2

° 2

0
©
O
O
©
ON

rH
ON

3 S"
ON ^
ON
X

CM
VO

<* .—
CM O
O -~*
ON
CN a
in .—.
CO 0
CM
NO

O
VO
CM ^-.
VO O
in ^-'

m
m
ON

C M ^
X 0

R~

0 0

0 0

0 0

0 2

° 2

° 2

° 2

° 2

0 0,

° 2

° 2

° 2

° S

° 2

° 2

0
0
©
0
0
0
rH

U
01
rH
id 4 4 ^

S 3 0

s & r
w 3 Ci

-3 0 *;
*t m 3H

«j a N
O 2H H-

 , ^

<-> > 5 fci
frt *r4 >^^'

8 O *J !

1 « 1
3 _i re m

11* *
> a o»
cu -a •** g,

* ° s i^
« £ .5 &
S 0 s ^
g .2 73 ^

S .a s 3;
^ 3 O vo'
O 0) en 01 ©
UX U j S rH

O VH 3 3 „> C5
N+4 CU « O rS „
m en H -.rj ^ vov

v, 0 S - H s r
CH A ^ J2 * ^

^ 2 8 -3 « ̂
<+H O , &,.« ^
O 0, ^ O 44 _,

01 3 tJ

2 > u

5* OI rt ^ -£ H->
•< 44 O
^ 44
" II
>H 44

M ^

++

11 11
N 44

N S
*

is,
•

vO

rH

II

1n~
u
cu
en

3 en
S Hi ^ ,
ii •*-. 05
•H J| U
rrt W 01

« ! ^

s .s -a £

5 P N+4 <+H
rQ VH 3 3
3 0 01 a;
9 M ^! r*

5 o» re re
3 J3 H- 44
HH d 01 OI

5 § E S
11 11 11 11 c Z J ^

s Z -J -s1

+-

_ w ~ w g

an

E
VU 43
O

a
o

?
1
5 0 w

iw

re

e/
af
er
f
C
I

10
0]

$ +

• © ..
>*e ©

? ° £7
JS P
44 ^—*

O 01

to Q<

1
re
su
lt

99
9]

;

.2 o
44 _ -

s
p.

5 ̂
3
m V
4=

re H

en

s
44

o
b£

3
u
44

en
IH

3
01

a V*H

O
01
u
3 re

£
IH

o
CU
PH
01
>
4 4

re l-H
01
CH

3
^H

c o
• »H

44

73 Cil
rH
re

£ 44
OH

o

>
H

>•«.

73
01
01
u

0 01 3
re
>
re
44

o
H

£
01
Oi

U
73
01
73

ri 01

uw

s
01
OI
IH

u
73
IH

cu
73
IH

o
• IH
en

3
cu

Q

N

3?

3?

3?

©
©
©

o m

o
o o
o **
o
o
o ©
en

o
o
© o CN

o
o
o
o TH

o

X«s in
o

o m
*tf

o

o "*
en
o <-> vn
O 2:
CM

O
o O NO
© CM rH

O

8^
o « in
o
°?
o t,J

o
§5
o "*
en o
O vo o .5 o "*
CM
o
°3
o N rH

©

8^
o «
m o

o M

o
o "*
en
o
2 *>
o "*
CM o

8* © CM

51

rS -rH

en y
r\. re

£3

t
o

CM
d

NO

d

CM

o

2°

r-in
o

s°

^ o
o

o o

H! r-v
o

1 r-v
o

= • =

o °

3
NO — .

X o
rH '—'
O
rH

5»
CN

CX
CO

w _
ON £,
IN

£ °
*

—̂̂
1/5 ©_

/•h,

bs O

in o]

-̂̂
o o

—̂̂
^ r-l

»3

tN O

" ^

o o

rH S"

in "̂
2

CN o

-2

°1

rH *T
O

++

o
o o o o rH

CM
CO

R
CO o
CM

in
o
OV

m ON

NO

NO
CM
VO

X

CO

CM1

HI
LN
in
rH

VO
Ov
CM
VI)
OV
VO
rH

IN

rH

rH
rH

VO

ON

CN

rH

rH
rH

NO

ON

N

t

rH
rH

VO

(TV

&

o_

S*
~

_̂̂

—

-̂̂ o * • — '

s—..

o_

^~.
o_

g

, ^
o

o

o

o

CM

o .

o

CM

o

o

o)

&

o*

o
o ©
©
o CN

o
o
o
vo
in

o
CO

».
SI
X
ro ON
CM

ON

o

R CM

CO
X

F5 IN
NO
C)
CM

VO

m 1*
*r
CM

o

CM

CO

r^

O

o

CM

CO

rH

<-)

O

CM

CO

rH

o

d

o.

o~

t
o 1—'

—̂.
o *—'

o^

_ o

^

^̂
o

o

o

o

o~

o

o

S"

o

CM~

d

s

o*

o
o o o o en

3
VO
tN
o
<*

f̂
tN
X
rH
Ov
C)

tN

5
m R C)

m
rH

m VO
m rH
CO

3 NO
CM
Ov
CO
CO

rH

CO

CO

o

o

rH

CO

CO

o

o

rH

ro

CO

o

o

cT
d

^m. CM

d
•

o~

^̂
o 1—'

—̂.
o •—'

—̂̂
o.

^ M .

o_

o)

. ^
o

o

o

o

o~

o

o

o~

o

&

CM~

d_

o"

o
o o o ©
rt<

CM
CO
CO
CO
(Tv o
m
Ov
rH

R
ON X
t

X
rH
X

in
VO
«tf
ON

VO

m <* ON
CO

o
IN
o
*t

5!
CO

«*

CM

CM

rt

CO

t

CM

CM

rl<

CO

rt

CM

CM

«t

d

_ CM

d
-

o~

^
o *—*

^m.

o

^ o_

^m.

o_

&

, ,
o

o

o

o

o~

o

o
* — • '

o~

o ̂-̂

&

&

s~

o
©
o o o m

o
o
o
CM
rH
VO

vo
vo

K X
in

m
ON
rH
X X
in in

CO

tN
1*
CO
IN
11

ON
rH
ON
X
X
o
in

o

o

rH

o

o

o

o

rH

o

o

o

o

rH

o

o

s*

_
CM

d
-

o~

^
o

^m..

o

o.

_̂̂ o.

o*

_̂̂
o

o

o

o

o*

o
*—'

s~

o —

&

&

o~

o
o o o o NO

3
VO

o
R
in
o
X
NO

X
VO

r<
tN
in
ON rH
in
VO

vo
rH
Ov
CO
rM
m m
CN
VO
o
IN
CO
ON
in

rH

rH

o

o

o

rH

rH

o

o

o

rH

r^

o

o

o

rT
d

„
CM

d
—

o*

o

_ o

o.

^^.
o.

o~

_̂^
o

o

o

o

o*

o

o
—

o"

o
—

&

&

s~

o
©
©
©
o CN

CM
CO
CO
Ov
rH

X

ON
m CO
VO

X
CN

ro
<*
ON

n m
*t CN

ro

3 CO
rH
ro
VO

NO
rH
CM

X
tN
NO

o

CM

rH

CM

rH

o

rM

rH

rM

r^

o

<N

rH

CM

r-l

S"

o

NO*

o,

o

— o

o_

^^. o.

S"

_
o

o

o

o

o"

o
~-

CM

o —

o)

g

o~
*"'

o
o o ©
o 00

o
o
o
X
rH
ON

VO
o
ON

m
X
X

t
IN
rH

X
CI
X

rH
IN
rH
CM
O

CN

CO
X
ro
ro

s
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

s~

o~

.

__̂ o

^̂
o

o~

o

o

o

o

o~

o

o
~~

CM

o —

&

&

o~
—

o
o o o ©
ON

3
NO
VO
X rH

o
rH

CM
in
in

S
ON

o
o
CN
rH
ro VON

ON
ON
rM
(Tv
X
CN

o

3

o

rH

O

O

r>

o

r^

O

o

o

o

rH

O

O

O

o~

5s

cT
ô

^̂

o

_
o

o*

_
o

o

o

CM

o

o~

o

o
—

o"

o • — '

&

&

o~
—

o
©
©

o
o
o
rH

Or

i I
01 3

O

u
 -H g

a 2 &
re - —'
*> 5 re
35 o 44
V44 44 ™

O 3 *«
en 'o 73

lis
ca re 44

5 c *
> c 01
oi -J3 H-

-3 a, ̂

° 3
» J «
§26
44 ** Q

en en X
3 •« ^
_ -H WJ

^ 3

o
rH

*
3H

O

>

vO

o
rH
II

3?
V
vO

O
rH

*
44

D.

01 en
TH. 3 "S V 's a >H
rQ 3 O
O CU in
01 C

m ^ X
u •*- T3
O IH 3
>4H 0» -H

r?||
^H <-» V

O <u «
" v O

A at o
w * ID
<44 O ,

01 3 t"1

bora PH

2 ^
S « 're
2 -3 •*'
< 44 O
^ 44

01

3
re
>

1-3 C U 3

_ o
O rH
u *
01 ^

en -JT
« &-

n O
J. ^N
o J3 -Tr

n II 5.
N 44 .N,

NO

N =
II

en
u
CU
en

a ^

rn

B
01
44
<44

u !H

vU
43
£
3
s-
^*
re
44 u
H

3
QJ

• rH

73
44

re 3
• rH

£ o
71 3

D <4H

O
IH
01
rQ

£
3
z

en
01
44
r\)
ej

3
re
3
B
o Q
u
O
<44
3
aj
-X
re 4H

01

£
H

en
u 01
en

bD
3
• IH

44
4.

o
CD

IH

o
N*H 3
eu -̂
re 44

01

£
H
II

.rH .rvl Z r H CS

44 44

s Z J 4-?

3
o
s-

a

^ ©

^ 2
W 73
en r"

s s
u §
•? ",-

i§ ©
•si H O
J> .. ©
S o «n

U II c

t 5 «2
| - ©
•& © <=>
S © rH
» +
-3 + ..
** fe"* *=

fi

3

u — ON
_ ON ON

« J 2
O „ ..
4-5 © ©
re rH rn
a.
g ai ai
U 3T ^

re
VO

3
re
H

en

£
n
44

u

o
bX
r-H

<

U
•rH
44

en
• 44
»H

3
01

K
N 4 H

O

0)
u 3
re £
o
01
CH

cu
>
re
01
3H

CN|

5
y_̂
**;

3
0

•44
44 3
0
Ui

*«!
£

O

>

i? 73
a;
O1 0
01
3
re

1 44

0

H

£
>N
73
cu
cu

73
01
73
3
01
44 X

73
01
01
VH

O
73
01
n
01 73

5
• rH

efi
3
eu
D

N

3?

IN

3!

a

O
O O

m

© 0
0
rH

O
O
m

0
0 rH

O
in

0
O NO
O 00
in

0
© CM
O CN rH

8».
in •"

§3
rH <^

O *t
m CM

0
O NO
© CO

m
0
O CN
O c< rH

8«.
in ">

2 *

© t
m CM

0
O VO

© X

m
0
O CM O CN
rH

8*.
in ""

2 <*

8*
0 t
in CM
• 4 —

• a * re -JH

en y
ri. re

™ &

CM

d

d

CM

d

0

0

2°

s 0 0

2°

0 0

0 0

N r-N
O

«2 r-v
O

2°

0 0

0 0

0

3 _
m 0
co •—• 0

0
0
NO .—.

co 0 VO '—'
0
rH
O
O
CO . . CM O
O s—'
O
rH

NO

X ZZ.

cN
X
CO

25 °
*

~, eM

« d

*t 0

«*1 O

0 v o

£ =

= 3

0 «i
0

0 0

0 0

S?2

2

s§

0 2
in 0,

++
O
O
O
O
O
rH

0
0
CO .—.
C4i
0
CM

O
"̂ CM ^

h 2 CM —
rH
CM

O
CM
NO ,—.

ga Q
CM
OV

i!X_.
VO O CO ^"
m
X
rH CN ^~.

CN ' '
CM
rH

m 0

CM 0

CO O

CN O

H =

0 0

0 0

0 0

0 0

1-1 2

in 0

CM 0"

CO S

IN S

as
0
0
0
0
©
CN

O
VO
ON ,-̂ VO O
0 *-* rH
co
0
X
X ^
0 0 ON •—•
rH
CO

0
VO
Ov .—.
VO O
O >-'
O
CO
0
X
rH .—.

m 0 0 •—•
CO
CM
NO
rH rH ^
m 0 rH '—'
Ov
rH

**. 0

rH 0

rH O

CM O

CN O

0 0

0 0

0 0

0 0

0 2

**• 0

rH S"

rH g

"l
CN O]

O
O
©
O
©
en

0
>*l

NO ^
CM O
xt '—' rH
<*
O
CM

§ S"
LO "-'

3
0
0
CO . OV O
0 —'
0
*JH
0
X
in .—.
CO 0 tN ' '
O
CO
CN
ON xt ^~.
CO 0
m •—•
m CM

rH O

rH O

rH O

m 0

in 0

0 0

0 0

0 0

0 0

0 2

rH O

rH S"

° 2

in &

m 0

O
O
O
O
O
Ii

0
0
CO ^-. X 0

rH
m
0
VO
rH ^~.
X O rH '—'
CO

m
0
CM
VO .—. rH O
rH -^
O
m
0
X
ON .—.
rH O t —~
X
CO

R
X —.
rH O
ON *—•
rH
CO

rH O

O O

rH O

CO O

** O

O O

O O

O O

O O

° 2

rM^

rH O*

rH g

CO 0]

i1 2

0
©
0
0
0
m

0
NO
ON . . CO O
rH '—' CM
NO

O
O
X .—.
rH O X '—'
CO
VO

O

rH .—.
CN O
X '—' rH
m
ON
ON
CO .-̂
O O rH "—'
VO
t

R
CM ^
O O
CO '—'
X
CO

rH O

O O

rH O

rH O

O O

O O

O O

O O

O O

O &

rH O

O O
*—'

° 2

rH &

° 2

O
O
O
©
©
NO

O

3 -ON O
xt '—' cN CN

O

3~
in 0 ir
0
0
CO .—. vo O
0
CN
ON
ON
CN - ^

x 0 CN ^"
co
m
X
m vo .—,
X 0
VO '—'

3

0 0

0 0

0 0

CO O

0 0

0 0

0 0

0 0

0 0

0 2

0 0

0 o~
—

0 2

CO &

0 2

©
O
O
O
O
IN

O
O
CO .—. in 0

CM
X

O
X
0 ^
ON O 0 '—'
in
X

0
CM
VO .—. X 0

5 X

Ov
IN

R o xt •—•
rH
VO
IN

rH O ~.
tN O
O *—'
rH
in

rH O

O O

O O

CM O

VO O

O O

O O

O O

O O

rH S~

rH O

O 0"
"—"

rH &

CM S

NB 2

0
©
0
0
0
00

NO
Ov . .
0 0
CN '—' CO
ON

CM
CN ir\T
CN • IN O
m '—'
Ov

NO
Ov .—. O O

ON

Ov
ON

m .—.
m 0
rH ^-,

ON
VO
X
«1< .—.

«(t —•
CN
m

rH O

O O

O O

rH O

m 0

0 0

0 0

0 0

0 0

° 2

rH O

0 0*
"——'

0 2

rH &

in 0,

O
O
O
O
O
ON

O

3
8 2
rH
O

£ 0
0
rH
O

CO

CM 2

rH
O
CM
O ^-.

X '—'
VO
CN
Ov
CN . .

CO
vo

0 0

0 0,

0 0

0 0

t 0

0 0

0 0

0 0

0 0

0 2

0 0

0 o"
>—"

0 2

rH &

«HH 0_

©
0
0
©
0
0
rH

3 r3
01
u
re

IH

cu
^^
re 44

i I
I o
<u a

"S « "
Pr£ 3

re 3 H

3"S

^9-3
en * Q 73

aj §
*« fS H-
P C en

> a cu
01 44 -^

r3 O £
en en X
3 — T

i» -S
rQ 3 O
O Oi en
rv-5- M,

0» 3

m J-J s
IH -- 73

O u 3

r? o x

o
rH
*
OH

O

>

c2

o
rH
* 3 H
O

X
1*

QJ
s

en ° o> JS

'44 O ,

° cu >-.
v 3 t3

OOTH BH

re 5 CJ
IH > W

< 44 O

01
3
rH

re
>
•3 ^3

r3 °

^

o
rH
*
3 H

O

»J en s
re 3

•S v

cL,.£
II II
N 44

X

ll 11
N C

"1 44

en
u
CU
.to.

2 ^

rn

£
01
44
V4H

U
14
01
rQ

£
3 l-

T-H

re
44 0

H II
3

P
qj
• rH

73
44

re 3

£
0
71 3

5 V+H

u IH
OI
HQ

£
Z
11

z

1/1
01
44

cu u
3 re
3
B
0 D
tH

O
'44
3
QJ

X re 44
CU
£
• rH

H ll
rH
44

en
u 01

bC

u
• rH

44
In

O -H
O
<4H
3
vU

-44

re 4 4

01

E
• rH

H ll
4ff

C »<-(-i-T ^-

E
3
o
s-

I
VI

re

7a

5 °
.!"• rH

+
&3

eu

-5 £
.o II

44

3 "*
W _
Ov

2 <••*

•2 ©

5 *

Xi
NO

rn

3
re
H

en

£
r3
44
•44
>H

o
bC

I-H

<:
u
• IH
4 4 IH

3
cu

X MH
o
o>
u
3 re E
o
01

Oi
> •!H

re
01

3S

3

3

o
3
rH o
CD
r-H

rfl

£
4 4

o

>

H

01

IH

U
o>
3
^H

re > i
13
44

o
H

<N

X

£ 73
u
01

U
73
cu
73 3 cu
44
X

w

, rH

X

73
01
U
«H

73

o<
IH

01
73
IH

n
i

•IH

en
3 01

0

N

3?

tN

3H

©
O

o
o
in o o
o
o o
o
©
o
en
o
o
o o
CM

o
©

o o
r-l

O

P *> X* in
o
P, <N O «

O

2 °.
8*
en
o
2 o

8-
CM ©

8 =
O NO
rH

O

o «
in

o
2 CM
o •

o «
THH o
2 °.
8*
en
o

x°. o u>
CM

o

8o O NO
rH

O

*:s o *
in ©

P^
o *
«#

©
O O
8*
m
o
8°-
© "> CM

o
8o
© NO
rH

re •-]

r>. re

CN
O

Tt
o

o

o

xt

d

3°

2°

o o

o o

H! r-v
o

«1 r.
o

^ o
o

o o

o o

«! r-v
o

ON

3 ».
CM O

o w

s eM ̂-̂
S2 NO
ro _;
CO o

o —

rH

O
o
NO .—.

co o NO ' '

o
rH
o
CM . ,
rH T*

rH 2
O w

rH O

o x —
3 CM
o 2
*

,—* rH O

—̂̂
CM O

Tj< S "

rjn o

CM O

o o

— o o

° 2

.—. rH O

o o

t rH O

_

Tt O

•* d

CM 2

++

o
o o ©
o rH

o
u
o
rH

3
CM

O
Tt
VO
vo
NO
O CM

O

R
CM
rH
CM

O
NO
CM

o CO

o
CM

o
CM
NO
CO NO
rH
CM

CM

CM

CM

CO

rH

O

O

O

o

o

CN

rM

CM

CO

S~

CM?

