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Abstract 

Properties of Some Minimum Run Resolution IV Designs 

by Gregory Lawrence Simmons 

The regular resolution TV fractional factorial designs described in the litera

ture, have many desirable properties; main effect estimates are uncorrelated 

and are unbiased by two-factor interactions, whilst estimates of the two-factor 

interaction effects are limited to the identification of a significant orthogonal 

aliased string. An augmenting experiment is required to identify which inter

actions in the string are significant and which are inert. 

In addition to the regular class of fractional designs there exist a series 

of minimum run non-regular resolution TV designs. These non-regular designs 

can be further divided into orthogonal and non-orthogonal designs. To examine 

n factors these designs require 2n runs and are generated from minimum run 

resolution III designs via the Box and Wilson foldover thereom. These designs 

usually result in a saving of runs when compared with the corresponding reg

ular fractional designs. Orthogonal designs provide uncorrelated main effect 

estimates. However, the two-factor interaction effects are usually confounded 

in an complex manner. Non-orthogonal designs provide correlated main effect 

estimates and also exhibit complex confounding in the two-factor interaction 

subspace. 

This thesis examines a number of minimum run resolution IV non-regular 



designs and determines whether it is possible to search for and estimate a 

small number of two-factor interactions without the need of augmenting trials. 

The orthogonal designs considered are the foldover designs generated from the 

12,20 and 24 factor Plackett and Burman designs, whilst the non-orthogonal 

designs considered are the foldover designs generated from the Yang 6 and 14 

factor designs and the Raghavarao 13 factor design. Unlike the regular fac

torial designs, some of these non-regular designs provide estimates of a small 

number of two-factor interactions without the addition of augmenting trials. 

In particular the 20 and 24 factor Plackett and Burman foldover designs are 

shown to be resolution V in every set of 5 factors and to allow the search and 

estimation of up to two two-factor interactions. The foldovers of the Yang and 

Raghavarao designs allow the search and estimation of up to one two-factor 

interaction. 

As the number of interactions considered gets larger, the search and es

timation cannot be done for some values of the interaction effects. In these 

cases a number of models are equally likely. In situations such as this aug

menting trials are discussed, and a technique is devised to deal with the de

sign of augmenting trials. This thesis is also concerned with the analysis of 

these non-regular designs and two methods are presented to analyse search 

designs which are illustrated through the examination of some simulated ex

periments. 
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Chapter 1 

INTRODUCTION 

1.1 Factorial Design 

Consider an arbitrary process with a measurable response and a number of 

potentially influential variables as inputs. Traditionally scientists would vary 

one variable whilst holding all others constant in an attempt to identify which 

of the variables affected the response and which did not. 

Experimental design began as a statistical discipline in the 1920's with the 

work of R.A.Fisher. Fisher [20] introduced the idea of factorial design, where 

he showed it was more efficient to consider many factors simultaneously rather 

than one factor at a time. 

One advantage of factorial design is that when the effect of one factor is 

dependent on the levels of one or more of the other factors it becomes possible 

to detect and estimate the magnitude of these interactions. A disadvantage 

of factorial designs is that as the number of variables to consider increases, 

the number of required observations becomes very large. In general a design 

involving n factors requires 2" observations, when each factor is considered at 

two levels only. 
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1.2 Fractional Factorial Design 

Finney [19], developed fractional factorial designs, which used the factorial de

sign principle but required a fraction of the required observations. The direct 

consequence of this reduction in experimental observations is that certain ef

fect estimates become indistinguishable from one another (the effect estimates 

are said to be confounded or aliased). The higher the fractionation of the design 

the more complex this confounding becomes. Box and Wilson [8] introduced the 

term resolution to classify these fractionated designs. The most commonly used 

fractional designs are of resolution III, TV and V. 

A common assumption when applying these fractionated designs, is that all 

third order interactions and higher are inert. In cases when this assumption 

is feasible the problem becomes that of identifying significant main effects and 

two-factor interactions. 

Resolution III designs require the least amount of experimental observa

tions. However, one of the consequences of using such designs is that estimates 

of main effects are confounded with two-factor interaction estimates. For this 

reason they are normally called main effect plans. Whilst resolution III designs 

are the most economical to perform, if two-factor interactions are present the 

conclusions drawn will be inconclusive at best. For this reason resolution III 

designs are often used only to screen out the factors that are significant from 

the ones that are inert, before proceeding with further experimentation to re

solve any ambiguities. 

Resolution TV designs, although requiring more observations than resolu

tion III designs, provide estimates of main effects confounded with three-factor 

interactions, whilst the two-factor interactions are normally aliased with a lin

ear combination of one or more other two-factor interactions (called a string 

of two-factor interactions). Resolution TV designs provide estimation of the 
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main effects unbiased by two-factor interaction estimates, however conclusions 

drawn about the significance of individual two-factor interactions will be lim

ited only to the identification of which string of confounded interactions are 

significant. 

Resolution V designs require considerably more experimental observations 

than resolution IV designs, but provide estimates of the main effects con

founded with four-factor interactions, and two-factor interactions confounded 

with three-factor interactions. These designs are used when significant two-

factor interaction effects are strongly suspected and individual estimates of 

each two-factor interaction are required. 

1.3 Augmen ting Fractional Designs 

In many cases the cost of generating experimental observations is considerable. 

It is therefore desirable to run designs of low resolution initially, and to resolve 

any ambiguities via the addition of augmenting trials. For this reason there 

has been much interest in the design of augmenting trials. 

An important augmenting technique was introduced by Box and Wilson [8] 

called the foldover. They defined the foldover of any run from a two-level design 

as that run with all factor levels reversed. The foldover of a design is defined 

similarly as the addition of all the foldover runs to the original design. For 

example if X is a 3 factor design defined as 

t + + +^ 

X = + - -
- + -

- - + 
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then the foldover of X would be defined as 

+ - -

- + -

x>- ::! 

- + + 

+ - + 

U + -J 
Box and Wilson showed that by folding over any design of resolution III in 

(n — 1) factors, a design of resolution IV in n factors is obtained. 

Daniel [11] [12] developed a method to de-alias significant strings of two-

factor interactions in resolution IV designs, via the addition of a small aug

menting set. In general Daniel's method is concerned with the estimation of P 

and Q when P + Q are an aliased string in a regular orthogonal resolution IV 

design. Daniel shows that the addition of trials to estimate P—Q will "de-alias" 

P and Q thus allowing their independent estimation. 

For example if a 24-1 design was performed with design generator J = 

ABCD, and the two-factor interaction string AB + CD proved to be signifi

cant, then it would be desirable to isolate the 2 aliased two-factor interactions. 

This can be achieved if a design can be found yielding an estimate of AB — CD. 

Meyer, Steinberg and Box [27] presented a method for designing augment

ing trials within the Bayesian framework. Their method is to choose runs that 

allow maximum discrimination among the models considered most likely from 

the initial Bayesian analysis. 
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1.4 Non-Regular Fractional Designs 

The regular 2n~p fractional designs described in the literature are derived from 

choosing a full factorial design in the first (n — p) factors, then deliberately 

aliasing the further p main effects with interaction columns selected via the 

use of appropriate design generators. In addition to these regular fractional 

designs there exist a series of non-regular designs which are not derived in 

this manner. Most of these non-regular designs are saturated or resolution III 

designs. However, by utilizing the Box and Wilson foldover theorem, a series 

of non-regular minimum run resolution IV designs can be generated. 

1.4.1 Plackett and Burman Designs 

If X = (xij) is an n x n matrix with X{j = xim where 

m 
j — i + 1 if j > i 

n — (j — i + 1) otherwise 

then X is called a circulant matrix. 

For example, if X is a circulant matrix with first row defined as: 

Xlm = { : ++} 

then X will be defined as: 

/ 

X = 

— 

+ 

+ 

— 

— 

— 

+ 

+ 

+ 

— 

— 

+ 

+ \ 

+ 

— 

- J \ 

Plackett and Burman [30] presented a series of circulant matrices which 

formed a class of two-level, orthogonal, non-regular resolution III designs ex

amining N - 1 factors in N runs, where N is a multiple of 4 and N < 100. 
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Any of the resolution III Plackett and Burman designs can be used to obtain 

a minimum run resolution TV design via Box and Wilson's foldover theorem. 

For example the Plackett and Burman 11 factor resolution III design in 12-

runs becomes a 12-factor resolution IV design in 24 runs when folded over. 

Part of this thesis will be concerned with the foldover designs generated from 

the Plackett and Burman 12, 20 and 24 run designs which are defined as the 

union of one run with all factors at their low level and the circulant designs 

with first runs defined as 

PB12[1,} = (+ + - + + + + _) 

PB20[1, ]=(+ + + + + + - + - + ^ + ~) 

PB24[1, ]=(+ + + + + - + - + + + + + - + ) 

respectively, these designs provide 100% efficient main effect estimates but 

the aliasing pattern of the two-factor interaction estimates is quite complex, 

see Draper and Stoneman [18]. The full Plackett and Burman 12-run design is 

given in table 1.1. 

Orthogonal Arrays 

The Plackett and Burman designs are also examples of orthogonal arrays. Rao 

[32] first introduced orthogonal arrays. For convenience this thesis will use 

notation due to Owen [29]. A n orthogonal array of strength t is a matrix of N 

rows and k columns with elements taken from a set of s symbols such that in 

any N xt matrix there are s* distinct rows each occur A times, where A is called 

the index of the orthogonal array. Therefore any OA(N,k,s,t) yields A copies of 

a complete factorial for any choice oft factors. 

For example the Plackett and Burman 12-run design is an OA(12,ll,2,2) as 

the rows (—), (—h), (-1—) and (+-1-) appear three times in every 12 x 2 sub-

matrix. The design does not have strength 3 as the 23 = 8 rows required cannot 
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A B C D E F G H J K L 

+ 
— 

+ 

— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 
+ 

— 

+ 

— 

— 

— 

+ 

+ 

+ 

— 

— 

+ 

+ 

— 

+ 

— 

— 

— 

+ 

+ 

+ 

+ 
— 

+ 

+ 

— 

+ 

— 

— 

— 

+ 

+ 

+ 
+ 

— 

+ 

+ 

— 

+ 

— 

— 

— 

+ 

+ 
+ 

+ 

— 

+ 

+ 

— 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

— 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

— 

+ 
— 

— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

— 

+ 

+ 
— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 
— 

— 

+ 

— 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

Table 1.1: The Plackett and Burman 12-run, Resolution III Design 

be observed an equal number of times in a total of 12-runs. 

1.4.2 Non-Orthogonal Designs 

In addition to the orthogonal non-regular fractional designs a number of non-

orthogonal designs exist. Non-orthogonal designs partially correlate main ef

fect estimates, it is therefore useful to discuss the efficiency of the main effect 

estimates of the design . Margolin [25] defined the main effect trace efficiency 

of a design X as 

K/N trace (X'X)~l 

where K is the number of factors considered and N is the number of runs. 

Many of these non-orthogonal designs provide a substantial saving in runs 

compared to corresponding regular designs. For example the 5 factor resolu-



8 

tion III regular factorial design requires 8 runs whilst the corresponding Yang 

design to examine 5 factors in the presence of bias requires only 6 runs. 

Weighing Designs 

A number of the non-orthogonal, non-regular designs are examples of chemical 

balance weighing designs (Hotelling, [22]). These designs were developed to 

determine the weights of k objects in k weighings using a two-pan balance, 

with each row in the design matrix corresponding to an individual weighing 

and each column corresponding to one of the objects. Each row assigns either 

a (—) or a (+) to each of the individual objects with a (—) meaning the object 

is placed in one of the pans and a (+) meaning the object is placed in the other 

pan. 

These designs were developed for a bias free weighing device. Unbiased 

estimates of the weights can only be obtained from a fair two-pan scale. If the 

design matrix has a column consisting of only +s, then unbiased estimates of 

the weights can be obtained even if the weighing device is biased. Mood [28] 

showed how to alter these bias free weighing designs to determine the weights 

of one less object at the cost of introducing bias. 

Yang Designs 

Yang [36] [37] presented some minimum-run, resolution III, weighing designs 

for n = 2 (mod 4), with the exception of n = 22 and 34. The design matrix of 

these designs are in general 

{ -B A' ) 

where A and B are circulant matrices of order n/2 respectively. Any of the 

resolution III Yang designs for n factors in N runs in the absence of bias can be 
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used to generate a resolution IV design for n factors in 2N runs in the presence 

of bias via the Box and Wilson [8] foldover thereom. 

For example the 6 factor design due to Yang [36] has its first rows of A and 

B defined as 

A= + + + 

B= - + + 

the design matrix is given as 

f + + + - + + ̂  

+ + + + - + 

+ + + + + -

+ - - + + + 

- + - + + + 

v- - + + + +J 

the foldover design is a resolution TV design for 6 factors in 12 runs given as 

X = 

( 

lfi.19 — 

Raghavarao Designs 

Raghavarao [31] presented optimum weighing designs for N = 5, 13 and 25 

factors. The 5 and 13 factor designs are circulant of order N. For example the 

resolution III design to examine 13 factors in 13 runs in the absence of bias is 

of circulant form with first row given by 

h + + + + + - + + + 

These designs can be used to generate minimum-run resolution IV designs 

for N factors in the presence of bias using Box and Wilson's foldover theorem. 
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1.5 Search Designs 

Whenever fractional designs are used there is the underlying assumption that 

only a fraction of the contrasts considered will be significant, Srivastava [33] 

conceptualized this in his theory for search designs. Srivastava divided facto

rial effects into 3 categories: 

1. Effects that can be assumed negligible. 

2. Effects which require estimation. 

3. All remaining effects, some which are negligible and some of which will 

require estimation. 

