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Abstract 

This thesis is concerned with non-contact techniques for optical excitation of 

mechanical vibrations in structures and with the use of non-contact fibre optic 

interferometers for the measurement of parameters which characterise these 

mechanical vibrations. Taken together, the excitation and sensing systems provide 

a method for fully remote non-destructive testing (NDT) of structures, which can 

sense changes in any parameter which affects the vibrations. The technique is 

applicable to a wide range of structures but is particularly suitable for use with 

delicate structures or structures for which the use of conventional excitation and 

sensing techniques would load the structure and modify the parameters being 

measured. The ultimate usefulness of this NDT technique depends on the accuracy 

with which important vibrational parameters such as resonant frequency and 

damping can be measured. 

In this thesis, transverse mechanical vibrations are thermoelastically excited in 

structures using sinusoidally modulated 800 nm laser diodes with peak-to-peak 

powers of the order of 25 mW. The vibrations are sensed using a modified form of 

a fibre optic Mach-Zehnder interferometer, which uses a 2 mW He-Ne laser source. 

The interferometer senses changes in optical path between the partially reflecting 

unpolished surface of the vibrating structure and the end of an optical fibre placed 

at a distance of 100 -150 mm from the surface. 
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The measurements have been made using a very lightly damped structure (a high Q 

cantilever) under three separate environmental noise conditions. Data was 

collected for the resonant frequency and also for the related loss-dependent 

parameters of half-power bandwidth and damping factor for the first 5 vibrational 

modes. A number of ways of making these measurements were tried and the 

advantages and disadvantages of each were identified. The thesis identifies the 

accuracy with which each of the vibrational mode parameters can be determined 

and the origin of the effects, which are responsible for the ultimate limitation on 

this accuracy. 
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Chapter 1: Introduction 

1.1 Non-destructive testing of structures 

Components of machines, vehicles and structures are frequently subjected to 

repeated loads, also called cyclic loads, and the resulting cyclic stresses can lead to 

microscopic physical damage to materials involved. Even at stresses well below a 

given material's ultimate strength, this damage can accumulate with continued 

cycling until it develops into a crack or other damage that leads to failure of the 

component. This process of accumulating damage and finally failure due to cyclic 

loading is called fatigue (Dowling 1993). 

The costly and common causes of mechanical failure in industry are excessive 

deformation and cracking in components due to material inhomogeneities. When 

viewed at a sufficiently small scale, all materials are anisotropic and 

inhomogeneous. As a result of such non-uniform microstructure, stresses are 

distributed in a non-uniform manner and regions of most severe stress are usually 

the points where fatigue damage starts. It is frequently necessary to check and test 

the article during its service life in order to monitor changes, such as possible 

fatigue damage. 

The types of test used can be broadly classified into two categories: 

(a) Tests to establish the properties of the material, and 

(b) Tests to determine the structural integrity of the material or component. 

The tests in the first category are generally of a destructive type. They are 

performed on samples of a material and the test-piece is damaged or broken in the 

process. The tests in the second category are of a non-destructive nature and are 
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Chapter 1: Introduction 

used to detect the presence of internal or surface flaws in a material or a 

component. By their very nature, these tests do not damage the parts being tested. 

The rapid growth in the use of non-destructive testing methods and techniques in 

the past years has resulted from demands by industry for improved quality. Nearly 

every property of the materials to be inspected has been made the basis for some 

method or technique of non-destructive testing. The coin-tap test (McGonnagle, 

1961) is probably the best known local method of non-destructive testing. The 

region of structure to be tested is tapped with the coin and the operator listening to 

the resulting sound can detect the difference in 'ringing' between good and 

defective structures. The defective areas sound duller than good areas due to 

resonant frequency shifts and more rapid sound decay due to acoustic losses and 

stiffness changes at the defect. 

1.2 Vibration analysis in NDT 

Objects have a set of natural resonant mechanical vibration frequencies. These 

natural frequencies are functions of the size, shape, mass, elastic properties, and 

mode of vibration produced in the specimen. For specimens of simple shape, it is 

possible to derive relations between the various dimensional and structural 

parameters and the frequencies for simple modes of vibration. When the specimen 

has a complex shape, such relations cannot be derived mathematically and an 

empirical relationship is normally found (Bray and McBride 1992). 

Vibrational analysis for non-destructive testing purposes is called modal analysis. 

Many of the techniques developed in the field of modal analysis and dynamic 

property measurement methods over the past 20 years have sought to measure the 
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Chapter 1: Introduction 

modal frequencies of a structure accurately and to explain observed shifts in those 

frequencies in terms of defect or damage to the structure. There are two practical 

limitations in the usual application of modal analysis for non-destructive testing 

(Ewins, 1995): 

(a) Imprecise impulsive excitation techniques (traditionally, impulsive heating, 

impact or shaking) which allow the energy delivered to the test structure to 

vary between successive trials. 

(b) Invasive vibration sensing or excitation methods which significantly load 

lightweight structures by physical contact during vibration. These can 

require special preparation or modification of the structure's surface and can 

alter the modal frequencies being measured. 

The natural mechanical vibration frequencies are a function of shape, physical 

properties and boundary conditions. The dependence on shape includes the 

geometrical design of structure and the dimensional factors such as length, width 

and thickness. The relevant physical properties include modulus of elasticity, 

density and Poisson's ratio for the material of the structure. Boundary conditions 

refer to the type of support or the way in which the structure is constrained. 

Changes in any of the above properties of a structure will generally cause a change 

in natural frequency of the modal vibrations. Detection of these frequency shifts 

can be used to reveal underlying changes in one or more of these structural 

properties (Bray and McBride 1992). 
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Chapter 1: Introduction 

Many types of flaws, defects and damage in structures of different shapes directly 

affect its stiffness or elasticity (Duggan 1964). A loss of stiffness is detectable, as a 

decrease in the observed resonance frequency of the structure for modes, which do 

not have a node at the damage location. 

The NDT technique, in which the test structure is caused to vibrate in one of its 

natural or resonant mechanical modes, is known as resonance vibration testing. 

This resonance vibration testing generally involves measurement of either the 

natural frequencies of the structure being evaluated or the rate of attenuation (or 

damping) of vibrations in the structure (Bray and McBride 1992). The data 

obtained from these tests are a function of the physical configuration and 

composition of the sample and can therefore be analysed for property determination 

and flaw detection purposes. Conventionally the excitation is usually 

accomplished by mechanical coupling of the test structure to a subsidiary vibrator, 

such as a piezoelectric transducer or an electromagnetic (or electrodynamic) 

vibrator. The electromagnetic methods are convenient for exciting small vibrations 

in magnetic materials, and the induced current methods are useful for non-magnetic 

metals having good conductivity. Since no physical contact is required between 

the test structure and excitation system, the structure is free to vibrate at its own 

natural frequency. For magnetic material, the region of maximum vibration 

amplitude is positioned to bridge the poles of an electromagnetic coil carrying 

alternating current. The resonant frequency may be found by varying the frequency 

of the alternating current to obtain maximum vibration amplitude. Non-magnetic 

metals with good conductivity can be set into vibration by passing an alternating 
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Chapter 1: Introduction 

current through a coil placed near the test sample. The small induced currents in 

the sample produce a reaction between the magnetic field of the coil and that of the 

induced current. Tthis reaction produces an alternating force on the test sample 

and causes it to vibrate. Continuous excitation has several advantages for resonant 

vibration testing of materials. It permits: 

a) Detection of the natural frequency of vibration in structures (including those 

having high damping) 

b) Examination of the mode of vibration with sound or vibration pick-ups 

c) Excitation of a single natural frequency at one time so that the fundamental 

frequency is not masked by other modes or overtones 

d) Less critical attention to the damping introduced to the supports. 

Piezoelectric accelerometers, capacitance and strain gauges are the most commonly 

used conventional devices to measure vibration parameters (Allocca and Stuart 

1984). 

1.3 Excitation of mechanical vibrations using laser sources 

The advent of the laser has produced a light source of high enough power that 

considerable heating effects have been generated when the light is absorbed. 

Lasers have the ability to produce a very wide range of powers, pulsewidths and 

wavelengths. Since this power can be delivered to a very small area of a target, 
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Chapter 1: Introduction 

lasers provide very flexible sources of localised excitation and heating. When a 

laser beam of high power density (~107 W/cm2) impinges on an opaque metal 

surface, the light energy is absorbed in a thin layer of material. The absorbed light 

causes a rapid rise in the surface temperature to its vaporisation temperature in a 

time short compared to the pulse duration. A small portion of the surface material 

is rapidly ejected as a molten spray and vapour (Ready J.F., 1965). This results in 

an impulsive reaction to the irradiated structure, which causes it to oscillate. The 

disadvantages of the ablative laser excitation are that significant damage can be 

done to the surface of the structure and the impulse generated by the excitation may 

not be repeatable if there is cumulative damage. 

Philp and Booth (1994) found that the simple structure could be excited by a laser 

beam of sub-ablative power density without any damage to the irradiated surface at 

all. It has been shown that the heat generated at the surface due to the absorption of 

light even lower than the material ablation threshold causes a localised thermal 

expansion, which in turn causes a localised bending moment. This localised 

bending moment is sufficient enough to induce time dependent angular 

displacement or flexure of a structure along the biggest dimension. The vibration 

amplitude of the structure is normally smaller than the amplitude excited by the 

ablative technique because the absorbed energy is simply lower. The relatively 

large structure (as a 300 mmxl2 mmx3 mm cantilever) has been successfully 

driven to mechanical vibration using repetitive pulses from a low-power diode 

laser. It was shown that the structure could be set in steady state forced vibration if 

the modulation frequency of the diode laser was matched to one of the natural 
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Chapter 1: Introduction 

resonance frequencies of the structure. This required that the excitation point at 

the surface be positioned at an antinode of the bending moment profile for the 

selected vibration mode. 

Since the magnitude of structural response depends critically on the difference 

between the excitation and resonant frequency, by measuring the displacement 

amplitude as function of driving frequency in the resonance region the response 

curve of the vibration mode can be plotted. The resonance frequency is identified 

as a peak of the response curve with maximum amplitude, which corresponds to 

the natural resonance frequency of a particular mode for structure. The half-power 

bandwidth can be also determined from the response curve of a particular mode by 

obtaining the damping ratio. The accuracy of this technique depends on how 

accurately the peak magnitude can be measured and the frequency resolution of 

equipment obtainable for the measurement. The optical excitation and optical 

sensing technique permits: 

(a) Remote non-contact excitation and detection of very small displacements 

(b) Low cost support instrumentation. 

1.4 The Aim of the research 

The purpose of the work described in this thesis is to extend the work of Philp 

(1993) by carrying out a more careful set of measurements of the modal 

frequencies of some suitable structure in order to determine just how accurately the 
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Chapter 1: Introduction 

modal frequencies can be determined using a well-designed experimental system. 

The accuracy with which modal frequencies can be measured will ultimately 

determine the limitations of the optical excitation and sensing technique for non­

destructive testing applications. 

Philp's modal frequency measurements were found to be limited by the accuracy of 

the simple oscillator used to drive the laser diode excitation system (± 0.5 Hz). 

The experimental arrangement used in this thesis will use a very high stability 

oscillator to try to remove this limitation and then try to see exactly what physical 

effects are responsible for any limitation to the ultimate modal frequency 

resolution, which can be achieved. Such limitations could arise from the 

fundamental Q of the mechanical resonance being excited (dependent on 

vibrational energy loss) or could arise from extraneous environmental vibrational 

noise effects, such as those produced by building vibration, acoustic noise and air 

currents, which can shift or broaden the measured mechanical resonance 

frequencies. 

Clearly the limitations will be a function of not just the magnitude of the noise but 

also the magnitude of the signal (ie signal to noise ratio) and the overall sensitivity 

of the measurement system. Rather than attempt to improve performance by brute 

force methods such as using laser powers which are orders of magnitude greater 

than those used by Philp, we have chosen to continue to use moderate power laser 

diodes for excitation as these are cheap, simple to use and compatible with highly 

practical experimental systems. We have, however, chosen to increase the 

sensitivity of the interferometric detection system as the one used by Philp was 
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Chapter 1: Introduction 

clearly capable of significant improvement without any change to the basic 

practicality of the system. A new interferometer system has been constructed 

which is based on the more common shorter-wavelength He-Ne transition at 633 

nm and uses couplers designed for this wavelength together with lower noise 

silicon detectors. The change of wavelength alone gives an increase in 

displacement sensitivity of more than a factor of two compared to the 1523 nm 

laser source used by Philp. The interferometer has also been improved by the use 

of lower noise electronic circuitry. The overall effect of these changes has been to 

improve the noise equivalent displacement of the system by roughly an order of 

magnitude while at the same time increasing the bandwidth by a similar factor. 

The specific aims of this research are to assess the suitability of low-power 

resonant optical excitation and sensing systems for modal analysis applications by: 

• Constructing an optical system suitable for making non-contact measurements 

of the modal frequencies and other modal oscillation parameters of transverse 

mechanical vibrations in small to medium sized structures. This system will 

comprise: 

(a) A modulated optical beam with an accurately controllable modulation 

frequency. 

(b) A sensitive fibre optic interferometer. 

(c) A low-noise signal detection and recording system. 
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Chapter 1: Introduction 

• Investigating the advantages and disadvantages of alternative ways of making 

measurements of modal oscillation parameters, which can be used to 

characterise a structure (modal frequency, resonance bandwidth and damping). 

• Using the optical system to determine the accuracy with which measurements 

can be made of modal oscillation parameters for a high-<2 structural resonance. 

• Determining the origin of the effects, which are responsible for the ultimate 

limitations with which modal oscillation parameters can be measured. 

This optical excitation technique may be used to supplement the resonance 

vibration testing in the field of NDT. 
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Chapter 2: Review of previous work and vibration analysis background 

2.1 Introduction 

Bell (1880) first discovered that when a periodically interrupted beam of sunlight 

shines on a solid in an enclosed cell, an audible sound could be heard by means of 

a hearing tube attached to the cell. In the time the photoacoustic effect was 

regarded as a curiosity of no practical value. More than 70 years later the advent of 

the laser with diverse heating effects has revived interest of the phenomenon. 

Since White (1963) first suggested the generation of acoustic pulses by laser 

irradiation of metal surface, a variety of workers (Rosencwaig and Gersho 1976; 

Scruby et al. 1980; Charpentier et al. 1982; Aadmont and Murphy 1982) have 

made contributions towards understanding the generation process and 

characterising the resultant field. It was shown by Rosencwaig and Gersho (1976) 

that the primary source of the acoustic signal arises from the periodic heat flow 

from the solid to the surrounding gas as a result of extremely rapid light absorption 

by solid, which causes an oscillatory motion of a narrow layer of gas at the solid-

gas boundary, that produces detected acoustic signal. It was found that the 

photoacoustic signal depends on the amount of absorbed light energy and thermal 

properties of the solid, and it is ultimately governed by the magnitude of thermal 

diffusion length normal to sample surface. Since the thermal diffusion length 

depends on the chopping frequency, the photoacoustic technique enables one to 

obtain optical absorption spectra on any type of solid or semisolid material, 

whether it be crystalline, powder, amorphous, gel, etc. This capability is based on 

the fact that only the absorbed light is converted to sound. A one-dimensional 

model for thermal depth profiling was developed by Opsal and Rosencwaig (1982), 

that provided the expressions for the temperature at the surface of the sample and 
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Chapter 2: Review of previous work and vibration analysis background 

for the thermoelastic response beneath the surface. Furthermore Aamodt and 

Murphy (1982) reported the specific cases where 3-D thermal diffusion effects are 

important. 

2.2 Summary of previous works 

With rapid growth of interest in photoacoustic spectroscopy, the photoacoustic 

technique has been applied to a large range of problems, in particular, to measure 

accurately thermal diffusivity of different materials (Charpentier et al. 1982). The 

observation of unwanted phenomena was reported, which related to transverse 

thermal expansion and temperature gradient through the thickness of the sample 

(rear surface excitation). The mechanical vibration due to thermoelastic bending 

(called the "drum effect)" was observed in the thermal diffusivity measurement of a 

clamped plate sample. In the experiments the sample (0.5 mm thin metal plate) 

mounted horizontally on the top of the cell was uniformly illuminated by a 450W 

Xe-arc lamp. The polychromatic beam was modulated by a frequency-stabilised 

mechanical chopper, whose frequency could be varied from a few Hertz to a few 

kHz. A capacitive microphone was used in measurements, with a sensitivity of 50 

mV/Nm" . A lock-in amplifier was used to analyse the magnitude and the phase of 

the detected signal. Mechanical resonance was observed at several frequencies for 

many samples of different metals. It was found that at frequencies greater than the 

characteristic frequency fe (defined as the inverse of thermal diffusion time), the 

signal decreases very fast with increasing frequency and the "drum effect" can 

dominate the photoacoustic signal. 
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Chapter 2: Review of previous work and vibration analysis background 

The influence of thermoelastic bending on photoacoustic signal generation was 

examined theoretically and experimentally in connection with the thermal 

diffusivity measurement of metals (Rousset et al. 1983). In the experiment, the 

sample, which was sensitive to thermoelastic bending only, was simply supported 

between two rigid circular knife edges illuminated by a mechanically modulated (a 

few Hz - a few kHz frequency-stabilised chopper) Xe source. The modulated light 

was absorbed by the sample (thin plate-0.5 mm), instantly converted into thermal 

energy and induced thermoelastic bending. The deflections of the sample surface 

due to the "drum effect" were measured by detecting the deviation of a He-Ne laser 

beam. The probe beam deviation was read on a position sensor (silicon detector) 

placed at a distance from the sample. The signals were processed by a lock-in 

amplifier and recorded. It was found that for the geometrically thin uniformly 

illuminated sample the response of structure to thermal excitation is characterised 

by the frequency^, which is the inverse of thermal diffusion time. It was shown 

that the amplitude of thermoelastic bending is independent of modulation 

frequency at low frequencies (thermally thin sample), while at higher frequencies 

(thermally thick sample) the amplitude decreases as an inverse of frequency. The 

theoretical model was developed, which analytically explained thermoelastic 

bending of solids, using the thermoelasticity equations, the effect is essentially due 

to a temperature gradient inside of the sample and normal to the side of the greatest 

dimension of the sample. It was shown that the effect of thermoelastic bending can 

be used to obtain values of thermal diffusivity for metals directly. Later Rousset et 

al. (1985) developed the technique for non-destructive detection of delamination in 

layered materials based on photothermal bending effect. In experiments the surface 

of a material was heated by a focused laser pulse with 0.1-1.0 J an incident power 
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Chapter 2: Review of previous work and vibration analysis background 

to a few degrees above the ambient temperature. The induced thermoelastic 

displacement was detected by a laser interferometer. It was shown that the 

detectability of defects depends on the relative dimensions of the laser radius, the 

size of the delamination and the layer thickness. 

Hane et al. (1988) developed a photothermal probing technique for detection of 

flexural vibration caused by thermoelastic bending. The vibration of a clamped 

plate sample was generated by a focused irradiation of modulated laser light. The 

flexural vibration caused by thermoelastic bending was sensed by the deflection of 

the probe beam. A 12 mm diameter, 80 um thick glass plate was fixed around its 

circumference. The front surface was coated by sputtering with 30 nm thick 

chromium. A 25 mW of maximum power, 830 nm wavelength diode laser (heating 

laser) was used to generate the thermal wave. The laser diode was modulated by 

the rectangular wave signal. The laser beam was focused on the front surface of 

the plate through the microscopic objective (10x, 0.25 N.A.) with the spot size of 

the beam -25 um. The deflection of probe beam was measured by a position 

sensor. The signal was processed by a lock-in amplifier (NF-U575). As found 

thermoelastic bending is proportional to temperature moment, and its amplitude 

was saturated at modulation frequency lower than characteristic frequency, while at 

higher than characteristic frequency it decreases as inverse of modulation 

frequency. They found that the thermoelastic bending effect can be useful for non­

destructive testing of platelike samples using vibration analysis technique. 