O ,

T̂

CM"

fT

^m.

o_

,-̂
o

o~

o

o

o

— o

o.

^ o

_̂
o

— o

o

o.

o.

CM-

o

o
o o o o CN

o
eM _ .

rH ^

vo d
o —' CO

o
o _

8?
o 2
rH

CO

o
X .

8^ OV o
rH —
CO
o
t CN

Tt o

o w

CO
o

3~
in o rt — •
CN CO

^m.

rH O,

^m-.

° 2

rH O*

rH O

rH O

O O

-o o

° 2

t o o

„

o o

^^ rH O

o o

rH O,

rH O,

rH S*

O
O
o o o rn

ON
CO

o

SI
X
o

Tt

q
CM
CO
CO
CO
rH «t

q
CM
in

o
X
in

o NO

o
Tt

o
VO

R CN
CO
Tt

o

o

rH

rH

O

O

O

o

o

o

o

o

rH

O

C3

vfi"

O ,

CN~

d.

o

o~

?T

,_.
o.

_̂..
o.

o~

o

o

o

—̂̂
o

o.

,-H.

o

o

-̂̂ o

^
o

o.

o.

o~

o
o o o o T *

o
Tt

g
rH m
o
Tf
VO
VO

vo
rH m
o
VO
rH
X rH
CO

m
o
R
in CN

o
in
o
X

o
ON o
Tt in

rH

rH

O

rH

O

o

o

o

o

o

rH

rH

rH

rH

O

TF
O,

x"
d.

CN~

O

vS~
o

o~

.
o.

_̂̂
o.

o~

o

o

o

^~. o

o.

^-^ o '—'

.
o

^m*.

o

_
o

CN~
o.

.
o.

o"

o
o o o o m

o
vo
o .—.
CO o
CM w

rH
VO

o
o __

§s
o 2
CM —

VO

o
o ^
rH "^

x d
CO '—'
VO
OV
Ov
X ,-s

o o OV •—'

o
vo
o
o
ON . .

o o ON '—'
Tt
NO

>-fcl
° 2

.
° 2

o o~

o o

o o

o o

—̂̂ o o

° 2

,—«.
o o ^ n "

t o o

^m.

o o

^^
o o s—'

° 2

^
° 2

o o~

o
o ©
o o NO

ON
CN ^

co _:
Tt 2
rH ^~ IN

o
CM
CO .—.
CO o
CO '—'
CM
IN

o
3~

r̂ Ov
CO

o .—.
o -^

R
o
CN iTv
CM O CN 5S
in CN

^̂
° 2

t
° 2

o o~

o o

o o

o o

-̂̂ o o

° 2

,_s o o

.
o o —̂̂

^m.

o o

^̂
o o —

° 2

^m.

° 2

o o~

o
o o o ©
IN

o
X
o

3
rH

X

o

3
VO
VO
CN
X

o
X

o
o
m
X

IN
rH
CM
rH
X
o
Tt
in
in
VO X

o

rH

n

o

o

o

o

o

o

o

rH

rH

o

o

o

Tt

o,

Tt~

o _

v5"
o,

CM?
o_

,-,
o.

o.

o~

o

o

o

-̂. o

o.

—.
o
*~-"

^m^

a > —̂'

^-. o

, ^
o
—

_
o

.-.
o

o"
*—"

o
o o o o 00

o
o
VO

3 ON

o
o
o
o
ON

R
R
m
ON
vo
CO

CO
rH
Ov

(->
NO
CO

R Ov

o

o

o

o

o

o

o

o

o

o

o

o

(_]

o

o

Tt~

d.

Tt~

d.

TF

o.

_̂
o

o.

o~

o

o

o

— o

o,

—.
o
**-'

^m.

o "—^

— „

o

, ,
o —'

^mm^
o

.—,
o.

o~
—

o
o o o ©
(Tv

ON

rH
in

o
CM rH

o
CO
CO
CO
CO rH

o
CO
NO
C)
NO

o
rH
o
m
rH
m
rH

o
rH o
rH
X

X

rH

o

o

o

o

o

o

o

o

o

o

o

o

u

o

o

.

TF
d_

Tt~

o.

CM"

o_

CM~

o.

_
o

ô

o"

o

o

o

_̂̂ o

o.

^m.

o
^-^

^m.

o •^n-

*—. o

, .
o —'

o

—̂̂
o.

o"
—

o
o
o
o
o
©
rH

(U

re
£
OJ

-3 44

73
01
73
O
0J
4-

01

3 HH

re >

•4H

3
3 H
44
3
O
73
3
re
44

3 p-
3

o rH

*
44s

O H

>
H

re - —
rv 5 «
(44 4 4 W

O 3 ^
W 73 73

ai §
I g t s
> a oi
HH Q. <U

%x g
Hr *> Q

3 •« ^

" .a bb
oi -S 'x<
rQ 3 O
O 0) en

OI 3

m x3 a
IH --. 73
O in 3
N+4 OI -TH
_ rfj W

pi? o x
3? rH 01
M <-» v

o

— '<H

E tS

o
rH
*

O

X
N

01

3
re
>
3
•S-g S S rH

<U nH

<44 O ,

° <U r-.
01 3 ?
^ T S Pi

2 ^u
•< 44 O
^ 44

re

01 ^-v

en •a~r
3 3H -S

• » 3 ^
^ • 3 ^

II II &
N 4- ^N,

N «
II

3?

en

E
01
44

73
01
44

re
3

en
u
01
en
en
01 ^-v
•" en
01 <J

u cu
3 >S
3 tf
•rH C

(4H

O
)H

CU
X

B
3
3
O

H

E '
o
73

a
P

(Sri
IH IH

o o
N+4 <4H

3 3
01 01
r*i -i

re re
44 44

01 01

E E
•rH »rH

H H
ll ll

s Z 4-r 4D1

3 Z 4-T 4?

</, ©

B P
« S

pr
ob

an
d

©

F
)
o
f

00
,5
0

•«•< rt

s*
5 <n
O n
w c
an i_

Cl
as

.5
 f
o

13 CN
VJJ
"3 VI

.0 VI

§? =
£ N

ry

Si

an
d

he

V
e

9
9
9
]

rH
>H _

5
T4, UJ

rM --̂

at
io

na
l

re
su

1,

99
9
]
;
 p

44

3
E w

U %

re

m
—

3
re
H

©
© 0

II
3
U

a in

VI

£

VI

0
CN

73
3 re

Ov
ON
ON
ON

01

e£

o^
ON
Ov
Ov

'—'

UJ

£

en

£
H H
4 4
"44
IH O
bC

r-H

< e-i
4 4

en
•-4
IH 3
cu
M
<44

O
01
u

a
re

£
»H

n
t3
CU
CH

cu
>
•44
4 4 re
!-H

o>

3
^

O
• rH
3
n
en
r—l
01
E

• TH

O

>

01
OI
IH

1)

13

X
re
44
n
H

IN

a
73
01
11

0
73
01
73
3
OJ
44 X

-rf 73
01
01
IH

0
73
o>
r4
Oi

73
»H

O
1

• iH en
3 cu

Q

N

^

<N
CH

3?

©
0 0
in

©
0 0

©
©

m
0
0
rH

©
in

O Tt
2 ci °q
O CN O
in rH

O TT

0 • 0 « ^
TH »

O X
O ON O
m Tt

§so

S » ei
in rH 0

O Tt

2 co « 0 O CN O °
in rH

© TT

rH °°

© X
O ON O O
m «*

8s°°
rn

© X CM _
m rH d °

O Tt
2 ci «2 0
O CN O

m rH

8 H!
o « H O

rH °°
O X
O O*. O O
in *

O vx,
O CM O O
rH

© x *i 0
m rH 0
+-

a 4-
« -rj

en y
rv. re

fit1

tN

8 cT
5 2
CM

NO

S?T
OV Q
Tt S-
CM

X
OV -—.
ON "*
ON 0
Tt *=-CM

co

1 =
ov zzs
Tt

CM

O

R~
3 2
CM

* CM .—.

ON

CM

vo 2

rH .—.
rH O
Tt — '

NO .—.
X O
m *—'

CM ^
x 0
rH —'

CN ST

m 3
CO 0 ,

ON X

ON t
CM d

8 c?
rH O

X s~.
CO O
CO ^

vo .—.
rH O
m ^-

« =

CM —•

ON , .
NO O

++

O
O
O
O
O
rH

in
CN
ON Ov
Ov
Tt

in
CN
X ON
OV
Tt

ON
(TV
(Tv
ON
Ov Tt

X
Ov
X
X
(Tv Tt

O
O

8
ON
Tt

rH
CO
Tt

tN
Tt
tN

CM
NO
rH

ON

IN
Tt

rH
Tt

rH
in
CM

NO
rH

rH
Tt

Ov

IN
O
CM

NO
X
CO

tN

m

0
Tt
rH

X
X

CN~
O,

cT
o_

s

s

s

.
0

s

S

S

S

CM

Tt
in.

oc?
rH

o~
rH

_
O

O

CM~

S

S

O
O
O
O
©
CN

Tt
vo
ON

R

tN

R

ON

K

Tt
CO
X
K
0
rH
Tt
NO

R
Tt
ON
CM

X
CN
in

ON
CO

R

rH
rH

vo
rH

CN
CO
rH

X

CM
CO

CN
in

rH
X
rH

IN
rH
CM

9

ON
Oi

ro
CO

, .

TF
o_

s

s

s

^
0

0;

s

s

Tt
O

S

—̂s O
CM
rH

oc?
ci

o"
co

_
0

^^
0

0;

s

s

0
0
0
Q
0
en

in
OV
ON
ON

P ON
ON
OV

ON

ON

O

R
ON

in
rH
CM
in
OV
ON

rH
VO
CM

X
in
CO

tN
rH

CM

CN
CO

rH
CM

R

CM

in
rH

O
CO

CO
CM
rH

CM
ON
rH

rM

NO
X

in
Tt

TF
O,

CN"
o_

S

S

S

^
0

s

s

s

CM
0

CM

^~. O
CO
CM

vo"
VO

x~
Tt

_
O

_̂̂
O
~

S

s

s

0
0
0
0
0
«#

rH

Ov
ON
Tt
CM
rH X

R
CM
rH

ON

ON

CM
rH

CM

R
CM
rH
rH
CO
0

3
CM
rH tN
rH
rH

in
ON
ON

CO
rH

X
CM

<N
rH

CO
CM

X
vo
rH

CM

IN
rH

CM

CM
X

rH
NO
CM

rH
CM

ON
ON

X
rH

^^
O

^^
O

O

s

s

s

0

s

s

s

CM
0

s

•

VO
Tt
CO

TF
rH

«F
X

^̂
0

, ^
0
~"

s

S

S

0
0
0
0
©
m

".
CM
Ov ON
ON
Tt
rH X
NO
NO Ov
ON
Tt
rH
X
ON
ON
OV
ON Tt
rH

vo

vo
ON Tt
rH
X
CO
X
CM
ON
Tt
rH
CO

m
rH

rH
rH
CM

m

0
CM

VO
rH

NO
rH

rH
ON

tN

ON
rH

rM
Tt

O
CN
rH

VO
in
rH

tN

tN
X

CM
CO

_̂̂
O,

_̂̂
O

O,

S

s

s

0

s

s

s

X
0

CM

^ CM

d
m

CM?
vo

VO

rH

^̂
O

^̂
O
~

s

s

s

0
0
0
0
0
V£>

tN
rH
Ov ON

R
rH m
rH
VO ON

R
rH
X
Ov
ON
ON

r*1 tN
rH

NO
in
rH
NO
tN
rH
CN
Tt
NO

R
rH

X
NO
rH

in
IN
Tt

VO

O
X

m
rH

CO
rH

O
NO

Tt

ON

O
rH

r^
CM
rH

in
0
rH

X

CO
X

CM

CM"
d_

^
0,

0,

S

s

s

0

s

s

s

0
rH

CM

— 0

R

0C?
d

X
Tt

0

_̂̂
0
~

S

s

s

0
0
0
0
0
tN

m
0
ON ON
ON
ON
rH CO
VO
in ON
ON
ON
rH
X
OV
ON
ON
ON ON
rH

rH
rH
VO
in
ON ON
rH

VO

TS
O
OV
ON
rH

CO
Tt
rH

CM
IN
Tt

CO

CN
rH

CM
rH

CM
rH

O
NO

CM

CM

ON

IN
CM
rH

OV
in

CO
rH

R

ON
rH

d

_
o_

0,

S

ft
0 ,

s

0

s

s

s

Tt
rH

VO

— CM
VO
X

oc?
IN

Tt

O

_
O

_̂̂
O
~

s

s

s

©
0
0
0
0
CO

Tt
ON
X Ov
Tt

OV
O
m ON
Tt

X
Ov
ON
Ov
Tt
CM

O
O
in

?5 !N

X
NO
CM
ON
CO

R
rH

O
CM
Tt

X

ci

Ov

ON

X
OV

rH

tN

O
rH

R

rM
0
rH

rH
rH

CO
X

CO
rH

o_

o_

0,

o~

S

S

0

S

S

S

VO
rH

NO

d.

CM
rH
rH
rH

TF
IN

O
CO

_
O

CM"
0,

s

S

0
0
O
0
0
ON

CM

SS CM
ON -^
ON O
Tt
CM ON
in
Tt . . ON O
Ov •—'
Tt
CM
Ov
ON
OV , .
ON O
ON ^ Tt
CM

CM
rH

m .—.
Tt O

3
R
0 , .
SS 0
X >—'
Tt
CM
X JT*

K 2

CM . .

CM *—

CN S

r H 2

H S

* rH

CM VO

^ 2

CM

CM ig
CO
rH

rnf

CM
IN d

3 2

ON S

3°

SS

©
©
©
0
©
0
rH

r-H

£ 5-
01 3

X o

y X r

2 >
« a

3H

3

o
rH

*
44

&.
O

>

* 2 -a
<*H "-a ™
o s 73
en 72 73

aj S
* re •*-

rt s «
3 cu

>
0)

-C Qng o
rH

*

en
u
CU
en

2 ^

en
E
cu
44 <4H

U
rH

01
rQ

E
3
u
I-H

re
44

u
H ll
3

a
QJ

^i-^

73
ID 44

re
3

B
0
71 3

<4H

O
-H

01
X
£
3 Z
11

z

in
01
44
(U
u
3 re
3
£
0 D
s-
0

N4H 3
01

-4,

re 44

a;
£
H
II
rH
44

en
u
en

bo
3
•FH
44
rH

O

cn
rH

O
<4H
3
OJ
M
re 44

0)

£
ll
»N

H-t

C r̂ -. O-T -L-

•v\

B
X
3
o
In

a
<*H

o

>*-

8
Vi

S «n
U CN

•? Vl

2? x ^

c3 VI

th
e

Ve
ry

St
ro
ng
ly

1,

9
9
9
9
]

a
n
d

2.
0

«2 UJ

C
o
m
p
u
t
a
t
i
o
n
a
l

re
su
l

W
j

e

[
1,

99
99
]

;

3
r--
—
3
re
H

en

£
r3
4 4
"44
IH

O
b£
1-H

<
u
• 44
44

en
• |H
-H

3
OI

X
MH

o
OI

u

a
re
o
OI
3H

OI

>
•44
4H

re

B

a
o

• 44
4 4

J3
'o
en
"re

£
44

34

o

>

73
OI
01
-H

u
o>
j3
"re
rH

re
44

o
H

IN

B
73
Oi
01
-H

u
73
o>
73
3
a.
44

X
N-l

rH

a
4f
01
01
IH

O
73
OI
IH

01

73
IH

o
•IH

en

3
cu
Q

N

£

(N

Pi

£

o
©

o
o
m
o
o
©
©

©
©
©

o
en o
o
©

o
CN o
o
o
o
rH §2
© rH

|3
8|

8^
en m

2 <N

8"

§2
0 T*

8°°.
8°

81
T* W

8^

2 N

Si

8*.
8°
in * §5
9 «

8£
en <°
2 «*
2 in

2 °o
2 C M 8 1
rH CM

ON
rH

O
rH

VO
NO

Tt
CO

00
rH

ON CM
rH O

O CM
rH o

VO

2°

2°

ON CM
rH o

O CM
rH o

vj°

2°

2°

w 4V
« .rH

en y
rv. re

25
00
00

(0
.8
)

o
o x
o d

in o
CM *—'

O

g e ?
CM

ON
Ov

TJ(O
CM w

Tt ^
O O
rH '—'

X .—.
CO o
rH '—'

rH .—.
CM O
rH '—'

O .—.
O O
Tt -^

in .—.
in o
CM "—'

N rf

°I
X

o *t
d

3g

rH O

o *t

x d

Tt ^
rH O
rH '—'

CM .-̂

o o
rH '—'

R =

o . .

as
++

©
©
©
©

o
rH

O
o
o
o
o
in o
o
o
o
o
m o
o
o
o
o
m o
o
o
o
o
in Ov
Ov
Ov
ON
ON
Tt

s
rH

ON
CO

CN
Tt
rH

X
m
rH

CO
CO
CM

X

o

o

m
rH

g

ON
CM

O

m

NO
rH

CM

CM
VO
rH

o "
rH

TF
O,

vo"
ro

d.

CM*
o .

s

s

S

S

S

S

CM*

d
in.

OC?
CM
r^

X
VO
rH

OC?

if.

VO

d

S

s

s

s

s

o
©
o
o
o
CN

o
o
o
o

R o
o
o
o

R o
o
o
o

R o
o
o
o

R o
o
o
o

R
X

X
rH

tN
in

CO
Ov
rH

rH
CO
CM

o

o

o

X

X
in

m

o
CO

o
CO

K3

ON
Tt
rH

oc?
d.

oc?
d.

ft
rH
O ,

TF

CM"
O ,

S

S

s

s

s

OC?

d
CM

CM"

d
co.