He termed designs which estimate all effects of type (2) and search the non-

negligible effects of type (3) "Search Designs". 

Srivastava considered the linear model 

Y = A& + A2£2 + e 

E(e) = 0, V{e) = a2IN 

where Y is a N x 1 vector of observations, e is the A^xl error vector, Ai are the 

N x Vi design matrices, and & are vt x 1 vectors of fixed unknown parameters. 

If all the elements in £2 are negligible except for possibly a set of at most r 

elements, where r is a known positive integer, we want Ai and A2 to be such 

that we can estimate all the elements of £i and the r non-negligible elements 

of&. 

Srivastava's main theorem states: 

Theorem 1 [(Srivastava, [33])] Let T be a search design corresponding to the 

observations Y. Ife = 0 then T is a search design of resolving power {6;6>r} 



11 

iff for every sub-matrix A2k (N x 2r) of A2, we have 

Rank {Ax : A2r) = vi + 2r 

For example, in a four factor experiment with each factor at two levels, and 

supposing estimates are required of the mean and at most two main effects. 

Consider two sets of trials, the first {a, b, c, d, abed} has matrices Ax and A2 de

fined as: 

1 -1 -1 -1 

-1 1 -1 -1 

A7 - - 1 - 1 1 -1 

-1 -1 -1 1 

1 1 1 1 

and the second set of trials {ad, abd, be, d, c} has mat 

Ai = 

1 

1 

1 

V 1 / V 

' ^ 

Ai = 

1 

1 

1 

v 1 / 

/ 

A7 = 

V 

\ 

/ 

rices Ax and A2 defined as: 

\ 

/ 

1 -1 • 

l l -: 

-l l 

-l -l -

-l -l 

with £i = /J, and £2 = (A B C D)' where at most two of the elements of £2 are 

non-zero. 

The rank of the {A\ : A2) matrix for the first set of trials {a, b, c, d, abed] is of 

full rank, and therefore forms a search design for this situation. The second 

set of trials {ad, abd, be, d, c] has a rank deficient (Ai : A2) matrix and therefore 

does not define a search design in this case. 

In the context of this thesis A\ will contain the design matrix of the mean 

and main effects, and A2 will contain the design matrix of the two-factor inter

actions. When models can be resolved or separated only when parameters do 

not take particular values (Rank (Ax : ̂ 42r) < v\ + 2r), the design matrix is said 
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to be a weakly resolvable main-effect-plus r search design. When for every A2k 

submatrix of A2 we have Rank (Ax : A2r) = v\ + 2r, then design matrix is said 

to be a strongly resolvable main-effect-plus r search design. 

1.6 Projection Properties 

In many experiments it is often the case that of the many factors considered 

initially only a few affect the response to a significant degree. It is therefore 

useful when employing a design in k factors, to understand how the design 

behaves when projected onto any p < k factors, or p-space. 

The projection properties of regular fractional factorial designs were first 

discussed by Box and Hunter [4]. They showed that every resolution R de

sign contained a full factorial design in every R — 1 factors, and therefore are 

orthogonal arrays of strength R — 1. 

Box and Hunter's [4] result states any regular resolution III design con

tains a complete 22 factorial design in any 2 factors. However Lin and Draper 

[24] and Box and Bisgaard [2] when examining the projection properties of the 

Plackett and Burman 12-run design, which is also resolution III, showed when 

projected onto 3-space the design provides a 23 and a 23_1 design. This is clearly 

an improvement on the regular fractional factorial projection. 

Cheng [9] generalised this result showing the projection of any OA(N,k,2,t) 

with k > t+1 onto any (t+1) columns results in three possible different designs: 

1. 2~lN copies of the half replicate of the 2f+1 factorial. 

2 2~(<+1)AT copies of the complete 2t+1 factorial. 

3. Projection contains copies of both the complete 2t+1 factorial and the half 

replicate. 
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Type 1 projections are obviously the least desirable as they do not contain a 

complete 2t+l factorial. Regular fractional designs always have a type 1 projec

tion in at least one of the possible choices of t + 1 columns. 

Cheng further showed that if N is not a multiple of 2t+1 and k > t + 2, then 

the projection must be of type 3. For example the Plackett and Burman 12-run 

design is OA(12,11,2,2) and therefore contains copies of both the complete 23 

factorial and the 23_1 half replicate in every choice of 3 columns. 

Wang and W u [34] when considering the projection properties of the Plack

ett and Burman designs observed that the complex aliasing pattern of the de

signs "allows some interactions to be entertained and estimated without mak

ing additional runs". They called this property the hidden projection property 

of the designs. 

Diamond [15] when considering the Plackett and Burman 12-factor foldover 

design showed that as a consequence of this hidden projection property, esti

mates of all the main effects and two two-factor interactions could be attained 

without the addition of augmenting trials. The design is therefore a search 

design of resolving power 2 (Theorem 1) in the two-factor interaction subspace. 

Box and Meyer [5] introduced the term factor sparsity. Their approach is 

to suppose that only a small number of factors in the design are responsible 

for most of what is happening, but these active factors may interact with each 

other. For example if a Plackett and Burman 12-run design was performed to 

consider 11 factors (A, B • • • K) and subsequent analysis led one to expect only 

factors A, B and C are active, the design can now be collapsed into a 3 factor 

design in only the columns corresponding to factors A, B and C, allowing for 

the interaction estimates AB,AC,BC and ABC to now be formulated. 

Hamada and W u [21] outlined a technique to search for interactions in 

Plackett and Burman designs, exploiting the assumption of effect heredity, that 

is a two-factor interaction can only be real if one or both of the corresponding 
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main effects are real. Their technique advocated a standard initial analysis 

using normal probability plots to identify the active main effects, then estima

tion of only the interactions containing at least one of the active main effects 

by means of a multiple regression. 

Box and Meyer [7] introduced a Bayesian technique to identify active factors 

in highly fractionated designs. Their method consists of calculating posterior 

probabilities: 

P {Mi | y) 

of all possible models Mi given the response vector y. A marginal posterior 

probability: 

Pj= £ p(Mi\y) 
M;: factor j active 

can then be computed as a measure of determining whether a factor j is active. 

A large Pj value indicates that factor j is active, whilst small Pj values indicate 

factor j is inert and models involving factor j can be subsequently dropped from 

the analysis. 

Box and Meyer [7] applied this technique to a 12-run Plackett and Burman 

experiment to study fatigue life of weld repaired castings (Hunter, Hodi and 

Eager [23]), finding after performing a Bayesian analysis that two factors were 

active and subsequently using the 2-space projection of the design to analyse 

it as a replicated 22 factorial. 

Box and Meyer's technique is based on the principle of factor sparsity and 

offers the potential to greatly simplify the analysis of non-regular designs. In 

cases when the analysis leads to ambiguous conclusions a smaller set of trials 

or augmenting set is needed. 
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1.7 Thesis Objectives 

Whilst there is no shortage of literature on regular full and fractional factorial 

experimental designs, with the possible exception of the Plackett Burman 12-

run design, non-regular designs have been largely ignored. 

This thesis is concerned with the examination of a number of the minimum-

run, two-level, non-regular resolution IV designs, with reference to their pro

jection properties, their resolvability as search designs and the design of ap

propriate augmenting trials when required. 

Such an examination is desirable as in many cases these minimum-run de

signs result in a considerable saving of experimental observations, and as such 

non-regular designs form an important class within the broader experimental 

design framework. 

Chapter 2 examines the foldover of the 13 factor design due to Raghavarao 

which is shown to be strongly resolvable main-effect-plus r search design when 

r = 1. When r = 2 the design is shown to be weakly resolvable and as such 

appropriate augmenting trials are given. The 3 and 4-space projections of the 

design are also presented. 

Chapter 3 extends the work by Diamond [14] and Diamond and Simmons 

[16] on the Yang 6 factor foldover to consider the best augmenting trials in the 

presence of error. The chapter also looks at the Yang 14 factor foldover design, 

and the design is shown to be strongly resolvable when k — 1. 

Diamond [15] showed the Plackett and Burman 12-factor foldover is a strongly 

resolvable main-effect-plus r search design when r = 2. Chapter 4 extends this 

work to consider the design when r = 3. The projection properties of the design 

in n-space are also presented. 

In Chapter 5 it is shown that the 20 factor Plackett and Burman foldover 

design is resolution V in every set of five columns. The design is also shown 
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to be a strongly resolvable main-effect-plus r search design when r = 2. The 

chapter then examines the 24 factor Plackett and Burman foldover in the same 

manner which is also shown to be resolution V in every choice of five columns, 

and to be a strongly resolvable main-effect-plus r search design when r = 2. 

In Chapter 6 two methods are presented to analyse minimum-run resolu

tion IV designs. The effectiveness of these techniques are illustrated through 

a comparison with the existing Bayesian analysis due to Box and Meyer [7] 

using two examples. 

Finally, in Chapter 7 some overall conclusions on the use of these minimum-

run, non-regular resolution TV designs will be made, and areas which require 

further consideration will be identified. 
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Chapter 2 

THE RAGHAVARAO 13 FACTOR FOLDOVER DESIGN 

2.1 Introduction 

Raghavarao [31] presented a minimum run, non-orthogonal bias free weighing 

design, studying 13 factors in 13 runs, referred to as 2(13V/13 in the remainder 

of this thesis. This resolution III design is of circulant form with first row given 

by 

+ - + + + + + - + + + 

and has main effect trace efficiency of 96.2%. 

By applying the foldover technique this design can be moved from a bias free 

213//13 resolution III design, to a 213//26 resolution IV design in the prensence 

of bias. The Raghavarao 13 factor foldover design is presented in Table 2.11 

and is in fact one circulant matrix augmented by another circulant matrix, 

being the negative of the first, and is given by 

R 
( 1 ^ 

K-X j 
where R is a 2n x n matrix. 

Webb [35] has shown that the columns corresponding to the mean and main 

effects in any resolution IV design are orthogonal to the columns corresponding 

to the mean and two-factor interactions, and this applies to the Raghavarao 13 

factor foldover design. 

In this chapter it will be shown it is also possible for a small number of 

two-factor interactions to be searched for and estimated. 

1 Throughout this chapter factors are labelled as numbers for convenience 



Table 2.1: The Raghavarao 13 factor foldover design 

Run 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

1 

— 

+ 

+ 

-r 

— 

+ 

+ 

+ 

+ 

+ 

— 

+ 

— 

+ 

— 

— 

— 

+ 

— 

— 

— 

— 

— 

+ 

— 

+ 

2 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

+ 

+ 

+ 

— 

+ 

+ 

+ 

— 

— 

— 

+ 

— 

— 

— 

— 

— 

+ 

— 

3 

+ 

— 

— 

+ 

+ 

+ 

— 

+ 

+ 

+ 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

— 

+ 

— 

— 

— 

— 

— 

+ 

4 5 6 7 8 

- + + + + 

+ - + + + 

- + - + + 

- - + - + 

+ - - + -

+ + - - + 

+ + + - -

- + + + -

+ - + + + 

+ + - + + 

+ + + - + 

+ + + + -

+ + + + + 

+ - - - -

+ - + - -

+ + - + -

- + + - + 

- - + + -

- - - + + 

+ - - - + 

- + - - -

- - + - -

9 10 11 12 13 

+ - + + + 

+ + - + + 

+ + + - + 

+ + + + -

+ + + + + 

- + + + + 

+ - + + + 

- + - + + 

- - + - + 

+ - - + -

+ + - - + 

+ + + - -

- + + + -

- + - - -

- + - - -

+ - + - -

+ + - + -

- + + - + 

- - + + -

_ _ _ + + 

+ - - - + 
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2.2 Projection Properties 

In order to examine every possible design in p space one would normally con

sider (*pj different possible combinations. Due to the circulant nature of this 

design any choice of k columns (x\, x2,..., xp) has 12 equivalent designs, given 

by (xi+i, x2+i,..., Xk+i) for any i = 1,..., 12, with reduction modulo 13 being 

performed whenever necessary. When considering the projection properties of 

the Raghavarao design in k space, therefore, only f^J/lS distinct choices of k 

columns need be considered, as all other choices are derived from this base set. 

2.2.1 In3-Space 

When examining the design in 3-space (^j/13 = 22 combinations must be con

sidered. Direct examination of all 22 potentially different possibilities yields, 

for all cases, a 23 full factorial design replicated three times, a run with all 

factors at their high level, and a run with all factors at their low level. 

2.2.2 In 4-Space 

There are (43)/13 = 55 potentially different choices of 4 columns which need to 

be considered when looking at the design in 4-space. Direct checking of each of 

the 55 cases yields 3 possible results: 

(1) Three 24_1 (I = -1234) designs, a run with all factors at their high level, 

and a run with all factors at their low level. For example columns 1,2,4 

and 10 form a projection of this type and are presented in Table 2.2. 