The thermoelastic bending effect of a layered plate was further examined 

theoretically and experimentally on the basis of the bending moment and thermal 
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Chapter 2: Review of previous work and vibration analysis background 

wave propagation (Hane and Hattori 1990). In experiments the front surface of the 

sample was irradiated spatially uniformly by chopped laser light. A 25 mW, 830 

nm laser diode was modulated rectangularly. The extremely rapid sub-surface 

conversion of the absorbed light into heat causes the non-uniform temperature 

distribution across the sample thickness, which induces thermoelastic bending of a 

sample. The flexural bending of a sample was measured by deflection of a probe 

beam. It was shown that the thermoelastic bending is proportional to the 

temperature moment and depends on the modulation frequency. The amplitude of 

bending moment Mt (measured for two-layer system: 15 um aluminium sheet and 

100 (im thick borosilicate glass) decreases nearly as inverse of modulation 

frequency f~l for frequencies higher than characteristic frequency fc while 

increases almost linearly with the decreasing of modulation frequency below/c, and 

has a very gentle slope around the value fc. The amplitude and phase signals 

around fc and in the region lower than fc change considerably with increasing 

thickness of aluminium layer. 

Since Venkatesh and Culshaw (1985) reported the vibrations of microresonant 

structures optically activated and detected, the effects of photothermal excitation of 

silicon microresonators have being actively investigated for potential use with fibre 

optics sensors (Andres etal. 1986; Greenwood 1988; Zhang et al. 1989; Walsh and 

Culshaw B. 1991). As resonance frequency of silicon microresonators vary in 

response to changes in environmental parameter of the interest (such as pressure, 

temperature etc), it can be used as output signal of a sensor. The modulated signal 

can be readily transmitted through the fibre optic link over considerable distances. 
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Chapter 2: Review of previous work and vibration analysis background 

The advantages include immunity to both fluctuations in the intensity transmittance 

of the link from the sensor and electromagnetic interference, yet structures are 

intrinsically safe and chemically inert. The structures are extremely small and 

could be readily interfaced with a fibre optic link by bonding to the fibre tip. For 

this reason it is necessary that the length of microresonator is to be close to the 

diameter of the cladding (about several hundreds of micrometers). The width of 

typical microresonator is about 5-10 um, which coincides with the core diameter of 

the single mode fibre (Churenkov 1993). Therefore, the microresonator width is 

equal to or less than the illuminated spot size, that is time dependent temperature 

distribution can be described by the one-dimensional heat flow equation. The 

photothermal drive mechanism and the dependence of resonant frequency of 

layered microresonators on temperature was investigated by Churenkov (1993) and 

Walsh and Culshaw (1991). The temperature stability was found to be a major 

problem of microresonator sensors. On the one hand, the variations of the 

temperature of illuminated region of a microresonator excite a transverse 

oscillation. On the other hand, the variations of the temperature at which the 

transducer works cause drift of the longitudinal beam tension, which consequently 

causes a shift of the natural frequency of the microresonator. The difference in 

linear expansion coefficients of a bulk resonator beam, the coating and the 

mounting can result in resonance frequency drift with variations of the ambient 

temperature. The resonance frequency is also dependent on the temperature 

changes of Young's modulus, density and linear sizes. It was shown that the 

fundamental frequency has been reduced with increase of incident power, and also 

the metal film thickness deposited upon silicon beams had increased the 

temperature sensitivity of the microresonators. These resonant sensors can be very 
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Chapter 2: Review of previous work and vibration analysis background 

sensitive and versatile, allowing the measurement of a variety of variables such as 

pressure, acceleration, mass, viscosity etc (Lee et al. 1994; Tudor et al. 1988). 

In the experiments with single and dual laser irradiation of structures Philp et al. 

(1995) found that the excitation of transverse mechanical vibrations was effective 

when the period of the thermoelastic excitation approximates the period of the 

natural resonant frequencies of the structure. The resulting vibrations of the 

samples were detected using small non-contact fibre optic sensor and recorded by 

Digital Signal Analyser (DSA 602 Tektronics). The shifts in resonant frequencies 

resulted from the structural defects (small slots which simulated cracks and surface 

flaws) have been demonstrated using Modal Analysis technique. It was shown that 

the laser excitation technique used in conjunction with fibre optic sensors offers the 

potential for an NDT application with totally non-contact excitation and sensing of 

vibration signatures (Philp and Booth 1991; Philp et al. 1995). Later Philp and 

Booth (1994) reported successful experiments where low power laser diodes and an 

optical fibre interferometer were used for remote optical excitation and sensing of 

mechanical vibrations. An unpolished 300 mmxl2 mmx3 mm cantilever was used 

as a test structure. It was clamped by one end in a vice jaws and it was allowed to 

vibrate in horizontal plane, that its weight would not affect the characteristics of 

vibration. The small portion of light reflected from the natural surface of a 

cantilever was used by interferometric sensor and there was only requirement that 

the surface of the cantilever has to be aligned approximately perpendicular to the 

interferometer beam. The first five resonance frequencies of a cantilever in the 

range of 26-1469 Hz were excited and measured. The measurement accuracy of 

resonance frequencies was effectively limited by the stability ±0.5 Hz of the TTL 
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oscillator used. It was found that the efficiency of optical excitation has been 

maximised at characteristic frequency fc> which is the modulation frequency of laser 

with period of oscillation cycle sufficient for the temperature difference between 

the front and rear surfaces of the structure just to reach its maximum value when 

the laser is on, and just to relax to zero when the laser is off. The characteristic 

frequency/,, for a thin plate of thickness h and thermal diffusivity k is given by 

fc ~ h2 

The calculated characteristic frequency fc of the aluminium cantilever (with 

thickness h=3 mm) is approximately 10 Hz. However, for the cantilever chosen, 

all resonance frequencies were greater then 10 Hz. For that reason the response of 

the system was decreased rapidly for frequencies of excitation above the 

characteristic frequency fc of the structure. This problem can be partially overcome 

using multiple laser diodes for excitation. The practical application of the 

technique can be used for complex structures: firstly, by using higher power laser 

diodes, secondly, by improving the sensitivity of the technique operating the 

interferometer at 632.8 nm and thirdly, by reducing the noise level in the detection 

electronic by using silicon detectors. 

Recently this technique (Philp and Booth 1994) has been successfully applied for 

determining of mechanical stress in vacuum-deposited thin metallic films on glass 

substrates (Askraba et al. 1996). The test samples, thin circular glass plates 

(42 mm diameter, 0.1 mm thick) were coated with chromium and attached by 

gluing to a thin metal rod in the centre. The interferometer (1523 nm wavelength) 

with an improved low noise detection electronics was used as a sensor. A laser 
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diode (15 mW 810 nm) was square wave modulated by a TTL driver to excite 

vibration of the sample. Since the stress in the glass-metal film structure affects 

the curvature, which in turn causes the shift in resonance frequencies of a wafer, it 

can be accurately determined by measuring this shift in resonance frequencies. It 

was found that the resonance frequency shift is directly proportional to "the product 

of stress by thickness of a metal film." 

2.3 Sensing systems 

Most vibration measuring systems are based on the sensing devices, which are 

called transducers. Transducers convert the measurand into a useable electrical 

signal. There have been developed many methods used in vibration measurements. 

Examples include strain gauges (Ready 1974), capacitance variation with proximity 

(Adams and Bacon 1973), microphones (Adams and Coppendale 1976), 

piezoelectric transducers or accelerometers (Nagy et al. 1978). Currently the 

piezoelectric type of transducer is by far the most popular and widely used means 

of measuring the parameters of interest in modal analysis. It does not normally 

matter which quantity the displacement, the velocity or the acceleration is actually 

measured, because these quantities are interrelated by simple differentiating and 

integrating operations. The current tendency to prefer the use of acceleration 

sensitive devices has two reasons: accelerometers can be made mechanically 

smaller and their frequency range is wider. If the measured result is wanted in 

terms of velocity or displacement, rather than in terms of acceleration, use can be 

made of electronic integrators at the output of the accelerometer. It should be 

noted that for given application the accelerometer must be chosen with as high 

sensitivity as possible, on the other hand the higher the sensitivity, the larger and 
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heavier the transducer. But the addition of even a small transducer to the structure 

imposes additional and unwanted forces on the structure. Therefore a mechanical 

transducer mounted on a test structure may significantly affect the accuracy of 

vibration properties measurements, because of weight and lack of sensitivity. The 

optical transducers by nature are non-contact and of high accuracy. Many optical 

techniques have been developed for detection of structural vibrations; examples 

include: Doppler velocimetry (Buchhave 1975; Laming et al. 1986), the 

holography technique (Aprahamian and Evensen 1970), laser probe beam 

deflection (Hane et al. 1988; Jenkins et al. 1995) a variety of non-interferometric 

fibre optic sensors (Chitnis et al. 1989; Philp et al. 1995) and a number of the 

interferometric techniques (Deferrary and Andrews 1966; Deferrary et al. 1967; 

Pernick 1973; Jackson et al. 1980; Lewin et al. 1985; Philp and Booth 1994) 

Jenkins et al. (1995) used the method of optical beam deflection to measure the 

modal shapes of a cantilever. The cantilever of length 23,5 mm, width 2 mm and 

thickness 0.5 mm was clamped to a micrometer-driven stage with 25mm of 

travelling range. The cantilever was driven into resonant oscillatory motion using 

Figure 2.01: The end view of the optical arrangement 

the PZT actuator, bonded to the aluminium surface of the cantilever. The laser spot 

was traversed along the cantilever using the micrometer translation stage. Light 
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from a diode laser at 670nm was focused onto the surface of the cantilever beam 

and the position sensitive detector was placed so that the diverging laser beam 

nearly fills the detector. The PZT amplified signal from the photodetector was 

sampled by analog-digital converter and analysed using Fast Fourier transform. 

The displacement was measured by the lock-in-amplifier at each point along the 

cantilever length. Using this method, the modal shape of each of the cantilever's 

first four vibration modes were investigated by driving the piezoelectric actuator at 

the modal frequency previously determined. The method is experimentally simple 

and non-intrusive, it permits a high degree of spatial resolution along the cantilever 

length (limited by the wavelength of the laser beam) and its displacement 

resolution was ultimately limited by shot noise of the detector. The main 

disadvantage of the technique is that it cannot differentiate between the 

displacement of the cantilever and its localised curvature. 

A fibre optic vibration sensor (proximity sensor) was developed as a non-invasive 

non-contact alternative to the strain gauges and accelerometer (Philp et al. 1995). 

The intensity modulated proximity sensor was constructed from a 50/125 um 

multimode communication grade directional coupler, modulated 820 nm LED light 

source and a PIN photodiode detector module. The sensor was designed to detect 

small proximity variations between the unpolished reflective surface and the end of 

the sensing fibre. Vibrations of amplitude greater than 1mm for mirrored surfaces 

and 4mm for unpolished aluminium or steel were detected when the sensor was 

located approximately 50mm from the vibrating surface. The sensor output was 

reasonably linear for vibration amplitudes up to about 0.2 mm. The area 
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illuminated by the sensor was approximately 7x10" mm2, which is very much 

smaller than that of the strain gauge bridge (-100 mm2). Hence the fibre sensor 

allowed much greater spatial resolution and more accurate resonance frequency 

determination. This optical proximity sensor was used to investigate the modal 

frequencies of cantilevers in an electromagnetically noisy environment, which 

restricted the use of some standard electrical detectors. 

Bulk and fibre-optic interferometric sensors are extremely sensitive devices since 

they respond to optical path changes, which are the small fractions of a wavelength 

(Dakin and Culshaw 1989). The basic concept is in the optical phase modulation 

resulted from the interference of signal and reference beams, which is converted 

into a time varying irradiance function, observable as a fringe pattern. A 

photodetector monitors the light intensity variation at a point in the pattern and 

provides electrical signals for subsequent processing. Since the photodetector 

signal is proportional to the normalised light intensity, the linear displacement 

amplitude can be determined from the temporal frequency characteristics of the 

output signal. Two signal processing techniques have been actively used in optical 

interferometry: homodyne and heterodyne. An optical configuration involving the 

interference of two light beams with essentially the same optical frequency is called 

a homodyne system. The homodyne method is particular simple and inexpensive 

for measurement of vibration displacements of simple harmonic motion. The 

heterodyne method is more complex and suitable for measurement of non-

sinusoidal motion. 
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Deferrary et al. (1967) described four homodyne experimental methods for 

measuring vibration displacements at a point on a transducer face in air or water. 

The technique utilised a Michelson interferometer with CW laser light source. 

This method has the advantages: the ability to make displacement measurements in 

the range 0.1-6000 A and higher, in frequency range 100 Hz-20 KHz; the capability 

to probe into otherwise an inaccessible area over which are desired; the ability to 

scan an area by making measurements at points whose diameter could be on the 

order of 0.1 mm; no added mass owing to instrumentation as is the case with an 

accelerometer; no interference with the acoustic field as might happen for example 

with a capacitance device; the capability for making displacement measurements of 

a point, on a diffuse surface. A simplified model considered the current measured 

at the output of the photomultiplier tube as a result of the homodyning action 

between the two split portions of one monochromatic ray in a Michelson 

interferometer with perfectly reflecting mirrors that were lined up optically without 

error. The term homodyne efficiency was introduced to account for: 

a) The finite diameter of the laser beam 

b) The lack of monochromaticity of the actual laser source 

c) The slight, but typical misalignment of optics in the practical set-up. 

It was found that a diffuse surface has much lower Signal-to-Noise ratio S/N for a 

given laser intensity. In order to prevent the decrease of homodyne efficiency one 

would normally choose a polished surface for small vibration displacements. The 

vibration isolation and quiet surroundings are required for measurements of small 

displacements as phototube shot noise is the ultimate limitation of sensitivity of the 

technique. 
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Linear vibration motion yields a phase change that is spatially uniform but 

harmonic in time. Unfortunately, phase changes induced by other extraneous 

effects (such as non-sinusoidal or rotational motion) may considerably disturb the 

homodyne measurement. In order to verify the measurement of linear vibration 

amplitude Pernick (1973) developed a new self-consistent technique (modified 

over the methods mentioned above). This technique was based upon a comparison 

among a number of independent simultaneous optical phase measurements at 

neighbouring frequencies which are proportional to the Bessel functions of 

different orders. As the refraction index n is arbitrarily chosen the value of the 

phase change and associated displacement can be directly established. Independent 

measurements of phase change were obtained by using several choices for n 

together with associated filtered output signals at the harmonic frequencies of 

(n-l)-CQo, ncoo, (n+l)-(Q0. With such an experimental system the amplitude 

measurement could be read directly. 

The sensitivity, particularly with fibre interferometers, produces its own problems 

in that fluctuations in ambient parameters (particularly temperature: Musha et al. 

1982) randomly affect path difference between the two beam paths of the 

interferometer and the output signal undergoes unpredictable fading (Dandridge 

1991; Jackson and Jones 1989; Sheem et al. 1982). As long as the phase shift due 

to the measurand is detected, the changes in source intensity and frequency, the 

polarisation states of the interfering beams also cause unpredictable variations 

(Sudarshanam 1992). 
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In order to detect surface vibrations induced by low power diode laser excitation of 

structure, an improvement in detection sensitivity of about three orders of 

magnitude over that of the proximity sensor was required. To achieve this 

improvement, a stabilised fibre-optic interferometer was constructed by Philp and 

Booth (1994) which exhibited a resolution of a few nanometres (see Figure 3.04 for 

experimental arrangement). A 1523 nm He-Ne laser source was chosen for 

interferometer because it has a very long coherence which is suitable for the use 

with long air paths and because its compatibility with standard 1550 nm single-

mode couplers. The light from the laser was launched into one input arm of a 

single-mode 2x2 directional coupler, which divided into signal and reference 

branches. The beam reflected from the vibrating surface was coupled back into the 

coupler to give modulated light in the signal arm. The optical power in the 

reference arm was attenuated using a few small radius turns of the fibre to match 

the optical power to that of the signal arm and thus formed high-contrast 

interference. Any change in separation between the sensing fibre tip and the 

vibrating surface varied the path length of the signal branch with respect to the 

reference branch, causing intensity modulation of the output. A fibre-air-fibre 

optical path was incorporated into interferometer design to enable non-contact 

surface vibration detection. The optical path from fibre to open-air, and back again 

into a fibre after specular reflection, significantly reduced optical power in the 

signal arm (reducing the SNR) and so limited the output sensitivity to 1.2xl0"2 rad 

over a 30 KHz bandwidth (7xlO"5rad/Hz) at 100 Hz. 
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2.4 Thermoelastic bending of a structure 

As stated earlier light absorbed by the solid is partly converted into heat by 

interaction with electrons. The light energy absorbed by an electron is distributed 

and passed on to the lattice in the same processes, which govern the transfer of heat 

(Carslaw and Jaeger 1959). The distribution occurs so rapidly that we can regard 

the optical energy as being instantaneously turned into heat at the point at which 

the light was absorbed. The heated region undergoes thermal expansion and 

thermoelastic stresses generate elastic waves which propagate deep within the 

sample. The differential equation for heat flow in a semi-infinite slab (half-space) 

of material with a boundary plane at z=0 (the metal surface) was given by 

v;T(w,o4^^ = -^|^, 2.01. 
k at K 

where T(x,y,z,t) is the temperature distribution, U(x,y,z,t) is the heat produced per 

unit volume per unit time, k and K are the thermal diffusivity and thermal 

conductivity, respectively (Ready 1971). If it is assumed that the absorbed flux 

density is a function of radial position r, measured in the x-y plane from the z axis, 

and that it is Gaussian in nature Ready (1971) has shown that the solution of Eq. 

2.01a is: 

where U is the absorbed power per unit area at the centre of the Gaussian spot of 

the radius rs, w(t) is the normalised laser pulse shape and r radial position of 

absorbed flux density. 

For many cases of practical interest, the problem can be regarded as one -

dimensional, that is, the transverse dimensions of the laser beam are large 
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compared to the depth to which heat is conducted during the time of the laser pulse. 

Then the dependence on the x and y coordinates drops out and the heat flow 

equation becomes (Ready, 1971) 

„!r, A ' ar(z.O u{z.t) 

The light is absorbed at the surface of a metal with an absorption coefficient as. 

The heat production for one-dimensional case was given by 

U(z,t) = I(t) e~a"z, 2.03 
K°J 

where I(t) is (1-F) times the irradiance incident on the surface (where T is the 

surface reflectivity) and the spatial pulse shape is uniform. For metals the real part 

of the dielectric constant e is negative, and the penetration depth 8 is related to the 

skin depth Ss for penetration of an electric field into the metal by 

8=5/2=c/2coc0(-£)
I/2, 2.04 

where c and coc0 are, respectively, the velocity and angular frequency of the light. 

For a typical metal, with absorption coefficient of the order of IO5 to 106 cm"1, if 

the laser pulse is flat in time and uniform over the x-y plane, temperature 

distribution can be written: 

r(o,r)= (lh\kt\i 2.05 

Kx J V K j\ 

Eq. 2.05 is useful in estimating approximate surface temperature rises for a broad 

variety of cases. 