X
o
Tt

S
rH
rH,

CM
rH

o;

s

ft
rH
O ,

S

S

o
o
o
©

o
en

o
o
o
o
o
o
rH

o
o
o
o
o
o
rH
O
O
O
O

o
o
rH O
O

o
o
o
o
rH Ov
ON
ON
ON
ON
ON

m
CM

o
VO

X
VO

ON
rH
rH

CO
CO
CM

CM

O

a

m
rH

CO
CO

Tt
rH

"3
CM

VO
rH

Oi
CM

rH
CO
rH

CM"
rH,

TF
O ,

rH

d.

cT
d.

CM"

d .

S

S

S

S

S

«F
ri
rH
Cvl,

3c?
CO
in.

X
o
IN

oc?
d
CM,

CM

CN

s

s

cT
rH

d.

S

S

o
o
o
©
o

o
o
o
o
CM
rH O
O
O
O
rH

o
o
o
o
m
CM
rH
O
O
o
o
m
CM
rH
ON
ON
ON
ON
CM
rH

VO

ON
rH

CO
rH

R

CO
O
rH

CO

o

o

X

CM

m

rH
rH

Ov
rH

Tt
rH

Tt
rH

O
O
rH

NO"

d,

TF

d.

CO

d.

CN"

d.

3*
d.

S

S

S

S

s

TF

CM

J2.

CM*

ON

oo.

o
CM
rH

TF
°cj
CJ,

X
ci

s

s

s

s

s

O

o
©

o
©

m

o
o
o
o
o
in
rH

O
O
o
o
o
m
rH
O
O
O
O

o
m
rH O

o
o
o
o
in
rH
ON
ON
Ov
ON
Ov
Tt
rH

CN

CN

rH

o
Tt

CO

X

o

o

o

m

rH
CO

Tt

X

CM
rH

CM
rH

CO

o
rH

x~
o.

vo"

d.

CM"
rH
O ,

TF
O ,

CM"

d.

s

s

s

s

s

TF
IN
VO

Jt,

oc?
vd
CM
rH,

NO
rH
CM

VO

Jt,

Tt
in

o^

S

s

s

ft
d .

O

o
©

o
o
VJ5

o
o
o
o

R
rH
O
o
o
o

R
rH
©
O
O

o

R
rH O
O
O
O

R
rH
Ov
ON
Ov
ON

R
rH

in
rH

X

VO
CO

CN

m

R

rH

O

O

CN

CO
CO

CO

Tt
rH

O
rH

ON

o
o
rH

s
rH,

«F
d .

s

ft
d.

CM"

d.

s

S

S

S

S

TF
ON
ON
in.

CM"
OV

m
TH,

X

X
CO

vo"
rH
VO,

VO

IN

s

s

s

s

s

o
o
o
o
o
tN.

20
00
00
0

(0
.8
)

:

o
o ^

§ «?
o 2
CM o
o
o .—.
o o
o ^
o
CM

o
o
o *-.
o o
o •—•
o
<N

Ov
ON , ,

®N _;
ON O
ON
rH

CM 2

ON S

ON o"

rH .—.
O O
rH '—'

R°

CM"

CM T^

R
CM"

o in

CM

o o<
Tt

TF
O rH

X,

Tt CM
Tt ON

Sg

Sa

NO S

S°

oo cJ"
X ©

©

o
o
o
o
00

o
O
o
o
in
CM o
o
o
o
in
CM
o
o
o
o
in
CM
o
o
o
o

3 ON
ON
OV
ON
Tt
CM

CM

in

X

CO

IN
CO

o

o

o

Tt

CO
CO

X

rH
rH

O
rH

CO

3

00"

2

TF

d.

TF
CM

d.

T F

d.

CM"

d.

s

s

s

s

s

ft
ON
ON

2 .

So"

R
CM,

CM

ci
NO

cT
d
o
rH

ri

S

S

S

s

s

o
©

o
o
o
Ov

25
00
00
0

(0
.6
)

o
o _

8f
o 2
m
CM

o

§ v5"
o CO

o d
o

§ d
o 2
in
CN
ON
ON . .
ON -J
ON O
CM

** 2

tN S

>N S

r̂ S"
m 2

vo S"
Tt 2

vo"
_, NO
rH CO

CN
rH,

S"
O Ov

m
CO,

VO

°R
VO"

28 ci
CM CM

rH,

CO _J

CO Jt

co S

g o

Ss

NO S

& o"
X w.

o
©

o
©

o
o
rH

=
A
v
e
r
a
g
e
 o
f
 R
i,
 R
2
 o
r
R
3
 f
or
 5
 p
r
o
b
l
e
m
 i
ns
ta
nc
es
;
 t
he
 v
al
ue
s
 o
f
 R

 a
re
 c
od
ed
,t
he
 s
ma
ll
er

th
e
v
a
l
u
e
 o
f
 R
,
 t
h
e
 c
lo
se
r
 t
he
 h
eu
ri
st
ic

 i
s
to
 t
h
e
 o
p
t
i
m
a
l
 s
ol
ut
io
n
 v
a
l
u
e

rH

rH

++

en

£
QJ

73
01
44

en re

E.S
ii £
•rH 0

<44 rQ
0 3
cS P
r Q "44

£ °
3 X

« § II "

3 2

3 Z

+-

?U
 -
 s
e
c
o
n
d
s
,
 e
xc
lu
di
ng
 s
or
ti
ng
,
 d
o
m
i
n
a
n
c
e
 t
es
t
a
n
d
 d
a
t
a
 i
np
ut
 a
n
d
 o
u
t
p
u
t

=

op
ti
ma
l
 s
ol
ut
io
n
 v
a
l
u
e

=

t
i
m
e
 i
n
 s
e
c
o
n
d
s

(H
i)
/z
(o
pt
))
*1
06
,

R
2

=
1
0
6 -
(
z
(
H
2)
/
z
(
o
p
t
)
)
*
1
0
6 ,

R
3

=
 1
06
-(
z(
TV
)/
z(
op
t)
)*
10

6

U

44

0
44

11
44

44"

1
VD

N S
*

rH

II

'en"
u
01

44

en

o> *-.
H- en
01 u
0 01

3 ^
3 »

fil
(HI
V4 rH

O O
N44 <4H

3 3
01 01
M r*

re re
44 44
0) 01

E S
•rH »r*

H H

ll ll

rH IN
4H -u.

©

s
o
s
rH

73

e
re
©
©

m
<= 2

rH ©

» >n

-5 ° "

i " =
X e O
^ u '**
04 © rH
in ©
O rH *

5 rH +

+ ti­

re

U
73

* .E
s E

1 + f
3T.S
s S

I 8 T ^
0* , *

: *_ *
X £ II
42 II cu
3 Cu •-
w - —'
l- •- ON

_ ,—, ON

« 2J S
e ON ON

§ ON ON
*44 .- «•

« rH rH
44 , , ta_-

s
Q.
g W UJ
U ST ST
re
oo
rn
_04

3
re

H

en

£
£ • r4
IH

o
b£
^ H «2
• 44

en
rH

3
cu

MH

O

cu
CJ

3
re

£
rH O

01
PH

Oi

re
r H

01
cr-

3

y
c
o

•rH

3
r H

o
CD
"re £
• rH
H-» P-
o

>

£
73
Oi
01
rH

o
(1) 3
re

x
"re
4 4

o

H

CM]

X
rA
73
o>
01 IH

O
73
o>
73
3

m
44

X
UJ

rH

X

73
o>
vU
iH

o
73
01
-H

m
73
rH

o
-4T
"44

en
3 cu

D

N

3?

(2

c-

o
©
©
in

r-l
©

o
rH

O
©

m

o
o
rH

O
in

©

o
o
m © o
rH

O

o
in

o
o
rH
O

m

o
o
o
m <—>

o
o
rH O

o
in

o
o rH

O
m

©

o
o
in ©

o
o
rH O
o
m
o
©
rH

O
in
+-

w J-

K
n
a
p
s
a

Ca
pa
ci

CN

X
X
Tt

X

Tt

Ov

Ov
O N
CO

tN
Ov

X
IN
CO

CM

X
X
Tt

X
Tt

m
ON

ON
ON
CO

CN
ON

X

IN
CO

CM
CM
X
X
Tt

X

Tt

ON

(TV
ON
CO

IN
ON

X

c<
CO

CM

Tt

m

CM

Tt

d

CM
rH
d

CM <*

Tt in
m CM

2°

CM
rH O

O O

CM Tt

Tt in

m CM

*i rH
CM

s°

CM
rH O

d

o o

rH . ,
Tt ^
CO NO

ON , ,
ON w

VO x

CM "t
ON °

°0 rT̂
in *
in «
rH S
£ CM

$ ~
55 3

S o
OV

*
.-̂
CM

O rH
O

o o

o ^
CO o
Tt ~-^

S o

o o

, ^
o o

,—.
o o

~

rH < ?

r H O

, ,

o *t
rH

_
O o

o o
w

rH *T
2

3°

o o
++

O
o o ©
©
rH

T T
X
NO
•N1

ON
ON
rH
CN

in
NO
ON

rH

R
CO

R
X
ON
rH a
9
m
X
eM rH
CO

y CO
Ov
rH

O

o

o

Tt

o

o

o

o

CO

o

o

o

o

CO

o

CM
m
rH
rH

—
VO

d

«F
ON

o
o
rH
CM,
„
Tt
CM

d
v~—'

.—V

o
~

-̂.
CM
rH
O

O

S

o

o

CM

o

^^
o

~

o

o
v—.

_̂̂
"3
CM NO

_
o

o
'—'

o.

o

o

©
o o o o CN

TTT
CM

o
ON X
ON
ON

N
CM
i" LN

X
O N
ON

CM

3
VO

o
CM
X
ON
CN
Ov
rH
X
O

R ON
CM

VO
CO

o
X
o
ON CM

O

o

m

Tt
CM

O

o

o

m

tN

o

o

o

in

Tt
CM

O

R
X
rH

-~* VO
ON

d
^-"

in"
Tt
Ov
Tt,

^^
CM
rH

d
*—'

.—s

o

*-^
o
~

o

S

o

o

o

r-.

o
w

o

CM
rH
O

—
CM

Tt
rH

_
O

O

'—'

o.

o

o

©
o o o O
en

R
CO
in X
Ov
ON
CO m
CM

CO
ON
ON
CO

CN

X
m
X
VO
tN
OV
CO
NO
Tt
in
X

R ON
CO

m CO
CM
in
X CN
X
CO

o

o

CM
o
CM

o

o

o

o

o

VO

o

o

o

o

o

o

Tt
CM
ON

.". X
o
rH
* — " •

NO

rH
CO
rH
O
O
CM

O

^-.
o
" • * "

.—.
o

o

S

o

o

o

,—.
o
w

o

CM
rH
O

' v

X
Tt
Tt
CM

_
O

o
'—'

CM"

d

o

o

©
o ©
o o **

TT

R
rH X
Ov
Ov
t
O
IN
NO

m
rH
ON Ov
Tt

VO
CN
CO
NO

R
Ov
Tt
o
NO
X
CM
NO
VO
ON
Tt

<* CO
ON
CM
X 3
Tt

o

o

o

rH

O

O

O

O

3

o

o

o

o

CN

o

Tt
CM
CM
rH

>^-v

vo
m
rH
>_̂

So"
CM,

O

*-..
o
>—•*

.—.
CM
rH

O

O

s

o

o

o

^-.
o
'—'

o

CM
rH

o

' •
VO
OV

m

<—^

o

o
'—'

o.

o

o

o
o ©
o o m

To­
rn
o
X
CN
ON
ON

m
ON

in
ON
ON
X ON

in
ON
X
rH
rH
NO
NO
Ov
in X
rH
O
CM
O
NO 01

in
rH
rH
IN

R rH
X
in

o

o

o

rH
rH

O

O

O

O

rH

O

O

O

O

rH
rH

O

NO
CO
m
rH

_
CM
rH

™

vo"

R

t

CM
rH

d
—̂-

_̂̂
o
• " — '

. .
Tt
CN

o

o

S

o

o

o

_̂̂
CN
rH

O

o

X
Tt

o

' '

R
X

^
o

o
• * ^

d,

o

o

©
o o ©
©
NO

O

5 tN
ON
ON
VO
CO

o in
CO
X
X ov NO

o
X
rH
rH
O
VO
Ov
VO R
m
Tt
CO
in ON
NO

TTH
IN
X

R
R
vo

o

o

o

m

o

o

o

o

o

o

o

o

o

m

o

CM
ON

a
-̂.

CM
CO
rH

.».

NO"

d
CM
m
Tt
CM, ^
Tt
CM

d
Sw.

_̂̂
o
'—'

-̂̂
o
*™^

o

S

o

o

o

.—>
o

o

X
Tt

o

CM
ON

rH
CM
rH

Tt
CM
d

o
*-̂

d.

o

o

O
o o o o tN

o -

R
o
CN

Ov

R ro
O

R
VO
X ON
CN

X
rH
Tt
rH

m
in
OV
CN
NO
CO

R
VO
Tt ON
IN

NO
ro
IN
R
B
o

o

rH

rH

O

o

o

rH

O

o

o

o

rH

O

O

rj

a
*—s

X
q
ri ^ J

TF

ci
X

3L _

SI
d
.

, ,
o
^"

.—V

o
"—*

o

s

o

o

o

*—.
o

o

R
o

X
CM
rH
VO
rH

^
O

_̂̂
CN
rH

O

o.

o

o

o
o o o o CO

o

R VO
Ov
ON
X
NO
(Tv rH
CM

m
ON
X
O N

m
VO
tN
ON
Tt
ON

X R
CM

s
(TV
X
UN

rH
ON

R
X

o

o

o

m

o

o

o

o

CN

o

o

o

o

in

o

X
CM o
CM

—
co
rH

._.

CM"
d
m
rH
Tt,

O

. ,
o
• — '

, v
CM
rH

O

O

S

o

o

^
CM
o

*-.
o

o

Tt
X

o

CN
ON

in

a
^
o

^^
CM
rH

O

o.

CM
rH

d

o

O
©
o o o ON

•err

in
Tt

NO
OV
ON

ts
VO
NO
CO

Ov

X
X
Tt
CO

in
Tt
ON
O N m
o
CM

m
ON

NO
NO

ON

ON

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Tt
X
rH
CM

<N
rH

'—'

3 "
in
m
CO,

o

—.
o
^-~

^^
CN
rH

O

O

s

o

o

.
o
—

.—.
o
*—'

o

CM
CO
rH

_

3
CM

^
O

.—.
o
'—'

o.

o

o

o
o
o
o
o
o
rH

'-
Oi

en
ej

CU
en

2 ^

en

E
cu
4 4
<4H

u
rH

01
X

B
3 !~
r H

re
4 4

u
H ll
3

3
HI

• rH

73
cu 4 4

re
3

B
o
73 3

5
•4-

u
-H

01
X
B
3 2
n
Z

en
CU
44

r\)
CJ

3
re
3 • rH

E
o Q
IH

o
'44 3
01
-^
re
4 4

01

£ • rH

H
ll
4-r

en
u 01
en

3
•F4
4 4
rH

o
C/j rH
O

>4H

3
01
X re
4 4

01

£
H
ll
IN

3 Z 4-7 4?

Vj

r
o
b
l
e
m

00

S H "

<*- *
o
.H—s ^ ^

Cl
as
s
(
C
l
a
s
s

-
m
i
n
 W
j
+
 1

4r 2

s? a. c ̂ ^
8x

rj

Fi
er
y

St
ro
ng
ly

(w
(

-

m
i
n
 W
j

+
 1

It
s
fo
r

t
h
e
 V
e

Pi

=

W
j
*
 [

ut
at
io
na
l

re
su

[
 1
,
9
9
9
9
9
]

;

9"
5 F
4=)

90

X
.C
re

H

en

£
-3
44
• r4
-H

O
bfi
u

• IH
4 4

en
"r4

01

a
<44

o
a.
u
3
«

B
rH

o
01
PH
0)

>
• IH
4 4

re
rHH

CN
r3

o
• 44
4 4

3
o
CD
*re

E
44

a
O

>
H

CU
cu
-H

0
01

"re

*«
44

o
H

as

o>
01
-H

u
73
01
73
3
Oi

44

X

w

73
01
01
r-

o
73
01
rH

o<
73
IH

o
1

• n
en

3
01

Q

N

£

B?

o
o
o
o
in
©

o
o
o
11 ©
©
©

o
CCJ o
o
o
o o
©
©

o
rH o <1
8cM
IT> co

2 oo
2 o
© ON

S RJ
THH CO

© CM
O ON

O vo
O 00
ro m
en ^ 8 «
2 ^
© X
IN rH 2 ^
© T-i

2 »
O Tt
rH ON
O CM

83
ir> co

2 oo
2 o
O ON

<=> RJ
THJH «
O CM
O OV
© NO

O °°
ro "1
CD jv, 8 «
2 ^
o x
CM rH 2 "*
© rH

o S
O t
rH ON
O CM

83
lO co

2 oo
2 o
O ON
O CM
T * «
O CM
O ON
© VO
O °0

8 «
© X
CM] rH
© TT

O JS
r n ON
© Tt

rH ON

+-1*
« -rj
m U

ri. re

« &

vo
NO

K
X

CO
Ov
CM
CO

rH
rH
ON
rH

Tt

Tt
CO

X

Tt

ri

8

VO

NO­
ON
tN
X

CO
ON
CM
CO

rH
rH
ON
rH

Tt

X

Tt

ri
O
CM

VO

VO

X

CO
ON
CM
CO

rH
rH
ON
rH

Tt

£
X

Tt

ri
O
CM

Tt

K
CO

Tt
ON

rH

Tt
VO
tN

VO

tN
CO

Tt

CM
O
rH

Tt
ON
tN
CO

Tt

ON

rH

3
CN

VO

tN
CO

Tt

CM
O
rH

99
99
50
0

(0
.9
6)

8;r

S3
S£ o
ON , ,
ON —
O . .

eK CM
X IN
ON o

ov ir,
ON o . .
CM CM
X rH
ON o

ON c,
ON *-'