(2) A 24, a 24_1 {I = 1234), a run with all factors at their high level, and a run 

with all factors at their low level. For example columns 1,2,3 and 6 form 

a projection of this type and are presented in Table 2.3. 
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XiXj ~~ ' 

(3) A 24, a 24"1 (/ = -1234), a run with all factors at their high level, and a 

run with all factors at their low level. For example columns 1,2,3 and 4 

form a projection of this type and are presented in Table 2.4. 

This immediately poses the problem, how to determine which of the three 

results is valid for a particular choice of 4 columns? Let a, (3,7,5 be a unique 

choice of 4 columns in the foldover design and let X be the 26 x 78 matrix of two-

factor interaction columns. If x{ is the column in X that corresponds to the a x /? 

interaction, and Xj is the column in X that corresponds to the 7x5 interaction, 

the projection properties of the four columns corresponding to factors a, ($,7, S 

in the original foldover design is determined by examining the values of X\XJ as 

follows: 

-22 Yields Result 1 

10 Yields Result 2 

-6 Yields Result 3 

Determining the projection properties of the Raghavarao 13 factor foldover 

in 4-space is, therefore, as simple as looking up the relevant cell value for a 

given choice of four columns in the X'X interaction matrix. For example if 

Xi = 1 x 2 and Xj = 4 x 10 then X\XJ = -22 and if Xi = 1 x 2 and x3; = 3 x 4 then 

X\XJ = —6. 

2.3 Linear Dependencies 

Highly saturated resolution III designs are most often used as screening de

signs. In such a design a large number of factors are considered under the 

assumption that either main effects are the only active effects, or that a few 

main effects are active and interactions are only considered between active 

main effects. This latter concept defines factor sparsity (Box and Meyer [5]). 

Another concept, presented by Hamada and W u [21] is effect heredity, which 
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Table 2.2: Columns 1,2,4 and 10 illustrating the first type of 4-space projection 

from the Raghavarao 13 factor foldover design 

Run 

20 

18 

15 

3 

16 

2 

5 

7 

22 

24 

19 

4 

17 

6 

11 

9 

23 

26 

25 

8 

21 

12 

13 

10 

1 

14 

1 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

+ 

2 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

+ 

4 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

+ 

10 

+ 

— 

— 

+ 

— 

+ 

+ 

— 

+ 

— 

— 

+ 

— 

+ 

+ 

— 

+ 

— 

— 

+ 

— 

+ 

+ 

— 

+ 
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Table 2.3: Columns 1,2,3 and 6 illustrating the second type of 4-space projec

tion from the Raghavarao 13 factor foldover design 

Run 

22 

18 

19 

3 

1 

26 

15 

4 

17 

2 

13 

7 

16 

6 

5 

9 

21 

24 

25 

14 

20 

12 

11 

8 

23 

10 

1 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

2 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

+ 

3 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

+ 

6 

— 

— 

— 

— 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

— 

— 

+ 

— 

+ 

+ 

— 

— 

+ 
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Table 2.4: Columns 1,2,3 and 4 illustrating the third type of 4-space projection 

from the Raghavarao 13 factor foldover design 

Run 

21 

24 

25 

3 

20 

6 

5 

10 

23 

2 

13 

7 

1 

12 

11 

4 

22 

18 

19 

14 

16 

26 

15 

8 

17 

9 

1 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

2 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

+ 

3 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

+ 

4 

— 

— 

— 

— 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

— 

+ 

+ 

— 

+ 

— 

— 

+ 

— 

+ 
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is identical to factor sparsity except it also considers interactions between fac

tors with one main effect active and the other main effect inert. 

As stated in Chapter 1, Srivastava [33] developed the theory for search de

signs and he divided factorial effects into three categories as defined in section 

1.5. The search design concept is in fact a superset of factor sparsity and effect 

heredity, assuming 3 factor interactions and higher are negligible. For exam

ple considering effect heredity, main effects would be classified as category 2, 

those k interactions involving at least one significant main effect as category 3, 

and three factor interactions and higher as category 1. 

Srivastava showed that, in the error-free case, when estimating all the ef

fects in category 2 and r effects in category 3, the design is a strongly resolv

able main-effect-plus r search design iff every submatrix consisting of all the 

columns corresponding to category 2 and 2r of the columns corresponding to 

category 3 is of full rank. 

2.3.1 When r = 1 

The Raghavarao 13 factor foldover is a strongly resolvable main-effect-plus 1 

search design iff none of the interaction columns are identical to each other. 

This would correspond to a value of 26 in an off-diagonal element of the X'X 

interaction matrix. As off-diagonal elements can only take values of 2,—6 and 

10, the Raghavarao 13 factor foldover must be a strongly resolvable search 

design of resolving power 1. 

2.3.2 When r = 2 

Let X be a matrix of 4 interaction columns and consider any two columns of 

X say x{ and xy, i,j = 1,2,3,4. The vector product x'tXj can take on one of five 

different values. If the interaction corresponding to x{ has no letters in common 
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with the interaction Xj, x\x3 can take one of 10,-6 or —22 as stated in section 

2.2.2. Likewise if the interaction corresponding to Xi has one letter in common 

with interaction x3, X\XJ = 2. Finally if Xi = xj} x\x3 = 26. In summary :-

ifi=j 

if one letter in common 
XiXj ~~ ' 

if no letters in common 

To determine if the Raghavarao 13 factor foldover design is a strongly re

solvable main-effect-plus 2 search design, every possible X'X generated from 

the design must be of full rank, and each X'X takes the following form: 

/ 

X'X = 

\ 26 xi2 X13 xu 

XU 26 £23 2̂4 

Zl3 ^23 26 £34 

\ XU X2A 3̂4 26 J 

where xi3 = 2, —6,10, —22; i / j. 

Since xi3 can only take 4 possible values, there are 4
6 = 4096 possible X'X 

matrices to consider. Direct examination of these 4096 possibilities yields rank 

deficient matrices of 3 types. The upper triangles of these matrices are as 

follows: 

' 2 2 -22 \( -6 10 -22 

-22 10 

-6 

Diamond [13] showed that every X can be represented by one of eleven graphs, 

given in Table 2.5, involving n vertices and 4 edges. Each vertex represents 

a factor whilst each edge represents a two-factor interaction. Note that for 

the Raghavarao 13-factor foldover design if two edges are co-incident at one of 

the vertices, the corresponding vector product x\x3 must be 2. Since in each 

-22 

V 

-22 

2 

2 
/ \ 

\ 

/ 

/ 

V 

-6 10 10 

10 10 

-6 

\ 
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Case 

1 

2 

3 

4 

5 

6 

Graph 

X 
u 
1J 

t. 
fc 

1̂  

Number of 

Isolated Vertices 

(n-4) 

(n-4) 

(n-5) 

(n-5) 

(n-5) 

(n-5) 

Case 

7 

8 

9 

10 

11 

Graph 

n. 
O 
f/ 
• • 
• • 

• • 
• • 
• • 
• • 

Number of 

Isolated Vertices 

(n-6) 

(n-6) 

(n-6) 

(n - 7) 

(n-8) 

Table 2.5: All graphs with n vertices and 4 edges 

row of the first dependent matrix above there are two X\XJ values equal to 2, 

every interaction in the dependent set must have two other interactions with 

one factor in common. This would mean that every vertex in Table 2.5 must 

have two edges co-incident with it, and can therefore be illustrated as linear 

graph 2 in Table 2.5. Any dependent sets of this type therefore involves two-

factor interactions between 4 factors. The second and third dependent matrices 

have none of the x\x3 equal to 2 and therefore involve two-factor interactions 

between 8 factors and correspond to Graph 11 in Table 2.5. For the Raghavarao 

13-factor foldover design, therefore, only two possible linearly dependent cases 

need to be examined, when r = 2. 
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To consider the case consisting of four interactions with no letters in com

mon (case 11) there are 

( " J X i 2 J ' ( 2 J " ( 2 J X j 2 j = 135,135 
4! 

cases. Direct checking shows that these 135,135 possible cases generated from 

the Raghavarao 13-factor foldover are all linearly independent. 

To examine the case in which dependent models exist in four factors (case 

2), the projection properties in 4-space can be utilised. Section 2.2.2 identified 

3 distinct results for any choice of 4 columns, identified by x\x3 = {—22,10, —6}; 

where Xi and x3 represent unique two-factor interactions in the design. Any 

choice of four factors in the design yielding x\x3 = 10 or -6, forms a full 2
4 facto

rial design, and thus provides unbiased estimation of all interactions between 

the four factors. Only choices of four columns yielding x\x3 = -22, therefore, 

require examination for linearly dependent models. 

For any two-factor interaction ax j3, corresponding to a column xt in the X'X 

interaction matrix, -22 will appear in only one of its 78 cells. If x3 is the row 

in X'X corresponding to this cell, and x3 represents the two-factor interaction 

7 x 5, each linear dependency is of following form: 

ax(3 + jx8 = axj + /3x5 = ax5 + (3xy (2.1) 

and by using the circulant properties of the design any one dependency of this 

form has (k - 1) equivalent dependencies found by: 

{(a + k)x{/3 + k)} + {(j + k)x{6 + k)} = {{a + k)x{j + k)} + 

{(P + k)x(6 + k)} = {(a + k)x(6 + k)} + {{(3 + k)x(1 + k)} (2.2) 

where k — 1,..., 12 and reduction modulo 13 is performed as necessary. 
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General Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

a x /3 + 7 x 5 

1 x 2 + 4 x 10 

1 x 3 + 9 x 13 

1x 5 + 6x8 

1 x 7+11 x 12 

2 x 3 + 5 x 11 

2 x 6 + 7 x 9 

2 x 8 + 12 x 13 

3 x 4 + 6 x 12 

3 x 7 + 8 x 10 

4 x 5 + 7 x 13 

4 x 8 + 9 x 11 

5 x 9 + 10 x 12 

6 x 10 + 11 x 13 

a x 7 + /? x 6 

1 x 4 + 2 x 10 

1 x 9 + 3 x 13 

1x 6 + 5 x8 

1 x 11 + 7 x 12 

2 x 5 + 3 x 11 

2x 7 + 6x9 

2 x 12 + 8 x 13 

3 x 6 + 4 x 12 

3 x 8 + 7 x 10 

4 x 7 + 5 x 13 

4 x 9 + 8 x 11 

5 x 10 + 9 x 12 

6x 11 + 10 x 13 

a x 8 + 0 x 7 

1 x 10 + 2 x 4 

1 x 13 + 3 x 9 

1x8 + 5 x6 

1 x 12 + 7 x 11 

2x 11 + 3 x 5 

2x 9 + 6x 7 

2 x 13 + 8 x 12 

3 x 12 + 4 x 6 

3 x 10 + 7x8 

4 x 13 + 5 x 7 

4 x 11 + 8x9 

5 x 12 + 9 x 10 

6 x 13 + 10 x 11 

Table 2.6: Linear Dependencies in the Raghavarao 13-factor foldover design 

Each dependency in the design is of the form given in equation 2.1. In 

total 13 linear dependencies exist and these form a closed set in which each 

of the 78 two-factor interactions of the design appear in one dependent model 

only. These 13 linear dependencies are listed in Table 2.6 for completeness, 

however by using equation 2.1 if any one linear dependency is known any other 

dependency can be derived. 

For example if (1 x 2) + (4 x 10) = (1 x 4) + (2 x 10) = (1 x 10) + (2 x 4) is a 

known linear dependency in the design, and it is desired to find the dependency 

which contains the 1x7 interaction. The interaction 1x7 can be expressed as 
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(4 + 10) x (10 + 10) and substituted into equation 2.2 as follows: 

{(1 + 10) x (2 + 10)} + {(4 + 10) x (10 + 10)} = {(1 + 10) x (4 + 10)} + 

{(2 + 10) x (10 + 10)} = {(1 + 10) x (10 + 10)} + {(2 + 10) x (10 + 10)} 

Evaluating this equation and taking modulo 13 as required the linear depen

dency (1x7) + (11 x 12) = (1 x 11) + (7 x 12) = (1 x 12) + (7xl) is identified, which 

is the only linear dependency in which the 1 x 7 interaction appears. 

From the above results it is apparent that the Raghavarao 13-factor foldover 

is not a strongly resolvable main-effect-plus 2 search design, and to estimate 

two-factor interactions in some cases requires the addition of augmenting tri

als. 

2.4 Augmenting Design 

If (a x (3 + 7 x 8) is the true model but is completely confused with the models 

(a x 7 + (3 x 8) and (a x 8 + /? x 7) as described in section 2.3, then the addition 

of augmenting trials is required to identify the true model. 

Let A be a 16 x 4 matrix with columns a, (3,7,8 forming a full factorial design, 

and let a ^ correspond to the interaction column ax (3 generated from A. Now 

let C = (cw, c[2]) be a 16 x 2 matrix with columns defined as follows: 

CW=aM + aM-(aN+a^) 

c[2] = a[a/J]+a[7*]_(aM+a[/?7]) 

Any n x 2 submatrix of C corresponds to an augmenting set of trials in A that 

will separate the models iff each column of the submatrix in C satisfies the 

following:-

1. Neither column is equal to the null vector. 
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2. If a block term, that is, allowance for the augmenting trials to have a 

different mean than the original trials due to changes external to the 

experiment, is to be estimated neither column can be proportional to the 

unit vector. 