The mechanical effect resulted from the heating of the front surface of cantilever 

can be calculated by division the beam into a number of thin layers (Philp 1993). It 
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was found that the thermal expansion produces a thermal strain es(%) given by 

£s(X)=AL/L=atAT(x), 2.06 

where L is the length of the cantilever beam, AL, is the linear thermal expansion, a, 

is thermal expansion co-efficient, AT(%) is the temperature of each layer above the 

temperature of the rear surface. The equivalent force P{%) which would produce 

the same bend and strain as this thermal expansion is 

P(x) = £.Xx)bE8h, 2.07 

for a cantilever of given length (L), width (b), thickness (h) and Young's modulus 

(E). The moment of this force M{%,t) about the mid-plane is 

M(x.t) = XP(x) = cx,bE8hxAT{x,t). 2.08 

Then the total thermally-induced bending moment M(t) for the entire beam is 

h 

2 

M,(t) = arbEJAT(x,t)xdx, 2.09 
_h 

2 

where a, is the thermal expansion co-efficient, AT(x,t) is the temperature of a layer. 

2.5 Vibration analysis background 

A treatment of structural vibration and modal analysis is contained in very many 

standard texts (Main 1993, Nashif et al. 1985, Vierck 1979) and most of the details 

need not be repeated in this thesis. However, some of the concepts and results are 

critical to an understanding of this thesis and hence need to be discussed. The 

treatment below is intended to summarise the major relevant parts of the theory in a 

way, which provides a basis for discussing the experimental results, which follow 

in subsequent chapters. The description is restricted to the case of transverse 
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mechanical vibrations of a structure. 

Any structure with mass and elasticity possesses one or more natural frequencies of 

vibration. The natural frequencies are the result of cyclic exchanges of kinetic and 

potential energy within the structure. The kinetic energy associated with velocity 

of structural mass, while the potential energy is associated with storage of energy in 

the elastic deformations of a resilient structure. The rate of energy exchange 

between the potential and kinetic forms of energy determines the natural frequency. 

A linear structure is one in which the deformation is proportional to load, or 

whatever excitation is causing the structure to vibrate. In a linear structure this 

proportionality applies regardless of the direction, magnitude or distribution of the 

load. For a linear structure, it can be shown that the natural resonant vibration 

frequency of the structure is independent of the amplitude of vibration (Blevins 

1979). There is always some damping (energy loss) in real structures, which will 

make free vibrations decay with time, and there is some amplitude beyond which 

the structure no longer behaves linearly. For real structures the concept of natural 

resonant frequency must be tempered by some knowledge of the differences 

between the ideal mathematical model and the actual structure. The discrepancies 

between a linear model and a real structure are often due to neglected linear and 

non-linear effects. Some linear effects (which are often neglected) are the effect of 

shearing deformation in slender structures and the effect of surrounding fluid. 

Non-linear effects (which are often neglected) are plasticity due to yielding and the 

vibration amplitude dependence on damping (Blevins 1979). The simple linear 

theory (which neglects these effects) represents a very good approximation to the 
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conditions, under which the experimental part of this work was carried out, in 

particular, the optical excitation of transverse vibration with very small 

displacements of the order of tens of nanometres. Another point, which needs to be 

made clear is that optical excitation of a structure in the thermoelastic (non-

ablative) regime causes vibration by inducing the structure to bend. Thus the 

vibration is most appropriately described in terms of thermally-induced bending 

moments and angular displacements rather than the more usual discussion based on 

forces and linear displacements (Philp 1993). However, the interferometric 

vibration detection system detects linear displacements at a point and it is more 

convenient to use this in the discussion of experimental results. The measured 

linear displacements are of course proportional to the angular ones and the two 

treatments are completely analogous (both give rise to second order differential 

equations but the physical meaning of the various constants are different in the two 

cases). In the discussion which follows in this section, a treatment in terms of 

forces and displacements is used to illustrate the essential physics as this is simpler, 

more familiar to most readers and can more easily be referred to in standard texts. 

The results derived are quite general and apply equally well to vibrations induced 

by bending moments. Experiments described in subsequent chapters were carried 

out using simple cantilever beams as these are convenient targets for which the 

various modal vibration properties are easily calculated. For this reason, the 

discussion below is described mostly in terms of these structures. During 

transverse vibration, the beam flexes perpendicular to its own axis to alternately 

store potential energy in the elastic bending of the beam and then release it into the 

kinetic energy of transverse flexural vibrations. The general assumptions used in 

the beam analysis are: 
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(a) The beam is uniform along the span; 

(b) The beam is composed of a linear, homogeneous, isotropic elastic material; 

(c) The beam is slender - the dimensions of the beam cross section are much less 

than the length of the beam or the distance between vibration nodes; shear 

deformation is not considered; 

(d) Only deformations normal to the undeformed beam axis are considered, plane 

sections remain plane; 

(e) No axial loads are applied to the beam; 

(f) The centre of the beam cross section coincides with the centre of mass (ie., the 

plane of vibration is also a plane of symmetry of the beam) so that rotation and 

translation of the beam are uncoupled. 

When a beam is subjected to externally applied transverse forces, both shearing 

forces and bending moments will exist; the result is that the beam will deflect. 

Deflection will occur due to both the shearing force and the bending moment, but 

in practical cases the deflection due to shear can generally be neglected compared 

with that due to bending. 

2.5.1 Differential equation of motion for elastic bar 

The general equation for transverse free vibration of a uniform prismatic beam has 

been derived by Timoshenko et al. (1974). A prismatic beam has been drawn in 

the x-y plane, which is assumed to be a plane of symmetry for any cross section. If 

y represents the transverse displacement of a typical segment of the beam dx, x is 

the distance of dx from the left-hand end. Fig. 2.02 shows a free body diagram of 

an element of the length dx with internal and inertial actions upon it. In Fig. 2.02 
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p is the density of material, E is the Young's modulus of the material, IJx) is the 

moment of inertia of the cross section of the beam A, with reference to its neutral 

axis, the transverse shear force Vs(x) is positive upward, the bending moment M(x) 

is positive clockwise. The dynamic equilibrium conditions for the element of the 
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Figure 2.02: The forces and moments of a vibrating cantilever 

beam between x and x+dx can be written for vertical forces and for the moments: 

f 
V.- V+-z—dx 

dx J 
- pAdx -r-T" = 0 • 

at' 

2.12 

And the moment equilibrium condition gives: 

dM dx 
M +-z—dx = M +Vdx + pAdx — 

dx 2. 

2.13 

By neglecting the higher-order term (dx)2 and substituting V, from Eq. 2.12 into Eq. 

2.13 produces 
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--y-dx---pAdx—y. 2.14 
dx' dt' 

From flexural theory 

M = EIr-^-, 2.15 
ox' 

and using this expression in Eq. 2.14, we obtain 

df_ 
dx: 

EI -i-i 
dx j 

dx = -pAdx—%-. 2.16 
df 

Eq. 2.16 is the general equation for transverse vibration of a beam. The flexural 

rigidity EIr does not vary for the prismatic beam with x and Eq. 2.16 can be written 

in the form: 

d4y d2y 
Ef -r-^dx = -pAdx-T-T . 2.17 

This equation may also be rewritten as 

d4y 1 d2y 

dx* a2 dt' 

where a = J—-f-. 2.19 
V P A 

When a beam vibrates transversely in one of its natural modes, the deflection at any 

location varies harmonically with time: 

t (x, t) = Yn (x)(c,„ cos co J + C2n sin cont). 2.20 

Substituting Eq. 2.20 into Eq. 2.18 results in 

d4Y(x) (o2 

—±l--%Yn(x) = 0, 2.21 
ax a' 

and by introducing the notation —f- = kAn , it can be rewritten as: 
a' 
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d%(x) 

dx 
-k%{x) = 0. 2.22 

The general form of the solution for Eq. 2.22 is 

Yn(*) = €,.€*•* + Clne'
k»x + C,ne

Jk"x + CAne~** , 

which may be written in the equivalent form 

Yn(x)=Cln sinknx + Cln cos knx + C,n sinhknx + C4ncoshknx 

2.23 

2.24 

This expression represents a normal function for transverse vibration of prismatic 

beam, which describes the relative displacement of any point on the structure as the 

structure vibrates in a single mode. This function is also called a Mode shape (or 

Eigenvector) and is associated with each natural frequency (Eigenvalue) of a 

structure. It is useful to write the general expression for a normal function Eq. 2.24 

in the equivalent form: 

Yn(x) = Cln(cos&nA: + cosh/cnx)-i- C2n(cos£:„;t-cosh£„;c)-i-

+ C3„ (sin/c„.x: + sinh &,,*)+ C4n(smknx-smhknx). 2.25 

The constants Cjn, C2n, Cjn and Q„ in Eq. 2.25 can be determined in each 

particular case from the boundary conditions at the ends of the beam. Assuming 

that the left end is built in for the clamped-free cantilever then: 

at the fixed end the deflection and slope are equal to zero 

fcMLo=0' 
dYn(x)' 

dx 
= 0, 

A-=o 

and at the free end the bending moment and the shearing force both vanish, so 

r j2 d%(x) 

dx 

f j3 

= 0, 
A=o 

d%(x) 

dx3 
= 0. 

Jx=L 

From the first two conditions CJn=C3n=0 in the general solution Eq. 2.25 so that 
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Yn W = Ctn (cos Kx - cosh k„x) + C4n (sin knx - sinh knx). 2.26 

The remaining two conditions give the following frequency equation: 

cos knL- cosh knL = -\, 2.27 

it can be rewritten by denoting pn=knL: 

cos/3„ -cosh/?,, =-1. 

The consecutive roots of this equation are (Thomson 1993): 

P,=1.875; $2=4.694; p3=7.855; /34=W.996; $5=17.279. 

The frequency of vibration of any mode will be: 

r^AAtlK OOO 
h ~ In IKL1 i n ' l-1* 

where /?„ is a dimensionless parameter, which is a function of the boundary 

conditions applied to the beam, L is the length of the beam and ji=pA is the mass 

per unit length of the beam. If the structure vibrates only in the nth mode, the 

deflection can be written as 

'^ = cosh &£-cos ^*
 coshPn+cospn(^uPnx ^Pnx 

K^J L L sinh fin + sin j3n 
sinh-^ sin^s- , 2.29 

L L ) 

cosh/?,, +cos/3n 
introducing o = — — , 2.30 

sinh pn+ sin #, 

Eq. 2.29, which is the characteristic function, can be simplified 

^ hP„x Pnx . Bnx . 0nx 
= c o s h — — - c o s — — - oi sinh—— - sin—— 

L/ Li V JL^ J—* 

2.31 

As shown (Eq. 2.20) the vibration function is: 

Yn(x,t) = Yn{x)(cincoscont + C2n sincont), 

where Yn(x) is the Mode shape, that is a function only of length of a beam , and 

Yn(t) is a function only of time. If the beam vibrates freely, then the total 
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transverse deformation is the sum of the modal deformations: 

N 

Y(x,t) = JJAnYn(x)Sin(27ifnt + <t)n), 2 33 
n=\ 

where Yn (x) is the transverse displacement associated with the n
th vibration mode, 

and (Don, An and 0„ are the natural frequency, amplitude and phase of that mode. An 

and <pn are determined by the means used to set the beam in motion (Blevins, 1979). 

For the case of forced vibration of a prismatic bar the differential equation of 

motion can be written (Volterra and Zachmanoglou 1965): 

d*Y(x,t) d2Y(x,t) 
r —dV4— = p^x'' ~ p —dt2—' 234 

Assuming that the general solution of this equation is of the form 

Y{x,t) = f_Yn(x)fn(t), 2.35 

where the function Yn(x) is the normal function satisfying the differential equations 

EIr ^h^ = °^pAY"W' (* = l'2' • -}' 236 

and the four boundary conditions at the ends of the bar. Substituting of Eq. 2.35 

into Eq. 2.34 gives 

Ehl^fS')- P(x.t)-pA±r^)^M. 2.37 
n=\ ax „=1 at 

In view of Eq. 2.36, Eq. 2.37 can be written 

to>Mx)m = ^p{xj)-±YSx)^^. 2.38 
n=\ p A n=] at 

Multiplying both sides of Eq. 2.38 by Ym (x), (m = 1,2,..), and integrating between 0 

and L, and considering the fact that the functions Ym(x) satisfy the following 
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relations (Volterra and Zachmanoglou 1965): 

" =-r for n=m 

Eq. 2.38 reduces to 

d'fAt) o x / \ 2 , . 
- j ^ + 0)oJn(t) = — Pn(t) (n = U , . . ) , 2.40 

L 

where Pn (t) = j p(x, t)Yn (x)dx, 2.41 

p(x,t) is generally a function of both x and t. Eq. 2.41 is essentially the same as the 

differential equation for forced vibration of an undamped system with one degree 

of freedom. 

2.5.1.1 Resonance frequency and temperature shift 

It can be seen from Eq. 2.28, that Modal frequency is proportional to magnitude of 

Young's modulus E and on the other hand is inversely proportional to squared 

length of a cantilever L2 and square root of material density Jp . It can be shown 

that the length and density changes of the structure due to thermal drift have 

negligible effect on the value of resonance frequency of a structure, but Young's 

modulus dependence on temperature may be considerable in terms of obtainable 

measurement accuracy. The relation of Young's modulus to the temperature 

change was given by (Kaye and Laby 1973): 

E = E0(\-ccE-AT), 2.42 

where E0 is Young's modulus at temperature of 15°C, aE is temperature co­

efficient, and AT is temperature change. By differentiating Eq. 2.28 and Eq. 2.42 

can be written in the form: 
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^(E)=l^=f§Ar= = 4j7Tf^'/.<£>^ 2-43 

Not only frequency is so sensitive to tiny changes of Young's modulus (E) due to 

the temperature changes, damping factor is also strongly dependent on stiffness of 

the structure and thus on Young's modulus. 

2.5.2 Equation of motion for Single Degree of Freedom structure 

A mechanical vibratory system, which requires only one coordinate to define 

motion is called a single-degree-of-freedom system. For SDOF a free vibration 

analysis yields its natural frequency, mode shape and damping factor by solving the 

differential equations of motion. In order to characterise the vibration properties of 

a straight elastic cantilever beam under the general assumptions above and with 

extremely small displacements it can be approximated as a single degree-of-

freedom system, for which the displacement at any instant can be specified by a 

single coordinate y. For SDOF the equation of forced oscillatory motion with 

viscous damping is given by 

my + cy + ky = N0 sin cof t, 2.44 

where m is the mass of the vibrating structure, c is a damping constant, K is the 

stiffness constant, cof the angular frequency of the driving force and N„ the 

amplitude of this force. 

The solution is the sum of a transient term y, and a steady state forced term yf 

y = y, + yf. 2.45 

The transient term is obtained by solving Eq. 2.44, when the right hand side is zero. 

The general solution is then 
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\-l c/2m)+xj(c/2m)
2 -(K/m) ]l \-(c/2m)-xJ(c/2mf-{K/m)}, 

yr=C^ J + C 2 ,L J 2 4 6 

Introducing the damping constant cc and damping factor q (Vierck 1979) 

cc (K 

2^ = 1m=C0°' 1A1 

r--
(=~r . 2.48 

where ctis the value of c for critical damping and co0 is natural resonance frequency 

and £ is the damping factor. For weakly damped systems c2<4mk, or £<7 the 

solution can be written: 

y, = e-*"[C3 sin-J\-C'cor)t + C4 cos^-C-Oj) 

= F.e'^ sin(codt + <f>), 2.49 

where 0)d is the angular damped frequency (Nashif et al, 1985). It is given by 

cod=-Jl-C~co0. 2.50 

Both Fj and <p are determined by initial motion conditions. The first part, F1e'C
c°ot^ 

represents a decaying amplitude for the trigonometric function sinco^t + (j). Thus 

the motion is oscillatory but with an amplitude that reduces with time. For the 

damped system, the rate of decay of the vibration is conveniently expressed by the 

ratio of the amplitudes any two successive peaks in the damped motion: 

y. p^'j 

v . , c -C<-„(tj+T) 
= e^nT, 2.51 

where T is the period of the damped motion which is given by 

rx. 2x 2/T 
T = — = . — 2.52 

The ratio of successive peak amplitudes is conveniently expressed as a logarithmic 
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decrement, St, 

y i+\ yl~b 

Another way of expressing the damping effect is by means of the time taken for the 

amplitude to decay to e";=0.368 of its original value F,. This time (T) is called the 

modulus of decay or decay time (Pain 1993) and the amplitude is 

FT = Fxe'^ = F]e~
] 2.54 

The decay of energy is proportional to squared amplitude: 

F2=F2e-(^)^ 2x6 

and may be written 

E = E,e-?av, 2.57 
'r 

where decay time T = . 2.58 
2qco0 

The other term in Eq. 2.45 is a particular solution, which represents a part of the 

motion that will occur continuously while the forcing condition is present, and 

hence this is the steady state solution which has the form: 

yf --Fsm^cOft-^). 2.59 

The complete solution for C,<1 is given by: 

y = F,e"faw .iw{codt + <j>)+F sm{coft - fa). 2.60a 

The form of the steady state solution is obtained by assuming a solution of the form 

yf (r) = C, sin cof t + C2 sin cof t , 2.60b 

where C, and C2 are constants. By differentiating this expression and substituting 

into the differential equation Eq. 2.44 the values of C, and C2 can be obtained. 

After rearrangement into the same form as the steady state part of Eq. 2.60a, the 
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amplitude and phase can be shown to have the form (Vierck, 1979): 

F = 
Nn 

1-
r<o.^ 

K^oj 

2^2 

+ 2g 
fco.W 

V v^oy; 

= Fn 
(--r2f+(2{rf 

2£ 
tan fa = 

2£r 

1-
1-r 2 ' 

2.61 

2.62 

N0 co, 
where Fn = — , and r = — . 

k co„ 

These equations show that the normalised amplitude and the phase fa are functions 

only of the frequency ratio r=co/cOo and the damping factor £. 

The form of the equations above can be seen much more physically by representing 

the various acceleration terms in the original equation of motion (Eq. 2.44) on a 

vector diagram as shown below in Fig. 2.03 (Beards 1981). Eq. 2.44 can be 

rewritten as 

.. . •> A^o 

y + y-y + co0~ • v = —-smco ft, 
m J 

2.63 

where y=c/m, co2=k/m. 

Using the previous form of the steady state solution y = F0sin(coft-fa^ and 

substituting for each term in Eq. 2.63, the vector diagram is obtained. 

7Z. 
y = -Fcof cos(coft- fa]) = Fcof sm{coft - fa + — ) 2.64 

y = -Fco2 sin(coft- fa]) = Fco
2 sin(coft -fax+7t) 2.65 
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The equation of motion (Eq.2.63) becomes: 

Fco2 sin(cof t-<h+jc) + 

K ~ Nn 
+ yFcor sm(cott -<j>l+—) + Fco: sin(©,r - fa,) = —^sincoft 

l J m J 

2.66 

a) C0f/C0b« 1 

No/m 

b) (Of/ocb=l 

cof F 

WtfF 

c)COf/C0D»l 

ycOfF 

Figure 2.03: The vector relationship in damped forced vibration 

As shown in Fig. 2.03 each term (Eq. 2.63) represents an acceleration at t=0. 

2-33 



Chapter 2: Review of previous work and vibration analysis background 

The first derivative y has amplitude FcOf and is 90° ahead of displacement y, and 

that y has amplitude Fco2 and is 90° ahead of y. From the diagram fa] must lie in 

the range 7C>cpi>0. The value of fai and the amplitude F can be found from the 

triangle in the Fig.2.03(a) as: 

F = 
Nn 

m K 2 -®/ 2 ) 2 + y-coj 
2.67 

and tan0! = 
70-, 

©o " ® } 
2.68 

Corresponding equations for velocity and acceleration amplitudes can be easily 

found by multiplying Eq. 2.67 by cof and cof respectively. 