CM

ON • '
ON

*
CM

O rH

o

CM
O rH

O

CM
O rH

O

o o

o o

VO
o CO

d

CM
O rH

o

O CM
o

Tt
O CM

o

o o

VO
© CO

d

CM
O rH

O

o o

Tt
O CM

d

O o

O

o
©

o
o
rH

CJ

o
o
Ov
Ov
ON
ON
rH

O
Tt

X
X
ON
ON
ON
rH
O
X

R
ON
ON
ON
rH
O

ON
ON
ON
rH
rH
Tt
X
Tt
ON
ON
ON
rH

O

o

o

o

o

o

o

o

o

o

o

o

o

o

a

X
©
rH

NO

d

Tt

d

X
Tt
CO
Tt

X

CO
rH

X
Tt

d

X
Tt

d

o

o

o

CM
rH

d

o

CM
rH

d

o

o

Tt
CM

d

CM
rH

d

CM
rH

d

CM
rH

d

o

o
o
o
©

o
CN

a
o
m
X
OV
ON
ON

XI
o
VO
CM
X
ON
ON
ON
CM

o

RJ
X
VO
Ov
ON
ON
CM

rH
vo
NO

Ov
ON
ON
CM

X
o
ri

R
d

R
d

vo
Ov
ON
CO

NO

S? co
ON , ,
CM --'

O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

VO
CO

d

NO
CO

d

o

CN
rH

d

O

o

o

o

o

CM
rH

d

o

o

CM
rH

d

o

o

o
o
©

o
©
en

a
a
o
X
ON
ON
ON
CO
o
X
VO
tN
Ov
Ov
Ov

co
o

8
m
ON
Ov
ON
CO
rH
X
X
CN
Ov
Ov
ON
CO Tt

X
VO

ov
X
ON
ON
CO

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

CN
CO
ri

X
Tt

d

CN

X
Tt
rH

CM
m
X
ON

X

o

i
TS

d

VO
CO

d

CM
rH

d

o

CM
rH

d

CN
rH

d

Tt
CM
d

o

CM
rH

d

CM
rH

d

o

Tt
CM

d

CM
rH

d

o

Tt
CM

d

o
©

o
o
©
1

o
o
CN
Ov
Ov
ON
Tt o
o

K
ON
Ov
ON
Tt
rH

g
3
ON
ON
Tt CM
O
rH
rH
ON
ON
ON
Tt NO

o

K
X
OV
ON
Tt

o

o

o

o

o

o

o

o

o

o

a

o

o

o

o

CM
ri

s
d

CM
d
rH
CO

X
X
CM
ON

CM

in
CO

X
Tt

d

vo
co
d

Tt
CM

d

CM
rH

d

o

o

o

CM
rH

d

CM
rH

d

o

CM
d

CM
rH

d

CM
rH

d

o

o

o
o
o
©

o
in

o
o

g
ON
ON
Ov

m
o
CN
m
VO
Ov
ON
ON

m rH

3
CO
ON
OV
ON

m
Tt
CM
CO
ON
X
ON
ON
in ON
CN
in
Tt
X
ON
ON
in

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Tt

X
d

X
Tt

d

CM
d
m
m

R
d

E
TI
Tt
CO

Tt

CM
d

VO
CO

d

o

o

o

CM
d

Tt
CN

d

o

o

o

CM
d

Tt
CM
d

CM
rH

d

CN
rH

d

o

o
o
o
o
o
NX)

o
m
VO
Ov
ON
ON
V O o
Tt
Ov

m
ON
ON
ON
VO rH
X
in
CM
ON
ON
OV
NO
in
Tt

R
X
ON
Ov
VO cM
m
ON
rH
X
OV
OV
N O

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

CM
ri

VO
ON

d

X
ON
CO
Tt

rH
O
CM

CM
CO
CO

VO
CO

d

vo
CO

d

o

o

o

o

o

Tt
CM

d

o

CM
rH

d

o

o

o

CM
rH

d

o

o
o
o
o
o
tN

O
O
VO
OV
ON

R O
VO
CO

m
ON
ON
ON
IN
3
in
rH
ON
ON
ON
tN NO

m
X
ON

R
R
CO
ON
IN
ON

R
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X
o
ri

vo
d

NO
rH

i
Tt

in

E
VO
rH
CM
CO

VO
CO

d

Tt
CN

d

Tt
CM

d

X
Tt

d

CM
rH

d

CM
rH

d

o

o

Tt
CM

d

o

VO
CO

d

o

CM
rH

d

o

CM
rH

d

o
o
o
o
o
00

o
o
in

m
ON
ON
ON
X
rH

R
Tt
ON
ON
ON
X
CO

vo
Tt

o
OV
ON
ON
X X
X
ON
CO
X
Ov
ON
X

ST
o
X

Ov
OV
X

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

- ^ • s —

Tt
CN
ON
CO
CO

X
ON
Ov
Tt

X
rH
Ov
CO

CM
tN

o
CM

VO
CO

ON
CO

VO
CO

d

CN
d

CM
rH

d

o

CM
rH

d

CM
d

o

CM
rH

d

CM
d

o

o

CM
d

CM
rH

d

CM
rH

d

CM
rH

d

o
o
o
o
o
ON

u •»"• 1
o CO
m _.:
ON RJ
ON £
ON C O
ON •—•
rH . ,

o ^
CM *t
3! m
£ *M
Ov , ,
ON — CO

o .—.
5T rH

sS
ON «
ON *-*
as

o •—•

ri oo

x 2
ON s
Ov CM
ON • • T*j ^
CM NO"
Tt •

K 22
OV Tt
ON ^
ON

O O

NO
O CO

d

CM
O rj

O

O O

O O

O O

O O

O O

O O

CN
O rH

O

NO
O CO

d

0 CN
0

0 0

Tt
O CM

O

O CM
0

0
0
0
0
0
0
rH

rH

01

re

E
en
01
.3
73
01
73
O
U
01
-H

re
3S
<4H

O
en
01

3
T-H

re
>
01

X
• H,

en
CU
u
3
re
44

en

3

E
QJ

r-H

X
0
rH

m
-H

O
N*4
-H

O

a
VJH

O
CU
bfi
re
-H

01
11
rH rH

++

en

£
cu
44
• rH
<+4

O
rH

<u
X

B
3
3
44

0

II

3

3

+-

lu
e
of
 R
,
 t
h
e
 c
lo
se
r
t
h
e
 h
eu
ri
st
ic

 i
s
to
 t
h
e
 o
p
t
i
m
a
l
 s
ol
ut
io
n
 v
a
l
u
e

P
U
 -
 s
e
c
o
n
d
s
,
 e
x
c
l
u
d
i
n
g
 s
or
ti
ng
,
 d
o
m
i
n
a
n
c
e
 t
es
t
a
n
d
 d
at
a
 i
n
p
u
t
 a
n
d
 o
u
t
p
u
t

=

o
p
t
i
m
a
l
 s
ol
ut
io
n
 v
a
l
u
e

=

t
i
m
e
 i
n
 s
e
c
o
n
d
s

)/
z(
op
t)
)*
10

6 ,

R
2

=

10

6 -
(z
(H

2)
/z
(o
pt
))
*1
06
,

R
3
 =
1
0
6 -
(
z
(
T
V
)
/
z
(
o
p
t
)
)
*
1
0
«

£ u
X H->
*3 0

44

II
44

4 4 *

N 44

N S 1
VS

O
*

II

^

~7n
u
cu
en

J2 4 ^
3 en

Si ** w
X <u cj
44 re K r,

2 3 |f
C -H C

•3 E va
£ 0 g
rJ '44 '44

"HH 3 3
O CU 01
r4 X X
oi re re
rv 44 44

C 01 01

1 E E
^-r rH CH
r C 44 44

7 4 N
C H 44 44

rM
en

3.5 Analysis of the Results

This section focuses on the analysis based on computational experience

and comparison of heuristics.

The figures 3.2 to 3.13 show the performance of the three heuristics for

Class IV and Class V problem instances for some small and large problem

sizes.

For the first three classes Class I, Class II and Class III all the heuristics are

either close to optimal or give the optimal solution value.

Capacity of the Knapsack

Figure 3.2 : Very Strongly Correlated Class (Class IV), n = 50 t

t The vertical scale has coded values. RI = 170 refers to the case where the
heuristic solution is only 0.000170% worse than the known optimal. The smaller
the value of RI, R2 and R3, the closer the heuristic is to the optimal solution

value.
Rl=106-(z{Hi)/z(opt))n06,R2=106-(z(H2)/z(opt))*106,R3=106-(z(TV)/z(opt))*106

53

en

o
+H
CO
•c
CU

I

cu
o
c
CTJ

cu

i
is

o
o o o o
*~

o
o o o o CM

o
o o o o CO

o
o o o o Tf

o
o o o o LD

o

o CD

Capacity of the Knapsack

Figure 3.3 : Very Strongly Correlated Class (Class IV),n = 100

en
u

3

1
CU

o
c

CU
Q.

1

Capacity of the Knapsack

Figure 3.4 : Very Strongly Correlated Class (Class IV), n = 500

54

(0

o

3

1
CD

o

v2
05

cu
DE

Capacity of the Knapsack

Figure 3.5 : Very Strongly Correlated Class (Class IV), n = 1000

Capacity of the Knapsack

Figure 3.6 : Very Strongly Correlated Class (Class IV),n = 5000

55

CO

o
'•8
I—

CU

u

300

250

200

150-

(2. 100'

$
CO

m 50'

\ \

\ -Wr-r

• x JL —KC
4> ^^—V— Tl 4, ^ ^ F».^_ ^vW __^^^^*

CM m m co

Capacity of the Knapsack

Figure 3.7 : Very Strongly Correlated Class (Class TV), n = 10000

o
R R
CM

O

R
8
(O

o
R R

o
R R
if.

O

R R
CO

o
8 8

o

8 8
CO

O

8
R

O

R
a
o

R
1— IN V* -** «J

Capacity of the Knapsack

Figure 3.8 : Very Strongly Correlated Class (Class IV), n = 20000

56

Capacity of the Knapsack

Figure 3.9 : Very Strongly Correlated Class (Class IV), n = 30000

cu
o
c

cu
D.

140

120

100-

Capacity of the Knapsack

Figure 3.10 : Very Strongly Correlated Class (Class IV), n = 40000

57

CO

o

1
l_

•s
cu
o

CU

1
cu

120-j

100-

80-

60-

40-

20-

Capacity of the Knapsack

Figure 3.11 : Very Strongly Correlated Class (Class IV), n = 50000

For the Class IV problem instances, the extended greedy heuristic

performs better than the other two heuristics for all problem sizes except

for n = 50 where the total-value greedy heuristic performs better than the

extended greedy heuristic for smaller capacities. Where total-value greedy

fails, the extended greedy heuristic is good and where the extended

greedy performs poorly, the total-value greedy heuristic performs better.

As the capacity C of the knapsack increases, all the three heuristics come

close to the optimal solution value.

The problems in Class V that are generated to give a large number of

undominated items give the optimal solution value by all the three

heuristics for large problem sizes, but for n = 100 and 500, the heuristics

have varying performance. More specifically, for n = 100, the density-

ordered greedy heuristic and the total-value greedy heuristic give near

optimal solution value or sometimes the optimal solution value. Where

these two heuristics fail, the extended greedy heuristic is better. For n =

500 and smaller knapsack capacities, density-ordered greedy and

extended greedy performs better and the total-value heuristic performs

poorly. As the capacity of the knapsack increases all the three heuristics

perform well giving the optimal solution value.

The values of n and the problem classes for which there were no

noticeable difference among the solution values given by the heuristics,

have not been shown in the figures.

CN co •<r 55 <D r— oo

Capacity of the Knapsack

Figure 3.12 : Very Very Strongly Correlated Class (Class V), n = 100

59

• • • • I

R1

R2

. I R3

CM CO

Capacity of the Knapsack

Figure 3.13 : Very Very Strongly Correlated Class (Class V), n = 500

60

CHAPTER 4

4. COMPLEMENTARY EFFECT OF HEURISTICS

As mentioned earlier, the total-value greedy heuristic has been shown to

have a better worst-case bound result in comparison to the standard

density-ordered greedy heuristic and can be used in a complementary

mode to the density-ordered greedy heuristic, performing well where the

density-ordered greedy heuristic performs poorly.

The joint performance of the density-ordered greedy and the total-value

greedy heuristic has been discussed by Kohli and Krishnamurthi (1995). It

has been shown that the combination gives a better performance result

than the individual heuristics in the combination.

The following sections investigate the complementary effect of the

density-ordered greedy, the extended greedy and the total-value greedy

heuristics and also a new complementary heuristic that incorporates the

structural properties of both the density-ordered greedy and the total-

value greedy heuristic.

4.1 Comparison of Heuristics

A n analysis was done to empirically investigate the complementary effect

of the three efficient heuristic algorithms: Hi, H2 and TV.

Table 4.1 presents the number of instances where each of the three

heuristics (Hi, H 2 and T V) gives the best solution and also the number of

instances where the combination of two heuristics, Hi and H2, Hi and TV,

61

H2 and TV and finally the combination of all the three is better than the

individual heuristic.

This is applied to 2500 UKPs across the 5 problem classes for which

reasonable lower bounds on the optimal solutions are known.

Table 4.1: Number of instances where the heuristics give optimal solution; 500 instances in
each case

Problem
Class

Class I

Class II

Class III

Class IV

Class V

Total No. of
Instances

Percentage
of problems

solved

optimally

H,

335

400

374

66

484

1659

66.36%

H2

335

413

494

273

474

1989

79.56%

TV

383

399

310

103

481

1676

67.04%

Hj + H 2

335

421

494

279

484

2013

80.52%

H, + TV

383

400

374

111

484

1752

70.08%

H2 + TV

383

421

494

289

484

2071

82.84%

+ TV

383

421

494

292

484

2074

82.96%

The complementary effect of Hi and H 2 stands out for Class II and Class IV

and the complementary effect of Hi and TV is seen in Class IV. For

instance, for Class II problem, 400 instances are solved optimally by Hi,

413 by H2, but a combination of Hi and H2 solves 421 problem instances.

H2 and TV complements each other in Class II, Class IV and Class V and the

complementary effect of the combination of all the three heuristics is

substantial in Class IV though it is noticeable for the other four problem

classes.

62

From the performance percentage figures of the three heuristics alone and

their combination for the five problem classes, w e see that the joint

performance of one with H2 outperforms the individual heuristics and the

combination of all the three heuristics gives a much better performance

result. This is mainly due to the involvement of H2 in the combination. In

some cases where H2 performs rather poorly, each of Hi and T V gives a

better performance, thus complementing each other. However, as H2

requires more computing time for large problem instances, particularly in

Class IV and Class V problem instances, the combination of Hi and T V can

be recommended to solve a U K P within a reasonable computing time. It

m a y be noted that Kohli and Krishnamurthi (1995) have theoretically

shown that the worst-case performance of the combination of Hi and T V is

better than the worst-case performance of each heuristics in the

combination. The empirical investigation undertaken in this study appears

to support this. However, it must be stated that the strength of the

complementary effect is not observed to be very high. Combining

heuristics gave better results, but not always improved the results to

optimality.

To further investigate the complementary effect of Hi and TV, an

algorithm that involves the characteristics of both these heuristics is

developed. This heuristic can be called the complementary total-value greedy

heuristic and is discussed in the following section.

4.2 Complementary Total-value Greedy Heuristic (CTVG)

This algorithm can be sketched as follows.

Step 1. Sort the items in the non-increasing order of the ratios.

Step 2. Find the total-value for every item in the sorted list.

63

Step 3. Choose the item with the largest total-value. Let this be the

;th item of the sorted list.

Step 4. If; = 1, select item;'.

If j * 1, find item k which has the second best total-value (it

m a y be that the total-value of item; = total-value of item k).

N o w , if k = 1, select item 1. If fc -* 1, then select item;'.

Step 5. Update the knapsack capacity and the list of remaining items

and repeat step 1 to step 4.

The FORTRAN implementation of this algorithm (CTVG) is given in

Appendix B.

This complementary heuristic improves upon the individual heuristics in

two respects.

The poor performance of the density-ordered greedy heuristic when the

densest item leaves a significant capacity of the knapsack unused is

somewhat compensated in each step by the total-value greedy heuristic

that chooses items that fill more of the capacity and contribute more to the

total solution value.

The total-value greedy heuristic's lack of ability to discriminate between

the items that have the same total-value contribution with different

densities is a demerit identified by Kohli and Krishnamurti (1995), the

proposed heuristic overcomes this to some extent.

64

Example 1 is an instance where the new complementary total-value

greedy heuristic is better than the other four greedy heuristics.

Example 1

C = 760

ws = 210, w 4 = 90, w 3 = 80, w 2 = 60, wi = 65

ps = 690, p4 = 260, p3 = 230, p2 = 170, pi = 175

p5 = 690/210 > p4 = 260/90 > p3 = 230/80 > p2 = 170/60 > pi = 175/65

Iteration 1:

Ratio

3.286

2.889

2.875

2.833

2.692

w(j)

210

90

80

60

65

Iteration 2:

C = 130

Ratio

3.286

2.889

2.875

2.833

2.692

w(j)

210

90

80

60

65

pffl

690

260

230

170

175

pffl

690

260

230

170

175

Total-value

2070 ->

2080

2070

2040

1925

Total-value

0

260

230

340

350 ->

selected (capacity left = 130)

selected (capacity left = 0)

CTVG -» x5 = 3, x4 = 0, x3 = 0, x2 = 0, xi = 2

z(CTVG) = 2420

TV -» x5 = 0, x4 = 8, x3 = 0, x2 = 0, xi = 0

z(TV) = 2080

65

Hi -> X5 = 3, X4 = 1, X3 = 0, X2 = 0, Xl = 0

z(Hi) = 2330

H2->x5 = 3, X4 = l, X3 = 0, X2 = 0, Xl = 0

z(H2) = 2330

Optimal -> x5 = 3, x4 = 0, x3 = 0, x2 = 0, xi = 2

z(opt) = 2420

Example 2 below is an instance where the complementary total-value

greedy heuristic performs as badly as the other heuristics.

Example 2

C = 120

w 7 = 51, w 6 = 50, w 5 = 48, w 4 = 50, w 3 = 35, w 2 = 32, wi = 20

p7 = 103, p6 = 99, p5 = 89, p4= 61, p3 = 70, p2= 63, pi = 25

The relative performance of the new complementary total-value greedy

heuristic, the density-ordered greedy heuristic and the total-value greedy

heuristic are discussed below. The weight-ordered greedy heuristic and

the value-ordered greedy heuristic are not considered in the discussion of

the performance of heuristics as both the heuristics perform poorly in

comparison to the density-ordered greedy heuristic and the total-value

greedy heuristic. The extended greedy heuristic is also ignored in the

study of the complementary effect of heuristics as this heuristic requires

more computational time for large problem instances.