3. No one column is proportional to any other column. 

In order to separate the linear dependency ax[3 + yx8 = axy + f3x8 = 

a x 8 + /3 x 7 the following A matrix is generated. 

a (3 7 8 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 
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and the corresponding C matrix is as follows: 

f ° 
0 

0 

4 

0 

-4 

0 

0 

0 

0 

-4 

0 

4 

0 

0 

V ° 

°) 
0 

0 

4 

0 

0 

-4 

0 

0 

-4 

0 

0 

4 

0 

0 

°y 
A submatrix of C that satisfies the three criteria required to separate the de

pendency and to estimate the block effect is: 

'A A 
KQ -4 j 

which corresponds to a number of augmenting trials one of which is (a(3 , (3y). 

Thus the augmenting trials (1,2) and (2,4) are sufficient to separate the 

(1 x 2) + (4 x 10) = (1 x 4) + (2 x 10) = (1 x 10) + (2x4) linear dependency. 
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2.5 Conclusion 

In this chapter it has been shown that the Raghavarao 13-factor foldover de

sign gives a 23, a run with all factors at their high level, and a run with all 

factors at their low level in every set of three factors. When examining the 

design in 4 factors three possible results can be obtained, given in section 2.2. 

The design has been shown to be a strongly resolvable main-effect-plus r search 

design when r = 1, but not when r = 2 since then in some cases a number of 

models fit the data equally well. Each linearly dependent case has been listed 

and a general result given to generate the augmenting trials required to sepa

rate the dependent models. 
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Chapter 3 

THE YANG 6 AND 14 FACTOR DESIGNS 

3.1 Introduction 

Yang [36] presented some minimum run, resolution III, weighing designs for 

n = 2 (mod 4), with the exception of n = 22 and 34. The design matrix of these 

designs are in general 

\-tr A') 
where A and B are circulant matrices of order n/2 respectively. 

Using the foldover theorem any of the bias-free resolution III designs stated 

above will move to a resolution IV design with bias. Margolin [25] when 

examining the Yang foldover designs showed that their effect variances are 

2o2/(n — 1) and the main effect trace efficiencies are (n — l)/n for all values of 

n. This Chapter will examine the foldovers of the Yang 6 and 14-factor designs, 

which have main effect trace efficiencies of 83.3% and 92.9%, respectively. 

3.2 The Yang Q-factor Foldover 

The 6-factor design due to Yang [36] has its first rows of A and B defined as 

A= + + + 

B= - + + 

The foldover design generated from this design was examined by Diamond [14], 

who showed the foldover is a strongly resolvable main-effect-plus r search de

sign when r = 1 but only weakly resolvable when r = 2. In the next section the 
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linearly dependent models as identified by Diamond [14] are summarised and 

finally a technique for resolving the dependent models is presented in section 

3.2.2. 

3.2.1 Linear Dependencies 

The Yang 6-factor foldover design can be partitioned as follows: 

A 

-B' 

-A 

B' 

B~ 

A' 

-B 

-A' 

The first partition defined as the columns A= {A, B, C} will be labelled Si 

and the second partition defined as the columns B— {D,E,F} will be labelled 

s2. 
Diamond [14] identified the ten essentially different sets of linearly depen

dent models which are presented in a general form as follows: 

Case 1: Aa/3 - Aery = -A/30 + Ay9 = -A(3p + Ayp = -Aj3<j) + A-ycf) 

Case 2 : A6p - A6(j) = -Aa(f> + Aap = -A/30 + A(3p = -A70 + A7P 

Case 3 : Aa/3 + Aa0 = Apy + A70 = -A/?0 - 2Apt 

Case 4 : A9p - Aa6 = Ap<f> - Aa<f> = Aalp - 2A(3y 

Case 5 : Aa0 - Aap = A/30 - A7/? = A70 - A7P 

Case 6 : Aa/3 - A70 = -Aa0 + A/?7 = -A(39 + Aa7 

Case 7 : 2A0p + Aa/3'= -Aacj) - A/30 
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Case 8: 2Aa(3 + Adp = A-yO + A-yp 

Case 9 : A0p + Aa0 = Aa0 + Ap0 = Aap + A00 

Case 10: Aa0 + A/3p = Aap - A/30 

where a, /3 and 7 correspond to factors in Si and 0, p and 4> correspond to factors 

in S2 and A represents the magnitude of an effect. 

For example, from case 1 the model where the interaction between factors 

A (a) and B (/3) takes the value A and the interaction between factors A (a) and 

C (7) takes the value of — A is confounded with 3 other models. 

The next section considers the design of augmenting trials for each of the 

above cases. 

3.2.2 Augmenting When Error is Present 

Diamond [14] presented a method for augmenting designs in the presence of 

error for a series of modified one-factor-at-a-time foldover designs. This section 

will summarise the technique and present augmenting trials to resolve the 

linearly dependent models described in section 3.2.1. 

Consider two models Mi and M2, where Mi and M2 involve the mean, all 

main effects and ki two-factor interactions. The models can be rewritten as: 

Mi:y = X0(30 + Xi(3i + ex 

M2:y = XQ(3Q + X2/32 + e2 

where X0 is the matrix corresponding to the mean and main effects, X\ and X2 

consist of ki two-factor interaction columns and ei ~ N(0, a2I) assuming that 

Mi is the true model whereas e2 ~ N(Xifa - X2f32, a
21). 

Both models can be rewritten as: 

Mi : y0 = Xi.0/?i + eh0 
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M2 :y0 = X2.0{32 + e2.0 

where yo,Xi.o,X2.0,€i.0 and e2.Q are the matrices of residuals of y,Xi,X2,ex and e2 

regressed on X0 respectively. 

Diamond [14] showed that the standardised residual sum of squares for M 2 

follows a noncentral x2 distribution with a noncentrality parameter of 

A = /?1X1.0(7 — X2.Q(X2.QX2.Q) X2.Q)Xi.o0i 

If Mi and M2 are two models that are linearly dependent then XioA = 

X2.0/32 and A = 0. 

In Chapter 2 a method was presented to calculate augmenting trials to sep

arate linearly dependent models in the error free case. This method can be 

generalised to design augmenting trials in the presence of error. Let A be an 

n x p matrix of candidate runs, and Mx, M2 • • • M3 be the j linearly dependent 

models among which we wish to discriminate. Let C be the n x j matrix with 

columns defined as C[i —1] = Mi— Mi where i = 2 • • • j. Any n x (j — 1) subma

trix of C corresponds to an augmenting set of trials in A that will separate the 

models in the error free case iff each column of the submatrix in C satisfies the 

following:-

1. Each column is not equal to the null vector. 

2. Each column is not proportional to the unit vector (if a block term is re

quired). 

3. No one column is proportional to any other column. 

Consider fitting the model M2 when the true model is in fact Mx. The residual 

sum of squares of the false model M2 can be defined as 

RSSf = RSSe + RSSn 
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where RSSe is the error component and RSSn is the compnent of M 2 not ac

counted for when fitting M2, which will be called the noiseless component. Dia

mond [14] showed that for any true and false model combination the noiseless 

component is proportional to the second eigenvalue A2 of the quadratic form 

/^l^loU — -̂ 2o(̂ 2.0-̂ 2o) -̂ 2-o)-̂ 10/3l 

One way to examine the performance of each set of augmenting trials fulfilling 

the above criteria in the presence of error is to estimate A2 for each of the 

j(j — 1) combinations of true and false models selected from the M3 models in 

the linear dependency. If each of the M3 linearly dependent models is equally 

likely to be true then the best set of augmenting trials would maximise the 

minimum value of A2 across the j(j — 1) A2's. 

This method was applied to each of the 10 sets of essentially different lin

early dependent models in the Yang 6-factor foldover design when k = 2 and 

the results are summarised below: 

Case 1 

Dependent models: {AB = A, AC = -A},{BD = -A,CD = A}, {BE = 

-A, CE = A}, {BF = -A, CF = A} One possible maximum minimum eigen

value producing case is (ab, bf, be). 

True Model 

{AB = A,AC = -A} 

{BD = -A,CD = A} 

{BE = -A,CE = A} 

{BF = -A,CF = A} 

Maximum Minimum A2 

3.396648 

2.502793 

3.322404 

3.322404 

For example if A is the 26 full factorial design then from the corresponding 

C matrix every possible set of augmenting trials can be selected. For each 

possible set of augmenting trials A2 is calculated for the following twelve cases: 
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1. True Model: AB = A,AC = -A; False Model: BD = -A, CD = A 

2. True Model: AB = A, AC = -A ; False Model: BE = -A, CE = A 

3. True Model: AB = A, AC = -A ; False Model: BF = -A, CF = A 

4. True Model: CD = A, BD = - A ; False Model: AC = -A, AB = A 

5. True Model: CD = A, BD = - A ; False Model: BE = -A, CE = A 

6. True Model: CD = A, BD = -A ; False Model: BF = -A, CF = A 

7. True Model: CE = A, BE = - A ; False Model: AC = -A, AB = A 

8. True Model: CE = A, BE = -A ; False Model: BD = -A, CD = A 

9. True Model: CE = A,BE=-A; False Model: BF = -A, CF = A 

10. True Model: CF = A, BF = -A ; False Model: AC = -A, AB = A 

11. True Model: CF = A, BF = -A ; False Model: BD = -A, CD = A 

12. True Model: CF = A, BF = -A ; False Model: BE = -A, CE = A 

The set of augmenting trials (ab, bf, be) yielded the maximum of the minimum 

values of A2 over the above twelve true/false model combinations. This method 

assumes that each of the dependent models is equally likely to be the true 

model, and therefore maximises the minimum value of the noncentrality pa

rameter over all true/false model combinations. If there was cause to suspect 

that one of the dependent models, say M\, was most likely to be the true model, 

then a set of augmenting trials that would maximise the minimum value of A2 

across the true/false model combinations where Mi is the true model could be 

considered. 
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Case 2 

Dependent models: {DE = A,DF = -A},{AF = -A,AE = A},{BF = 

-A, BE = A}, {CF = —A, CE = A} One possible maximum minimum eigen

value producing case is (/, cdf, bdf). 

True Model 

{DE = A, DF = - A} 

{AF = -A,AE = A} 

{BF=-A,BE = A} 

{CF = -A, CE = A} 

Maximum Minimum A2 

3.396648 

2.502793 

3.322404 

3.322404 

Case 3 

Dependent models: {AB = A,AD = A}, {BC = A,CD = A}, {BD = -A, EF = 

—2A} One possible maximum minimum eigenvalue producing case is (bdf, bed). 

True Model 

{AB = A,AD = A} 

{BC = A,CD = A} 

{BD = -A,EF = -2A} 

Maximum Minimum A2 

2.275181 

2.857143 

1.1167395 

Case 4 

Dependent models: {DE = A, AD = -A},{EF = A,AF = -A},{AE = 

A, BC = -2A} One possible maximum minimum eigenvalue producing case is 

(bde,bcdef). 

True Model 

{DE = A, AD = -A} 

{EF = A, AF = -A} 

{AE = A,BC = -2A} 

Maximum Minimum A2 

2.275181 

2.857143 

1.1167395 
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Case 5 

Dependent models: {AD = A,AE = -A},{BD = A, BE = -A}, {CD = 

A, CE = —A} One possible maximum minimum eigenvalue producing case 

is (ce,be). 

True Model 

{AD = A, AE = -A} 

{BD = A,BE = -A} 

{CD = A,CE = -A) 

Maximum Minimum A2 

2.000000 

2.666667 

2.666667 

Case 6 

Dependent models: {AB = A,CD = -A}, {AD = -A,BC = A},{BD = 

—A, AC = A} One possible maximum minimum eigenvalue producing case 

is (ce,be). 

True Model 

{AB = A,CD = -A} 

{AD = -A,BC = A} 

{BD = -A,AC = A} 

Maximum Minimum A2 

2.857143 

2.857143 

1.529744 

Case 7 

Dependent models: {DE = 2A, AB = A}, {AF = -A, BF = -A} One possible 

maximum minimum eigenvalue producing case is ((1), be). 

True Model 

{DE = 2A, AB = A} 

{AF = -A, BF = -A} 

Maximum Minimum A2 

4.004456 

6.023956 
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Case 8 

Dependent models: {AB = 2A,DE = A},{CD = A,CE = A} One possible 

maximum minimum eigenvalue producing case is (de, be). 

True Model 

{AB = 2A,DE = A} 

{CD = A,CE = A} 

Maximum Minimum A2 

4.004456 

6.023956 

Case 9 

Dependent models: {DE = A, AF = A}, {AD = A, EF = A}, {AE = A, DF = 

A} One possible maximum minimum eigenvalue producing case is (cdf, acd). 

True Model 

{DE = A, AF = A} 

{AD = A,EF = A} 

{AE = A,DF = A} 

Maximum Minimum A2 

1.529744 

2.857143 

2.857143 

Case 10 

Dependent models: {AD = A, BE = A},{AE = A,BD = A} One possible 

maximum minimum eigenvalue producing case is (bd, be). 

True Model 

{AD = A,BE = A} 

{AE = A, BD = A} 

Maximum Minimum A2 

8.000000 

8.000000 
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3.3 The Yang 14-1'actor Foldover 

3.3.1 Linear Dependencies 

As for the Yang 6-factor foldover design the Yang 14-factor foldover design can 

be partioned as follows: 

A 

-B' 

-A 

B' 

B~ 

A' 

-B 

-A' 

Where A and B are circulant matrices defined as: 

- + + + + + + 

- - + - + + + 

The first partition defined as the columns A— {A, B, C, D, E, F, G} will be la

belled Si and the second partition defined as the columns B= {H,J,K,L,M,N,0} 

will be labelled S2. The set of interactions involving only factors from S\ will 

be labelled Sx.i, interactions involving only factors from S2 will be labelled S2.2 

and the remaining interactions involving one factor in Si and one from S2 will 

be labelled 5i2. 