2.5.2.1 Response function for Single Degree of Freedom system 

It is convenient to write the displacement, velocity and acceleration in terms of a 

dimensionless response function (Main 1993): 

RMST-, 
fool 

The displacement, velocity and acceleration amplitudes are respectively: 

2.69 

F = 
r N ^ 

iVo 
KC(Of j 

R K) 2.70 

cofF = R(cof) 
2.7'1 

co}F = [R(cof)\ 
V c J 

2.72 

It is important to notice that in the steady state case where the response is due to the 
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driving term alone, the displacement, velocity and acceleration all have maximum 

response at slightly different driving frequencies. The displacement response curve 

is shown in Fig. 2.04, where the displacement amplitude peaks at the frequency 

slightly below the resonance co„. The response curves all show large maxima at 

A 
QNo/k 

No/k 

Figure 2.04: Response curve of the displacement amplitude 

JI/2 

Figure 2.05: Variation of phase faj with driving frequency 

frequencies near the resonance frequency co0. Since the velocity amplitude cOfF is 

proportional to the square root of R(C0f), it has its maximum value exactly at the 

resonance frequency co0. The displacement amplitude F has Of in the denominator, 
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so F peaks at a frequency slightly below the resonance frequency and the 

acceleration amplitude co/F contains CO/ in the numerator, and therefore peaks 

slightly above the resonant frequency co0. The way, in which the phase constant </>7 

changes with driving frequency, is shown for the same system in Fig.2.05. At the 

resonance frequency the phase constant is TC/2, then the displacement lags the 

driving force by exactly 90°. Fig. 2.04 contains a resonance quality factor, Q, 

which is related to damping and is the measure of the lightness of damping. The 

quality factor Q can be expressed as the ratio of the amplitude of response at 

resonance to the displacement at C0f=0 if the force is applied statically (Pain 1993). 

Thus from Eq.2.61 the Q factor is 

_F_ 1 
2(r) ~ r ~ F( 7v—T~7^ • 2.73 

*o 7(l -r2) +(2£r) 

Plotting Q against r results in a family of curves which are dependent on £ (Viersk 

1979). In the resonance region the peak of the Q(r) curve occurs to the left of the 

resonant value of r=l, for £«1 and near resonance it can be simplified as: 

Q~^. 2.74 

Damping factor £ cannot be measured directly but instead is deduced from the 

response curve of vibrating system. The response curve for a SDOF system 

(excited by a harmonic force of constant amplitude) can be plotted using the 

accurately measured values of displacement for all frequencies near resonance 

(comin <co0< 6)max), where co0 is the resonance frequency. The common method of 

determining damping from "half power bandwidth" is to measure the frequency 

bandwidth, between points on the response curve, for which the response is some 

fraction of the resonance response of the system. The usual convention is to 
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consider those points at frequencies where the amplitude of the response is 

1 
-yj times the maximum response. The width at these points is frequently referred 

to as the "half-power bandwidth," a term borrowed from the analysis of electrical 

systems in which amplitude is a measure of voltage and electrical power is 

proportional to the square of voltage. 

For lightly-damped oscillators £>-factor is a measure of the sharpness of the 

resonance curve in the graph of power as a function of frequency cof, and has the 

value of 

e=^=-*-. 2.75 
Y co2 - ft>! 

where 7 is the width of a power curve at half maximum height (y=(02- coj). It is 

also a measure of the energy stored in an oscillator compared to the rate of the 

energy input needed to maintain the oscillation: 

^ In x AE ~ _, 
Q = 2.76 
* E ' 

where AE is the stored energy, E is the energy input per cycle (or lost per cycle). 

On the one hand the damping factor £ can be determined by measuring the half 

power bandwidth 

1 co2-co, 

where 77 is the loss factor. On the other hand the damping factor C, can be found 

using decay time measurement. The damping factor can be determined by solving 

the equations Eq. 2.50 and Eq. 2.58, if decay time r and damped frequency cod have 

been measured: 
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c= l + 0)2-T2 2.78 

It was shown (Main 1993) that the average power absorbed from the driving force 

when the system is driven with an angular frequency cof is 

E = 
fN2^ 

\2c j 
R(cof). 2.79 

The shape of the power absorption curve is essentially the shape of R(co) 

N2 

E = ' ° 2my 

r2co) 

[col-co}) +y2cvj 
2.80 

Thus ̂ is the size of the angular frequency range within which power is greater than 

half its maximum value E (Fig. 2.06). It can be shown that for frequencies close to 

resonance (co&coo) in a very lightly damped system, the response function may be 

approximated by Lorentzian lineshape (Main 1993) 

L(cof) = 
' cof-co^ 

2.81 

1 + 
r/2 J 

where EQ is the amplitude, coo is centre frequency and yi2 is the half-width at half 

maximum of Lorentzian lineshape. 

2.5.2.2 Energy flow in an oscillator 

The maintenance of the steady-state vibration requires a sustained supply of energy 

by the driving force to replace the energy dissipated by the damping force. The 

forced term of the displacement is given by Eq. 2.59 

yf = Fsm(a>ft -fa). 

The work done against the damping force is -FdAy. The instantaneous power 
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absorption is 

E = -Fd-y = c-y
2
 2g2 

Where >>-velocity, F^damping force. Since the velocity y varies harmonically 

and has amplitude copF, the average of y2 over a complete cycle is 

.2 i/ \2 i (N0y i x 
2.83 

Therefore 

^ (E)=^UK) = V Ucj 
r 2 ^ 

2^m-^) +/̂  
2.84 

The maximum value of (E) reached at the resonance frequency exactly. The shape 

of the power absorption curve is essentially the shape of R(co). 

Figure 2.06: The average power absorption curve with y ( F W H M ) 

The average power absorbed from the driving force is proportional to the damping 

constant when the system is driven with an angular frequency co/. It can be seen 

from the diagram y is the size of the angular frequency range, within which (E) is 
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greater than half its maximum value. From Eq. 2.58 and Eq. 2.77 the width of the 

power absorption curve is identical with the energy decay constant for free 

vibrations of the system. Therefore either the measurements of resonance 

frequency and half power bandwidth by measuring the resonance curve or the 

measurements of decay time and resonance frequency permit to practically 

determine the damping factor of vibrating structure. 
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3.1 Introduction 

All measurements described in this work were derived by using low power laser 

irradiation to excite vibration of a clamped-free cantilever. Cantilever was chosen 

as test structure because the simplicity with which it can be approximated by a 

concentrated mass and a single spring, representing a Single Degree of Freedom 

oscillator. The selected structure, an unpolished aluminium cantilever (Aluminium 

alloy 2024) with mass of 0.025 kg and dimensions 300 mm x 12 mm x2.5 mm was 

clamped in a vice with mass of 5.28 kg. The cantilever length is much bigger than 

thickness (L»h); its displacement occurs in horizontal plane, that the influence of 

the gravitation force on flexural bending can be neglected. The aluminium has been 

chosen because of its large linear coefficient of expansion (24x10"6 K"1) and high 

optical absorption. As far as the light absorption depth at optical frequencies in 

aluminium is roughly tens of nanometres, the calculated value of thermal diffusion 

length is -1.016 mm (Hess 1989; Walsh and Culshaw 1991), the efficiency of 

optical excitation for aluminium is much higher than for stainless steel. 

3.1.1 The set-up diagram and description 

The vice with cantilever was mounted onto a breadboard (-40 kg), sitting on the 

top of a concrete bench (-200 kg). The bench with test structure was isolated of 

ground floor vibration by inflated tyres which were put under the legs. Apart from 

the cantilever mounted on translation stage the Set-Up (see Fig. 3.01) includes: the 

excitation part-on the right hand side of the cantilever and the optical detection 

part-on opposite side. 
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LED 

t 
TC 

T 
PS 

«— FG 

DSA 
CC- clamped-free cantilever 

The Excitation part: 
L E D - Laser Diode LTO-16 M D 
F G - Function Generator HP33120A 
T C - Temperature Controller 
PS - Power Supplier 

The Detection part: 
FOl - All Fibre Optic Interferometer 
D A - Differential amplifier 
D S A - Digital Signal Analyser - DSA602 Tektronix 
C P U - H P 'Vectra' Personal Computer. 
GPIB - General Purpose Interface Bus. 

Figure 3.01: The experimental set-up diagram 
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3.2 Optical excitation system 

The excitation part includes a low power diode laser (Sharp LT016MD), equipped 

with Power supply, to precisely control diode laser driving current by modulating 

voltage from Function Generator (HP33120A) and Temperature Controller to 

monitor and to keep diode laser temperature constant. Both instruments have been 

specifically constructed for this project. 

3.2.1 Diode Laser for photothermal excitation of vibrations 

A low power laser diode Sharp LT016MD, 810 nm and with 40 mW maximum 

output power was selected to excite vibrations in a test structure, because it is 

compact, provides sufficient output power and cost effective. Since the output 

power of a diode laser is a function of the current flowing across the active junction 

within a linear region of operation, the optical output can be modulated at very high 

frequencies and will linearly follow the analog waveform modulation of the drive 

current. The diode laser output power is controlled by the driver, which provides 

automatic power control by precise internal monitoring of the diode laser drive 

current. The diode laser output power was maintained at a maximum peak of 13.5 

mW. By manually sweeping the laser diode modulation frequency near the 

calculated frequency of resonance, the cantilever has been driven into resonance. 

The diode laser could be positioned at any point of either side along the length of 

the cantilever. It was focused to a spot diameter of about 0.5 mm onto the target 

surface, using a 20x microscope objective lenses. Since diode laser threshold 

current is dependent on temperature and assuming constant drive current, power 

may drop 10% per 1°C. Maintaining the power often includes the risk of 
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destruction. Since a diode laser operating life doubles with every 10°C reduction in 

temperature and conversely, halves with every 10°C increase, in addition to the 

power supply with precise control of driving current, a stand alone temperature 

controller (see Fig. 3.03) was designed to stabilise diode laser operating 

temperature and also to improve its reliability. 

3.2.2 Power Supply and Temperature Controller 

Two specific devices Power Supplier and Temperature Controller have been 

constructed to provide modulated output power of diode laser. The power supply 

circuitry (Fig. 3.02) has two current mirror sources and an operational amplifier to 

provide a stable voltage controlled current source. The diode laser current can be 

1N4148 I 
560O. 

50O 

220 

IK2 
220 

IK 

470O -S 

IK 

22K 

Laser 
current 
monitor 

Output 
power 
photodiode 

rMV^ 

slow start 
circuit 

12K 

BC337 

•33fi 

47nF 

1N4148 

*2K7 
100O 

LM358 
Laser 
monitor 
output 

Modulated 
8K2 Input FG 

-^vVv—® 

Figure 3.02: Diode laser power supply circuitry diagram 
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linearly modulated by any analog modulation waveform from function generator 

(square, sine or triangle) . The operational amplifier output voltage is used to 

monitor the diode laser driving current through BNC connector. The feedback 

signal from built-in photodiode, that senses the back facet emission from the laser, 

has another BNC connector to control laser diode output power. As the spikes 

produced even when a normal DC supply is switched on or off are sufficient to 

damage many diodes, the power supply also provides the automatic smooth current 

ramps during power-on and power-off. For all measurements in this work the diode 

laser was modulated using Sine waveform signal from Function Generator. 

The Temperature Controller (Fig. 3.03) has been built to stabilise diode laser 

temperature over the range from -55°C to +150°C by accommodating an integrated 

circuit sensor such as Analog Device AD-590, whose output is 1 uA/°K. The diode 

laser trimmed to ±0.5°C of calibration accuracy. The instrument displays the set 

point, which has been set by voltage output from the voltage follower and actual 

temperature in degrees of Celsius, using digital meter and LED indicators, showing 

less or more, than reference temperature. The diode laser has an in-built Peltier 

device, which was mounted in close proximity to the diode laser and which acts as 

a heating or cooling element, according to the direction of current flow. If the diode 

laser temperature falls out-of-range, then a voltage develops across the Peltier 
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Figure 3.03: Temperature controller circuitry 
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device, that the current attempts to maintain the normal operating temperature by 

heating or cooling. 

3.3 Optical detection system 

The detection part of set-up includes the laser source, Fibre Optic Interferometer of 

Mach-Zehnder configuration with detection electronics (see Fig. 3.04). The Silicon 

detectors OPF480 convert an optical output to electrical signal, which after 

amplification and differentiation is transforming from time domain to frequency 

based by Digital Signal Analyser DSA602 with FFT display. All measurements 

were obtained in the form of the displacement response curves (Displacement 

versus Driving frequency) or as the recorded waveforms, which have been stored 

on disks using HP-Basic written program for data transfer from DSA to an CPU 

drive storage through the standard GPIB interface. Light from 632.8 nm He-Ne 

laser with output power of ~ 2 mW (Model-117A, Spectra Physics) is coupled into 

a single mode fibre by precision fibre coupler assembly Newport MF915T (PFC1). 

After input coupling, the light is then split into the two arms of the interferometer 

by a 2x2 fibre optic directional coupler (DC1) in two beams of equal intensity. First 

beam collimated by precision fibre coupler assembly (PFC2) is incident on the 

surface of the cantilever, the part of the beam reflected back into the coupler forms 

the signal part of light power. The reference part from the directional coupler 

(DC1) after being passed through the Phase shifter (SI) recombines with the signal 

part of the power in second fibre optic directional coupler (DC2). Any change of 

the distance between the sensing fibre tip and the vibrating reflective surface varies 
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the optical path length of the signal and the reference arms and causes phase 

modulation of the interferometer output signal. 

PFC1 PFC2 

He-Ne Laser 

DC1 

Signal 

SI 

Reference 

DC2 

Dl D2 

< •> 

Cantilever 

Gl 

Output 

Al 
^—-F 

PFCl/2-precision fibre couplers, DCl/2-directional couplers, Dl/2-detectors, 

A1-Operational Amplifier, SI-PZT stretcher, Gl-integrator 

Figure 3.04: The optical detection part with Mach-Zehnder interferometer as a 

sensor 

3.3.1 Interferometric sensor and homodyne technique 

Since photodetectors respond to the light irradiance, they cannot measure the 

difference in phase directly. But when two signals from the reference and signal 

arms interfere, the phase difference determines the amplitude of the light in the two 

fibres leaving the second directional coupler. In this way, a phase modulation of the 
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light in the signal fibre is converted to an amplitude modulation, whose square is 

then recorded as an irradiance at the detector. A key element to the interferometric 

sensor is the optical fibre directional coupler (3dB), its ability to convert phase 

shifts into amplitude variations. For these couplers if we assume the power 

coupling coefficients of the two couplers are K, and K2, then the output of the 

interferometer from the signal (Es) and reference (Er) arms are (Udd 1991) 

Er = EoyfK^co^coc0t + far). 

Es = EQ-j{\-Kx)(-- K2)cos(coc0t + fax). 

3.01 

3.02 

The output intensity of the interferometer can be expressed as 

I = (E2) + (E2) + (ErEs), 3.03 

where <...> denotes a time average over a period much longer than an optical 

period (27Z/(dc0). By combining 3.01, 3.02 and 3.03 we obtain the output from one 

of the interferometer arms as 

I = Ir KjK2 +{1-Kj)(/-K2) + 2^KjK2(l-Kj){l-K2) Cos(far - fas) 3.04 

and for 3dB couplers K]=K2=l/2, so that 

h=h L + LCos{Afa) where A(f) = far -fas 3.05 

where A(f) -271/X-AL, (AL=Lr-Ls) is the optical path length difference between the 

signal and reference arms of the interferometer. The output of the other arm of the 

3dB coupler is complementary to Eq. 3.05: 

h=h L-LCos(Afa) 3.06 
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The outputs from the two ports are 180° out of phase with each other. It should be 

noted that two effects have been ignored in this consideration, the effects of source 

coherence and polarisation effects. Source coherence refers to the property of light 

to form interference patterns. If the light beam is divided into two, one part delayed 

relative to the other and then recombined, an interference pattern will form as 

illustrated in Fig. 3.05: 

Q. 
3 
O 

o 
o 
a 

Q 

Photodiode 1 

\ Y\ 
Photodiode 2 

/~Y /A 

A/2 3X/4 X 5A/4 3X/2 7A72 
Optical path length difference 

Figure 3.05: Interferometric output 

After a time delay T, there remains a definable phase relationship between the two 

beams. Depending on this phase relationship a range of output intensities of the 

two mixed beams 

3 

U 
U 
U 

C 

K 
A<|>(radians) 

2n 

Figure 3.06: Fringe visibility in one arm of an interferometer 
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is obtained between minimum (out-of-phase) and a maximum (in-phase) in Fig. 

3.06. To include the effects of coherence and polarisation vectors of the signal and 

reference beams Eq. 3.06 can be rewritten as: 

h=h ---Yvco-Qcos(Afa) 3.07 

where Jv is the measure of fringe visibility for a path length difference, and 0 is 

the angle between the two polarisation vectors. For short path length differences 

between the arms yv=l, ie. short compared to the coherence length (Lc=cTc), form 

large path mismatches, Tc is inversely related to the frequency linewidth of the 

laser and increases as the linewidth decreases. For larger Tc or narrower linewidth 

lasers, interference patterns can be obtained for larger path length differences 

between the beams. Thus for sensors it implies larger path length differences may 

be tolerated between the signal and reference arms. Fringe visibility is defined as 

Yv = ^
max *min , 3.08 
max min 

It should be mentioned here that coherence length for two types of laser sources 

used in this work is sufficient to match the length difference of reference and signal 

arms of the interferometer. For He-Ne 632.8nm "Uniphase" Laser Mode spacing 

Av =438 MHz (Newport Catalogue 1995), 

Av = c/2Lc, thus 

Lc= c/2-Av = 310
8/2-438106 = 0.3425(m), 
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For He-Ne 632.8nm "Spectra Physics" 117A Model Laser Mode spacing 473.6 

THz, and similar calculation gives the value of Lc more than 31 m. A very small 

displacements of the oscillating cantilever that is to be measured induce a very 

small phase change Afa in the order of 10"4-10"6 urad in the Eq. 3.5, which results 

large changes in the output intensity of the detector. For maximum fringe visibility 

0 should be as small as possible and as 0->n/2, total loss of the signal occurs. The 

sensitivity of the sensor (Eq. 3.09) is dependent on the phase difference and will be 

a minimum for Afa -> 0, which is the expected signal level. 

*=d[Cos(WJ 
d(Afa) d(Afa) V V} ' 3-09 

This is shown in Fig. 3.07: 

7t/2 TC 37t/2 2n 

A<])(radians) 

Figure 3.07: Sensitivity vs phase difference between two arms of the 
interferometer 

From the diagram the highest sensitivity is achieved when one arm of the 

interferometer is set, or biased to an odd multiple of Tt/2, then for small excursions 

around this point sensitivity is maximised. This is referred as the quadrature point. 

Many factors such as temperature and pressure variations may cause the fibre to 

elongate and therefore may cause the path length difference between the reference 

and signal arms of the interferometer to drift with time. This will cause the sensor 
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phase shift Afa to vary in and out of the maximum sensitivity points as Afa takes on 

many values of n. For homodyne sensors this control is usually realised by placing 

a phase shifter in the reference arm to control its length. This device is fabricated 

by wrapping optical fibre around a piezoelectric cylinder. When excited by a 

feedback correction voltage the cylinder expands and stretches the fibre and 

consequently its increased length induces a phase shift in the light propagating in it. 