The complementary total-value greedy heuristic is run on the existing

2500 data sets that were randomly generated as described in section 3.1,

Chapter 3. All runs have been executed on the same 200MHz pentium Pro

with option "-o" for the FORTRAN compiler.

66

Tables 4.2, 4.3, 4.4, 4.5 and 4.6 compare the complementary total-value

greedy heuristic, the density-ordered greedy heuristic and the total-value

greedy heuristic for UKP.

Table 4.2: Comparison of solutions for C T V G , H t and T V for Class I problems; 50 instances

in each row (5 data sets and 10 different capacities)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

CTVOHi*

C T V O T V

0

0

0

0

0

0

0

0

0

0

Hi<CTVG

=TV

0

0

0

0

0

0

0

0

7

0

CTVG<Hi

CTVG<TV

0

0

0

0

0

0

0

0

0

0

Hi>CTVG

=TV

0

0

10

0

0

0

0

0

0

0

Hi=CTVG

<TV

0

0

0

0

0

0

0

0

0

0

Hi=CTVG

=TV

50 (401)

50 (50)

40(34)

50 (35)

50 (20)

50 (37)

50 (28)

50 (35)

43 (43)

50(42)

Table 4.3: Comparison of solutions for C T V G , H, and T V for Class II problems; 50

instances in each row (5 data sets and 10 different capacities)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

C T V O H i

C T V O T V

0

0

0

0

0

0

0

0

0

0

Hi<CTVG

=TV

0

0

0

0

0

0

0

0

0

0

CTVG<Hi

CTVG<TV

0

0

0

0

0

0

0

0

0

0

Hi>CTVG

=TV

0

0

0

0

0

0

0

0

0

0

Hi=CTVG

<TV

0

0

0

0

0

0

0

0

0

0

Hi=CTVG

=TV

50 (47)

50 (50)

50 (36)

50(44)

50 (33)

50 (43)

50 (40)

50 (36)

50(47)

50 (50)

* C T V G > Hi means the solution by C T V G is better than the solution by Hi. Other

relations are similarly defined.

t The numbers in the bracket is the number of instances that gives the optimal solution

value.

67

Table 4.4: Comparison of solutions for C T V G , H, and T V for Class III problems; 50

instances in each row (5 data sets and 10 different capacities)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

C T V O H i

C T V O T V

0

0

0

0

0

0

0

0

0

0

Hi<CTVG

=TV

0

0

0

0

0

0

0

0

0

0

CTVG<Hi

CTVG<TV

0

0

0

0

0

0

0

0

0

0

Hi>CTVG

=TV

0

0

0

0

0

0

0

0

0

0

Hi=CTVG

<TV

0

0

0

0

0

0

0

0

0

0

Hi=CTVG

=TV

50(34)

50 (16)

50 (23)

50 (32)

50 (30)

50 (41)

50(27)

50 (32)

50 (36)

50 (32)

Table 4.5: Comparison of solutions for C T V G , H, and T V for Class IV problems; 50
instances in each row (5 data sets and 10 different capacities)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

C T V O H i

C T V O T V

5

0

0

6(1)

0

3

1

2

2

0

Hi<CTVG

=TV

21(1)

11

12

5(1)

10(2)

12(2)

6

13(2)

15(8)

13 (11)

CTVG<Hi

CTVG<TV

0

0

1

0

1

1

0

2

3

0

Hi>CTVG

=TV

4

2

3

23

24

16

19

26(4)

8(1)

15(2)

Hi=CTVG

<TV

0

0

9

0

3(1)

2(1)

2

4(2)

5(3)

1(1)

Hi=CTVG

=TV

20 (13)

37 (13)

25

16(1)

12

16 (10)

22(11)

3

17(4)

21 (20)

68

Table 4.6: Comparison of solutions for C T V G , H, and T V for Class V problems; 50

instances in each row (5 data sets and 10 different capacities)

Number of

items, n

50

100

500

1000

5000

10000

20000

30000

40000

50000

C T V O H i

C T V O T V

0

0

0

0

0

0

0

0

0

0

Hi<CTVG

=TV

0

1

2

0

0

0

0

0

0

0

CTVG<Hi

CTVG<TV

0

0

1

0

0

0

0

0

0

0

Hi>CTVG

=TV

0

0

1

1

0

0

0

0

0

0

Hi=CTVG

<TV

1(1)

0

0

0

0

0

0

0

0

0

Hi=CTVG

=TV

49 (35)

49 (40)

46 (40)

49 (49)

50 (50)

50 (50)

50 (50)

50 (50)

50 (50)

50 (50)

To summarise the computational results of Tables 4.2 to 4.6 on the five

problem classes, we look at the performance of the complementary total-

value greedy heuristic in comparison to the density-ordered greedy

heuristic and the total-value greedy heuristic.

For Class I (Table 4.2) there are 7 instances of the total 500 problem

instances where CTVG performs as good as TV and in these instances H,

performs poorly. In 10 problem instances Hj outperforms CTVG which is

as good as TV. The other 483 instances are cases where CTVG performs

equally good as H, and TV of which for 364 instances an optimal solution

value is obtained.

In Class II (Table 4.3) and Class III (Table 4.4), all the three heuristics

perform equally well of which 426 instances in Class II and 303 instances in

Class III gives the optimal solution value.

In Class IV (Table 4.5), CTVG outperforms H, and TV in 19 instances (of

which the optimal solution is reached by 1 problem instance) and

69

performs poorly in 8 problem instances. There are 118 problem instances

(optimal solution value is found by 27 instances) which are solved by

CTVG giving solutions equal to TV and better than H, and 140 instances (7

problem instances giving the optimal solution value) are solved by H,

whose solution value is better than that of CTVG and TV. There are also 26

instances where CTVG performs as well as H, but poorly in comparison to

TV. In 189 problem instances, CTVG performs as good as the other two

heuristics with 72 instances giving the optimal solution value. The

usefulness of CTVG is best illustrated in Class IV problems.

In Class V (Table 4.6) problems, CTVG outperforms H, in 3 instances and

H, outperforms CTVG in 2 instances. There is just 1 instance where CTVG

is poor in comparison to both H, and TV. 493 problem instances are solved

by all the three heuristics equally well of which 464 instances give the

optimal solution value.

Table 4.7 presents the number of instances where each of Hi, H2, TV and

CTVG give the best solution and also the number of instances where the

combination of three Hi, H2 and TV and the combination of all four Hi,

H2, TV and CTVG is better than the individual heuristic.

Table 4.7: Number of instances where the heuristics give optimal solution; 500 instances in
each case

Problem
Class

Class I

Class II

Class III

Class IV

Class V

Total No. of

Instances

Percentage

of problems

solved

optimally

Hi

335
400

374

66

484

1659

66.36%

H2

335
413

494

273

474

1989

79.56%

TV

383
399

310

103

481

1676

67.04%

CTVG

364
426

303

100

464

1657

66.28%

Hi + H 2 +
TV

383
421

494

292

484

2074

82.96%

Hi + H 2 +
TV +
CTVG

383
426

494

292

484

2079

83.16%

70

W e see that the performance percentage of the individual heuristic is

improved when the combination of all the four heuristics are considered.

To conclude we can see that no heuristic show any clear superiority in

performance but they complement each other. Thus, while none of the

heuristics takes a lot of computing time, they perform as well as the exact

solution algorithm in most problem classes and where they fail to perform

individually, the performance is bettered by considering the combination

of the heuristics. Therefore, any of the heuristics by itself or in

combination with another can be used to solve any large Unbounded

Knapsack Problem or at least provide a lower bound for it.

71

CHAPTER 5

5. SUMMARY AND CONCLUSION

5.1 Summary

A n investigation has been done on the performance of the five greedy

heuristics that have been suggested in the literature for the Unbounded

Knapsack Problem. Though Martello-Toth algorithm is good in finding

the optimal solution to an Unbounded Knapsack Problem, the heuristic

algorithms are much faster giving near optimal solution values. This is

largely because of the greedy structure of the algorithm. The phenomenon

of dominance plays a very important role; the problem size is reduced by

dominance criterion resulting in efficient solution. The performance of the

heuristics is studied by varying parameters such as the number of items,

knapsack capacity and the density ratios.

As expected for any combinatorial optimisation problem, the larger the

number of items, the more difficult an U K P is to solve. However, the

phenomenon of dominance necessitates redefining this statement as: the

larger the number of undominated items, the more difficult it is to solve. This

pattern was consistently seen in all the problem instances.

Regarding the capacity of the knapsack, it was observed that the larger the

capacity, the smaller the difference between the optimal solution and a

heuristic solution. This is an expected result as with larger capacities, the

difference between the z-values for one item or another is not appreciable.

The knapsack capacity indirectly takes into account the parameter k, the

m a x i m u m number of the largest item that can be assigned to a knapsack.

As Kohli and Krishnamurthi (1992) showed, with larger k, the difference

72

between the worst-case bounds of the density-ordered greedy and the

total-value greedy algorithms diminishes.

As regards the density ratios (p/w ratios), the ratios themselves do not

influence the solution quality directly. However, if the density ratios of the

items are all in a narrow range, it is more likely that there would be a large

number of undominated items and thus the solution would be relatively

difficult. This was the case in our study. The ratio range was particularly

relevant in Class IV type of problems, where it was observed that for

smaller ratio ranges, Hi and H2 performs well and come close to the

optimal solution value as the capacity increases and for larger ratio ranges,

TV gives the optimal solution value where as Hi and H2 performs poorly.

Computational analysis of the five heuristics shows that H2 outperforms

the other four greedy heuristics in most problem instances and where H2

fails, in some cases it is either Hi or TV performing better. Table 4.1 shows

that with the combination of Hi, H2 and TV, a better performance result

can be obtained. Since the computational time requirement of H2 is the

highest for large problem instances, particularly in the Class IV and Class V

problems, the combination of Hi and TV can be looked at. Kohli and

Krishnamurti (1995) have theoretically proved that the worst-case

performance of the combination of Hi and TV is better than the worst-case

performance of the single best heuristic in the combination. This is

supported by the empirical findings of this study.

The suggested combination of Hi and TV was further studied by

developing an algorithm that combines the characteristics of both the

individual heuristics. This complementary heuristic was called the

complementary total-value greedy heuristic (CTVG).

73

CTVG was executed on the same data sets and it was found that this

heuristic performs as well as the other two heuristics in most problem

instances and outperforms both Hi and TV only in a few instances. It

should also be mentioned that CTVG performs poorly for a few instances.

Thus, it can be said that though CTVG does not show any clear superiority

in the relative performance for the five problem classes, the combination

of CTVG with Hi, H2 and TV improves the performance result.

5.2 Conclusion

In this thesis, we have analysed the performance of the five greedy

heuristics that have been suggested in the literature for the unbounded

knapsack problem. It has been found that all the heuristics perform well in

comparison to the optimal solution algorithm. The running time for the

density-ordered greedy heuristic, the total-value greedy heuristic, the

weight-ordered greedy heuristic and the value-ordered greedy heuristic is

negligible in comparison to the exact solution which takes a few hundred

seconds for large problems in Class IV and takes a few hours for problem

instances of Class V, particularly when the problem size n is around 500.

The extended greedy heuristic takes a few seconds for large problems, but

often gives better solutions than other heuristics.

By generating problem instances that can give many undominated items,

the difficulty of solving the problems was increased. For these difficult

problem instances, the heuristic solutions were not far from the optimal

solutions.

It can be concluded that Hi, H2, TV and CTVG perform well in comparison

to the exact solution algorithm and they exhibit some complementary

effect. As has been suggested by White (1992), combining heuristics is a

good method for solving hard combinatorial problems. Also, using a

74

number of cheap heuristics to calculate bounds for a hard combinatorial

problem is a sound practice (Davies, 1974). The investigation in this study

confirms this for the Unbounded Knapsack Problem.

5.3 Further Scope for Research

1. Meta-heuristics, like genetic algorithm, simulated annealing or tabu

search are the most recent development in approximate search

methods for solving complex optimisation problems. These are

designed to attack hard combinatorial optimisation problems where

classical heuristics have failed to be effective and efficient. Meta-

heuristic search methods are used in many applications including the

0-1 Knapsack Problems but so far very little, if any, has been done for

the Unbounded Knapsack Problem. Although the suggested heuristics

for the Unbounded Knapsack Problem are fast and give close to

optimal solutions, meta-heuristics can definitely be looked at because

of its iterative generation process approach.

2. A combination of the density-ordered greedy heuristic and the total-

value greedy heuristic (complementary total-value greedy heuristic, CTVG)

was shown to improve the performance of the heuristic in comparison

to the individual heuristic in the combination. More algorithms of this

type can be developed and evaluated.

3. Characterisation of the problem instances for the complementary total-

value greedy heuristic and other heuristics of this kind with respect to

the difficulty of the solution is worth considering. Also the relation

between the heaviest item (largest w) that can fit into the knapsack, and

the difficulty of solving U K P can be investigated.

75

APPENDIX

Appendix A : FORTRAN Codes for Data Generation

The following are the FORTRAN codes for generating data for the

Uncorrelated (Class I), Weakly Correlated (Class IT), Strongly Correlated

(Class III), Very Strongly Correlated (Class IV) and Very Very Strongly

Correlated (Class V) Class of problems.

Uncorrelated (Class T)

c program uncorr.for
c program to create pairwise uncorrelated data randomly

c w(i) is uniformly random in [1,9999]

c p(i) is uniformly random in [1, 9999]

real p(50000), w(50000), ratio

character * 15 dfnamel
write (*, *) ' write the name of the datafile to be generated:'

read (*, 55) dfnamel

55 format (al5)
open (unit = 9, file = dfnamel)

write (*, *) ' write the number of datapairs: '

read (*, *) n

randm = rrand()
write (*, *) ' write the range of data: p-values (1, 9999)'

read (*, *) iminp, imaxp
write (*, *) ' write the range of data: w-values (1,9999)'

read (*, *) iminw, imaxw

do 51 i = 1, n

41 p(i) = int(rnd() * imaxp)
if (p(i) .It. iminp) goto 41

42 w(i) = int(rnd() * imaxw)

if (w(i) .It. iminw) goto 42

ratio = float (p(i) / w(i))

write (9,101) ratio, w(i), p(i)

51 continue
101 format (f7.3, il2, 2(2x,il0), 4x)

close (unit = 9, file = dfnamel)

stop

end

76

Weakly Correlated (Class TT)

c program wkcorr.for

c program to create weakly correlated data randomly
c w(i) is uniformly random in [10,9999]

c p(i) is uniformly random in [w(i) -100, w(i) + 100]
real p(50000), w(50000), ratio

character * 15 dfnamel

write (*, *) ' write the name of the datafile to be generated:
read (*, 55) dfnamel

55 format (al5)

open (unit = 9, file = dfnamel)

write (*, *) ' write no. of datapairs: '
read (*, *) n

randm = rrand()

write (*, *) ' write the range of data: w-values (10, 9999)'
read (*, *) iminw, imaxw

do 51 i = 1, n

41 w(i) = int(rnd() * imaxw)

if (w(i) .It. iminw) goto 41

iminp = w(i) - 100

imaxp = w(i) + 100

42 p(i) = int(rnd() * imaxp)

if (p(i) .It. iminp) goto 42

ratio = float (p(i) / w(i))

if (ratio .eq. 0) goto 41

write (9,101) ratio, w(i), p(i)

51 continue

101 format (£7.3, ill, 2(2x, ilO), 4x)

close (unit = 9, file = dfnamel)

stop

end

Strongly Correlated (Class III)

c program sgcorr.for
c program to create strongly correlated data randomly

c w(i) is uniformly random in [10,9999]

c p(i) = w(i) + 100
real p(50000), w(50000), ratio

character * 15 dfnamel
write (*, *) ' write the name of the datafile to be generated:

read (*, 55) dfnamel

55 format (al5)
open (unit = 9, file = dfnamel)

77

write (*, *) • write no. of datapairs: '
read (*, *) n

randm = rrand()

write (*, *) 'write range of data: w-values (10, 9999)'

read (*,*) iminw, imaxw
do 51 i = 1, n

41 w(i) = int(rnd() * imaxw)
iw = w(i)

if (w(i) .It. iminw .or. w(i) .gt. imaxw) goto 41
p(i) = iw + 100

ratio = float (p(i) / w(i))

write (9,101) ratio, w(i), p(i)

51 continue

101 format (£73, il2, 2(2x, ilO), 4x)

close (unit = 9, file = dfnamel)

stop

end

Very Strongly Correlated (Class IV)

c program vscorrb.for

c program to create very strongly correlated data randomly

c w(i) is uniformly random in [1, 9999]

c p(i) is uniformly random in [1, 9999]

c 2 <= p(i)/w(i) <= 2.5

real p(50000), w(50000), ratio

real min_rat, max_rat

character * 15 dfnamel

write (*, *) ' write the name of the datafile to be generated

read (*, 55) dfnamel

55 format (al5)
open (unit = 9, file = dfnamel)

write (*, *) ' write no. of datapairs: '

read (*, *) n

randm = rrand()

write (*, *) ' write range of data: p-values (1, 9999)'

read (*, *) iminp,imaxp

write (*, *) ' write the range of the ratios (e.g., 2.0,2.5) '

read (*, *) min_rat, max_rat

do 51 i = 1, n

42 p(i) = int(rnd() * 10000)
w(i) = int(rnd() * 10000)

if (p(i) .It. iminp .or. p(i) .gt. imaxp) goto 42

if (w(i) .It. 1) goto 42

ratio = float (p(i) / w(i))

78

if (ratio .le. max_rat .and. ratio .ge. minjrat) then

write (9,101) ratio, w(i), p(i)
else

go to 42
end if

51 continue

101 format (£7.3, il2, 2(2x,il0), 4x)

close (unit = 9, file = dfnamel)
stop

end

Very Very Strongly Correlated (Class V)

c program vvscorr.for

c program to create very very strongly correlated data randomly
c w(i) is uniformly random in [1, 99999]

c p(i) = w(i) * ((w(i) - wmin + 1) / (wmax - wmin + 1)) * 100

real p(50000), w(50000), ratio

character * 15 dfnamel

write (*, *) ' write the name of the datafile to be generated : '

read (*, 55) dfnamel

55 format (al5)

open (unit = 9, file = dfnamel)

write (*, *) 'write no. of datapairs: '

read (*, *) n

randm = rrand()

write (*, *) 'write range of data: w-values (1, 99999)'

read (*, *) iminw,imaxw

do 51 i = 1, n

42 w(i) = int(rnd() * imaxw)

if (w(i) .It. iminw .or. w(i) .gt. imaxw) goto 42

if (w(i) .It. 1) goto 42
p(i) = w(i) * ((w(i)-iminw+l) / (imaxw-iminw+1)) * 100

if (p(i) .It. 1) goto 42

ratio = float (p(i) / w(i))

write (9,101) ratio, w(i), p(i)

51 continue
101 format (£7.3, ill, 2(2x,il0), 4x)

close (unit = 9, file = dfnamel)

stop

end

79

Appendix B : FORTRAN Implementations of the Heuristic

Algorithms

The following are the FORTRAN implementations of the five heuristic

algorithms as described in Chapter 3, Section 3.4.