When r=l 

For the design to be a strongly resolvable main-effect-plus 1 search design, 

no two interaction columns may be identical. Direct checking reveals each of 

the 91 interaction columns in the design is distinct, and therefore the Yang 14 

foldover enables the search and estimation of at least one non zero interaction 

in the error free case. 
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When r=2 

For the design to be strongly resolvable when main-effect-plus 2 search design, 

every one of the (94* J = 2672670 possible choices of four two-factor interaction 

columns must be of full rank. 

It is desired to divide the 2672670 possible choices of four two-factor interac

tion columns into more manageable pieces for the purpose of direct checking. 

Each of the 2672670 possible choices of four two-factor interaction columns can 

be allocated into one of the 11 different sets, as defined in Table 2.5. Then each 

of the 11 different sets can be recursively searched for rank deficient possibili

ties. 

Direct checking of each of the 11 possible sets establishes that all but the set 

corresponding to Case 2, Table 2.5, to be linearly independent. Of the (*4
4) x 3 = 

3003 possible choices of 4 two-factor interaction columns corresponding to Case 

2, 231 are rank deficient. Each of the 231 linear dependencies take one of the 

two forms summarised below: 

1. AXa.p + AXQ.y = -AXp.6 - AXTS 

2. AXa.@ — AXay = AXp.g — AXTs 

where Xa.@ is a two-factor interaction in Si.i, Xy.g is a two factor interaction in 

S2.2 and both of XQ.7 and Xp.$ are two-factor interactions in 5i2 

As Si and S2 are circulant matrices of order 7, any choice of n columns in the 

design has a further 6 equivalent designs formed using circulant permutation 

in Si and S2. The same rationale can be used for each linear dependency, mean

ing from any one linear dependency a further 6 dependencies can be derived 

using circulant permutations in Si and S2. 

Using the above result the full set of 231 linear dependendencies can be 

derived from 231/7 = 33 dependencies, circulantly permuting to obtain the 
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remainder. Another point to note is that all dependencies involve at least 2 

two-factor interactions from 5i2. 

As the linear dependencies present in the design are all in 4-space it would 

be worthwhile to check projections of the Yang 14-factor foldover onto 4-space. 

In order to examine every possible choice of 4 columns from the design one 

needs to consider (xf\ = 1001 different designs. However using the circulant 

nature of the design, any choice of 4 columns has 6 other equivalent designs 

found by circulant permutation. W e therefore need to check 1001/7 = 143 dif

ferent designs. Direct checking of the 143 different designs yields the following: 

1. If the four columns belong to Si a 24, a 24_1 and 2 x 24-3 are obtained. 

2. If the four columns belong to S2 a 2
4, a 24_1 and 2 x 24-3 are obtained. 

3. The remainder formed from columns in Si and S2 yield a projection which 

is not of the regular fractional factorial type, or any known non-regular 

design. 

As cases 1 and 2 both contain full factorial designs in 4-space any linear de

pendencies in the design must come from the third case. This result is useful 

in cases when effect sparsity is expected and illustrates why every linear de

pendency must have at least 2 two-factor interactions from ,Si.2. 

3.4 Augmenting Runs 

The method outlined in section 2.4 can be used to determine appropriate aug

menting trials in the absence of error case for the two general forms of depen

dencies identified for the Yang 14-factor foldover in section 3.3.1. As both forms 

of dependencies within the design involve 4 factors the following A matrix is 
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generated. 

a /3 7 8 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

+ 

+ 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

— 

— 

— 

— 

— 

— 

— 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

And the Cx matrix that corresponds to the first type of dependency is defined 
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as AXa.p + AXa.^ — {-AXp.s - AXrS) and is as follows: 

1 4\ 

0 

0 

0 

0 

0 

-4 

0 

0 

-4 

0 

0 

0 

0 

0 

V 4, 
A submatrix of Ci that satisfies the three criteria required to separate the 

dependency and to estimate the block effect is: 

which corresponds to a number of different augmenting trials two of which 

being {(1) , /37} or {(a8 , a(3j8)}. 

The C2 matrix that corresponds to the second type of dependency is defined 
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as AXa./3 — AXa.y— (AXp.g — AXrs) and is as follows: 

t o^ 
0 

0 

4 

0 

-4 

0 

0 

0 

0 

-4 

0 

4 

0 

0 

V °J 
A submatrix of C2 that satisfies the three criteria required to separate the 

dependency and to estimate the block effect is: 

4 

-4 

which corresponds to a number of different augmenting trials two of which 

being {a/3 , aj} or {({38 , j8)}. 

/ 

\ 

3.5 Conclusion 

In this chapter a method for deriving minimum run augmenting designs has 

been presented for the Yang 6-factor foldover design for the case when the 
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number of non-zero interactions is at most two in the presence of error. The 

augmenting trials will be useful when the interaction effects take one of the 10 

general forms presented in section 3.2.1. 

This chapter also showed that the Yang 14-factor foldover design is a strongly 

resolvable main-effect-plus 1 search design, and hence no augmenting runs 

will be required when the number of non-zero interactions is one. The Yang 

14-factor foldover is not a strongly resolvable main-effect-plus 2 search design, 

augmenting runs may be required when the number of non-zero interactions is 

two and take one of the general forms presented in section 3.3.1. Augmenting 

trials were presented that are sufficient to separate each dependency and to 

estimate a block effect. The performance of these augmenting trials were not 

examined when error is present. 
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Chapter 4 

PLACKETT AND BURMAN 12 FACTOR FOLDOVER 

DESIGN 

4.1 Introduction 

The class of two-level, non-regular, orthogonal, resolution III designs due to 

Plackett and Burman [30] are the most commonly discussed non-regular de

signs in the literature. These designs are useful as they provide orthogonal and 

100% efficient estimates of the main effects. The alias structure is extremely 

complex and each main effect is aliased with a long linear combination of two-

factor interactions. For this reason the designs have been traditionally used 

as screening designs only. Whilst this complex aliasing has been traditionally 

thought of as a disadvantage, recently a number of authors have shown, when 

coupled with the assumption of effect sparsity, that the estimation of a number 

of two-factor interactions is sometimes possible without the addition of aug

menting trials, see Box and Meyer [5], Hamada and W u [21], and Wang and 

W u [34]. 

Plackett and Burman [30] presented a minimum run, 2n//12 resoution III, 

orthogonal array of strength 2. By applying the foldover technique this de

sign can be moved to a 212//24 resolution IV, orthogonal array of strength 3. 

This chapter will examine the projection properties of the foldover design and 

whether it is possible to search for and estimate up to three two-factor interac

tions. 
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4.2 Projection properties of the Plackett and Burman 12-factor foldover 

design 

In an orthogonal array of strength t all possible 2l rows occur an equal number 

of times in every set oft columns. Therefore the Plackett and Burman 12-factor 

foldover design must have only one projection onto 3-space being a 23 replicated 

3 times. 

Cheng [9] showed that the projection of an OA(N, k, 2, t) with k > t + 1 onto 

(t + 1)-space results in 3 possible different designs summarised as follows: 

1. 2~*N copies of the half replicate of 2t+l. 

2. 2-(m)AT copies of the complete 2m factorial. 

3. Projection contains copies of both the complete 2t+1 factorial and the half 

replicate. 

He further showed that if AT is not a multiple of 2m, then the projection must 

be of type 3, and therefore contains at least one copy of the complete 2t+l facto

rial. 

This result can be used to determine the projection properties of the Plack

ett and Burman 12-factor foldover design onto 4-space, which must therefore 

be of type 3,asN = 24 is not a multiple of 24. The only valid projection of type 3 

in 24 runs onto 4-space is a full 24 factorial plus a 24"1 fractional design. There 

is therefore only one projection onto 4-space. 

Diamond [15] showed any choice of 5 columns from the Plackett and Bur

man 12-factor foldover design yields only one projection which is of resolution 

V. 
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Table 4.1: The 4 possible different 6-space projec

tions from the PB12 Foldover Design 
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Table 4.1: The 4 possible different 6-space projec

tions from the PB12 Foldover Design 

Draper and Lin [17] investigated the projection properties of the Plackett 

and Burman 11 factor design and listed the different possible projections of the 

design in 5 and 6 space. They showed the design had 2 essentially different 

designs in 5-space and 2 essentially different designs in 6-space, formed as 
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the complement of the 2 different 5-space designs. This result can be used 

to investigate the projection of the foldover onto 6-space by considering the 

following fact: 

For any design design X the projection of the foldover design X = 

onto n space can be determined by considering: 

• each projection of X onto n — 1 space in X adding the foldover column as 

the nth factor. 

• each projection of X onto n space in X 

There are therefore 4 possible different designs that must be considered, 

which are represented as cube diagrams in Table 4.1. Each of the 4 designs 

contain no repeat runs and 12 mirror image points. Each of the four designs 

can be shown to be equivalent as follows: 

• Case 1 can be obtained from Case 2 by changing the signs of A and C and 

setting D = -F, E = D and F = E. 

• Case 1 can be obtained from Case 3 by changing the sign of F and setting 

D = -E and E = -D. 

• Case 1 can be obtained from Case 4 by changing the sign of D and setting 

E = F and F = E. 

There is therefore only one projection of the Plackett and Burman 12-factor 

foldover design onto 6-space. 

Projections of the foldover design in 7,8,9,10, and 11-space are formed by 

taking the complement of the designs in 6,5,4,3, and 2-space respectively, and 

therefore there is only one projection of the Plackett and Burman 12-factor 

foldover onto n-space. 

X 

-X 



54 

4.3 Searching for interactions in the Plackett and Burman 12-factor 

foldover design 

Diamond [15] showed that the Plackett and Burman 12-factor foldover is strongly 

resolvable main-effect-plus 2 search design. To establish whether a design is a 

strongly resolvable main-effect-plus 3 search design every 6 columns selected 

from the two-factor interaction matrix must be of full rank. To check this di

rectly one would need to consider the ranks of (66
6) = 90858768 matrices. Obvi

ously a simpler method is desirable. 

Table 4.2: All graphs with n vertices and 6 edges 
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Table 4.2: All graphs with n vertices and 6 edges 

Another method would be to consider all the possible graphs with n vertices 

and 6 edges. There are 68 possible linear graphs of this type which are dis

played in Table 4.2. For example one possible choice of 6 interactions from case 

56 would be A x B, A x C, B x D, C x E, D x F and ExF, the rank of these six 

interaction columns would then checked and if rank deficient would denote a 

linear dependency. To check every possible choice for case 56 in Table 4.2, the 

ranks of 
12' 

x 6 x 3 = 332640 

V 6 / V3, 
two-factor interaction matrices must be checked, this can be reduced further 

to 

j ) x 6 x 3 = 360 

cases as there is only one projection in 6-space. 

Therefore in order to determine if the design is a strongly resolvable main-

effect-plus 3 search design, it is sufficient to examine the ranks of every two-

factor interaction matrix of the form defined in each of the 68 different linear 
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graphs in Table 4.2 selected from n factors where n is the number of vertices in 

each graph. Examination of each of the 68 possible cases shows that 65 of the 

linear graphs produce linearly independent cases of full rank, and 3 graphs 

produce linearly dependent rank deficient cases. These rank deficient cases 

are summarised below: 

1. Table 4.2, Case 1 

Direct checking of the 

C?)Cr)G)(9G)(S) = 10395 
6! 

possible cases yields 2475 linear dependent cases. Each of the 2475 linear 

dependencies are of the form: 

AXi3 + AXkl + AXmn - AX^ - AXqr - AXst = 0 

which is summarised in Table 4.3, Case 1. For example if the "true model" 

consists of the interactions AB, CD, and EF all taking the value A then 

the model consisting of the interactions GK, HM and JL all taking the 

value A fits the data equally as well. 

2. Table 4.2, Case 24 

Direct checking of the 

-0x^m=63O 
2! 

cases reveals 6 linear dependent cases. Therefore f12) x 6 = 2970 of the 

possible (12) x 630 = 311850 cases are linearly dependent. The general 

form of this dependency is presented in Table 4.3, cases 2 and 3. 
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Table 4.3: The 5 linear dependent forms present in the Plackett and Burman 

12-factor foldover design when A; = 3 

3. Table 4.2, Case 56 

Direct checking of the (f\ x 6 x 3 = 360 cases reveals 10 linear de

pendent cases. Therefore (l2} x 10 = 9240 of the possible (12\ x 360 = 

332640 cases are linearly dependent. The general form of this dependency 

is presented in Table 4.3, cases 4 and 5. 

4.4 Conclusion 

In this chapter the Plackett and Burman 12-factor foldover design was shown 

to have only one type of projection onto n-space, where n = 1,..., 12. Using 

this result a method was developed to investigate whether the design was a 
» 

strongly resolvable main-effect-plus 3 search design. It consisted of consider-
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ing the 68 different cases formed from all possible linear graphs with n vertices 

and 6 edges, and checking all the possible arrangements in each case for rank 

deficiencies. The design was shown to be only weakly resolvable when r = 3 

and hence augmenting trials may be required if the number of non-zero inter

actions is 3 and the interactions take one of the general forms presented in 

Table 4.3. 
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Chapter 5 

THE PLACKETT AND BURMAN 20 AND 24 FACTOR 

FOLDOVER DESIGNS 

5.1 Introduction 

This chapter will examine the resolution rV, foldover designs generated from 

the Plackett and Burman 20 and 24 run designs [30]. A simple method will be 

derived to determine the projection properties of each design, which are then 

used to determine each design's resolvability as a search design. 