When the optical path length of one arm of the interferometer is modulated by a 

signal fas of frequency C0S- the optical phase difference between the optical beams 

fa(t) may be written as 

fa(t) = fad+fasSincost, 3.10 

where fa^ is slowly varying thermal phase shift, and<^ is the signal phase 

amplitude. 

3.3.2 Signal processing 

As it was shown in previous section the sensitivity of the interferometer to an 

induced optical phase change is not constant, due to the natural periodicity of the 

transfer function. This variable sensitivity is not acceptable in most sensor 

applications, as it causes signal fading. Linearisation of the interferometric sensor's 

transfer function has been achieved by a variety of different techniques. One of the 

most effective technique designed to recover the input signal modulating the 

relative phase in the interferometer fasSincost is to use a piezoelectric based fibre 

optic phase modulator (Jackson et al. 1980). In this technique the phase modulator 

is incorporated in the reference arm and forms part of a feedback loop to maintain 
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the interferometer locked at its point of m a x i m u m sensitivity (quadrature point), 

where fad=(2n+l)n/2. 

3.3.3 Detection electronics circuitry and feedback control operation 

The interferometer outputs Eq. 3.05-3.06 m a y be rewritten (Dandridge A., 1991): 

7 ; = -j-[l + Cos(fad +fasSincostj\, 3.11 

h = -J [] - Cos{fad + fasSincost)\ 3.12 

These intensity outputs are then converted to electrical currents by a photodetector. 

Differential combination of these photocurrents produces an output 

i = erI0 cos(<r), + fas sin coj).. 3.14 

where £,- is the responsivity of the photodetectors, 

Cos(fad + fasSincost) = Cos fad Ut) + 2_tJ2n{<l>,)Cos(2ncoxt) 
n=\ 

Sinfad 2 ^ 72n+1 (fax )Sin[(2n + l)cost] 
n=0 

3.15 

and Jn(fas) is the Bessel function of order n. Under normal operating conditions <pd 

fluctuates randomly in time due to temperature changes, causing the amplitude of 

the Bessel components to fluctuate in a similar manner. In order to hold the average 

value of Afa --7t/2, that is Afa=fad+dfas-fac=n/2, where fa- is the applied control phase 

shift to the piezoelectric transducer. The interferometer output given by Eq. 3.04 

may be written as: 
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i = £rI0cos(fad-rdfas-<t>c). 3.16 

At this point i is zero at the quadrature point, and small deviations from quadrature 

are given by 

40*/2 = ~erh
 cos(^ +<*&-&)• 3.17 

Since this is zero at desired quadrature condition and experiences a sign change 

passing through quadrature, it is an ideal error signal from the view point of linear 

control theory. If an appropriate feedback voltage is applied to the piezoelectric 

element controlling <j>c, then <J)C can be made to exactly cancel (fy+dfas), thus driving 

the error signal to zero. Such a feedback signal is the integral of i, amplified by an 

appropriate gain factor g (Eq.3.18): 

T 

dVfb=g\i(i)dt\ 3.18 

where g is the amplifier gain. The modulating signal fasSino)st can be directly 

recovered from the feedback signal dV/b, provided cos is less than the bandwidth of 

the servo. The tracking range of active homodyne signal processing is limited by 

the maximum voltage generated in the feedback loop. So the drawback of this 

technique is that the piezoelectric phase shifter has to be periodically reset to zero 

when it approaches its maximum voltage and this reset may occur often if the 

sensor is used in non-laboratory environments. The detection electronics circuit 

diagram (Fig. 3.08) was built using off the shelf components. Two OPF480 silicon 

photodetectors were used to detect the optical signals and produce currents 

proportional to light intensities. They feed two NE5532 transconductance 
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Figure 3.08: Detection electronics circuitry 
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amplifiers. The differential output signal after subtraction in two operational 

amplifiers LF347 is undergoing further amplification in third LF347 by 

combination of two resistances 10 ohm and 220 ohm. The integration has been 

implemented by the next LF347. And further on the operational amplifier LM741 

provides an antiphase correction voltage. Finally the feedback correction signal has 

been applied to the piezoelectric shifter to track out the interferometer drift. The 

electronic circuitry was powered by ±18V Laboratory DC Power Supply with dual 

tracking (GPQ3030). The phase shifter was fabricated by wrapping 15 turns of 

single mode fibre around a piezoelectric cylinder (Tokin XOZ-138) with 3.8 cm of 

outside diameter and piezoelectric coefficient- 4-10"10 m/volt. The optical fibre 

turns have been attached to the PZT using Araldite adhesive. The feedback 

correction voltage through the piezoelectric effect causes the radius of the cylinder 

to expand or contract by an amount: 

Ar = dp-Vc, 3.19 

where dp is the piezoelectric coefficient (~4.02-10~
10 m/Volt), Vc the correction 

signal. As the fibre is attached to the cylinder , it will be stretched by cylinder 

expansion (the DC level of applied voltage can be adjusted to ensure that the 

cylinder does not contract or compress below its rest state) and its increased length 

will induce a phase shift in the light propagating in it. The fibre length extension is 

given by 

A/ = 2Mr--, 3.20 
t 

where L is the length of the windings on the cylinder and / is the fibre outer 

diameter so that Ut=N, the number of turns. 
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For t=125 \im, A= 632.8 nm, N =15 turns and using 

2K 

Afa = —Al, 3.21 

then AA can be written as AA=A/Al, we obtain 

Al=(2n-4-10"10-15)x V=377-10'10x V(m)-=0.0377x V(Llm), 

A(j)=27l(377x 10"10/632.8)xV(radA^olt) =27T(0.0596)xV(raaWolt), 

so A0~2ll phase shift can be provided by relatively small value~ 16.8V of 

feedback correction voltage. 

3.4 The interferometer calibration procedure and performance 

The interferometer was calibrated using a Piezoelectric mirror shaker (MB-

ST/500/3) with resonant frequency>5 kHz, which has been mounted onto the 

breadboard replacing the cantilever, that is the light reflected from the mirror was 

coupled back into the signal arm of the interferometer. The PZTS was biased at 

+250 V DC. The signal frequency of 140 Hz (Sine waveform) was set to drive the 

mirror shaker into vibration. The AC amplitude of mirror shaker driving voltage 

was gradually increased from zero to maximum, when the interferometer output 

signal has reached 3.44 V, and any further increase in mirror shaker driving voltage 

resulted in the second harmonic term coming up. At this point the corresponding 

mirror displacement was equal to one eighth of the laser wavelength 

(632.8nm/8=71.9nm). With the interferometer locked into the quadrature 

condition the output signal V(t) is given by: 
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V(t) = VoSin[x + 0(t)], 3.22 

where ft) is the phase induced modulation due to vibration amplitude and V 
ois 

V max Output signal 

0 

-V m a x I \|/ 

Quadrature 

v«0 

37T/2 

A. Output signal phase difference 

V. max Output signal 

Quadrature 

-V max 

-m m 
B. Mirror displacement amplitude. 

Figure 3.09: Phase modulation and displacement amplitude 

the maximum peak-to-peak output signal voltage of the interferometer as shown in 

Fig. 3.09 V0 = 2Va, when <//(t)= ±n/2. 

For any phase modulation about the quadrature point less than fa(t)= ±7t/2, one can 

obtain: 
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Vb = Va sin(;r - fa) - Va sin(;r + fa), 323 

fa = sin l 

<raJ 
3.24 

The phase shift is related to the mirror amplitude S by fa=4nS/X, where X is the 

interferometer wavelength. Therefore, the mirror amplitude can be determined by: 

^ . /K> 
S = — sin ' 

AK 

_b_ 

vj 3.25 

The displacement A/8 was reached with a peak mirror driving voltage of 12.8 V, 

and the corresponding interferometer peak of output signal was 3.44 V. Then the 

AC component of the mirror driving voltage was gradually reduced until the 

interferometer output signal reached minimum of 0.032 V, which is equal to 

background noise level (under quiet laboratory conditions). The interferometer 

performance is usually measured by Noise Equivalent Displacement (NED), which 

is the RMS amplitude of the signal when Signal-to-noise ratio (SNR) is 1:1. It was 

found that in terms of minimum detectable displacement the calculated NED value 

is 0.17 x 10"9m. This is the fundamental limitation for the particular 

interferometer. The Fibre Optic interferometer has exhibited an amplitude 

sensitivity of 5.3 nm/V for signal detection, based on a practical SNR of 1:1. It 

should be noted that minimum 32 mV noise floor level was achievable during short 

interval of very quiet time around midnight. The common noise floor level under 

noisy environmental conditions was significantly higher about 180-200 mV. When 

this is taken into account, the minimum practical displacement, which can be 

detected by the interferometer under these conditions is about an order of 
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magnitude greater than NED. The bandwidth of the detection electronics 

measured as 200 KHz. 
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4.1 Introduction 

In general a three-dimensional structure can be characterised by physical properties 

such as the Young's modulus, shear modulus, bulk modulus and mass distribution 

(Nashif et al, 1985). If a force vector 7V(?) is applied at an arbitrary point 

-ixi,yi,zi), it will generate a response vector F at an arbitrary point 2{x2,y2,Z2). The 

magnitude of F will be proportional to the magnitude of N(t) for a linear system, 

but the direction of F will depend on physical properties of the structure and the 

three components of N (Nx, Ny, Nz). Similarly a moment M(t), comprising three 

components Mx, My, Mz, will have a corresponding response vector F. The 

principle of superposition applies for linear systems so that responses from two or 

more inputs may be added as vectors. The usual aim of vibrational analysis is to 

predict F given NOT M. For stationary structures, which do not rotate, the 

amplitude of the harmonic response F(t) can increase infinitely at some specific 

frequencies unless non-linear factors such as damping come into play to limit the 

amplitude. This limitation occurs through finite levels of energy dissipation, at one 

or more points in the structure, which increase with the second or greater power of 

amplitude. For low levels of damping, the specific frequencies at which high 

resonant amplitudes occur are called the natural frequencies of the structure. These 

frequencies and the corresponding distributions of amplitude are global properties, 

which do not depend on the exact points at which yV(or M) are applied. The 

amplitude distributions at the natural frequencies are known as the natural modes 

of vibration. 
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4.1.1 Response function in vibration analysis and processing of measured 

data 

The transverse vibration of a cantilever shows a harmonic response at some point 

caused by a single harmonic force or bending moment (e.g. a thermal bending 

moment produced by absorption of laser energy) applied to the structure at some 

other point. As seen in Chapter 2, the variation of the response with driving 

frequency can be described in terms of a normalised response function or response 

curve (R(co)) which is approximately Lorentzian for small deviations between 

driving frequency and resonant frequency. As shown in Eq. 2.70 - 2.72, only the 

squared velocity response strictly follows a Lorentzian function. The squared 

displacement and acceleration responses contain an extra of term in the 

denominator and numerator respectively. Generally, these variations are not 

significant for small deviations from resonance. They are even less significant if 

one is only trying to determine small shifts in the maxima of the response curves. 

However, they were allowed for in the data processing since the fundamental 

resonant frequency of the cantilever used was only about 22.5 Hz. The optical fibre 

interferometer measures displacement amplitude and the data is processed by first 

squaring the measured response for a particular frequency, then multiplying by co2 

and then fitting a Lorentzian curve to the processed data using curve fitting 

software (TableCurve 2D). This software determined the central frequency coo and 

half power bandwidth (HPBW) 7 of the resonance together with their standard 

deviations. This processed data is proportional to (coA)2 and so it just represents 

the power as a function of frequency. In the figures of this Chapter, measured and 
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processed data are distinguished by the units on the ordinate axes (voltage or 

power). 

4.1.2 The accuracy of resonant frequency measurement 

In the early measurements using the low power optical excitation and sensing 

technique, Philp and Booth (1994) determined the resonant frequency from the 

peak in the amplitude response as measured by the interferometer. They measured 

the frequencies to an accuracy of ± 0.5 Hz. This was the stability of the simple 

oscillator used to modulate the laser diode. For the results presented in this 

chapter, the amplitude resolution was higher since the interferometer was more 

sensitive (low noise electronics) and it used a shorter wavelength laser (633 nm 

instead of 1523 nm). In addition the frequency resolution possible was very much 

higher as the laser diode was modulated using an oscillator with a frequency 

resolution of 10 uHz (or 10 digits) and a stability of better than 2 ppm/°C. 

In general very small changes in physical or mechanical properties of the structure 

will cause changes in vibrational parameters such as natural frequency, damping 

and vibrational profile. The actual vibrational profile of a vibrating structure is 

difficult to measure accurately and so measurements of this have not been 

attempted in this thesis. However, resonant frequency and damping are relatively 

easily measured and this chapter examines the accuracy with which each of these 

parameters can be determined from the optical measurements. Resonant frequency 

has been measured in two ways. The first involves slowly stepping the frequency 

of the laser diode excitation through resonance while recording the amplitude of 

the resulting vibration at each frequency. In this way the resonance curve can be 
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plotted and the resonance frequency determined from the maximum of the curve. 

The second method involved tuning the LD modulation to obtain maximum 

response (resonance), driving the structure to vibrate by excitation at this 

frequency, then turning off the excitation and recording the slowly decaying 

vibration as a function of time (over a large number of cycles). The resonant 

frequency can be determined by fitting a damped sine wave to this data and 

determining the frequency of this wave. The damping can be determined from the 

decay constant of this damped free vibration data or from the HPBW of the 

resonance curves. Clearly the accuracy with which measurements can be made will 

depend on the resolution of the interferometer and data recording system and, in the 

case of the resonance curve measurements, the frequency stability and resolution of 

the function generator used to modulate the laser diode. 

For the case of the resonance curve measurements, the question arises as to how 

small a change in resonant frequency can one determine? This will depend on the 

sharpness of the resonance. One conservative estimate of the minimum frequency 

shift which can be detected is obtained by considering the shift to be readily 

resolved if it is at least equal to the full-width of the resonance. This situation is 

shown schematically in Fig. 4.01. Two frequencies C0j and Gb. can be resolved if 

the difference (0h-C0j) is at least equal to the half power bandwidth, y. Clearly, 

measurement of small frequency shifts will require high-<2, low-loss resonances. 

While the last statement is always likely to be true, the minimum frequency shift 

which can be detected is considerably better than that shown in Fig. 4.01 if one 

knows the functional form of the resonance curve. Fitting of the known Lorentzian 

curve to the resonance data allows one to estimate the resonance frequency 
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parameter to an accuracy which is determined by the number of data points, the 

signal-to-noise ratio of the measurements and the stability of the resonance being 

measured (drift). This chapter presents measurements with and without the fitting 

of the Lorentzian curve to show the magnitude of the improvement, which is 

obtainable when the functional form is known. 

Power 

Figure 4.01: The resolution of two adjacent frequencies or a frequency shift. 

4.2 Description of the procedure used for measurements 

The laser diode excitation system, the fibre interferometer and the cantilever 

structure used for measurements were described in Chapter 3. Chapter 2 briefly 

discussed modal shapes but did not discuss the implications of the vibration 

profiles in terms of optimum position for excitation and displacement measurement 

so that many modes can be simultaneously excited and recorded. This section 

discusses this aspect and also describes the manner in which the measurements 

were made. 
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As has previously been stated, most of the experimental results described in this 

thesis were obtained in the form of cantilever displacement amplitude data as a 

function of driving frequency. The laser diode was sinusoidal-modulated at an 

appropriate frequency with a peak-to-peak output of up to about 25 mW. This 

beam was focused using a 20x microscope objective to a centrally-located spot of 

about 0.4 mm2 area on the surface of the cantilever at a suitable distance from the 

clamp. Initially the natural frequencies of first five vibration modes were 

calculated by Eq. 2.28 using physical and mechanical properties of the cantilever 

material (Aluminium Alloy-2024). These parameters are summarised in Table 

4.01. The values of calculated natural frequencies of Modes 1-5 are given in Table 

4.02. 

Table 4.01: The properties of the cantilever material (Aluminium Alloy-2024) 

No 

1 

2 

3 

4 

5 

Property 

Density 

Thermal conductivity 

Thermal diffusivity 

Specific heat 

Young's Modulus 

Symbol 

P 

k 

a 

cp 

E 

Numerical value 

2770 kg-m'3 

177W-m-'-K-1 

73xl0"6m2-s-' 

875J-kg'-K-1 

7.31xl010Pa 

Table 4.02: The calculated Modal resonance frequencies of the cantilever 

M o d e N o 

Ml 

M2 

M3 

M4 

M5 

Calculated resonance frequency f0, H z 

23.52 

147.39 

412.70 

808.72 

1336.87 
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The Mode shapes - Y(x/L) 
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Figure 4.02 (a): The displacement profile Y(x/L) (Modes 1-5) for clamped-

free cantilever 

The Bending moment profile 
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Figure 4.02 (b): The bending moment profile Yn(x/L) for a clamped-free 

cantilever (Modes 1-5) 
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It was found by Philp (1993) that the bending moment induced by optical 

excitation of a clamped-free cantilever is directly proportional to the second 

derivative, d2y/dx2, of the displacement profile. Thus the maximum bending 

moment for a specific mode of vibration is achieved when the laser beam is 

directed exactly at the antinodes of the second derivative of the displacement 

amplitude (Eq. 2.24). The displacement mode shapes (or the displacement profiles) 

and the corresponding bending moment profiles for the first five modes are shown 

in Figures 4.02 (a) and 4.02 (b). 

The node and antinode positions of the displacement profile and of the bending 

moment profile were calculated using the mode shape (Eq. 2.31) for the particular 

vibration modes given in Table 4.03. 

Table 4.03: The bending moment profile and the displacement profile antinode 
locations of the cantilever for five vibration modes 

Mode Number 

Ml 

M2 

M3 

M4 

M5 

Antinode locations of the bending moment (displacement) profile 

1 
-

0.52L 
(0.48L) 

0.30L 

(0.30L) 

0.22L 
(0.20L) 

0.18L 
(0.16L) 

2 
-

-

0.70L 
(0.70L) 

0.50L 
(0.50L) 

0.38L 
(0.38L) 

3 
-

-

-

0.80L 
(0.78L) 

0.62L 
(0.62L) 

4 
-

-

-

-

0.84L 
(0.82L) 

4-9 



Chapter 4: Experimental results and discussion 

4.3 Response measurements with a rigid cantilever securely fastened to the 

mounting bench 

With the cantilever beam rigidly fastened in the steel jaws of the mounting vice and 

the vice rigidly mounted to the bench on which the equipment stands, the structure 

has very high-£>, low-loss 77 resonances and the HPBW of the resonance peaks is 

very small. This allows detection of small changes in the natural resonance 

frequency. Experimental studies to date (Philp and Booth, 1994) used a square 

wave LD modulation waveform with 50% duty cycle. Some initial experiments 

using the HP33120A function generator and the laser diode were conducted to 

work out the most efficient modulation waveform (sine, square or triangular) and 

duty cycle (e.g. 25%, 33%, 40% and 50%) for excitation of vibration. It was found 

that for a fixed modulation amplitude, a sinusoidal waveform gave the largest 

amplitude excitation. The background "noise" was also smaller with sinusoidal 

excitation, presumably because there was less excitation of higher harmonics and 

hence there was less "interference" due to other vibrations. Despite the use of a 

vibration isolation table and a protective box to reduce the effects of air currents, 

the interferometer is sensitive enough to still pick up low frequency environmental 

noise which is always present in daytime. This noise arises from building 

vibrations (due to on road traffic and functioning of service equipment such as lifts, 

air conditioning structures etc), residual air current effects and acoustic vibrations. 