The Fortran code for dominance check is included.

Sorting of the items is done by bubble sort.

DGREEDY (Density Ordered Greedy Heuristic)

c icheck = a check for elimination of dominated items.

c if icheck = 1 or more, the input data will go through a stage
c of elimination of dominated items.

integer w(50000), p(50000)

integer low_c, high_c, incre

real ratio(50000)

character * 15 dfnamel

character * 15 dfname2

character * 30 string

print *, 'input the number of items, n: '

read *, n

if (n .gt. 50000) stop 01

write (*, *) 'write the name of the datafile :'

read (*, 2) dfnamel

open (unit = 2, file = dfnamel)

2 format (al5)

do 3 i = 1, n
read (2, '(f7.3, 2il2)') ratio(i), w(i), p(i)

3 continue

rewind unit = 2

close (unit = 2)
write (*, *) 'write the name of the output file :'

read (*, 4) dfname2

4 format (al5)
write (*, *) 'do you like to check for dominance? l(yes), 0(no):'

read (*, *) icheck

call fdate (string)
write (*, *) ' starting time : ', string

if (icheck .ge. 1) call domcheck (n, ratio, w, p)

call fdate (string)

80

write (*, *) ' finished time :', string

write (*, *) 'would you like to sort by density (decreasing) the

+datafile? l(yes), 0(no):'
read (*, *) n u m

call fdate (string)

write (*, *) ' starting time :', string

if (num .eq. 1) call dsort (n, ratio, w, p)

call fdate (string)

write (*, *) ' finished time :', string

print *, 'input the capacity range low-c, high-c of the knapsack:'

read *, low_c, high_c

print *, 'input the increment for the capacity: '

read *, incre

call fdate (string)

write (*, *) ' starting time :', string

do 11 ic = low_c, high_c, incre

11 call greedy (n, w, p, ic, ratio, dfname2)

close (unit = 3)

end

subroutine greedy (n, w, p, ic, ratio, dfname2)

integer w(50000), p(50000), ow(50000), op(50000), cjeft

integer x(50000)

real ratio(50000), oratio(50000)

character * 30 string

character * 15 dfname2

integer ctr

do 10 j = 1, n

ow(j) = w(j)

op(j) = p(j)
oratio(j) = ratio(j)

10 continue
open (unit = 3, file = dfname2)

c_left = ic

write (3,20) n, ic

ctr = 0

dol2j = l,n

ctr = ctr + 1
x(ctr) = int(c_left / ow(j))

cjeft = cjeft - x(ctr) * ow(j)

12 continue

t = 0
do 13 j = 1, n

t = t + (x(j) * op(j))
13 continue

81

write (*, *) t

call fdate (string)

write (*, *) ' finished time : ', string
write (3,30)

20 format (' density-ordered greedy heuristic;',
+' n (undominated) =' i6,'; ', 'c = 'i8)

30 format(' item number weight profit ratio')
do 14 j = 1, n

if (x(j) .It. 1) goto 14

write (3, '(2x, 4110, 2x, f7.3)') j, x(j), ow(j), op(j), oratio(j)
14 continue

write (3,40)

40 format(' z(hl) = ')

write (3, *) t

write (3,50)

50 format (53h)

return

end

W G R E E D Y (Weight Ordered Greedy Heuristic)

c icheck = a check for elimination of dominated items.

c if icheck = 1 or more, the input data will go through a stage

c of elimination of dominated items.

integer w(50000), p(50000)

integer low_c, high_c, incre

real ratio(50000)

character * 15 dfnamel

character * 15 dfname2

character * 30 string

print *, 'input the number of items, n:'

read *, n

if (n .gt. 50000) stop 01

write (*, *) 'write the name of the datafile :'

read (*, 2) dfnamel

open (unit = 2, file = dfnamel)

2 format (al5)

do 3 i = 1, n

read (2, '(f7.3, 2112)') ratio(i), w(i), p(i)

3 continue

rewind unit = 2

close (unit = 2)
write (*, *) 'write the name of the output file :'

read (*, 4) dfname2

82

4 format (al5)

write (*, *) 'do you like to check for dominance? l(yes), 0(no):'
read (*, *) icheck

call fdate (string)

write (*, *) ' starting time : ', string

if (icheck .ge. 1) call domcheck (n, ratio, w, p)

call fdate (string)

write (*, *) ' finished time :', string

write (*, *) 'would you like to weight-sort (acsending) the
+datafile? 1 (yes), 0(no):'
read (*, *) num

call fdate (string)

write (*, *) ' starting time : ', string

if (num .ge. 1) call wtsort (n, ratio, w, p)
call fdate (string)

write (*, *) ' finished time : ', string

print *, 'input the capacity range low-c, high-c of the knapsack:'
read *, low_c, high_c

print *, 'input the increment for the capacity:'

read *, incre

call fdate (string)

write (*, *) ' starting time : ', string

do 11 ic = low_c, high_c, incre

11 call wtgreedy (n, w, p, ic, ratio, dfname2)

close (unit = 3)

end

subroutine wtgreedy (n, w, p, ic, ratio, dfname2)

integer w(50000), p(50000), ow(50000), op(50000), cjeft

integer x(50000)

real ratio(50000), oratio(50000)

character * 30 string

character * 15 dfname2

integer ctr

do 10 j = 1, n

ow(j) = w(j)

OP0) = P(j)
oratio(j) = ratio(j)

10 continue

open (unit = 3, file = dfhame2)

c_left = ic

write (3, 20) n, ic

ctr = 0

do 12 j = 1, n
ctr = ctr + 1

83

x(ctr) = int(c_left / ow(j))
cjeft = cjeft - x(ctr) * ow(j)

12 continue
t = 0
do 13 j = 1, n
t = t + (x(j) * op(j))

13 continue
write (*, *) t
call fdate (string)
write (*, *) ' finished time :', string
write (3,30)

20 format (' weight-ordered greedy heuristic;',
+' n (undominated) =' i6,'; ', 'c = 'i8)

30 format(' item number weight profit ratio')
do 14 j = 1, n
if (x(j) .It. 1) goto 14
write (3, '(2x, 4il0,2x, f7.3)') j, x(j), ow(j), op(j), oratio(j)

14 continue
write (3,40)

40 format(' z(h3) = ')
write (3, *) t
write (3,50)

50 format (53h)
return
end

V G R E E D Y (Value Ordered Greedy Heuristic)

c icheck = a check for elimination of dominated items.
c if icheck = 1 or more, the input data will go through a stage
c of elimination of dominated items.

integer w(50000), p(50000)
integer low_c, high_c, incre
real ratio(50000)
character * 15 dfnamel
character * 15 dfname2
character * 30 string
print *, 'input the number of items, n: '
read *, n
if (n .gt. 50000) stop 01
write (*, *) 'write the name of the datafile :'
read (*, 2) dfnamel
open (unit = 2, file = dfnamel)

2 format (a!5)

84

do 3 i = 1, n

read (2, '(f7.3,2il2)') ratio(i), w(i), p(i)

3 continue

rewind unit = 2

close (unit = 2)

write (*, *) 'write the name of the output file :'
read (*, 4) dfname2

4 format (al5)

write (*, *) 'do you like to check for dominance? l(yes), 0(no):'
read (*, *) icheck

call fdate (string)

write (*, *) ' starting time : ', string

if (icheck .ge. 1) call domcheck (n, ratio, w, p)
call fdate (string)

write (*, *) ' finished time : ', string

write (*, *) 'would you like to sort the datafile by profit

+(descending)? l(yes), 0(no):'

read (*, *) n u m

call fdate (string)

write (*, *) ' starting time : ', string

if (num .ge. 1) call vlsort (n, ratio, w, p)

call fdate (string)

write (*, *) ' finished time :', string

print *, 'input the capacity range low-c, high-c of the knapsack:'

read *, low_c, high_c

print *, 'input the increment for the capacity: '

read *, incre

call fdate (string)

write (*, *) ' starting time : ', string

do 11 ic = low_c, high_c, incre

11 call vlgreedy (n, w, p, ic, ratio, dfname2)

close (unit = 3)

end

subroutine vlgreedy (n, w, p, ic, ratio, dfname2)

integer w(50000), p(50000), ow(50000), op(50000), cjeft

integer x(50000)

real ratio(50000), oratio(50000)

character * 30 string

character * 15 dfname2

integer ctr

dol0j = l,n

ow(j) = w(j)

op(j) = pO)
oratio(j) = ratio(j)

85

10 continue

open (unit = 3, file = dfname2)
cjeft = ic

write (3,20) n, ic

ctr = 0

do 12 j = 1, n

ctr = ctr + 1

x(ctr) = int(cJeft / ow(j))

cjeft = cjeft - x(ctr) * ow(j)

12 continue

t = 0
do 13 j = 1, n

t = t + (x(j) * op(j))
13 continue

write (*, *) t

call fdate (string)

write (*, *) ' finished time :', string

write (3,30)

20 format (' value-ordered greedy heuristic ;',

+' n (undominated) =' i6,'; ', 'c = 'i8)

30 format (' item number weight profit ratio')

do 14 j = 1, n

if (x(j) .It. 1) goto 14

write (3, '(2x, 4il0, 2x, f7.3)') j, x(j), ow(j), op(j), oratio(j)

14 continue

write (3,40)

40 format(' z(h4) = ')

write (3, *) t

write (3,50)

50 format (53h)

return

end

E X T G R E E D (Extended Greedy Heuristic)

c w = weight of an item.

c p = profit of an item.

c low_c = lowest capacity.

c high_c = highest capacity.

c incre = increment in the capacity.

c ratio = profit/weight of an item.

c dfnamel = name of the datafile.

c n = number of items.
c n u m = a check for sorting the undominated items.

c if n u m = 1 or more, the undominated items will be sorted in

86

c decreasing order of the ratios.

c ic = incremented capacity.

c ismall = smallest item weight.

c icheck = a check for elimination of dominated items.

c if icheck = 1 or more, the input data will go through a stage

c of elimination of dominated items.

integer w(50000), p(50000)

integer low_c, high_c, incre

real ratio(50000)

character * 15 dfnamel

character * 15 dfname2

character * 30 string

print *, 'input the number of items, n:'

read *, n

if (n .gt. 50000) stop 01

write (*, *) 'write the name of the datafile :'

read (*, 2) dfnamel

open (unit = 4, file = dfnamel)

2 format (al5)

do 3 i = 1, n

rewind unit =4

read (4, '(f7.3, 2112)') ratio(i), w(i), p(i)

3 continue

close (unit = 4)
write (*, *) 'write the name of the output file :'

read (*, 9) dfname2

9 format (al5)
write (*, *) 'do you like to check for dominance? l(yes), 0(no):'

read (*, *) icheck

call fdate (string)
write (*, *),' starting time : ', string
if (icheck .ge. 1) call domcheck (n, ratio, w, p, ismall)

call fdate (string)
write (*, *),' finished time : ', string
write (*, *) 'would you like to sort the datafile? l(yes), 0(no):'

read (*, *) num
if (num .ge. 1) call sort (n, ratio, w, p)
print *, 'input the capacity range low-c, high-c of the knapsack:'

read *, low_c, high_c
print *, 'input the increment for the capacity:'

read *, incre

call fdate (string)
write (*, *),' starting time :', string

do 11 ic = low_c, high_c, incre
11 call extgreed (n, w, p, ic, ismall, ratio, dfname2)

87

end

subroutine extgreed (n, w, p, ic, ismall, ratio, dfname2)

c n = number of items in the knapsack.
c w, ow = weight of an item.

c p, op = profit of an item.

c x = number of units of an item selected.
c cjeft = capacity left.

c ic = incremented capacity.

c ismall = smallest item weight.

integer w(50000), p(50000), ow(50000), op(50000), x(50000)
integer cjeft

real ratio(50000), oratio(50000)
character * 15 dfname2

character * 30 string

do 10 m = 1, n
ow(m) = w(m)
op(m) = p(m)
oratio(m) = ratio (m)

10 continue

m = n
if (mod (n, 2) .ne. 0) then

m = m + 1
ow(m) = 999
op(m) = 1

end if

open (unit = 7, file = dfname2)

cjeft = ic

write (7, 20) n, cjeft

profit = 0

store = 0

do 12 m m = 1, m - 1, 2
mml = m m + 1
maxl = int (cjeft / ow(mm))

max2 = int (cjeft / ow(mml))

lar_profit = 0

bestJteml = 0

bestJtem2 = 0

do 13 i = maxl, 0, -1

do 14 j = 0, max2
isum = (i * ow(mm) + j * ow(mml))

if (isum .gt. cjeft) goto 17

profit = (i * op(mm)) + (j * op(mml))

if (profit .gt. lar_profit) then

lar_profit = profit

88

bestJteml = i

bestJtem2 = j
end if

14 continue

goto 13

17 left = cjeft - ow(mm) * (i + 1)

lprofit = int((left - l)/((ow(mml) + 1) * op(mml)))
if (lprofit .It. op(mm)) goto 18

13 continue

18 x(mm) = bestjteml

x(mml) = bestjtem2

cjeft = cjeft - (x(mm) * ow(mm)) - (x(mml) * ow(mml))

store = store + x(mm) * op(mm) + x(mml) * op(mml)
if (cjeft .It. ismall) goto 15

12 continue

15 write (7,30)

20 format (' extended greedy heuristic ;',

+' n (undominated) =' i6,'; ', 'c = ' i8)

30 format (' item number weight profit ratio')
do 16 ii = 1, m

if (x(ii) .It. 1) goto 16

write (7, '(2x, 4il0,2x, f7.3)') ii, x(ii), ow(ii), op(ii),

+oratio(ii)

16 continue

write (*, *) store

call fdate (string)

write (*, *),' finished time :', string

write (7,40)

40 format(' z(h2) =')

write (7, *) store

write (7, 50)

50 format (53h)

do 90 jj = 1, m

ow(jj) = w(m)

°P(JJ) = P(m)
x(jj) = 0

90 continue

return

end

TOT V A L (Total Value Heuristic)

c this program solves the unbounded knapsack problem

c by the algorithm of white (see ejor, 62(1992), pp.85-95)

89

c n = number of items

c ic = initial capacity of knapsack

c p(j) = value of jth item

c w(j) = weight of jth item

c t = total value of the solution

c cjeft = remaining capacity of knapsack

c iaa(j) = number of item j in the knapsack

c icheck = a check for elimination of dominated items

c if icheck = 1 or more, the input data will go through a stage of
c elimination of dominated items

integer t, w(50000), p(50000), iaa(50000), ind(50000)

integer iflag(50000)

real ratio(50000)

integer low_c, high_c, incre

character * 15 dfname

character * 15 dfname2

character * 30 string

write (*, *) 'input the number of items, n:1

read *, n

print*, 'input the capacity range low-c, high-c of the knapsack:

read *, low_c, high__c

print *, 'input the increment for the knapsack capacity:'

read *, incre

write (*, *) 'write the name of the datafile: '

read (*, 10) dfname

10 format (al5)

if (n .gt. 50000) stop 01

open (unit = 7, file = dfname)

write (*, *) 'write the name of the output file :'

read (*, 2) dfname2

open (unit = 9, file = dfname2)

2 format (al5)

do 21 j = 1, n

rewind unit =7

read (7, '(f7.3,2112)') ratio(j), w(j), p(j)

21 continue

close (unit = 7)
write (*, *) 'do you like to check for dominance? l(yes), 0(no)'

read *, icheck
if (icheck .ge. 1) call domcheck (n, w, p)

call fdate (string)
write (*, *) ' starting time :', string

do 11 ic = low_c, high_c, incre

cjeft = ic
write (9,101) n, ic

90

101 format(' total value heuristic;',' n (undominated) ='i6,
+'; ', 'c = ' 18)

do 22 j = 1, n
22 iflag (j) = 1

do 23 j = 1, n
23 iaa(j) = 0

do24j = l,n
24 ind(j) = 0

t = 0
51 maxind = 0

ienter = 0
do 25 j = 1, n
if (iflag(j) .It. 0) goto 25
ind(j) = p(j) * int(cJeft / w(j))
if (maxind .It. ind(j)) then
maxind = ind(j)
ienter = j

end if
25 continue

if (ienter .le. 0) goto 52
iaa(ienter) = int(cJeft / w(ienter))
iflag(ienter) = -9
cjeft = cjeft - (iaa(ienter) * w(ienter))
t = t + (p(ienter) * iaa(ienter))
write (*, *) t

call fdate (string)
write (*, *) ' finished time : ', string

goto 51
52 write (9,102)
102 format (' item number weight profit ratio')

do 26 j = 1, n
if (iaa(j) .It. 1) goto 26
write (9, '(2x,4110,2x,f7.3)') j, iaa(j), w(j), p(j), ratio(j)

26 continue
write (9,103) t

103 format (' z(tv) = ', x, ilO)
write (9,104)

104 format (53h)
11 continue

goto 99
99 stop

end

91

CTVG (Complementary Total-Value Greedy Heuristic)

c n = number of items

c ic = initial capacity of knapsack

c p(j) = value of jth item

c w(j) = weight of jth item

c tvl, tv2 = total value of the solution

c cjeft = remaining capacity of knapsack

c iaa(j) = number of item j in the knapsack

c icheck = a check for elimination of dominated items

c if icheck = 1 or more, the input data will go through a stage of

c elimination of dominated items

c ismall = smallest item weight

integer w(10000), p(10000), iaa(lOOOO), num(lOOOO)

integer iflag(lOOOO)

real ratio(lOOOO)

integer low_c, high_c, incre

character * 15 dfnamel, dfname2

character * 11 result

write (*, *) 'input the number of items, n:1

read *, n
print*, 'input the capacity range low-c, high-c of the knapsack:

read *, low_c, high_c
print *, 'input the increment for the knapsack capacity:'

read *, incre
write (*, *) 'write the name of the datafile to be sorted: '

read (*, 10) dfnamel

10 format (al5)
if (n .gt. 10000) stop 01
open (unit = 4, file = dfnamel)

do 11 j = 1, n
11 read (4, '(f7.3,2112)', err=91) (ratio(j), w(j), p(j))

close (unit = 4, file = dfnamel)

call densort (n, ratio, w, p)
write (*, *) 'write the name of the sorted datafile: '

read (*, 12) dfname2

12 format (al5)
open (unit = 5, file = dfname2)

open (6, file = 'ctot_val.out')

do 21 j = 1, n
21 read (5, '(f7.3, 2il2)', err=91) (ratio®, w(j), p(j))

close (unit = 5, file = dfname2)
write (*, *) 'do you like to check for dominance? l(yes), 0(no)'

read *, icheck
if (icheck .ge. 1) call domcheck (n, w, p, ismall)