5.2 The Plackett and Burman 20-factor foldover Design 

Plackett and Burman [30] presented a 219//20, resolution III design, which is 

defined as the union of one run with all factors at their low level and the circu

lant design generated from the following row: 

+ H + + + + - + - + + + -

The foldover thereom can be used to generate a 220//40 resolution IV design 

from the 219//20 resolution III design. The 220//40 foldover design is an exam

ple of an orthogonal array (OA(40,20,2,3)). In this design main effects become 

orthogonal to the two-factor interactions and unlike the regular fractional de

signs the two-factor interactions are not confounded in orthogonal strings. As 

a consequence the estimation of some two-factor interactions may become pos

sible under certain conditions, without the need for augmenting trials. This 
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section will examine some properties of this foldover design, including its pro

jections and resolvability as a search design. 

5.2.1 Searching for Interactions in the Plackett and Burman 20-factor foldover 

Design 

To determine if the Plackett and Burman 20-factor foldover design is a strongly 

resolvable main-effect-plus 2 search design, every possible 4 x 4 matrix gener

ated from X'X, where X is the interaction matrix, must be of full rank. 

Cheng [9] showed that the projection of an OA(N, k,2,t) with k > t + 1 onto 

t+1 space results in 3 possible different types of design summarized as follows: 

1. 2~lN copies of the half replicate of 2t+l. 

2. 2~(t+1)N copies of the complete 2t+1 factorial. 

3. Projection contains copies of both the complete 2t+1 factorial and the half 

replicate. 

He further showed that if AT is not a multiple of 2t+1, then the projection must 

be of type 3, and therefore contains at least one copy of the complete 2t+1 facto

rial. 

Since the Plackett and Burman 20-factor foldover design is a OA(40,20,2,3), 

the above result can be used to determine the projections onto 4 space, which 

therefore must be of type 3. Now there are only two valid projections of type 3 

in 40 runs, summarized as follows: 

1. 24 plus a 24_1 replicated three times (Figure 5.1). 

2. 24 replicated twice plus a single 24-1 (Figure 5.2). 
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Figure 5.1: A 24 plus 3 x 24"1 designs Figure 5.2: A 24"1 plus 2 x 24 designs 

Figure 5.3: The two different possible 4-space projections for an OA(40,20,2,3) 

Note that in the 24_1 design interactions with one letter in common are in 

different orthogonal strings whilst interactions with no letters in common are 

in the same string since the defining relation is / = ±ABCD. 

Using this result if xt and x3 are two columns selected from X, where X 

is the two-factor interaction matrix generated from the Plackett and Burman 

20-factor foldover, then the vector product x\x3 can take one of six values sum

marized as follows :-

XjXj < 

40 

0 

±8 

±24 

if i=j 

if one letter in common 

• if no letters in common 

Using the above result each 4x4 matrix generated from X'X must be of the 

following form: 

X'X = 

40 xi2 xn rci4 

X12 40 rr23 x24 

£13 ^23 40 £34 

^ x14 x24 x34 40 J 
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where x{j = 0, ±8,-±24; i^j. 

Since xi3; i ̂  j can take only 5 different values, there are 56 = 15625 possible 

matrices to consider. Direct examination of the 15625 matrices yields 5 essen

tially different rank deficient matrices whose upper triangles are as follows: 

/ 
0 -8 -8 

24 24 

-8 

0 

V 

-8 

24 

24^ 

-8 

24 J 

1 

\ 

8 -24 8 

8 -24 

8 

\ 

/ 

V 

8 24 24 

24 24 

8 

8 -24 -8 

-24 8 

-24 

\ 

Diamond [13] showed that every 4 x 4 sub-matrix of X can be represented 

by one of eleven graphs involving n vertices and 4 edges, these graphs are 

displayed in Table 2.5. Each vertex represents a factor whilst each edge rep

resents a two-factor interaction. Note that for any orthogonal design if two 

edges are co-incident at one of the vertices, the corresponding vector product 

x\x3 must be 0 since there is one letter in common. 

The first two dependent matrices above involves two-factor interactions be

tween 7 factors, and can therefore be illustrated as Graph 10 in Table 2.5, 

whilst the remaining dependent matrices involve two-factor interactions be

tween 8 factors and correspond to Graph 11 in Table 2.5. Therefore to de

termine if the Plackett and Burman 20-factor foldover design is a strongly 

resolvable main-effect-plus 2 search design when, only two possible linearly 

dependent cases need to be examined. 

When selecting the 7 columns in the Plackett and Burman 20-factor foldover 
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design corresponding to Graph 10 there exist 

x 

/ 

x x3 
= 24,418,800 

2! 

possible choices to consider. When selecting the 8 columns which correspond to 

Graph 11 there are 

20 
x 

8 \2/ 

x 
\ 

X 
= 13,226,850 

4! 

possible choices to consider. Since direct checking of this many matrices is not 

a realistic option, a method is required that will reduce the number of choices 

in n space to a more manageable level. 

Draper and Lin [17] when considering the projection properties of the Plack

ett and Burman arrays listed the n-space projections for the Plackett and Bur

man 20 run design. They showed that the design had 17 different projections 

in 6 space, 9 different projections in 7 space and 5 different projections in 8 

space.This result can be used to generate the projections of the foldover design 

in 7 and 8 space respectively by considering the following fact: 

For any design design X the projection of the foldover design X = 

onto n space can be determined by considering: 

• each projection of X onto n - 1 space in X adding the foldover column as 

the nth factor. 

• each projection of X onto n space in X 

To consider the foldover in 7 space, therefore, one must consider the 9 dif

ferent projections of the original design in 7 space, plus the 17 different pro

jections of the design in 6 space with the foldover column added to make up 

X -1 

X 1 
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the 7th factor. The possible different projections of the foldover in 8 space is 

derived in the same manner by considering the 5 different projections of the 

original design in 8 space plus the 9 different projections of the design in 7 

space with the foldover column added as the 8th factor. 

Examination of the 26 possible arrangements in 7 columns reveals that only 

4 essentially different designs exist. Likewise the 14 possible different designs 

in 8 space reduces to 3 essentially different designs. 

To consider the rank of every possible 4 x 4 submatrix corresponding to 

Graph 10 it is sufficient to consider the 

/ 

x3 
= 315 

2! 

arrangements of the 4 different possible projections of the foldover in 7 space as 

defined above. Likewise the case corresponding to Graph 11 can be considered 

by checking the ranks of every 4 x 4 sub-matrix formed from 

/ 

x 
r4\ 

X 
^ 

\2J = 105 

4! 

arrangements of the 3 different possible projections of the foldover in 8 space. 

Direct checking of all these possibilities yielded no rank deficient matrices 

therefore the Plackett and Burman 20-factor factor foldover is a strongly re

solvable main-effect-plus 2 search design. 

5.2.2 Resolution of the Plackett and Burman 20-factor foldover 

In the previous section it was shown the Plackett and Burman 20-factor foldover 

design contained a full 24 factorial design in every choice of 4 columns. In this 
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Figure 5.4: The two different projections of the PB20 foldover onto 5 space 

section it will be shown the Plackett and Burman 20-factor foldover is resolu

tion V in every 5 factors. 

Draper and Lin [17] showed the Plackett and Burman 20 run design has 

3 different projections onto 4 space and 9 different projections onto 5 space. 

Using this result the projection properties of the foldover onto 5 space can be 

determined using the method described in section 5.2.1. 

Examination of the 12 possible different designs reveals there are only 2 

essentially different projections of the foldover design onto 5 space (Figure 5.4). 

To show that the foldover design is resolution V in 5 factors each X'X, where 

X is the interaction matrix formed from 5 columns in the foldover design, must 

be of full rank. The first projection has a X'X matrix given as follows: 
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f 40 

0 

0 

0 

0 

0 

0 

8 

8 

; " 8 

0 

40 

0 

0 

0 

8 

8 

0 

0 

8 

0 
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40 

0 

8 

0 

-8 

0 
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0 

0 

40 

8 

-8 
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0 

0 
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8 
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0 

0 
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0 

8 

0 

8 

0 

-8 

0 

40 

0 

0 

8 

0 

0 

8 

-8 

0 

0 

0 

40 

8 

0 

0 

8 

0 

0 

8 

0 

0 

8 

40 

0 

0 

8 

0 

8 

0 

0 

8 

0 

0 

40 

0 

~ 8 ) 
8 

0 

0 

8 

0 

0 

0 

0 

40 j 

which is of full rank, whilst the second projection has a X'X given as: 

0 

0 

0 

0 

0 

0 

0 

8 

8 

8 

0 

40 

0 

0 

0 

8 

8. 

0 

0 

24 

0 

0 

40 

0 

8 

0 

-8 

0 

24 

0 

0 

0 

0 

40 

8 

-8 

0 

24 

0 

0 

0 

0 

8 

8 

40 

0 

0 

0 

0 

-8 

0 

8 

0 

-8 

0 

40 

0 

0 

-8 

0 

0 

8 

-8 

0 

0 

0 

40 

-8 

0 

0 

8 

0 

0 

24 

0 

0 

-8 

40 

0 

0 

8 

0 

24 

0 

0 

-8 

0 

0 

40 

0 

"81 
24 

0 

0 

-8 

0 

0 

0 

0 

40 j 

which is also of full rank. 

This result shows the Plackett and Burman 20-factor foldover to be resolu

tion V in any choice of 5 columns. 
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5.3 The Plackett and Burman 24-factor foldover Design 

Plackett and Burman [30] presented a 223//24 resolution III design, defined as 

the union of one run with all factors at their low level and the circulant design 

permuted from the first row: 

+++++-+-++--++--+-+ 

This design can be used to generate a 224//48 resolution TV design using the 

foldover thereom. This section will examine some properties of this foldover 

design, including its projections and resolvability as a search design. 

5.3.1 Searching for interactions in the Plackett and Burman 24-factor foldover 

design 

To determine if the Plackett and Burman 24-factor foldover design is a strongly 

resolvable main-effect-plus 2 search a method similair to that used for the 20-

factor foldover is used. Every possible 4x4 matrix generated from X'X, where 

X is the interaction matrix, must be of full rank. 

The Plackett and Burman 24-factor foldover is an OA(48,24,2,3), Cheng 

[9] showed the projection must be of three types, and in 48 runs there are 4 

possible designs that suit this criteria which are summarised as follows: 

1. 24_1 replicated six times. 

2. 24 and a 24_1 replicated four times. 

3. 24 replicated twice, and a 24-1 replicated twice. 

4. 24 replicated three times. 

Draper and Lin [17] identified the different projections of the Plackett and 

Burman 24 run design onto 3 and 4 space, which are 2 and 3 respectively. To 
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Figure 5.6: 24 replicated three times 

determine the projection of the foldover design onto 4 space the 2 different pro

jections of the original design onto 3 space are applied to the foldover with the 

addition of the 24th (foldover) column as the fourth factor, plus the 3 different 

projections of the original design onto 4 space applied to the foldover, must be 

considered. Examination of these 5 potentially different designs reveals two 

essentially different projections onto 4 space, a full 24 factorial replicated three 

times (Figure 5.6), or a full 24 factorial replicated twice and a 24_1 replicated 

twice (Figure 5.5). Note also that these two designs form a subset of the four 

possible designs as outlined above. 

Using the above result if Xi and x3 are two columns selected from X then 

the vector product x\x3 can take one of four values summarised as follows :-

XiXj ~~ ' 

48 

0 

0 ^ 

ifi = j 

if one letter in common 

1 if no letters in common 

Each 4 x 4 matrix generated from X'X must therefore be of the following 
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form: 

X'X = 

48 xi2 xn xu 

xi2 48 Z23 x24 

X13 x23 48 xM 

\ xu x24 xM 48 J 

where xi3 = 0, ±16; i ̂  j. 

Since xi3;i ^ j can take only 3 different values, there are 3
6 = 729 pos

sible matrices to consider. Direct examination of these 729 matrices yields 1 

essentially different matrix whose upper diagonal is as follows: 

( 48 -16 -16 -16 ̂  

48 -16 -16 

48 -16 

48 ) 

which involves two-factor interactions between 8 factors and corresponds to 

linear Graph 11 in Table 1. There are 

V 

/ 

= 77,224,455 

4! 

combinations of 4 interaction in 8 columns which need to be considered. Once 

again we need to reduce the possibilities to a more manageable level. 

Draper and Lin [17] listed the projections of the Plackett and Burman 24 

run design in 7 and 8 space which are 12 and 5 different designs respectively. 

Therefore using the technique described in the previous sections we need to 

examine 17 possible different designs. Direct examination of these 17 designs 

reveals there are only 3 essentially different projections onto 8 space. 
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Figure 5.7: The two different projections of the PB24 foldover onto 5 space 

Checking the ranks of the 

8 < ^ 

/ 

x x 

V / 
= 105 

4! 

arrangements of the 3 possible foldover projections revealed no linear depen

dencies and therefore the design is a strongly resolvable main-effect-plus 2 

search design. 