In general this environmental noise is at low frequencies. However, it is common 

to see transient peaks in the spectrum at frequencies in the region of the 

fundamental resonant frequency of the cantilever (22.5 Hz). For example transient 

peaks commonly occurred at frequencies in the region of 8 Hz, 9 Hz, 12 Hz and 

18 Hz. The random variations in amplitude of this environmental noise affects the 
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stability of the magnitude of the modal peak in interferometer output signal, 

especially for low frequency modes of cantilever vibration. For this reason the first 

series of measurements was carried out during a very quiet time at night and 

averaging was used. 

The following sections report measurements of the natural resonant frequency and 

the half-power bandwidth of the resonance for the first five vibrational modes. 

These measurements were carried out under three different environmental 

conditions which are typical of a laboratory environment. These conditions were 

meant to be typical of what may be called "favourable", "intermediate" and "noisy" 

laboratory conditions. The first (conditions A) involved measurements made late 

at night with vibration isolation for the laboratory bench, air current isolation with 

a box to cover the cantilever and with the air conditioning system turned off to 

reduce air currents and mechanical vibration. The second set of measurements 

(conditions B) was made during daytime with vibration isolation (but not air 

current) and the air conditioning system running. The final series of measurements 

(conditions C) were made during daytime with air conditioning running and with 

no vibration or air current isolation. 

4.3.1 Response measurements under favourable laboratory conditions 

The measurement conditions were: 

• The experimental set-up was mounted on a vibration isolation bench. 

The bench was of heavy concrete construction and was isolated by 

placing the inflated tyres under the bench legs. 
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• The air-conditioning plant (with fan) was turned off. This is the most 

significant building plant noise source. 

• The experimental set-up, including the laser diode, coupler, cantilever 

and the interferometer with output coupler, was enclosed in an airflow 

protection box. 

• The traffic on road was rare and there were a very few units of building 

service equipment operating at this time. 

4.3.1.1 Resonance measurements for Mode 1 

The central resonance frequency for mode 1 was about 22.5 Hz and the width was 

of the order of 0.1 Hz. Thus to obtain resonance curves, it was only necessary to 

step the frequency over a range of about 0.5 Hz to 1 Hz. Generally a range of 1 Hz 

was used although sometimes larger ranges were used to record background noise 

levels as well as the resonance data. For nighttime measurements, the 

interferometer output signal at frequencies well away from resonance ("noise") is 

very small, being around 30 - 40 mV compared to a peak signal of several volts. 

When stepping the LD modulation through the resonance, the increment used 

between two adjacent frequencies was variable, depending on the change of signal 

amplitude displayed on the FFT output. Frequency steps were chosen manually so 

that there was a small but significant change in output signal level after each step. 

In regions of high slope, the modulation frequency step was generally 0.01 Hz. A 

typical record of a resonance profile included three sequential scans through the 

resonance; an initial scan in one direction, followed immediately by one in the 

reverse direction and then a further scan in the initial direction. The second and 
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third scans were carried out using the same frequency settings as the initial one. 

This overall scan process could take up to 2 hours due to the large number of 

frequencies, the averaging and the data storage of all the individual traces. Clearly, 

over this long time interval there were issues of changes in environmental 

parameters such as temperature. This was the reason for the three scans. During 

the quiet night time measurements, the fluctuations between successive readings at 

a particular frequency could be up to about 50 mV at points near resonance. Even 

though the signals are very much larger than this, such fluctuations do determine 

the accuracy with which the central frequency can be determined. Averaging 

reduces these fluctuations to around 20 mV. The FFT frequency resolution was set 

at 0.012 Hz for low frequency vibration modes (1-3) and at 0.032 Hz for high 

frequency vibration modes (4-5). Data recorded in the personal computer was 

initially processed using spreadsheet software (Excel) so that plots of power rather 

than amplitude were obtained (this involved squaring the data and multiplying by 

C0f). These resonance (power) profiles were exported into a commercial curve 

fitting program (TableCurve 2D) and a Lorentzian curve was fitted to the data to 

give both central frequency and half-power bandwidth together with their standard 

errors. Fig. 4.03 gives an example of the resonance (power) data for mode 1. This 

data is simply plotted using Excel to join successive points and a Lorentzian curve 

has not been fitted to the data. The labels on the data curves (eg. NDB25) are 

simply the scan data file names and the reason for the difference in the second scan 

label is that it was recorded in two separate data files. Clearly the data from 

successive scans are very similar and environmental drift effects are small during 

these quiet nighttime conditions. In order to demonstrate this point, the values of 
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Figure 4.03: The resonance response curves for Mode 1 (the lower graph is an 
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resonance frequency, half power bandwidth and Q obtained from these individual 

scans are tabulated in Table 4.04. Even though no curves have been fitted to the 

data, the central frequency is constant to within one scan step frequency interval 

(0.01 Hz). 

Table 4.04: The displacement response curve parameters for Mo d e 1 under 
favourable laboratory conditions (3 data files of Fig. 4.03) 

Series 

N o 

File 
name 

Resonance 
frequency f0, H z 

Half-power 

bandwidth y, Hz 

Quality 
factor, Q 

Ampl, 
V 

Model 

1 
2 
3 

NDB25 
NDB 26/27 
NDB28 

22.51 

22.50 

22.50 

0.071 

0.064 

0.076 

317.0 

351.6 

296.1 

2.85 

2.70 

2.64 

Figure 4.04 shows the data points from the first scan of Fig. 4.03 together with the 

Lorentzian fit obtained using TableCurve. For this figure only one scan has been 

included as separate curves are needed for each scan and the curves are too similar 

to be resolved when more than one is plotted on a single figure. Figures 4.05 and 

4.06 show similar fits to the data of the second and third scans of Fig. 4.03. The 

advantage of using TableCurve fits is that one can get best-fit precise numerical 

values of modal resonance frequency and half-power bandwidth. The parameters c 

and d in title lines of Fig. 4.04 - Fig. 4.06 represent the numerical values of 

resonant frequency and the half-width-at-half-maximum of the power resonance 

curve for the fundamental vibration mode. The vibration parameters obtained from 

the Lorentzian curve fitting are summarised in Table 4.05. It can be seen from the 

table that the numerical values of resonance frequency and half power bandwidth 

between three scans are in very good agreement. The standard error values for 

resonance frequency and for half power bandwidth are within a few ten 

thousandths and within one thousandth of a Hertz respectively. The uncertainties 
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Figure 4.06: Lorentzian curve fit to the power resonance data points for the third 
scan of M o d e l (NDB 28) 

Table 4.05: The vibration parameters: resonant frequency, half power bandwidth 
and <2-factor from Lorentzian fits to the experimental response data 
for M o d e 1 

No. 

1. 

2. 

3. 

File 

name 

NDB 25 

NDB 26/27 

NDB 28 

Frequency 

/o,Hz 

22.4992 

22.4985 

22.4993 

Std error 

bf, Hz 

0.0003 

0.0003 

0.0004 

Curve width y, 

Hz 

0.0744 

0.0657 

0.0727 

Std error 

LSy, H z 

0.0011 

0.0009 

0.0014 

Damping 

factor, £ 

0.00165 

0.00146 

0.00162 

Error, 

<5C 

0.00002 

0.00002 

0.00003 

of these measurements are small enough to calculate values of damping factor £ 

(using Eq. 2.77) to an accuracy of about 1%. These calculated values of damping 

factor are also given in Table 4.05. A second order vibrating system with small 

amplitude of vibration and light damping (£<0.1) should behave linearly and have 

a damping factor which does not depend on vibration amplitude (Ch. 2). These 

conditions are certainly satisfied in the present experiments as the amplitude of 

vibration with laser diode excitation is very small and the measured Rvalues of the 
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cantilever are about two orders of magnitude less than 0.1. Thus the three values of 

£ in Table 4.05 should agree within experimental error. This is clearly not the case 

since the values differ by about ten times the standard error. A similar problem 

occurs with the resonant frequency and half-power bandwidth (which depend on Q. 

The origin of this problem lies in temperature variations during the measurements. 

It takes about 40 - 45 minutes to measure and to record a displacement response 

curve. During this time some of the environmental parameters, such as room 

temperature in the laboratory, can vary. In fact the room temperatures was 

monitored during the above measurement series (-2 hours) and a variation of 0.4-

0.5 °C was observed. If we substitute the values of resonant frequency 

fj(E)=22.5 Hz of Mode 1 and temperature change AT ~-0.4°C into Eq. 2.43 we 

obtain a value for frequency shift produced by the temperature dependence of 

Young's modulus as 

1 4.8-IO-4 

Af (E) = - - • . = • 22.5 • 0.4 = 0.0022 H z . 
2 Vl-4.8-10"4-0.4 

The observed resonant frequency variation of about 0.0008 Hz would be explained 

by a temperature change of the cantilever of slightly over 0.1 °C. Thus the 

variations in measured resonant frequency in Table 4.05 are considered to be real 

and produced by ambient temperature variations during the measurement period. If 

the temperature of the cantilever can be maintained constant, then the technique of 

scanning the modulation frequency through the resonance and fitting a Lorentzian 

curve can produce resonance frequencies to at least within the standard errors given 

in Table 4.05 (if the temperature did not vary then the standard errors may have 

been even less). Hence the fractional error of the frequency measurement of the 

fundamental mode is potentially at least 2 x 10"5. This fractional error is dependent 
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on the frequency resolution of the FFT of the DSA. For the measurements of the 

fundamental mode, the FFT resolution was 0.012 Hz. If the temperature was 

controlled so that constant temperature of the vibrating structure was assured, then 

the fractional error may be further reduced but this would probably require the 

frequency resolution of the FFT to be decreased to a figure below 0.012 Hz. It is 

also worth noting that the changes observed in resonant frequency are significantly 

greater than those produced by the stability of the LD modulation oscillator (better 

o 

than 2 ppm / C). 

4.3.1.2 Resonance measurements for Modes 2-5 

Measurements for the higher modes were carried out in a similar manner to those 

for mode 1. However, the magnitude of the thermally induced bending moment 

and hence the amplitude of the LD-induced vibration decreases as the modulation 

frequency is increased (Philp, 1993; Philp and Booth, 1994). Hence the vibration 

amplitudes for mode 5 were something like 30 times less than those of mode 2 and 

so the set-up was carefully adjusted to try to ensure that the best possible signal-to-

noise ratios were achieved. For maximum vibration amplitude it was necessary to 

carefully focus the LD onto the surface of the cantilever and to ensure that the 

excitation was applied at an antinode of the vibration profile for each particular 

mode. Thus the LD was re-positioned for each modal resonance measured. The 

calculated positions of the antinodes (distance from the clamp) used for excitation 

were 0.52 L, 0.70 L, 0.50 L and 0.38 L for modes 2 to 5 respectively (L = 300 mm; 

see Table 4.03). The actual positions for maximum displacement amplitude were 

found to be within 2 mm of these calculated positions. In addition to these 

adjustments, the LD power was increased for modes 2-5 compared to that used for 
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mode 1 by doubling the modulation voltage applied to the laser drive circuit. This 

increased the peak-to-peak power from about 13 mW to 25 mW. Two additional 

adjustments had to be made before running higher mode measurements. As the 

locations of the vibration antinodes along the length of the cantilever vary for each 

mode, the laser diode had to be adjusted so that the radiation was incident at a 

convenient antinode of the bending moment profile. In addition, refocussing on the 

cantilever surface was required to optimise the vibration amplitude. 

The normalised resonance response curves (converted to power units) for Modes 2-

5 are shown in Figures 4.07-4.10. 
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Figure 4.07: The response curves for M o d e 2. The figure includes data for three 
separate scans through the resonance 
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Figure 4.09: The response curves for Mode 4. The figure includes data for three 
separate scans through the resonance 
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Figure 4.10: The response curves for M o d e 5. The figure includes data for three 
separate scans through the resonance 

As before, the conversion to power units has been done by squaring the amplitude 

data and multiplying by the driving frequency C0f (see Eq. 2.71). Approximate 

values for the resonant frequency, half-power bandwidth (FWHM) and Q for 

Modes 2-5 have been determined by inspection of the data plotted in Figures 4.07 -

4.10 and these values are summarised in Table 4.06. Table 4.06 also includes the 

amplitude of the measured peak vibration for each mode. This highlights the 

general decrease in excitation efficiency as the modulation frequency is increased. 

These values are dependent on the care which is used in optimising the setup for 

each mode. Much greater care was taken with optimising mode 5 (compared to the 

other modes) as the amplitude of the resonance vibration was relatively low. 
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Table 4.06: Approximate vibration parameters obtained from inspection of the 
displacement response curves for Modes 2-5 (Figures 4.07 - 4.10) 

Scan 
N o 

File 
name 

Resonance 
frequency 
/o,Hz 

Curve 
width 

7, Hz 

Quality 
factor, 

Q 

Peak 
Amplitude, 

V 

Mode2 

1 
2 
3 

NDB 21 
NDB 22 
NDB 24 

140.88 

140.87 

140.88 

0.21 

0.21 

0.21 

660.2 

663.2 

663.0 

2.88 

2.90 

2.92 

Mode3 

1 
2 
3 

NDB 16 
NDB 17 
NDB 19 

393.88 

393.88 

393.88 

0.40 

0.43 

0.49 

983.2 

913.0 

810.6 

0.67 

0.63 

0.58 

Mode4 

1 
2 
3 

NDB 401 
NDB 402 
NDB 403 

771.35 

771.35 

771.35 

0.71 

0.70 

0.67 

1079.3 

1096.6 

1152.1 

0.058 

0.065 

0.059 

Mode5 

1 
2 
3 

NDB 501 
NDB 502 
NDB 503 

1274.6 

1274.6 

1274.6 

0.82 

0.84 

0.84 

1546.8 

1512.5 

1526.1 

0.073 

0.075 

0.076 

It is clear from Table 4.06 that as the modal resonance frequency increases, so does 

the half-power bandwidth. However, the Q is increasing with resonant frequency 

and this is consistent with a decrease in the damping factor, £, with frequency. If 

frequency shifts produced by external influences are proportional to the resonant 

frequency, then one might expect that, given a proper choice of spectral resolution, 

the increase in Q with modal frequency would imply that small influences would 

be more easily detectable using higher order modes. However, one also has to 

consider the decrease in excitation efficiency for higher order modes. The accuracy 

with which the various vibration parameters can be determined for the higher order 

modes is investigated further in the next section using Lorentzian fits to the 

resonance data. 
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4.3.1.3 Vibration parameters obtained using Lorentzian fits for modes 1-5 

Table 4.07 summarises the results of Lorentzian fits to the data of the scans for all 

of the modes (1 - 5). As was the case with the mode 1 results discussed earlier, the 

variation between scans is considerably greater than the standard error of the fit for 

a particular scan. For example, the spread of resonant frequencies for modes 2 - 5 

is about 5 to 20 times greater than the standard errors. The fractional errors in the 

determination of resonant frequency for a single scan for modes 2 - 5 are all around 

(2 - 4) x IO"6 which is somewhat better than the value of about 2 x IO"5 which was 

obtained for mode 1. These figures are an order of magnitude less than the 

Table 4.07: Vibration parameters obtained from a Lorentzian fit to the scan data 
of Modes 1-5 under favourable laboratory conditions - Conditions 

No. File 
name 

Frequency 

f0,Hz 
Std error 

6f0,Hz 

Width 

Y,Hz 

Std error 

5y,Hz 

Damping 

factor C, 

Std. error 

5C 
Ampl., 

V 

Mode 1 

1 
2 
3 

NDB 25 

NDB 26 

NDB 28 

22.4992 

22.4985 

22.4993 

0.0003 

0.0003 

0.0004 

0.0744 

0.0657 

0.0727 

0.0011 

0.0009 

0.0014 

0.00165 

0.00146 

0.00162 

0.00002 

0.00002 

0.00003 

2.85 

2.70 

2.64 

Mode 2 

1 
2 
3 

NDB 21 

NDB 22 

NDB 24 

140.8675 

140.8703 

140.8713 

0.0003 

0.0005 

0.0004 

0.2160 

0.2128 

0.2154 

0.0012 

0.0017 

0.0015 

0.00077 

0.00076 

0.00076 

0.000004 

0.000006 

0.000005 

2.88 

2.90 

2.92 

Mode 3 

1 
2 
3 

NDB 16 

NDB 17 

NDB 19 

393.9132 

393.8953 

393.9127 

0.0015 

0.0013 

0.0012 

0.4066 

0.4314 

0.4711 

0.0050 

0.0041 

0.0040 

0.00052 

0.00055 

0.00060 

0.000006 

0.000005 

0.000005 

0.67 

0.63 

0.58 

Mode 4 

1 
2 
3 

NDB 401 

NDB 402 

NDB 403 

771.4113 

771.3597 

771.3949 

0.0025 

0.0025 

0.0027 

0.6965 

0.6976 

0.6501 

0.0087 

0.0091 

0.0095 

0.00045 

0.00045 

0.00042 

0.000006 

0.000006 

0.000006 

0.058 

0.065 

0.059 

Mode 5 

1 
2 
3 

NDB 501 

NDB 502 

NDB 503 

1274.6054 

1274.5864 

1274.5794 

0.0044 

0.0048 

0.0053 

0.8810 

0.8691 

0.8546 

0.0154 

0.0169 

0.0186 

0.00035 

0.00034 

0.00034 

0.000006 

0.000007 

0.000007 

0.073 

0.075 

0.076 
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fractional errors determined from the variations between scans, which are all 

between 1 x IO"5 and 4 x IO"5. Similar conclusions apply to the other parameters 

included in the table. The results for mode 2 are consistently slightly better, than 

those of the other modes, but with only three scans per mode the statistics are not 

good enough to support a conclusion that such a difference is significant. Given 

the spread of parameters obtained between scans, there was little point in including 

data from a greater number of scans when the temperature of the cantilever was not 

controlled. The origin of this variation between scans is again considered to be 

temperature fluctuations of the cantilever during the measurements. As explained 

earlier, variations in cantilever temperature affect the stiffness of the cantilever and 

hence the Young's modulus and modal resonant frequency. Table 4.08 summarises 

the frequency shifts of the various modes due to a temperature variation of between 

0.1 °C and 1 °C. The variations in modal resonant frequency of all the scans 

included in Table 4.07 can be explained by a total temperature variation of less 

than 0.5 °C. This is less than the maximum measured room temperature 

fluctuation during a series of scans of 0.6 °C. Thus the fluctuations of the 

measured parameters between scans are considered to be consistent with cantilever 

temperature variations and in an uncontrolled environment this certainly represents 

a limitation to the possible measurement accuracy. In a temperature-controlled 

environment (AT at best about ±0.01 °C), the resonant frequency can be measured 

to about three parts per million. This figure is limited by the temperature 

fluctuations during the time of a single scan. This uncertainty in measured modal 

resonant frequency determined from fitting Lorentzian curves to the scans is 

4-25 



Chapter 4: Experimental results and discussion 

between two and three orders of magnitude less than the half-power bandwidths of 

the resonances. 

Table 4.08: Changes in modal resonant frequency due to temperature drift 

No 

1 

2 

3 

Temperature 

drift, °C 

0.1 

0.4 

1.0 

Resonant frequency shift, H z 

fi= 

22.4992 

0.0005 

0.0024 

0.0060 

f2= 
140.8703 

0.0034 

0.0151 

0.0378 

fs= 

393.9127 

0.0095 

0.0420 

0.1049 

f4= 

771.3949 

0.0186 

0.0822 

0.2055 

fs= 

1274.5864 

0.0307 

0.1358 

0.3395 

The data presented in this section has all been for a very lightly damped system so 

that half-power bandwidths were small and accurate measurements could be made 

of modal resonant frequency. Under these conditions, five modes were able to be 

optically excited with reasonable vibration amplitude and measured. In more 

heavily damped systems, the decrease in amplitude may be such that fewer modes 

can be useable using the scanning technique. 