92

call time (result)

write (*, *) • starting time :', result

do 13 ic = low_c, high_c, incre
cjeft = ic

write (6,101) n, cjeft

write (6,102)

do22j = l,n

22 iflag(j) = l
do 23 j = 1, n

23 iaa(j) = 0

do 24 j = 1, n

24 num(j) = 0

ctotval = 0

51 large = 0

seclarge = 0

ienterl = 0

ienter2 = 0

t = 0
tvl = 0

tv2 = 0

do 25 j = 1, n

if (iflag(j) .It. 0) goto 25

n u m ® = p(j) * int(cJeft / w(j))

if ((num(j) .ge. large) .and. (n u m ® .ge. seclarge)) then

if (large .ge. seclarge) then

seclarge = large

large = n u m ®

ienter2 = ienterl

ienterl = j

else

large = n u m ®

ienterl = j

end if
else if ((num® .le. large) .and. (n u m ® .ge. seclarge)) then

seclarge = n u m ®

ienter2 = j

end if

25 continue
if ((ienterl .eq. 0) .and. (ienter2 .eq. 0)) goto 52

iaa(ienterl) = int(cJeft / w(ienterl))

iaa(ienter2) = int(cJeft / w(ienter2))

iflag(ienterl) = -9

iflag(ienter2) = -9

tvl = tvl + (p(ienterl) * iaa(ienterl))

tv2 = tv2 + (p(ienter2) * iaa(ienter2))

93

+

if (ienterl .eq. 1) then

t = tvl

write (*, *) t

cjeft = cjeft - (iaa(ienterl) * w(ienterl))

write (6, '(2x,4il0,2x,f7.3)') ienterl, iaa(ienterl),
w(ienterl), p(ienterl), ratio(ienterl)
else if (ienter2 .eq. 1) then

t = tv2

write (*, *) t

cjeft = cjeft - (iaa(ienter2) * w(ienter2))

write (6, '(2x,4il0,2x,f7.3)') ienter2, iaa(ienter2),
+ w(ienter2), p(ienter2), ratio(ienter2)

else

t = tvl

write (*, *) t

cjeft = cjeft - (iaa(ienterl) * w(ienterl))

write (6, '(2x,4il0,2x,f7.3)') ienterl, iaa(ienterl),
+ w(ienterl), p(ienterl), ratio (ienterl)

end if

ctotval = ctotval + t

call time (result)

write (*, *) ' finished time :', result

if (cjeft .It. ismall) goto 52

goto 51

52 write (6,103) ctotval

101 format (' complementary total value heuristic ;',

+' n (undominated) =' i5,';', 'c = ' i7)

102 format (' item number weight profit ratio')

103 format (' z(ctvg) =', x, ilO)

write (6,104)

104 format (53h)

13 continue

goto 99

91 write (*, *) ' please check your datafile and rerun'

99 stop

end

Dominance Check Subroutine

subroutine domcheck (n, w, p)

c this program eliminates the dominated items

integer w(50000), p(50000), dw(50000), dp(50000)

open (8, file = 'domi.out')

do 1 j = 1, n

dw® = w®

94

dp(j) = P®
1 continue

write (8, *)
c dominance tests

do 2 i = 1, n -1
if (dw(i) .le. 0) goto 2
do 3 j = i + 1, n
if (dw® .le. 0) goto 3
if (int(dw(i) / d w ®) * dp® .ge. dp(i)) then

dw(i) = -9
go to 2

end if
if (int(dw® / dw(i)) * dp(i) .ge. dp®) then

dw(j) = -9
go to 3

end if
3 continue
2 continue

k = 0
do 4 i = 1, n
if (dw(i) .le. 0) goto 4
k = k + 1
w(k) = dw(i)
p(k) = dp(i)

4 continue
write (8, *) ' data (after dominance test)1

write (8,106)
106 format (8x, 'no.1, 9x, 'w1, 9x, 'p')

do 5 i = 1, k
5 write (8,105) i, w(i), p(i)

write (8,107) n, k
n = k
return

104 format (' no. of items:1, i6,' number',
+' w p')

105 format (3(ill))
107 format(' out of', i6,' items', i6,' are undominated')

end

95

Appendix C : Analysis of Different Ratio Ranges in the

Generation of Class IV Problems

The performance of the density-ordered greedy heuristic (Hi), the

extended greedy heuristic (H2) and the total-value greedy heuristic (TV)

for the Class IV problems with varying ratio ranges is discussed in this

Appendix. The data sets for this class was randomly generated with Wj

uniformly random in [1, 9999] and p; uniformly random in [1, 9999] such

that the ratio pj / Wj lies in different ratio ranges. The ratio ranges

considered are [2.0, 2.5], [3.0, 3.3], [5.0, 5.2], [7.0, 7.1], [11.7, 12.0], [13.1,

13.3] and [16.0, 16.1]. A set of 665 (5 problem instances in the 7 different

ratio ranges and 19 knapsack capacities, C e [10000, 100000] with an

increment of 5000 units) test problems with a problem size of 10000 items

was randomly generated. The dominance behaviour as shown in Table CI

and the performance of Hi, H2 and TV with respect to the optimal solution

value are analysed.

Table CI: Average number of undominated items for different ratio ranges: Total number
of items considered is 10000

Ratio Range

[2.0,2.5]

[3.0,3.3]

[5.0, 5.2]

[7.0, 7.1]

[11.7,12.0]

[13.1,13.3]

[16.0,16.1]

Number of

Undominated

Items, N

200.4

365.4

484.8

556.2

272.8

398.8

312.4

96

W e see form Table CI that with smaller ratio and narrow range, a large

number of undominated items are found. As the ratio range is increased

and so is the width in the range, only a few undominated items can be

found.

For the ratio range of [2.0, 2.5], [3.0, 3.3], [5.0, 5.2] and [7.0, 7.1], Hi and H2

comes close to optimal as the capacity of the knapsack increases and T V

performs poorly. For the ratio range of [11.7, 12.0], [13.1, 13.3] and [16.0,

16.1], T V performs better than Hi and H2 and in fact T V gives the optimal

solution value for all the knapsack capacities. Thus, it can be concluded

that for smaller ratio range number and smaller difference in the range, Hi

and H2 performs better than T V with respect to the optimal solution value

and for bigger ratio range number and smaller ratio range difference, T V

outperforms Hi and H2 and gives the optimal solution value. Figures 1

and 2, for example, show the performance of the three heuritics.

o 1.000 | 1

Capacity of the Knapsack

Figured: Ratio range [5.0,5.2] t

t HI = 0.999685 refers to the case where the heuristic solution is only 0.000315
units away from the optimal. A value close to 1 means the heuristic is close to

optimal solution value.

97

1.0001

H1
3 I

H2
• I

TV

Capacity of the Knapsack

Figure C2: Ratio range [11.7,12.0]

98

Appendix D : Difficult Instances of Unbounded Knapsack

Problem

The exact algorithm of Martello-Toth (1990) is a very efficient algorithm.

But it has been found that for some instances, it is not very efficient. Some

such instances are discussed in this Appendix.

In our study, we have found the Martello-Toth algorithm very efficient for

the first four problem classes (Class I to IV). The role of dominance seems

to be very crucial.

The fifth class, the very very strongly correlated knapsack problem is

generated with a high degree of correlation between the item weights and

item profits.

Here, Wj is uniformly random in [1, 999]

pj = Wj * {(WJ - min Wj + 1) / (max Wj - min Wj + 1)} * 100

The idea behind generating problem instances with stronger correlation, is

to increase the expected difficulty of corresponding problems, because of

an increased number of undominated items.

The UKP is solved by Martello-Toth exact algorithm for different problem

sizes (n = 50,100, 200,300,400, 500,1000, 5000,10000, 20000, 30000, 40000,

50000) and 10 knapsack capacities C, in the range [100000, 1000000] with

an increment of 100000.

For low n (n < 300) and for high n (n > 1000), the time to solve optimally by

Martello-Toth algorithm was reasonable. The greatest difficulty in terms of

computational time arose for problem instances with problem size n = 500.

99

For one particular instance with capacity 400000 units, Martello-Toth exact

algorithm took 55 hours and 36 minutes whereas, the three heuristic

algorithms gave near optimal and sometimes optimal solutions in

negligible time. This time requirement was consistent across different

problem instances with n = 500, although in a few cases, the optimal

solution was obtained within hours, or even within a few seconds.

Running problems with n = 400 and n = 600 also showed similar time

requirements, but the peak appears to be at n = 500.

Table Dl: Computational results for n = 100,200,300, 400 and 500.

Knapsack

Capacity

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

t n = 100
N = 97
S = 0
D = 0.12

Hi

to
(14)

0

(3)

0

(24)

0

(0)

0

(2)

0

(11)

0

(5)

0

(0)

0.12

(5)

0

(0)

Hz

0

(14)

0

(3)

0.12

(17)

0.12

(46)

0.12

(164)

0.48

(91)

0.48

(0)

0.72

(90)

0.84

(87)

1.32

(0)

TV

0

(14)

0

(4)

0

(24)

0

(203)

0

(1)

0

(11)

0

(5)

0

(1)

0

(5)

0

(0)

MTU;

(sec)

0.24

0.24

0.12

0

0

0.12

0.24

0.24

0

0

n

N

S

D

Hi

0

(0)

0

(0)

0.2

(14)

0

(0)

0

(12)

0

(2)

0

(0)

0

(3)

0.2

(3)

0

(0)

=

H2

0

(0)

0.2

(0)

0

(14)

0

(0)

0

(12)

0

(2)

0

(0)

0

(3)

0

(3)

0

(0)

200

179

0

0.2

TV

0

(1100)

0

(0)

0

(14)

0

(0)

0

(12)

0

(2)

0

(0)

0

(3)

0

(3)

0

(0)

MTU:

(sec)

13.4

4

8.2

15.2

6.8

1

21.2

0

14.8

5.2

n

N

S

D

Hi

0.2

(0)

0

(0)

0

(5)

0

(1)

0

(2)

0.2

(1)

0.2

(0)

0

(4)

0

(2)

0

(0)

=

H2

0

(0)

0

(0)

0

(5)

0

(1)

0

(2)

0

(1)

0

(0)

0

(4)

0.2

(2)

0

(0)

300

261

0

0.24

TV

0

(1100)

0

(0)

0

(5)

0

(276)

0

(2)

0

(1)

0

(0)

0

(4)

0

(2)

0

(0)

MTU2

(sec)

61.4

6356.6

265.4

916.6

15.6

497.8

7346.4

238.6

168

35.8

n

N

S

D

Hi

0

(0)

0

(0)

0

(5)

0

(1)

0

(0)

0

(0)

0

(0)

0

(0)

0

(1)

0

(0)

=

H2

0

(0)

0

(0)

0

(5)

0

(1)

0

(0)

0

(0)

0

(0)

0

(0)

0

(1)

0

(0)

400

331
0

0.4

TV

0

(429)

0

(0)

0

(5)

0

(1)

0

(0)

0

(0)

0

(0)

0

(0)

0

(1)

0

(0)

MTU2

(sec)

326

11299.*

660.8

4214.8

3.4

12.6

13585.*

601.8

255.8

45.6

n

N

S

D

Hi

0.4

(1)

0

(0)

0

(5)

0.2

(0)

0

(0)

0.2

(0)

0.2

(0)

0

(1)

0

(0)

0

(0)

=

H2

0.2

(1)

0

(0)

0

(5)

0

(0)

0

(0)

0

(0)

0

(0)

0

(1)

0

(0)

0

(0)

500

399

0 *

0.4

TV

0

(430)

0

(0)

0

(5)

0

(202)

0

(0)

0

(0)

0

(0)

0

(1)

0

(0)

0

(0)

MTU2

(sec)

5244.8

21009.4

4945

200131.6

2.8

73.6

24520.6

4483.4

4150.2

355.6

= Total number of items
= Number of undominated items
= time taken for sorting in sees
= time taken for Dominance test in sees

t
(r)

= total CPU-seconds
= coded value of heuristic/optimal

Ex., r = 14 m e a n s the solution is 0.000014%
smaller than optimal

100

The average running times of the F O R T R A N 77 implementations of

algorithms DGREEDY, EXTGREED, TOT_VAL and MTU2 computed over 50

problem instances (expressed in seconds) are shown. Sorting times and

time taken for the dominance check are also shown separately for each

value of n. These times are not included in the running time for heuristic

algorithms but are included in the Martello-Toth exact algorithm, MTU2.

The reason for such huge running time is not clear for these difficult

problem instances and needs further investigation. However, a sample

data set is included for reference.

As shown in Table Dl, the heuristics Hi, H2 and TV are much faster than

MTU2 and also gives optimal solution value in most instances.

The following is a sample data set of Class V with 500 items.

Ratio W] M Ratio wj M Ratio wj M

17.918
20.120
11.512
26.226
43.143
45.445
43.744
40.841
76.777
45.145
42.442
13.714
18.018
51.952
69.570
6.206

58.759
20.521
27.928
97.898
93.994
79.680
24.324
11.612
89.590

179
201
115
262
431
454
437
408
767
451
424
137
180
519
695
62

587
205
279
978
939
796
243
116
895

3207
4044
1323
6871
18594
20632
19116
16663
58887
20360
17995
1878
3243
26963
48350
384

34491
4206
7791

95744
88260
63425
5910
1346
80182

74.975
31.331
37.237
62.763
4.805

78.078
40.641
39.039
21.221
73.774
63.063
47.447
33.834
75.976
13.714
70.170
26.326
13.914
69.870
92.693
80.280
29.630
91.792
12.713
61.662

749
313
372
627
48
780
406
390
212
737
630
474
338
759
137
701
263
139
698
926
802
296
917
127
616

56156
9806
13852
39352

230
60900
16500
15225
4498
54371
39729
22490
11435
57665
1878

49189
6923
1934

48769
85833
64384
8770
84173
1614
37983

44.645
92.492
6.707
60.060
52.753
88.088
8.408
42.543
22.122
93.393
71.572
86.386
91.091
65.265
91.592
31.832
64.665
95.896
98.298
27.728
98.098
73.974
77A77
7.608
68.068

446 19911
924 85463
67 449
600 36036
527 27800
880 77517
84 706
425 18080
221 4888
933 87136
715 51173
863 74551
910 82892
652 42552
915 83806
318 10122
646 41773
958 91868
982 96528
277 7680
980 96136
739 54666
774 59967
76 578
680 46286

101

Ratio

77.678

77.3,77

96.897

52.052

30.731

5.405

93.894

26.927

73.173

20.821

19.219

30.931

42.543

98.498

52.152

68.468

65.465

14.014

59.560

28.829

34.735

36.236

48.749

55.556
94.494

12.913
31.231

5.105

83.183

96.997

54.755

64.064

30.531
87.588

65.265

59.359
92.192

3.604

77.878

71.672

32.533

7.508

57.758
37.437

29.830
45.846

69.870

8.108

wj

776
773
968
520
307
54
938
269
731
208
192
309
425
984
521
684
654
140
595
288
347
362
487
555
944
129
312
51
831
969
547
640
305
875
652
593
921
36
778
716
325
75
577
374
298
458
698
81

PJ
60277

59812
93796

27067

9434

291
88072

7243

53489

4330

3690

9557

18080

96922

27171

46832

42814

1961

35437

8302

12052
13117

23740

30833

89202
1665

9744

260
69125

93990

29950

41001

9311

76639

42552
35200
84909

129
60588

51316

10573

563
33326

14001
8889

20997
48769

656

Ratio

89.089

73.373

8.809

85.285

95.996

50.150

13.614

48.348

60.661

2.102

64.264

84.685

12.212

94.695

73.574

22.723
52.052

17.618

19.219

3.003

62.863

65.766

9.810

3.804

32.733
11.111

16.416

15.415

85.586

40.641

71.772
10.110

13.614

72.172
73.373

23.624
35.235

85.385

67.568

34.835

33.834

64.665

65.465

4.304
13.413

21.121
68.268

70.270

wj

890
733
88
852
959
501
136
483
606
21
642
846
122
946
735
227
520
176
192
30
628
657
98
38
327
111
164
154
855
406
717
101
136
721
733
236
352
853
675
348
338
646
654
43
134
211
682
702

PJ
79289

53782

775
72663

92060

25125

1851

23352

36760
44

41257

71643

1489

89581

54076

5158
27067

3100
3690

90
39477

43208

961
144

10703

1233
2692

2373

73175

16500
51460

1021

1851
52036

53782

5575
12402

72833

45608

12122

11435

41773

42814

185
1797

4456
46558

49329

Ratio

49.449

0.400

85.385
59.459

90.691

79.680
34.134

84.184

39.740

22.723

20.220

12.713
90.691

59.860

50.450

83.884
91.892

76.677

49.249

76.276

20.320

79.980

29.229
80.180

76.376
77177

84.484

29.830
48.749

80.781

21.221

50.250

64.965
75.976

18.919

52.553
86.086

15.516

92.292

73.173

50.851

21.121

86.887

74.474

36.336

59.259
70.671

32.232

wj

494
4

853
594
906
796
341
841
397
227
202
127
906
598
504
838
918
766
492
762
203
799
292
801
763
771
844
298
487
807
212
502
649
759
189
525
860
155
922
731
508
211
868
744
363
592
706
322