5.3.2 Resolution of the Plackett and Burman 24-factor foldover 

The previous section showed that the Plackett and Burman 24-factor foldover 

design yields at least a full 24 in every choice of four columns. In this section it 

will be shown that the Plackett and Burman 24-factor foldover is resolution V 

in every choice of five columns. 

Draper and Lin [17] listed the different possible projections for the Plackett 

Burman 24 run design in 4 and 5 space, which are 3 and 9 respectively. Using 

the technique described in previous sections 12 potentially different designs 
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are formed and from these designs the projection properties of the foldover de

sign in 5 space were determined. Examination of these 12 potentially different 

designs revealed the Plackett and Burman 24-factor foldover has two essen

tially different projections onto 5 space (Figure 5.7). 

Given this result one needs only to investigate the rank of the 2 X'X matri

ces, where X is the interaction matrix formed from the two different choices of 

five columns in the design. The first projection has a X'X as follows: 
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which is of full rank, whilst the second projection has a X'X defined as: 

0 

0 

0 

48 
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0 

0 
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-16 
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0 

°1 
16 
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16 

0 

0 

0 

0 

48 j 

This result shows the Plackett and Burman 24-factor foldover design to be 

resolution V in every set of 5 columns. 

5.4 Conclusion 

In this chapter the Plackett and Burman 20 and 24-factor foldover designs 

were shown to be strongly resolvable main-effect-plus 2 search designs. A 

method was developed, based on Cheng's [9] results on orthogonal arrays, to 

determine the 4-space projection of each design and thus the structure of the 

two-factor interaction X'X matrix. Every possible 4 x 4 submatrix of the X'X 

was then examined for rank deficiencies. Each possible rank deficient subma

trix identified was then checked against the design to determine whether it 

was present or not. The projection properties of the design were utilised to 

greatly simplify this task. 

The 5 space projection of each of the foldover designs were determined and 

shown to be of resolution V. This result is potentially useful in situations where 

48 
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which is also of full rank. 
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factor sparsity is assumed as estimates of all two-factor interactions in every 

set of five factors can be attained. 
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Chapter 6 

ANALYSING MINIMUM RUN RESOLUTION IV DESIGNS 

6.1 Introduction 

The problem of analysing non-regular or fractionated designs with complex 

aliasing structures has been addressed by a number of authors. 

Box and Meyer [7] presented a Bayesian method of identifying active fac

tors. Their technique is summarised in Section 1.6 and consists of calculat

ing posterior probabilities of all possible models and then calculating marginal 

posterior probabilities that each factor is active. This technique works well 

when the data exhibit factor sparsity as the design can be collapsed down into 

active factors and analysed exploiting the individual factors projection proper

ties. Hamada and W u [21] introduced a technique that consisted of analysing 

the design by identifying significant main effects through the use of normal 

plots then entertaining interactions comprising of at least one significant main 

effect. 

This chapter presents two methods for analysing minimum run resolution 

IV designs. One method is approximate and is designed specifically for min

imum run resolution IV designs and uses existing code MBCQPI5 developed 

by Box and Meyer [7], which is freely available on Statlib. The other method 

directly adapts the Box and Meyer approach for a search design situation. 
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6.2 The Box and Meyer Procedure 

For aNxk design Box and Meyer consider every possible model M{ in ft factors 

where 0 < /,; < k. There are 2
k models Mi to consider starting from i = 0 (no 

active factors) to i = 2k - 1 (k active factors). The posterior probability of Mt 

can be written as: 

J u-w 7 \vi + x'ixi\\\ s{p\) ) 
(n-l)/2 

72 

where 
r 0 0 

0 Ii 

Pi = (ri + X'iXi)-
1X'iy 

S0i) = (y- Xji)'(y - Xifc) 

and C is a normalising constant, Xj is the design matrix corresponding to the U 

effects in model Mi, (3i is the vector of regression effects under Mi, TT is the prior 

probability that any one factor is active, and 7 is the magnitude of an effect 

relative to noise. 

The probabilities p(Mi | y) can be summed to compute the marginal poste

rior probability that a factor j is active by: 

F7= £ P(Mi\y) 
M J : factor j active 

A large value for P3 would therefore indicate factor j is active and similarly if 

P3 is close to zero the factor would be assumed inert. 

6.3 Two Proposed Methods 

6.3.1 An Approximate Method 

The first method uses the fact that the main effects and two-factor interactions 

are orthogonal in a foldover design. Stage 1 involves the identification of active 
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main effects. A foldover design can be written as: 

( \ 

Pi 

\?2J 
where 1 is the vector for the mean, yx and y2 are the response vectors of the 

original and foldover trials respectively, U and —U are the design matrices 

corresponding to the main effects and V is the design matrix for the two-factor 

interactions. 

Estimates of the main effects can be achieved by examining the difference 

between foldover pairs, which gives the model 

(j/i - Sfe) = 2U0! + (ei - e2) 

Note that this model does not have an intercept term. The Box-Meyer pro

gram does not allow this explicitly but an equivalent model can be obtained by 

analysing the original responses including a block term for each foldover pair. 

Stage 2 involves the identification of the active two-factor interactions. This 

is achieved by examining the sum of the foldover pairs 

{yi + V2) = ( l y ) 

/ 2p 

\2(32 
+ (ei + e2) 

In Stage 1 the maximum order of interactions is set to 1 since only main 

effects are of concern for the difference of foldover pairs. In Stage 2 the columns 

of V are used as the input factors, the maximum order of interactions is again 

set to 1, and the maximum order of the model is set equal to the maximum 

number of interactions thought possible. 

The method is only approximate since information on the variance o2 gener

ated by Stage 1 is not used in Stage 2 and vice-versa. It turns out that, at least 

for the examples considered here, qualitative conclusions are similar to that 



78 

obtained by using a more direct method. A more serious concern is that the 

method is not easily adapted to the case when augmenting trials are required 

and this was the reason the more direct method was implemented. 

6.3.2 A Direct Method 

Let MMi denote the model where ft of the k main effects are active and MI3 

denote the model where g3 of the t two-factor interactions are active with g3 < r 

and t — k(k - l)/2. Altogether there are 2k different main effect models with 

there being (*) different MMi models. There are (') different MI3 models so 

that there are 1 + (J) H h (*) different two-factor interaction models with at 

most r two-factor interactions. Each combined model Mi3 is the direct sum of a 

single MMi and a single MI3 and its prior probability is given by 

where 7re is the prior probability of an effect (or interaction) being active. If 

desired, the prior probability of a main effect being active could be set higher 

than the prior probability of a two-factor interaction being active although in 

the examples below this has not been done. Similarly effect heredity (and also 

factor sparsity if three-factor interactions and higher can be ignored) can be 

induced by setting to zero the prior probabilities of models not satisfaying effect 

heredity (or factor sparsity). 

The posterior probabilities of all the possible models Mi3 are computed using 

the method given by Box and Meyer. The probability of model MM{ is found by 

PMMi = Yljp(Mi3\y). 

and then the probability of main effect k being active is given by 

PMk = £ PMM{ 
MM;:factor k active 
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Similarly, the probability of model MI3 is found by 

PMI3=^iV(Mi3\y) 

and then the probability of two-factor interaction / being active is given by 

PIi = Y, PMIJ 
Mj:2fi 1 active 

6.4 Example 1 

Table 6.1 gives the results of the twelve runs generated for the Yang 6 factor 

foldover design using the model 

y = 2A + 1.5B - 3C + BD + CD + e 

where e ~ N(0,0.5). This model satisfies effect heredity but not factor sparsity 

since there are interactions involving D but the main effect of D is absent. 

6.4.1 Results from Box and Meyer Technique 

The Box and Meyer [7] technique of identifying active factors was applied to 

this design. Results were generated with ix = 0.25 and 7 = 2.0, and the maxi

m u m order of interaction was set to 2. 

Table 6.2 summarises the 10 models that fit the data the best. Table 6.3 

gives the posterior probabilities that each factor is active. Factors A, B and C 

are clearly identified as being active. However, this technique fails to identify 

factor D and therefore the subsequent analysis would fail to identify the two 

two-factor interactions that should be included in the model. 

6.4.2 Results from the Approximate and Direct Methods 

The analysis of main effects using the approximate method was generated with 

7re = 0.25 and 7 = 2.0, six blocks corresponding to each foldover pair and the 
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-0.5470 

0.0554 

-0.1297 

2.1668 

0.8004 

-2.5952 

0.5087 

0.3274 

0.1328 

-2.1648 

-5.4021 

7.1028 

Table 6.1: Results for Example 1 



Factors Post. Prob. 

ABC 

None 

C 

ABCD 

ABC E 

ABC F 

BC 

AC 

B 

A 

.946 

.014 

.011 

.007 

.006 

.005 

.003 

.001 

.001 

.001 

Table 6.2: Box and Meyer Analysis: Best 10 fitting Models for Example 1 

Factor Post.Prob 

None .014 

A .966 

B .970 

C -982 

D .009 

E .007 

F .007 

Table 6.3: Box and Meyer Analysis: Posterior Probabilities for Example 1 
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Factor post.prob post.prob 

(Approx.) (Direct) 

None 

A 

B 

C 

D 

E 

F 

.001 

.919 

.992 

.998 

.054 

.046 

.046 

.004 

.951 

.986 

.994 

.058 

.046 

.046 

Table 6.4: Proposed Analysis (Main effects): Posterior Probabilities for Exam

ple 1 

maximum order of interaction set to 1. For the direct method the maximum 

order of interaction was set equal to two, 7re was set to 0.25 and 7 was set to 

2.0. The posterior probabilities for the main efects were calculated by summing 

over all possible interaction models and then summing over those models that 

include the particular main effect. 

Table 6.4 displays the posterior probability that each main effect is active, 

factors A, B and C are identified as the most likely main effects. 

Table 6.5 presents the two-factor interaction design matrix for the design in 

Table 6.1. This design was also analysed with 7re = 0.25 and 7 = 2.0, maximum 

order of interaction set to 1 and the maximum number of active factors set to 

2. 

The upper portion of Figure 6.1 shows the posterior probabilities of all pos

sible models involving two two-factor interactions using the direct method. 

A similar diagram was' also obtained using the approximate method. Table 
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AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF Response 

+ + - + + + - + + - + + - - + -0.0382 

+ + + - + + + - + + - + - + - 0.3828 

+ + + + - + + + - + + - + - - 0.0032 

_ _ + + + + - - - - - - + + + 0.0039 

_ + _ _ - - + + + - - - + + + -4.6016 

+ _ _ _ _ _ _ - - + + + + + + 4.5075 

Table 6.5: Example 1: Two factor Interaction design Matrix (with foldover 

pairs added) 

6.6 presents the posterior probability that each two-factor interaction is ac

tive using the approximate and direct method. The diagram, in particular, 

identifies four models that fit the data equally as well, Mx = (AB, AC), M2 = 

(BE, CE),MZ = (BD, CD), and M4 = {BF, CF). This result corresponds to the 

first linear dependency presented in Chapter 3, and therefore the addition of 

augmenting trials will be required to estimate which of the two-factor interac

tion models is the true model. 

6.5 Augmenting for Example 1 

The maximum-minimum eigenvalue case given in Chapter 3 is (ab, bf, be). The 

generated reults for these runs were (7.2789,6.4040,5.0932). The lower portion 

of Figure 6.1 shows the posterior probabilities of all possible models involving 

two two-factor interactions using the direct method. The right column of Table 

6.6 presents the posterior probability that each two-factor interaction is active 

using the approximate and direct method. Both the diagram and the table 

shows that of the four models that fitted the data equally as well after the 
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After Initial Yang Foldover Experiment 

CO 

o CO 

o o 
0- CM 

d 
o 
c> 

(AB.AC) (BD,CD) (BF,CF) 
• • • • 

(BE.CE) 
•MMMMMM*** 

0 20 40 60 80 100 120 

Model 

After Augmenting Experiments 

Figure 6.1: Posterior Probabilities of models involving two two-factor interac

tion models before the addition of augmenting trials (top) and after addition of 

augmenting trials (bottom) 
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factor 

none 

AB 

AC 

AD 

AE 

AF 

BC 

BD 

BE 

BF 

CD 

CE 

CF 

DE 

DF 

EF 

post.Prob. 

(Approx.) 

.038 

.239 

.235 

.008 

.008 

.008 

.008 

.216 

.221 

.213 

.220 

.215 

.216 

.013 

.013 

.013 

Post.Prob. 

(Direct) 

.003 

.262 

.260 

.002 

.002 

.002 

.002 

.240 

.242 

.237 

.241 

.239 

.238 

.004 

.004 

.004 

Post.prob. 

(Augmented) 

.000 

.007 

.007 

.001 

.001 

.001 

.001 

.967 

.014 

.002 

.969 

.012 

.003 

.001 

.002 

.002 

Table 6.6: Posterior Probabilities of Two-Factor Interactions using the Approx

imate method and Direct method, and after the addition of augmenting trials 
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A B C D E F response 

+ + + - + + 3.4530 

+ + + + - + 7.0554 

+ + + + + - 2.8703 

+ - - + + + 0.1688 

- + - + + + 1.8004 

- - + + + + 1.4048 

- - - + - - -3.4913 

- - - - + - -6.6726 

- - - - - + -10.8672 

- + + - - - -0.1648 

+ - + - - - -2.4021 

+ + - - - - 7.1028 

Table 6.7: Results for Example 2 

initial design now only model M3 = (BD, CD) is supported by the data. 