4.3.1.4 Decay time measurements by waveform sampling: Modes 1-3 

In preceding section the damping factor £ was deduced using the values of 

resonance frequency and half-power bandwidth, which were obtained from 

measurement of the response curve followed by a Lorentzian fitting procedure. 

Another common way to determine the structural damping is by measuring the time 

taken for the amplitude of the vibration to decay by a factor of e. As was shown in 

Chapter 2 (Sec. 2.5.1) free vibration after removal of excitation must continue until 

damping brings the system to the rest in a finite time. The first part of the transient 

term, F,e<(°!, in Eq. 2.49 represents a decaying amplitude for the harmonic function 

4-26 



Chapter 4: Experimental results and discussion 

Sin(codt + fa). By digitally recording the vibration amplitude waveform over a 

period long enough to see significant decay and then fitting this data with an 

equation of the form of Eq. 2.49, the two parameters C, and cod can be determined. 

This fitting procedure will also give an estimate of the standard error of the 

parameters. This procedure was carried out and the results are described in this 

section. Values of parameters were obtained in two ways. Firstly, £ was obtained 

by fitting the term Fje'^"1 to the envelope of the decay waveform. The second 

method used a fit of the damped sinusoid to the entire waveform to give both cod 

and £. For both methods it is important that a reasonable number of data points are 

recorded for each vibration cycle. It should be noted that this measurement 

technique produces cod rather than co0. For the very lightly damped structures 

currently under investigation this is not a significant problem as the two parameters 

differ by only about one part in IO6. This type of measurement was more sensitive 

to the signal-to-noise as no data averaging was possible. In general, the signal to 

noise affected the standard error of the fits but for signal-to-noise values below a 

certain limit, reasonable fits were simply not possible. For the lower frequency 

modes (1 and 2) where the signal-to-noise is relatively high, the technique worked 

well. Mode 3 measurements were made with some difficulty and only values of £ 

were obtained. However, it was not possible to make measurements using modes 4 

and 5. 

The decay waveform of the particular mode of vibration was recorded after the 

response curve measurements have been completed and before the laser diode has 

been re-positioned and re-focused to excite the next mode. Measurements were 
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made by either turning on the laser diode using CW sinusoidal modulation and 

switching off the modulation after equilibrium had been reached or by using a 

"burst mode" feature to give a finite number of modulation cycles. Both methods 

were equivalent and produced similar results and the burst mode was the most 

convenient. In the bust mode of operation, the number of cycles of modulation was 

generally set to 500 and this was more than enough to set up steady state conditions 

for all modes. The number of data points recorded for the vibration waveform was 

4096 for mode 1, 8,192 for mode 2 and mode 3. Recordings of the waveforms 

used approximately 4 point per vibration period for all three modes. 

The vibration parameters and their standard errors were obtained from the data by 

fitting mathematical relationships using TableCurve 2D software. Damped 

sinusoid equations were fitted to the entire data sets to obtain values of cod and £for 

each vibration record. To obtain £, 25 - 30 representative peak data points were 

selected for the fitting of the exponentially-decreasing amplitude function to the 

envelope of the decay waveform. The TableCurve software provided a simple way 

of choosing suitable points from the graphical display of the vibration waveform 

records. 

Figure 4.11 shows a typical decay envelope for mode 1 and superimposed is a 

decaying exponential with decay time derived from fitting the data. With the 

timescale used for the display, the sinusoidal nature of the waveform is not 

discernible. The fit of the exponential decay to the envelope is clearly not ideal and 

the reason for this is the noise superimposed on the signal waveform. Table 4.09 

summarises the decay time data obtained from fits similar to Fig. 4.11 for the 
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modes 1-3. The table shows data for three separate waveform records per mode 

to give the standard error for each fit and also show the reproducability of the data. 

As with the data for C, contained in Tables 4.05 and 4.07, the measured values of 

decay time differ by about 2-6 times the standard error. While some of the spread 

may be due to the selection of the 25 - 30 

NXN01/M1/30-SEP-96 
Rank 1 Eqn 8002 [Exponential] y=a+bexp(-x/c) 

r2=0.99972708 DFAdjr2=0.99968399 FitStdErr=0.012234518 Fstat=36630.805 
a=0.11052263 b=43.05216 

c=4.9829805 
2.5 

1.5 

0.5 

a • • *, 

2.5 

1.5 

0.5 

14.5 18.5 22.5 26.5 30.5 
=^.0 
34.5 

TTME/S 

Figure: 4.11: Vibration amplitude decay waveform (displacement) for mode 1. 
The record is 4096 data points long and is recorded at about 4 points 
per period. The superimposed exponential has a decay time 
obtained by fitting a single exponential decay to 25 - 30 peak data 

points of the decay waveform 

data points for the fit, the basic reason for the fluctuation in values from one record 

to another is again considered to be temperature variations of the cantilever 

between records. 
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Table 4.09: Decay time data obtained using an exponential function expf-t/z^p) 
fit to the envelope of the recorded waveforms of Modes 1-3 

Record No. File name Decay time x^, s Std. Error Sz^p, s 

Mode 1 

1 

2 

3 

NXN01 

NXN02 

NXN03 

4.983 

5.752 

5.444 

0.053 

0.063 

0.057 

Mode 2 

1 

2 

3 

NXN3 

NXN4 

NXN04 

1.828 

2.057 

2.037 

0.036 

0.054 

0.060 

Mode 3 

1 

2 

3 

NXN07 

NXN08 

NXN7 

0.677 

0.746 

0.734 

0.010 

0.020 

0.013 

The second method of obtaining the vibration parameters, by fitting a damped 

sinusoid to the entire data set, provides values of £ which have much smaller 

standard errors for single scans. A typical fit of this type for mode 1 is shown in 

Figures 4.12 and 4.13. These figures show the data on timescales which are 

appropriate to displaying the decay and also the harmonic vibration over a small 

number of periods. Figure 4.13 makes it clear that the fit obtained is excellent 

provided one fits with 5 variable parameters - offset, amplitude, decay constant, 

damped frequency and phase. As explained earlier, this type of fit was only 

possible for the first two modes as reasonable fits were not possible with higher 

order modes due to the reduced signal amplitude and relatively poor signal-to-noise 

ratio. The data obtained for the first two modes is summarised in Table 4.10. 
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NXN01/M1/30-SEP-96 
Rankl Eqn8001 [TJDF l]y=sin*exp(a,b,c,d,e) 

r2=0.99542612 DFAdj r2=0.99541466 FitStdErr=0.048286546 Fstat=108598.78 
a=0.097956501 b=38.586429 c=22.5004 

d=-1.681402 c=5.306655 

14 22 26 
TT5ME/S 

Figure 4.12: Vibration waveform (displacement) for mode 1 together with a fit to 
i/e. the data using an equation of the form v = a + be' sin(2nct + d) 

While the values of decay time in Table 4.10 have smaller standard errors than was 

the case for the previous data of Table 4.09, the variation of values between records 

is of similar magnitude and the variations are again substantially greater than the 

standard errors. This is again consistent with a variation between records which is 

due to temperature variations. It is evident from Table 4.10 that the fitting of a 

damped sinusoid to the entire vibration waveform record is a more satisfactory way 

(compared to fitting only the envelope) of obtaining vibration parameters for 

modes where the signal-to-noise allows this approach. This method has the added 

advantage over the resonance scan method, described in section 4.3.1.1 and 4.3.1.2, 

that the measurement can be completed very quickly and requires only a time 

comparable with the decay time of the mode. However, one needs to first 

determine the resonant frequency reasonably accurately for this method as the 
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frequency of the decaying waveform is always that of the applied modulation. This 

method is not useful for very accurate determination of resonant frequency as any 

forcing frequency within the resonance bandwidth will produce recordable 

vibrations. Fitting of the entire vibration waveform is therefore principally useful 

for determining the damping, and hence the widths of resonance peaks, for the 

lowest order modes. For the measurements presented here, the modulation 

frequency was set to the resonant frequency determined from the 

NXN01/M1/30-SEP-96 
R a n k l E q n 8 0 0 1 [TJDF 1]y=sin*exp(a,b)c)d,e) 

r2=0.99542612 DFAdjr2=0.99541466 FitStdErr=0.048286546 Fstat=l08598.78 
a=0.097956501 b=38.586429 c=22.5004 

d=-l.681402 e=5.306655 
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Figure 4.13: Vibration waveform (displacement) for mode 1 together with a fit 

to the data using an equation of the form y= a + be' esin(27tct+ d) 

Lorentzian fits to the scan data and the existence of maximum vibration amplitude 

was checked immediately prior to the measurement. 
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Table 4.10: Values of damped resonant vibration frequency and decay time for 

modes 1 and 2 obtained from fitting an equation of the form y= a + 

be't/e sin(2izct+ d) to the measured decay waveforms 

No File 
name 

Decay 
time T, s 

Std.error 
8x, s 

Resonance 
frequency 
/A Hz 

Std.error 

Sfd, Hz 

Model 
1 
2 
3 

NXN01 
NXN02 
NXN03 

5.3067 
5.2415 
5.2127 

0.0164 
0.0163 
0.0167 

22.5004 
22.5000 
22.5007 

0.0001 
0.0001 
0.0001 

Mode2 
1 
2 

NXN3 
NXN4 

1.7786 
1.9674 

0.0040 
0.0049 

140.7785 
140.8556 

0.0002 
0.0002 

It is interesting to compare the data obtained from the Lorentzian fits to the scans 

(Table 4.07) with that obtained from the damped harmonic decays. To facilitate 

this comparison, Table 4.11 shows, in addition to the resonant frequency, values of 

damping factor and half-power bandwidth derived from the decay data of Table 

4.10. In general the data of Tables 4.07 and 4.11 agree quite well. The slight 

difference in resonant frequency may be due to the fact that the scan data and the 

decay data were recorded at different times. The standard errors in frequency 

determined from a single record of the decay data are somewhat less than those 

obtained from a single scan. Both sets of data show variations of frequency 

between measurements, which are substantial, compared to the standard errors. 

The standard errors of the decay-derived values of £ and y for a single record are 

about 5 times smaller than those obtained from the scan data. While the actual 

values of these two parameters are about the same for the two methods, the values 

are consistently lower for the decay-derived data. The variation of these 

parameters between separate records is about 2% and 10% for modes 1 and 2 

respectively for the decay-derived data and the corresponding figures for the scan-

4-33 



Chapter 4: Experimental results and discussion 

derived data are about 11% and 2%. For the scan-derived values of r and y, the 

variations arise from the fits which are probably affected by variations of frequency 

with temperature during the scan. For the decay-derived values of £ and y, the 

variations between records are directly attributable to variations in the fitted values 

of decay time. For both methods, it is clear that when the temperature is not 

controlled it is possible to make much more accurate measurements of resonant 

frequency than other vibration parameters associated with damping or energy loss. 

The fractional variations of the former are about three orders of magnitude smaller 

than those of the latter. Hence, for a sensitive measurement of changes (other than 

those due to temperature) in vibration parameters in high-Q structures where the 

temperature is not controlled , it is best to measure changes in resonant frequency. 

If the temperature is controlled and one wishes to make measurements of damping 

or energy loss related parameters for lower order modes, the lower standard errors 

obtained with the harmonic decay method would suggest that this may be the better 

method to use. 

Table 4.11: Calculated values of damping factor and half-power bandwidth 
using the decay time measurements of Table 4.10 

No File 

name 

Resonance 

frequency 

fd,Hz 

Std.error 

8fd, H z 

Damping 

factor, C, 

Error, 

8£ 

Half-power 

bandwidth 

Y,Hz 

Error, 

&Y,Hz 

Mode 1 

1 

2 

3 

NXN01 

NXN02 

NXN03 

22.5004 

22.5000 

22.5007 

0.0001 

0.0001 

0.0001 

1 

2 

NXN3 

NXN4 

140.7785 

140.8556 

0.0002 

0.0002 

0.00133 

0.00135 

0.00136 

0.000004 

0.000004 

0.000004 

0.0600 

0.0607 

0.0611 

0.0002 

0.0002 

0.0002 

Mode 2 

0.00064 

0.00057 

0.000001 

0.000001 

0.1790 

0.1618 

0.0004 

0.0004 

4-34 



Chapter 4: Experimental results and discussion 

4.3.1.5 Variations in resonant frequency due to temperature changes 

In earlier sections, fluctuations in resonant frequencies have been observed which 

are greater in magnitude than the standard errors of the fits (either fits to the scans 

or fits to the decay data). These fluctuations have been ascribed to changes in the 

temperature of the cantilever, which affects its stiffness and therefore the modal 

resonant frequencies. It was not easy in an environment where the temperature 

could not be controlled to carry out a careful measurement of the variation of 

modal resonant frequency with temperature. However, it was considered necessary 

to check that the magnitude of the temperature-induced changes were roughly in 

agreement with those previously predicted from the thermal variation of Young's 

modulus. In order to do this the cantilever arrangement and a small hotplate were 

enclosed in a box and measurements were made over a period in excess of 1 hour 

as the hotplate raised the air temperature from about 20 °C to 30 °C. A 

thermocouple attached to a second cantilever was also included inside the box to 

provide approximate temperatures for the cantilever, which was vibrating. During 

this time, the temperature and resonant frequency were constantly changing and so 

measurements were made by fixing the driving frequency at the initial resonant 

frequency of the first mode (about 22.5 Hz) and monitoring the decrease in 

amplitude of the excitation as the resonant frequency was lowered due to the rise in 

temperature. The principle of this measurement is illustrated in Figure 4.14. 

For a Lorentzian lineshape, the amplitude (power) of the resonant vibrations should 

decrease to about 20% of its peak value when the resonant frequency shifted by one 

half-power-bandwidth (about 0.06 Hz). A decrease in power amplitude to this 

level was obtained in about 3 °C and hence the thermal resonant frequency change 
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was about 0.02 Hz 0C_1. This figure is about a factor of three higher than the figure 

of 0.006 Hz °C"1, which was obtained previously (see Table 4.08). The difference 

between these two numbers is not significant as both are only approximate. The 

important point is that quite small temperature fluctuations in the environment are 

sufficient to produce easily observed shifts in the frequencies of the resonant 

modes. 

/N 
Power 

Elevated 
temperatures 

Ambient 
Temperature 

co 
-> 

C0f 

Figure 4.14: Illustration of the resonance frequency shift due to the temperature 

change, ay is the driving frequency of laser modulation 

4.3.2 D a y time measurements under less favourable laboratory conditions 

(Conditions B and C) 

All measurements reported previously have been carried out under quiet nighttime 

conditions with vibration (air support) and air current (box) isolation. These were 

the best conditions available in the laboratory. The results presented in this section 

are for what have been called "intermediate" and (relatively) "noisy" laboratory 

conditions (conditions B and C). These conditions are typical of what can be 

achieved in a normal laboratory with little effort. For conditions B, the air 

conditioner was operating and the measurements were made during daytime hours. 
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The vibration isolation was maintained but the simple air current isolation was 

removed. Conditions C measurements were also made during daytime and for 

these measurements the air conditioner was operating and vibration and air current 

isolation were removed. 

To demonstrate the effects of varying conditions on the recorded waveforms, 

Figure 4.15 shows a long-term record of the mode 1 vibration under steady 

modulated-laser excitation for the three different environmental noise conditions. 

Despite the visual aliasing effects evident under conditions A, the amplitude of the 

vibration can be seen to be quite constant over a 40-second period. Fitting of a 

sinusoidal vibration under these conditions gives excellent correlation coefficients 

and small standard errors. In contrast, under conditions C, the figure shows 

obvious random noise-induced vibrations superimposed on the 22.5 Hz oscillations 

which are thermoelastically excited. These obvious random effects have periods 

ranging from about 0.25 s to 2 s. There are also other higher frequency noise 

contributions which are not evident in a figure such as this. Fitting of a sinusoid to 

a waveform such as shown in Figure 4.15 (C) produces much lower correlation 

coefficients and larger standard errors in the fitted parameters. 
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Figure 4.15: Vibration amplitude (displacement) waveforms during steady state 
excitation for mode 1 under conditions A, B and C. The narrow 
spikes evident outside the vibration envelope in, for example, the 
waveform for conditions C, show the fitted sinusoid 
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Figure 4.16 shows scan data recorded under conditions A, B and C. For these data, 

each plotted data point is the average of 5 individual measurements at that 

particular frequency. The degradation in the quality of the resonance curves with 

additional noise is very obvious. The fitting of Lorentzian profiles to scans such as 

those in Figures 4.16 (B) and 4.16 (C) is still possible but the standard errors of the 

fitted parameters are significantly larger. 

Figure 4.17 shows examples of the measured FFT noise spectra for the two 

extreme conditions (A and C). It should be noted that the vertical scales for the 

two spectra differ by a factor of about 4. For conditions A, there is a reasonably 

uniform noise floor together with a number of peaks in the spectrum. These peaks 

can vary in frequency from one record to another. The peaks at around 22 Hz and 

141 Hz are close to the resonant frequencies of modes 1 and 2 and are likely to 

have been "amplified" by resonance in the structure. The main effect of the 

environmental noise under conditions C is to increase the vibrations below about 

25 Hz. This leads to a significant increase in the amplitude of the vibrational noise 

at frequencies close to the mode 1 resonance. These noise-induced vibrations are 

not phase-related to the driving oscillation and so they give rise to the random 

modulation effects evident in Figure 4.15. Figures 4.15 to 4.17 demonstrate that 

environmental noise can have a significant effect on the measurement accuracy 

which is possible for modal resonant frequencies using the optical excitation and 

sensing technique. All the measurements reported in this thesis are for very small 

laser excitation powers. Under noisy conditions, the accuracy of measurements can 
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Figure 4.16: Scan data under conditions A, B and C. The data points are the 
average of 5 measurements at each frequency 
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Noise spectrum: quiet time (NXN13A/29-12-6) 

0.008 

0.007 

^ 0.006 
> 
Y 0.005 
x\i 

B 0.004 
|* 0.003 
< 0.002 

0.001 

0 

A 
t> 21.80 

• 104.37 

Ol I 

141.30 236.83?' 