PJ
24428

1
72833

35318

82165

63425
11639

70798

15776
5158

4084

1614

82165

35796

25427

70294
84356

58734

24230
58122

4125

63904

8534
64224

58275

59503
71304

8889
23740

65190

4498

25225
42162

57665

3575

27590
74034

2404

85093

53489

25832

4456

75417

55409

13190

35081
49893

10378

Ratio

53.754

3.604

77.077

72.773

22.623

0.901

81.481

50.050

89.590

53.353

40.240

90.490

36.837

39.840

48.949

34.234

40.140

44.845

30.230

25.225

28.729

19.520

74.274

79.880

91.091

53.253

94.895

12.212

34.334

13.514

47.748
24.424

84.885

50.951

16.817

23.423

58.258

1.001
20.821

24.124

70.370

39.339

31.632

49.950
65.065

14.615
4.004

9.610

537
36
770
727
226
9

814
500
895
533
402
904
368
398
489
342
401
448
302
252
287
195
742
798
910
532
948
122
343
135
477
244
848
509
168
234
582
10
208
241
703
393
316
499
650
146
40
96

28865

129
59349

52905

5112

8
66325

25025

80182

28437

16176

81803

13555

15856

23936

11708

16096

20090

9129

6356

8245

3806

55111

63744
82892

28330

89960
1489

11776

1824

22775

5959

71982

25934

2825

5481

33906
10

4330

5813

49470
15460

9995

24925
42292

2133
160
922

Ratio

33.033

77.878

75.976

3.303
83.784

45.245

57.357

88.188

94.695

0.701

70.671

13.514

25.125

71.271

72.973

67.568

49.650
49.449

58.959

25.325

31.031

88.388

83.784

24.024

72.873

8.208

68.969
22.222

44.545

57.558

2.703

60.561

34.034

3.504

29.029

26.527

59.159

78.078
53.754

65.966

16.817

60.761
54.054

6.106
44.144

7.808
25.225

2.803

M- M Ratio W] VI

330 10900

778 60588

759 57665

33 109
837 70127

452 20450

573 32865

881 77693

946 89581
7

706

135

251

4

49893

1824

6306

712 50745
729 53197

675 45608
496 24626

494 24428

589 34726
253 6407

310 9619

883 78046

837 70127

240 5765

728 53051

82 673
689 47519

222 4933

445 19822

575 33095

27 72

605 36639

340 11571

35

290

265

122

8418

7029

591 34963

780 60900

537 28865

659 43471

168 2825
607 36881

540 29189

61 372
441 19467

78
252

28

609

6356

78

33.734

1.201

28.028

79.680
79.980

23.524

65.365

18.018

45.646

45.245

48.248

67.968

77A77

9.309

6.306
47.447

53.453
65.666

27.928

5.205

15.015
40.641

12.312

45.345

75.075
76.677

7.668
64.264

23.223

74.975

6.306

60.861

29.229

39.239

38.539

61.762

68.569

27.528

95.596

66.667

41.542

5.906

71.071

94.695
41.942

93.994

84.685

29.930

337
12
280
796
799
235
653
180
456
452
482
679
774
93
63
474
534
656
279
52
150
406
123
453
750
766
676
642
232
749
63
608
292
392
385
617
685
275
955
666
415
59
710
946
419
939
846
299

11368

14
7847

63425
63904

5528

42683

3243
20814

20450

23255

46150

59967

865
397

22490
28544

43076
7791

270
2252

16500
1514

20541

56306
58734

45743
41257

5387

56156

397
37003

8534

15381
14837

38107

46969

7570

91293

44400

17239

348
50460

89581

17573

88260

71643

8949

103

Ratio

23.223

83.984

44.044

60.160

48.348

84.985

54.154

97.097

57.057

6.006

23.624

43.944

40.841

41.041

34.234

48.549

77.477

23.223

49.750

73.073

16.917

78.579

76.076

46.046

12.613

67.968

87.688

9.209

8.909

28.529

10.310

67.768

89.890

33.634

27.427

22.122

86.386

79.379

87.487

26.026

94.595

16.717

13.714

76.877

61.662

12.212

wj

232
839
440
601
483
849
541
970
570
60
236
439
408
410
342
485
774
232
497
730
169
785
760
460
126
679
876
92
89
285
103
677
898
336
274
221
863
793
874
260
945
167
137
768
616
122

pj

5387

70462

19379

36156

23352

72152

29297

94184

32522

360
5575

19291

16663

16826

11708

23546
59967

5387

24725

53343

2858

61684

57817

21181

1589

46150
76814

847
792
8130

1061

45878

80721

11300

7515

4888

74551

62947

76464

6766

89391

2791

1878
59041

37983
1489

Ratio

28.929

54.254

16.617

61.161

11.712

77.277

36.637

6.406

87.888

47.247

52.252

52.953
86.787

8.208
56.957
70.671

39.239
10.511

23.023

29.530

8.609

54.254

48.248
74.174

35.636
76.777

41.942

97.598

18.819

22.122

92.993

45.546

97.097

80.380

92.793
31.732

89.289

77377

80.480
4.304

95.195

2.603

93.794

90.090
20.721

90.791

Ratio

79.980

45.646

45.245

95.696

76.376
91.792

47.748
32.432

1.902

40.941

30.831
44.044

40.040

42.943
91.992

69.169
39.139

9.910

6.707

93.493

43.043

0.400

4.605
68.068

77.978
21.522

1.502

29.229

17.818

62.162

44.845

21.622

10.811

85.886

13.213
17.818

82.783

65.666

40.040
31.331

46.747

76.476

16.216
55.055

58.458

wj

799
456
452
956
763
917
477
324
19
409
308
440
400
429
919
691
391
99
67
934
430
4
46
680
779
215
15
292
178
621
448
216
108
858
132
178
827
656
400
313
467
764
162
550
584

P^

63904

20814

20450

91485

58275

84173

22775

10508

36
16744

9495

19379
16016
18422

84540
47795

15303
981
449

87322

18508

1
211

46286

60744
4627
22

8534

3171

38602

20090

4670
1167

73690
1744

3171

68461

43076

16016

9806

21830

58428
2627

30280

34139

WJ

289
542
166
611
117
772
366
64
878
472
522
529
867
82
569
706
392
105
230
295
86
542
482
741
356
767
419
975
188
221
929
455
970
803
927
317
892
773
804
43
951
26
937
900
207
907

PJ

8360

29405

2758
37369

1370

59658

13409

410
77165

22300

27275

28012

75244

673
32408
49893

15381
1103

5295
8711

740
29405

23255

54963

12686
58887

17573
95157

3537

4888

86390

20723

94184

64545

86018
10058

79646

59812

64706
185

90530

67
87884

81081
4289
82347

REFERENCES

Aarts, E.H.L. and J.H.M. Korst (1989), Simulated Annealing and Boltzmann

Machines. A Stochastic Approach to Combinatorial Optimisation and Neural

Computing, Wiley, Chichester.

Abramson, D.A., H. Dang and M. Krishnamoorthy (1996), A Comparison

of Two Methods for Solving 0-1 Integer Programs Using a General

Purpose Simulated Annealing Algorithm, Annals of Operations Research,

Vol.63,129

Aittoniemi, L. and K. Oehlandt (1985), A Note on the Martello-Toth

Algorithm for One-dimensional Knapsack Problems, European journal of

Operational Research, Vol.20,117.

Bahrami, A. and CH. Dagli (1994), Hybrid Intelligent Packing System

(HIPS) Through Integration of Artificial Neural Networks, Artificial-

intelligence, and Mathematical-prograrnming, Applied Intelligence, Vol.4,

321.

Balas, E. and E. Zemel (1980), An Algorithm for Large 0-1 Knapsack

Problems, Operations Research, Vol.28,1130-1154.

Barr, R.S., B.L. Golden, J.P. Kelly, M.G.C. Resende and W.R. Stewart, Jr

(1995), Designing and Reporting on Computational Experiments with

Heuristic Methods, Journal of Heuristics, Vol.1, 9-32.

Bulfin, R.L., R.G. Parker and CM. Shetty (1979), Computational Results

With a Branch and Bound Algorithm for the General Knapsack Problem,

Naval Research Logistics Quarterly, Vol.26,41-46.

105

Cabot, A.V. (1970), An Enumeration Algorithm for Knapsack Problems,

Operations Research, Vol.18,306-311.

Cagan, J. (1994), Shape Annealing Solution to the Constrained Geometric

Knapsack Problem, Computer Aided Design, Vol.26, 763.

Dammeyer, F. and S. Voss (1993), Dynamic Tabu List Management Using

the Reverse Elimination Method, Annals of Operations Research, Vol.41, 29-

46.

Dantzig, G.B. (1957), Discrete Variable Extremum Problems, Operations

Research, Vol.5,266-277.

Davis, E.W (1974), Networks: Resource Allocation, journal of Industrial

Engineering, Vol.6, 22-32.

De Jong, K. (1975), An Analysis of the Behaviour of a Class of Genetic

Adaptive Systems, Doctoral Dissertation, University of Michigan, Ann

Arbor.

Drexl, A. (1988), A Simulated Annealing Approach to the Multiconstraint

Zero-one Knapsack Problem, Computing, Vol.40,1.

Dudzinski, K. (1991), A Note on Dominance Relation in Unbounded

Knapsack Problems, Operations Research Letters, Vol.10,417-419.

Fairley, A. and D.F. Yates (1993), An Alternative Method of Choosing the

Crossover Point when Solving the Knapsack Problem with Genetic

Algorithms, Working Paper, Department of Computer Science, University of

Liverpool.

Falkenauer, E. and A. Delchambre (1992), A Genetic Algorithm for Bin

Packing and Line Balancing, Proceedings of the 1992 IEEE International

106

Conference on Robotics and Automation (IEEE Computer Society Press, Los

Alamitos, California), 1186.

Fisher, M.L. (1980), Worst Case Analysis of Heuristic Algorithms,

Management Science, Vol.26, No.l, 1-17.

Garey, M.R. and D.S. Johnson (1979), Computers and Intractability, Freeman,

N e w York.

Garfinkel, R.S. and G.L. Nemhauser (1972), Integer Programming, New

York, Wiley.

Gilmore, P.C and R.E. Gomory (1963), A Linear Programming Approach

to the Cutting Stock Problem II, Operations Research, Vol.11, 863-888.

Gilmore, P.C. and R.E. Gomory (1966), The Theory and Computation of

Knapsack Functions, Operations Research, Vol.14,1045-1074.

Glover, F. (1986), Future Paths for Integer Programming and Links to

Artificial Intelligence, Computers and Operations Research, Vol.1, 533-549.

Glover, F. (1994), Optimisation by Ghost Image Processes in Neural

Networks, Computers and Operations Research, Vol.21,801.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimisation, and

Machine Learning, Addison-Wesley, New York.

Hanafi, S., A. Freville and A. El-Abdellaoui (1996), Comparison of

Heuristics for the 0-1 Multidimensional Knapsack Problem, Metaheuristi.es.

Theory and Applications, ed. I.H. Osman and J.P. Kelly (Kluwer, Boston).

Hansen, P. and J. Ryan (1996), Testing Integer Knapsacks for Feasibility,

European journal of Operational Research, Vol.88,578-582.

107

http://Metaheuristi.es

Holland, J.H. (1992,1975), Adaptation in Natural and Artificial Systems, 1 ed.

MIT Press, Cambridge, (1 ed. 1975, The University of Michigan Press, Ann

Arbor).

Hopfield, J.J. and D.W. Tank (1985), Neural Computation of Decisions in

Optimisation Problems, Biological Cybernetics, Vol.52,141-152.

Horowitz, E. and S. Sahni (1978), Fundamentals of Computer Algorithms,

Computer Science Press, Rockville.

Hu, T.C and M.L. Lenard (1975), Optimality of a Heuristic Solution for a

Class of Knapsack Problems, Operations Research, Vol.24,193-196.

Ingargiola, G.P. and J.F. Korsh (1973), A Reduction Algorithm for 0-1

Single Knapsack Problems, Management Science, Vol.20, No.4, 460-463.

Ingargiola, G.P. and J.F. Korsh (1977), A General Algorithm for One-

Dimensional Knapsack Problems, Operations Research, Vol.25, 752-759.

Johnston, R.E. and L.R. Khan (1995), A Note on Dominance in Unbounded

Knapsack Problems, Asia-Pacific journal of Operational Research, Vol.12,

No.2,145-160.

Kirkpatrick, S., CD. Gelatt and P.M. Vecchi (1983), Optimisation by

Simulated Annealing, Science, Vol.220, 671-680.

Kohli, R. and R. Krishnamurti (1992), A Total-value Greedy Heuristic for

the Integer Knapsack Problem, Operations Research Letters, Vol.12, 65-71,

North-Holland.

Kohli, R. and R. Krishnamurti (1995), Joint Performance of Greedy

Heuristics for the Integer Knapsack Problem, Discrete Applied Mathematics,

Vol.56,37-48, Elsevier Science.

108

Kurokawa, T. and S. Kozuka (1994), Use of Neural Networks for the

Optimum Frequency Assignment Problem, Electronics and Communications

in Japan Part I - Communications, Vol.77,106.

Laguna, M. and F. Glover (1993), Bandwidth Packing. A Tabu Search

Approach, Management Science, Vol.39,492.

Lai, T.C (1993), Worst-case Analysis of Greedy Algorithms for the

Unbounded Knapsack, Subset-sum and Partition Problems, Operations

Research Letters, Vol.14, 215-220, North-Holland.

Lorie, J. and L. Savage (1955), Three Problems in Capital Rationing, Journal

of Business, Vol.28,229-239.

Magazine, M.J., G.L. Nemhauser and L.E. Trotter, Jr. (1975), When the

Greedy Solution Solves a Class of Knapsack Problems, Operations Research,

Vol.23, No.2, 207-217.

Martello, S. and P. Toth (1988), A New Algorithm for the 0-1 Knapsack

Problem, Management Science, Vol.34, No.5, 633-644.

Martello, S. and P. Toth (1990), Knapsack Problems - Algorithms And

Computer Implementations, Chichester; N e w York, Wiley.

Metropolis, W., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller

(1953), Equations of the State Calculations by Fast Computing Machines,

Journal of Chemical Physics, Vol.21,1087-1092.

Nauss, R.M. (1976), An Efficient Algorithm for the 0-1 Knapsack Problem,

Management Science, Vol.23, No.l, 27-31.

Nemhauser, G.L. and Z. Ullmann (1969), Discrete Dynamic Programming

and Capital Allocation, Management Science, Vol.15, No.9,494-505.

109

Ohlsson, M., C Peterson and B. Soderberg (1993), Neural Networks for

Optimisation Problems with Inequality Constraints. The Knapsack

Problem, Neural Computation, Vol.5,331.

Osman, I.H. and J.P. Kelly (1996), Meta-Heuristics: Theory and Applications,

Kluwer Academic Publishers, Massachusetts.

Osman, I.H. and G. Laporte (1996), Metaheuristics: A Bibliography, Annals

of Operations Research, Vol.63,513-623.

Reeves, CR. (1993), Modern Heuristic Techniques for Combinatorial Problems,

Halsted Press, N e w York.

Reeves, CR. (1996), Hybrid Genetic Algorithms for Bin-packing and

Related Problems, Annals of Operations Research, Vol.63,371.

Salkin, H.M. and C.A. de Kluyver (1975), The Knapsack Problem: A

Survey, Naval Research Logistics Quarterly, Vol.22,127-144.

Salkin, H.M. and K. Mathur (1989), Foundations Of Integer Programming,

N e w York, North-Holland.

Sahni, S. (1975), Approximate Algorithms for the 0-1 Knapsack Problems,

Journal of the Association for Computing Machinery, Vol.22, No.l, 115-124.

Taha, H.A. (1975), Integer Programming Theory, Applications and

Computations, N e w York, Academic Press.

Thiel, J. and S. Vop (1994), Some Experiences on Solving Multiconstraint

Zero-one Knapsack Problems with Genetic Algorithms, INFORS, Vol.32,

226.

White, D.J. (1991), An Extension of a Greedy Heuristic for the Knapsack

Problem, European Journal of Operational Research, Vol.51, 387-399, North-

Holland.

110

White, D.J. (1992), A Complementary Greedy Heuristic for the Knapsack

Problem, European Journal of Operational Research, Vol.62, 85-95, North-

Holland.

Zhu, N. and K. Broughan (1996), A Note on Reducing the Number of

Variables in Integer Programming Problems, Computational Optimisation

and Applications, Vol.8, No.3,263-272.

ill

BIBLIOGRAPHY

Ahrens, H.J. and G. Finke (1975), Merging and Sorting Applied to the

Zero-One Knapsack Problem, Operations Research, Vol.23, No. 6,1099-1109.

Babayev, D.A. and S.S. Mardanov (1994), Reducing the Number of

Variables in Integer and Linear Programming Problems, Computational

Optimisation and Applications, Vol.3,99-109.

Chiu, S.Y., L. Lu and L.A. Cox, Jr. (1996), Optimal Access Control for

Broadband Services: Stochastic Knapsack with Advance Information,

European Journal of Operational Research, Vol.89,127-134.

Horowitz, E. and S. Sahni (1974), Computing Partitions with Applications

to the Knapsack Problem, Journal of the Association for Computing

Machinery, Vol.21, No.2, 277-292.

Ibarra, O.H. and CE. Kim (1975), Fast Approximation Algorithms for the

Knapsack and Sum of Subset Problems, Journal of the Association for

Computing Machinery, Vol.22, No.4,463-468.

Kannan, R. And B. Korte (1984), Approximative Combinatorial

Algorithms, Mathematical Programming, Elsevier Science Publishers B. V.

(North-Holland).

Krass, D. and S.P. Sethi (1994), Some Complexity Issues in a Class of

Knapsack Problems: What Makes a Knapsack Problem "Hard"?, INFOR,

Vol.32, No.3,149-161.

Li, D., H. Lin and K. Torng (1996), A Strategy for Evolution of Algorithms

to Increase the Computational Effectiveness of NP-hard Scheduling

Problems, European Journal of Operational Research, Vol.88,404-412.

112

Martello, S. and P. Toth (1977), Branch and Bound Algorithms for the

Solution of the General Unidimensional Knapsack Problem, In M. Roubens

(ed.), Advances in Operations Research, North-Holland, Amsterdam, 295-301.

Martello, S. and P. Toth (1984), A Mixture of Dynamic Programming and

Branch-and-Bound for the Subset-Sum Problem, Management Science,

Vol.30, No.6, 765-771.

Pisinger, D. (1995), Avoiding Anomalies in the MT2 Algorithm by

Martello and Toth, European Journal of Operational Research, Vol.82, 206-

208.

Pisinger, D. (1995), An Expanding-core Algorithm for the Exact 0-1

Knapsack Problem, European Journal of Operational Research, Vol.87, 175-

187.

Zoltners, A.A. (1978), A Direct Descent Binary Knapsack Algorithm,

Journal of the Association for Computing Machinery, Vol.25, No.2, 304-311.

113