6.6 Example 2 

Table 6.7 gives the results of the twelve runs generated for the Yang 6 factor 

foldover design using the model 

y = 2A + ZB + 1.57J) - 2AE - 2BD + e 

where e ~ JV(0,0.5). Again this model satisfies effect heredity but not factor 

sparsity since there is an interaction involving E but the main effect E is ab

sent. 
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Factors Post. Prob. 

B 

None 

A 

AB DE 

AB D F 

BD 

AB 

C 

D 

BC 

.452 

.176 

.090 

.072 

.037 

.036 

.024 

.021 

.015 

.013 

Table 6.8: Box and Meyer Analysis: best 10 fitting Models for Example 2 

6.6.1 Results from Box and Meyer Technique 

The Box and Meyer [7] technique of identifying active factors was applied to 

this design. Results were generated with 7r = 0.25 and 7 = 2.0, and the maxi

m u m order of interaction was set to 2. 

Table 6.8 summarises the 10 models that fit the data the best. Table 6.9 

gives the posterior probabilities that each factor is active. While factor B ap

pears to be active the method does not identify factors A, D and E. 

6.6.2 Results from the Approximate and Direct Methods 

The analysis of main effects using the approximate method was generated with 

7re = 0.25 and 7 = 2.0, six blocks corresponding to each foldover pair and the 

maximum order of interaction set to 1. For the direct method the maximum 

order of interaction was set equal to two, 7re was set to 0.25 and 7 was set to 2.0. 



88 

Factor Post.Prob 

None .176 

A .255 

B .672 

C .057 

D .188 

E .103 

F .062 

Table 6.9: Box and Meyer Analysis: Posterior Probabilities for Example 2 

The posterior probabilities for the main efects were calculated by summing 

over all possible interaction models and then summing over those models that 

include the particular main effect. 

Table 6.10 displays the posterior probability that each main effect is active. 

Factors A, B and D are identified as the most likely main effects. 

Table 6.11 presents the two-factor interaction design matrix for the design 

in Table 6.7. This design was also analysed with 7re = 0.25 and 7 = 2.0, max

imum order of interaction set to 1 and the maximum number of active factors 

set to 2. 

The upper portion of Figure 6.2 shows the posterior probabilities of all pos

sible models involving two two-factor interactions using the direct method. 

A similar diagram was also obtained using the approximate method. Table 

6.12 presents the posterior probability that each two-factor interaction is ac

tive using the approximate and direct method. The diagram, in particular, 

identifies two models that fit the data equally as well, Mi = (AD, BE) and 

M2 = (AE, BD). This result corresponds to the tenth linear dependency pre-
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Factor 

none 

A 

B 

C 

D 

E 

F 

post.prob 

(Approx.) 

.000 

.981 

.998 

.108 

.959 

.049 

.049 

post.prob 

(Direct) 

.003 

.977 

.994 

.172 

.966 

.049 

.049 

Table 6.10: Proposed Analysis (Main effects): Posterior Probabilities for Exam

ple 1 

AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF Response 

+ + - + + + - + + - + + - - + -0.03382 

+ + + - + + + - + + - + - + - 0.3828 

+ + + + - + + + - + + - + - - -7.9968 

- - + + + + - - - - - - + + + 0.0039 

- + - - - - + + + - - - + + + 0.6016 

+ - - - - - - - - + + + + + + 8.5075 

Table 6.11: Example 2: Two factor Interaction design Matrix (with foldover 

pairs added) 
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After Initial Yang Foldover Experiment 

Model 

After Augmenting Experiments 

Figure 6.2: Posterior Probabilities of models involving two two-factor interac

tion models before the addition of augmenting trials (top) and after addition of 

augmenting trials (bottom) 
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factor 

none 

AB 

AC 

AD 

AE 

AF 

BC 

BD 

BE 

BF 

CD 

CE 

CF 

DE 

DF 

EF 

post.Prob. 

(Approx.) 

.064 

.019 

.053 

.352 

.333 

.018 

.044 

.334 

.361 

.019 

.019 

.020 

.057 

.020 

.049 

.049 

Post.Prob. 

(Direct) 

.002 

.003 

.009 

.501 

.460 

.003 

.007 

.460 

.503 

.003 

.003 

.003 

.010 

.003 

.008 

.007 

Post.prob. 

(Augmented) 

.000 

.000 

.000 

.997 

.000 

.000 

.000 

.000 

.998 

.000 

.000 

.000 

.000 

.000 

.000 

.001 

Table 6.12: Posterior Probabilities of Two-Factor Interactions using the Ap

proximate method and Exact method, and after the addition of augmenting 

trials. 
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sented in Chapter 3, and therefore the addition of augmenting trials will be re

quired to estimate which of the two-factor interaction models is the true model. 

6.7 Augmenting for Example 2 

The maximum-minimum eigenvalue case given in Chapter 3 is (bd,be). The 

generated reults for these runs were (6.2789, -3.5960). The lower portion of 

Figure 6.2 shows the posterior probabilities of all possible models involving 

two two-factor interactions using the direct method. The right column of Table 

6.12 presents the posterior probability that each two-factor interaction is active 

using the approximate and direct method. Both the diagram and the table 

shows that of the two models that fitted the data equally as well after the 

initial design now only model M2 = (AE, BD) is supported by the data. 

6.8 Conclusion 

In this chapter two methods for analysing search designs were presented. The 

first method is approximate only and utilises existing freely available software. 

This method is useful as an exploratory tool but is not easily adapted to the 

case when augmenting trials are required. For this reason a direct Bayesian 

technique was implemented which can accomodate augmenting trials. For the 

two examples presented which satisfy effect heredity but not factor sparsity 

both the approximate and direct methods performed considerably better than 

the standard Box and Meyer technique of identifying active factors, which 

failed to identify significant effects. If the models had exhibited factor Sparsity 

it would be expected that the Box and Meyer technique and the two methods 

presented in this chapter would give similiar results. Furthermore the direct 

method was used to analyse both examples after the addition of the augment

ing trials suggested in Chapter 3, and for each example the "true" model was 
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correctly identified. 
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Chapter 7 

DISCUSSION 

7.1 Introduction 

Previous chapters have detailed some properties of a series of non-regular, 

minimum-run resolution TV designs. These designs are termed non-regular 

as they are not members of the well known class of two-level fractional designs 

as derived by Finney [19]. 

Regular fractional factorial designs have been successfully used in all areas 

of quality improvement. The designs have many nice properties such as min

imum variance, orthogonality of main effects and simple aliasing structures 

that enable them to be easily employed and analysed. Normal probability plots 

(Daniel [10]) and Bayes plots (Box and Meyer [5]) enable one to easily study the 

data and to determine any real effects. In addition methods for the design of 

augmenting trials have been derived including methods due to Daniel [12] and 

Diamond [14] to resolve ambiguities in the data as the need arises. 

Regular fractional resolution TV factorial designs are used when it is im

portant to estimate the main effects unbiased by the two-factor interactions, 

this is often the case when a small number of significant two-factor interaction 

effects are suspected. 

It can sometimes be the case that the number of experimental observations 

required are larger than can be afforded, in these cases non-regular, minimum 

run resolution TV designs can be employed. These non-regular designs can be 

orthogonal or non-orthogonal and usually exhibit a complex aliasing structure 
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between the two-factor interactions. Consequently, they have been considered 

to be too difficult to interpret. However results due to Diamond [14] and in 

this thesis show this complex aliasing can in fact be quite advantageous as it 

sometimes allows for the identification of a small number of two-factor interac

tions without the need for augmenting trials. Two techniques where developed 

specifically for the analysis of these non-regular minimum run designs. 

In some cases the addition of augmenting trials may still be required. This 

thesis has identified these cases when considering models with one, two or 

three interactions for a number of non-regular minimum run designs. Aug

menting trials which separate these dependencies have been derived for a 

number of these designs also. 

7.2 Comments On The Non-regular Designs 

7.2.1 The Raghavarao Foldover Designs 

Raghavarao [31] presented two-level weighing designs for 5,13 and 25 factors 

that are the most efficient of their class. The 5 factor foldover design is in 

fact the modified one factor at a time foldover design studied by Diamond [13]. 

The 13 factor foldover design has been shown to be a strongly resolvable main-

effect-plus r search design when r = 1 and weakly resolvable when r = 2. 

Augmenting runs have been derived to separate the dependency when r = 2. 

7.2.2 The Yang Foldover Designs 

The foldover of the n = 2 (mod 4) factor designs due to Yang [36] are also 

very efficient designs. As a class, the Yang foldovers provide designs with a 

convenient number of runs. For example, the 6 factor foldover involves 12 

runs and falls halfway between the 8 and 16 run regular orthogonal resolution 

IV designs, the 10 factor foldover in 20 runs fits between the 16 and 24 run 
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regular fractional replicates and the 14 factor foldover in 28 runs fits between 

the regular orthogonal resolution TV designs in 24 and 32 runs. 

Diamond [14] showed that the Yang 6 factor foldover was a strongly resolv

able main-effect-plus r search design when r = 1 but only weakly resolvable 

when r = 2. Results in this thesis present augmenting trials in the presence of 

error for the dependent cases when r = 2. Diamond also showed the 10 factor 

foldover design is not resolvable when r = 1. Results in this thesis show the 

14 factor foldover design to be a strongly resolvable main-effect-plus r search 

design when r = 1 but only weakly resolvable when r = 2. Augmenting trials 

were presented for the general case when r = 2. 

7.2.3 Plackett and Burman Foldover Designs 

The Plackett and Burman designs give 100% efficient estimates of the main 

effects and unlike the designs due to Raghavarao and Yang, main effects are 

also orthogonal. Diamond showed the 12 factor foldover design to be strongly 

resolvable main-effect-plus r search design when r = 2. He also showed the 

design was resolution V in every choice of 5 columns. Results in this thesis 

show that the 12 factor foldover has only one projection in any AT factors (where 

N < 12). It was also shown that the design is weakly resolvable when r = 3. 

The foldovers generated from the 20 and 24 factor Plackett and Burman 

designs also have nice projection properties yielding a resolution V design in 

every choice of 5 columns. Each of the designs were also shown to be strongly 

resolvable when r = 2. 
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7.3 Limitations 

7.3.1 The Assumption of No Three-Factor Interactions 

This thesis has been concerned wholely with the identification of a small num

ber of real two-factor interactions in minimum-run resolution TV designs. The 

analysis of each design has been contingent upon the assumption that higher 

order interactions are negligible. If, in fact, three-factor interactions are real 

they will bias main effect estimates but not the two-factor interactions. If four-

factor interactions are real then the two-factor interaction estimates will be 

biased. Hence if there is cause to suspect that higher order interactions are 

real, conclusions drawn from an analysis of these minumum-run resolution IV 

designs will be affected and this should be considered when interpreting the 

experimental results. 

7.3.2 Appropriate Metric 

Finding an appropriate transformation for the experimental data is an issue 

that has not been addressed in this thesis, nor has it in any of the search design 

literature. Box and Cox [3] published a paper which generated considerable in

terest in this area for regular fractional factorials. They presented an example 

where the analysis of a replicated resolution III design in one metric identi

fied two main effects as being real, whilst for other metrics the corresponding 

two-factor interaction begins to appear. 

Box and Cox employed the family of transformations called the power trans

formations, where the response y is transformed according to 

«W - 1 
yw = , , ,(y° = ylny) 

Ay(*-D 

where y is the geometric mean of the response. Box and Cox employed a lamdba 
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plot which is a plot of various test statistics versus the transformation param

eter A to determine an appropriate transformation for the data. The A plot is 

discussed in detail by Box [1]. 

One technique for determining the appropriate transformation of a search 

design was suggested by Diamond [14] who suggested producing a lamdba plot 

of the main effects to determine an appropriate metric. This technique, how

ever, is yet to be examined. 

7.4 Some Further Extensions 

7.4.1 Augmenting with and without error 

In Chapter 2 a method was presented for devising augmenting runs from a can

didate set to separate linearly dependent models for the error free case. This 

method was extended in chapter 3 to include the with error case. Augment

ing trials in the presence of error need to be developed for the Yang 10 and 

14-factor foldover designs and also the Plackett and Burman 12 factor foldover 

when k = 3. 

7.4.2 The effect of outliers 

Daniel [10] showed how by using a normal probability plot it is often possible 

to identify outliers in a regular fractional design. The minimum-run resolution 

IV designs require a method for the identification of outliers to be developed. 

7.4.3 Extensions to the Designs 

The technique described in chapter 4 could be used to investigate the Plackett 

and Burman 20 and 24 factor foldovers when A; = 3 and also for larger Plackett 

and Burman designs. It would also be worthwhile to examine the Plackett and 
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Burman resolution III designs as search designs although the problem would 

be considerably more difficult as the main effects would need to be taken into 

account. 

7.4.4 Generalising the Results 

The emphasis in this thesis has been on obtaining results using a combination 

of mathematical and computing power. It would be desirable to prove many 

of the results mathematically. This would give further insight into the prop

erties of the designs and suggest additional research. For example, the result 

obtained in this thesis that the foldovers of the PB20 and PB24 designs are, 

like the foldover of the PB12 design, resolution V in every set of 5 factors may 

generalise to a larger class of Plackett and Burman designs. 
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