50 100 150 

Frequency-(Hz) 

200 250 

0.030 

0.025 

> 0.020 
i 

OJ 

3 0.015 

a 
E < u' 0.010 

Noise spectrum: daytime (NXN13/6-1-7) 

0.005 

0.000 

22.58 

< 

< 
« 

•©• 

> 

s 
• 

141.72 

• 237.06 
mL 

395.63 

100 200 300 

Frequency-(Hz) 

400 500 

Figure 4.17: FFT noise spectrums for conditions A and C 

be improved by increasing the power of the modulated laser source. Tables 4.12 

and 4.13 summarise the results of Lorentzian fits to scan data for conditions B and 

C respectively. As with previous tables, for simplicity some of the data within the 

table is quoted to more decimal places than are significant. This data can be 

directly compared with similar data for conditions A, which was previously given 

in Table 4.07. 
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Table 4.12: Vibration parameters obtained from Lorentzian fits to the scan data 
of Modes 1-5 under conditions B 

No. File 
name 

Frequency 
f0,Hz 

Std error 

8f0,Hz 

Width 

Y, Hz 
Std. Error 

&Y,Hz 

Damping 

factor, C 

Error 

5C 
Mode 1 

1 
2 
3 

NDB 43 

NDB 45 

NDB 48 

22.4982 

22.4904 

22.4994 

0.0016 

0.0007 

0.0004 

0.0806 

0.0896 

0.0624 

0.0057 

0.0026 

0.0014 

0.00179 

0.00199 

0.00139 

0.00013 

0.00006 

0.00003 

Mode 2 
1 
2 
3 

NDB 50 

NDB 52 

NDB 54 

140.8839 

140.9094 

140.8735 

0.0014 

0.0013 

0.0007 

0.2091 

0.2041 

0.2128 

0.005 

0.0048 

0.0028 

0.00074 

0.00072 

0.00076 

0.00002 

0.00002 

0.00001 

Mode 3 

1 
2 
3 

NDB 55 

NDB 57 

NDB 59 

394.0245 

394.0250 

393.9887 

0.0033 

0.0013 

0.0038 

0.5343 

0.4720 

0.4986 

0.0123 

0.0046 

0.0130 

0.00068 

0.00060 

0.00063 

0.00002 

0.00001 

0.00002 

Mode 4 

1 
2 
3 

NDB 401 

NDB 402 

NDB 403 

771.7032 

771.5979 

771.6211 

0.0061 

0.0118 

0.0039 

0.7320 

0.6834 

0.8287 

0.0218 

0.0440 

0.0144 

0.00047 

0.00044 

0.00054 

0.00001 

0.00003 

0.00001 

Mode 5 

1 
2 
3 

NDB 501 

NDB 502 

NDB 503 

1272.881 

1272.929 

1272.961 

0.0076 

0.0073 

0.0066 

1.1934 

1.1157 

1.0819 

0.0275 

0.0263 

0.0237 

0.00047 

0.00044 

0.00042 

0.00001 

0.00001 

0.00001 

Table 4.14 compares the scan data for the three different environmental conditions. 

This table shows the spread of both the resonant frequencies and half-power 

bandwidths determined from the three scans for each of the modes together with 

the average of the standard errors for these parameters for the three scans of each 

mode. With data for only three scans for each mode it is not possible to draw 

conclusions which are highly quantitative. The variation from one scan to another 

is such that meaningful statistics would require presentation of data from a much 

larger number of scans for each mode. Nevertheless, there is a very significant 

difference between the data obtained under conditions A and that obtained under 

the other two conditions. The fluctuation in the resonant frequencies between 

scans and the standard errors of the fits are very much greater for conditions B and 
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Table 4.13: Vibration parameters obtained from Lorentzian fits to the scan data 
of Modes 1-5 under conditions C 

No. File 
name 

Frequency 

f0,Hz 
Std error 

5f0,Hz 
Width 

Y,Hz 

Std. error 

&Y,Hz 

Damping 

factor, C 

Error 

5C 
Mode 1 

1 
2 
3 

NDB75 

NDB77 

NDB79 

22.4962 

22.4973 

22.4964 

0.0011 

0.0006 

0.0009 

0.0700 

0.0672 

0.0628 

0.0037 

0.0020 

0.0029 

0.00156 

0.00149 

0.00008 

0.00004 

0.00140 i 0.00006 

Mode 2 

1 
2 
3 

NDB69 

NDB71 

NDB73 

140.9435 

140.9085 

140.9303 

0.0028 

0.0016 

0.0017 

0.2614 

0.1864 

0.1512 

0.0079 

0.0056 

0.0057 

0.00093 

0.00066 

0.00054 

0.00003 

0.00002 

0.00002 

Mode 3 

1 
2 
3 

NDB64 

NDB67 

NDB69 

394.0146 

393.9929 

394.0236 

0.0037 

0.0012 

0.0016 

0.5591 

0.4426 

0.4693 

0.0143 

0.0039 

0.0054 

0.00071 

0.00056 

0.00060 

0.00002 

0.00000 

0.00001 

Mode 4 

1 
2 
3 

NDB41TD 

NDB42TD 

NDB43TD 

771.8552 

771.8525 

771.8550 

0.0108 

0.0101 

0.0052 

0.8522 

0.8549 

0.7460 

0.0362 

0.0338 

0.0172 

0.00055 

0.00055 

0.00048 

0.00002 

0.00002 

0.00001 

Mode 5 

1 
2 
3 

NDB51TD 

NDB52TD 

NDB53TD 

1274.746 

1274.791 

1274.891 

0.0125 

0.0224 

0.0102 

1.0140 

1.2220 

0.9500 

0.0436 

0.0843 

0.0332 

0.00040 

0.00048 

0.00037 

0.00002 

0.00003 

0.00001 

C than they are for conditions A. This is particularly so for the lower frequency 

modes. The data does not support a significant difference between conditions B 

and C although visual observations of the fluctuations in amplitude of the real-time 

FFT displays on an oscilloscope, suggested that the vibration data for conditions C 

were in fact very much less stable than that of conditions B. The fitted resonance 

frequency and standard errors in these fits are dependent on just how much the 

environmental noise affects the signals during the times of the scans. Clearly, for a 

given environmental noise condition, the fluctuations between the fits and the 

standard errors could be reduced if the signal-to-noise was increased by increasing 

the thermoelastic excitation (using a higher power modulated laser). Thus the data 

presented in Tables 4.07,4.12 and 4.13 are merely representative of what can be 
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achieved under typical environmental conditions with low power laser diode 

excitation. Hence it was not considered necessary to try to present statistically-

significant data. 

For conditions A, it was found that decay time measurements by waveform 

sampling (and fitting of a damped sinusoid) were more sensitive to signal-to-noise 

than were the scan measurements. Thus such decay data could only presented for 

the two lowest order modes which had the highest signal-to-noise ratios. Under 

conditions B and C, it was not possible to obtain decay time data in this way as the 

waveforms were simply not sufficiently stable. Similarly, reasonable fits of the 

decay envelope which were carried out for 3 modes under conditions A were also 

not possible under conditions B and C. 

Table 4.14: Comparison of vibration data obtained from scans under conditions 
A, B and C (Tables 4.07,4.12 and 4.13) 

M 

No 

Ml 

M2 

M3 

M4 

M5 

Resonance frequency 

Jmax'Jmini -tiZ 

A 

0.0008 

0.0038 

0.0179 

0.0516 

0.0260 

B 

0.0102 

0.0259 

0.0363 

0.1053 

0.0800 

C 

0.0011 

0.0350 

0.0307 

0.0827 

0.1450 

Std. error, Hz 

A 

0.0003 

0.0004 

0.0013 

0.0026 

0.0048 

B 

0.0009 

0.0011 

0.0028 

0.0073 

0.0072 

c 
0.0009 

0.0020 

0.0022 

0.0087 

0.0150 

Half power bandwidth 

Ymax'Ymitii -HZ 

A 

0.0087 

0.0032 

0.0645 

0.0475 

0.0264 

B 

0.0272 

0.0087 

0.0623 

0.1453 

1.1115 

c 
0.0036 

0.1102 

0.1165 

0.1089 

0.2720 

Std. error, Hz 

A 

0.0011 

0.0015 

0.0044 

0.0091 

0.0170 

B 

0.0032 

0.0042 

0.0097 

0.0267 

0.0258 

c 
0.0029 

0.0064 

0.0079 

0.0291 

0.0682 

4.4 Measurements with increased damping 

Results presented so far have all been for very high Q resonances with very low 

damping factors. Damping factors and half-power bandwidths for Mode 1- have 

been of the order of 0.0014-0.0016 and of 0.06-0.07 Hz respectively. With a 
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recording FFT bandwidth of the DSA of 0.012 Hz, 5-6 data points can be measured 

within the half-power bandwidth of the displacement response curve for Mode 1. 

In order to see the effect of increased loss and also an increase in the bandwidth to 

resolution ratio, measurements were also made with rubber pads inserted between 

the cantilever and the jaws of the clamp. Two sets of measurements were made 

with different clamping tension. The effect of reducing the clamping tension is to 

increase the loss since the rubber is then less rigid. In the data presented below, 

the two sets of data are labelled Rl and R2, with R2 representing the more lossy 

mounting arrangement. 

The resonance curves of Model 
with Metal, Rubber 1 and Rubber 2 clamps. 

Metal (NDB25) -•-Rubber 1 (NDC11) -^-Rubber2 (NDC54) 

0 + 
18.0 20.0 22.0 24.0 

Driving frequency-(Hz) 

26.0 

Figure 4.15: Mode 1 resonance (power) for a 300 m m aluminium cantilever 
using a metal clamp and also with the inclusion of rubber pads 
under different clamping tension (Rl and R2) 

Figure 4.15 shows the effect of the rubber pads on the resonance. This figure 

shows three separate scans through the mode 1 resonance. All scans were done 

under conditions A. From right to left, these scans correspond to a metal clamp 
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(similar to previous condition A data), Rl and R2. The shift in resonant frequency 

and the decrease in vibration amplitude (power) is very evident from this figure. 

The amplitude changes are shown in the figure and these have implications for the 

signal to noise of the measurements. The frequency shifts were about 0.8 Hz for 

Rl and 2.2 Hz for R2. 

For both Rl and R2, data was recorded using both the scan method and also using 

a damped harmonic fit to decay data. Table 4.15 shows the scan-derived data for 

the cantilever with rubber Rl included in the clamp arrangement. Tables 4.16 and 

4.17 show the decay-derived data with rubber Rl and the damping and half-power 

Table 4.15: Vibration parameters obtained from a Lorentzian function fit to the 

experimental response data for modes 1-5 with rubber pads in clamp 
(Rl) 

No. File 
name 

Frequency 
fo,Hz 

Std. error 

5f,Hz 

Width 

Y, Hz 

Std. error 

&Y,Hz 

Damping 

factor, L, 

Error Ampl., 
V 

Model 
1 
2 
3 

NDC6 
NDC8 

NDC9 

21.7250 
21.7253 
21.7229 

0.0008 

0.0004 

0.0009 

0.0886 

0.0810 

0.0883 

0.0027 

0.0015 

0.0033 

0.00204 

0.00186 

0.00203 

0.00006 

0.00003 

0.00008 

1.93 

1.93 

1.89 

Mode 2 
1 
2 
3 

NDC11 
NDC12 

NDC15 

136.1593 

136.1687 
136.1724 

0.0022 

0.0017 

0.0022 

0.4841 

0.4984 

0.4810 

0.0074 

0.0059 

0.0077 

0.00178 

0.00183 

0.00177 

0.00003 

0.00002 

0.00003 

1.35 

1.35 

1.41 

Mode 3 
1 
2 
3 

NDC18 
NDC20 
NDC21 

380.9964 

380.9777 
380.9603 

0.0067 

0.0087 

0.0159 

1.4907 

1.5750 

1.2830 

0.0274 

0.0365 

0.0623 

0.00196 

0.00207 

0.00168 

0.00004 

0.00005 

0.00008 

0.11 

0.12 

0.12 

Mode 4 
1 
2 
3 

NDC4A 

NDC4B 

NDC4C 

746.9408 

746.9359 
747.2804 

0.0457 

0.0490 

0.0465 

3.2201 

3.1152 

3.2936 

0.1959 

0.2088 

0.2024 

0.00216 

0.00209 

0.00220 

0.00013 

0.00014 

0.00014 

0.04 

0.04 

0.05 

Mode 5 
1 
2 
3 

NDC5A 
NDC5B 
NDC5C 

1234.9835 
1234.6955 

1234.4301 

0.0924 

0.0355 

0.0393 

6.1058 

6.7116 

6.6184 

0.3898 

0.1629 

0.1767 

0.00247 

0.00272 

0.00268 

0.00016 

0.00007 

0.00007 

0.08 

0.08 

0.07 
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Table 4.16: Decay time and resonance frequency determined from fitting an 

equation of the form y = a+ be^sinfcoat +fa) to recorded decay 
waveforms, (Rl) 

No File 
name 

Decay 

time x, s 
Std.error 

8T, S 

Resonance 
frequency 
fd,Hz 

Std.error 

5fd,Hz 

Model 
1 
2 

NXN1R 

NXN2R 
3.7469 

3.3994 
0.0155 

0.0140 

21.7316 

21.7317 

0.0002 

0.0002 
Mode2 

1 
2 
3 

NXN3R 

NXN4R 

NXN5R 

0.6794 

0.6691 

0.6815 

0.0021 

0.0014 

0.0010 

136.1642 

136.1633 

136.1637 

0.0005 

0.0005 

0.0003 

Table 4.17: Calculated values of damping factor and half-power bandwidth 
using the data of Table 4.16, (R1) 

No File 
name 

Resonance 
frequency 
fd,Hz 

Std.error 

5fd,Hz 

Damping 

factor, C, 

Error, 

5C 
Half-power 
bandwidth 

Y,Hz 

Error, 

Sy,Hz 

Mode 1 

1 
2 

NXN1R 

NXN2R 

21.7316 

21.7317 

0.0002 

0.0002 

0.00195 

0.00215 

0.000008 

0.000009 

0.0850 

0.0936 

0.0004 

0.0004 

Mode 2 

1 
2 
3 

NXN3R 

NXN4R 

NXN5R 

136.1642 

136.1633 

136.1637 

0.0005 

0.0005 

0.0003 

0.00172 

0.00175 

0.00172 

0.000005 

0.000004 

0.000003 

0.4685 

0.4757 

0.4671 

0.0010 

0.0010 

0.0007 

Table 4.18: The vibration properties obtained from Lorentzian function fit to the 
experimental response data, Modes 1-5, (R2) 

No. File 
name 

Frequency 
fo,Hz 

Std. error 

5f,Hz 

Width 

Y,Hz 

Std. error 

5 Y , H Z 

Damping 

factor, C, 

Error 

5C 
Ampl., 

V 

Model 

1 
2 
3 

NDC53 

NDC54 

NDC55 

20.3637 

20.3477 

20.3405 

0.0024 

0.0035 

0.0044 

0.1409 

0.1362 

0.1658 

0.0089 

0.0124 

0.0165 

0.00346 

0.00335 

0.00408 

0.00022 

0.00030 

0.00041 

0.835 

0.638 

0.504 

Mode 2 

1 
2 
3 

NDC41 

NDC43 

NDC45 

127.0954 

127.1267 

127.1039 

0.0107 

0.0158 

0.0158 

1.3478 

1.4829 

1.4585 

0.0435 

0.0657 

0.0654 

0.00530 

0.00583 

0.00574 

0.00017 

0.00026 

0.00026 

0.170 

0.197 

0.176 

Mode 3 

1 
2 
3 

NDC49 

NDC51 

NDC52 

356.9241 

357.1066 

357.0961 

0.0228 

0.0381 

0.0255 

3.6094 

4.822 

4.7046 

0.0966 

0.1639 

0.1082 

0.00506 

0.00675 

0.00659 

0.00014 

0.00023 

0.00015 

0.049 

0.036 

0.039 
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Table 4.19: The decay time and resonance frequency obtained from the transient 

term y=F1e
<co

0
tsin(codt+fa) fit to recorded waveforms, (R2) 

No File 
name 

Decay 
time T, s 

Std.error 

8x, s 
Resonance 
frequency 
fd,Hz 

Std.error 

5fd,Hz 

Model 
1 
2 
3 

NXN11 
NXN12 
NXN4* 

1.7841 

1.6872 

1.7874 

0.0058 

0.0093 

0.0138 

20.3605 

20.3595 

20.3951 

0.0003 

0.0005 

0.0007 
Mode2 

1 
2 

NXN2* 
NXN1* 

0.2602 

0.2451 
0.0014 

0.0023 

127.873 

127.910 

0.0034 

0.0061 

Table 4.20: The calculated values of damping factor and half-power bandwidth 
using the parameters from the transient function 

y=Fie'^a)-tsin(C0dt+fa) fit to waveform record, Modes 1-2, (R2) 

No File 
name 

Resonance 
frequency 
fd,Hz 

Std.error 

5fd, Hz 

Damping 

factor, K, 

Error, Half-power 

bandwidth 

Y, Hz 

Error, 

§Y, Hz 

Mode 1 
1 
2 
3 

NXN11 
NXN12 
NXN4* 

20.3605 

20.3595 

20.3951 

0.0003 

0.0005 

0.0007 

0.00438 

0.00463 

0.00437 

0.00001 

0.00003 

0.00003 

0.1784 

0.1887 

0.1781 

0.0006 

0.0010 

0.0014 

Mode 2 
1 
2 

NXN2* 
NXN1* 

127.873 

127.910 

0.0034 

0.0061 

0.00478 

0.00508 

0.00003 

0.00005 

1.2233 

1.2987 

0.0066 

0.0122 

bandwidth calculated from this data. Tables 4.18, 4.19 and 4.20 show similar data 

for rubber R 2 included in the clamp. Table 4.21 compares the above data for the 

three cases (A, Rl and R2). It can be seen that the /values are larger for Rl and 

R2 as are the standard errors of the fits. The y values increase with mode frequency 

but for the cases where the rubber is included this increase is faster than it is with 

the data obtained using the metal clamp (A). Similar trends can be seen with the 

values of the damping factor (£) in the tables. £ decreases with mode frequency for 

the metal-clamped data, is approximately constant with mode frequency for the Rl 

data and is increasing with mode frequency for the R2 data. 
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The frequency shifts observed with the introduction of the rubber are very large. 

These values can be seen from the tables and for mode 1 are clearly shown in 

Figure 4.18. For mode 1, the change in frequency from metal clamp to Rl was 

about 0.8 Hz and from metal clamp to R2 was about 2.15 Hz. These shifts are far 

too large to be accounted for by damping changes. Using Eq. 2.50 and the Rvalues 

from the tables, these shifts would be expected to be about 0.00005 Hz for metal-

Rl and 0.0002 Hz for metal-R2. These measured shifts are probably due to a 

change in effective length of the cantilever when supported in the rubber 

mountings. The use of rubber in the jaws of the chuck would tend to shift the zero 

displacement point of the cantilever (effective clamp point) away from the edge of 

the metal jaws (the clamp position without rubber). A calculation of the change in 

clamp point required to produce the measured frequency shifts gives about 9.8 mm 

for the effective length change produced by the change in clamp tension between 

Table 4.21: Comparison of half power bandwidths and standard errors for 
vibration data using metal (A) and rubber (Rl and R2) clamps. All 

data was obtained under Conditions A 

No 

Ml 

M2 

M3 

M4 

M5 

Half power bandwidth 

(average) y, Hz 

Metal 

(A) 

0.0710 

0.2147 

0.4364 

0.6814 

0.8682 

Rl 

0.0860 

0.4878 

1.4496 

3.2096 

6.4786 

A-Rl 

% 

21 

127 

232 

371 

646 

R2 

0.1476 

1.4297 

4.3786 

A-R2 

% 

>207 

>665 

>1000 

Std. error, Hz 

Resonance frequency 

A 

0.0004 

0.0004 

0.0013 

0.0026 

0.0048 

Rl 

0.0007 

0.0020 

0.0104 

0.0471 

0.0557 

R2 

0.0034 

0.0141 

0.0288 

HPBW 

A 

0.0012 

0.0015 

0.0044 

0.0091 

0.0170 

Rl 

0.0025 

0.0070 

0.0420 

0.2024 

0.2432 

R2 

0.0126 

0.0582 

0.1229 
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Rl and R2 (these points were chosen for the calculation as the cantilever 

arrangement was not otherwise disturbed between these two settings). This shift in 

effective clamp point is also surprisingly large but the same value is obtained using 

the frequency data for each mode and so the data are certainly consistent with this 

interpretation. 

For the rubber-clamped data, as with previous results, decay time measurements 

can only be successfully carried out with the lowest frequency modes. With the 

reduction of vibration amplitude, which accompanies the increased loss, the signal-

to-noise ratio is such that it has been possible to use the direct decay time 

measurement technique only with the two lowest order modes. The results 

obtained with the decay data for these two modes give quite similar Rvalues to the 

scan data but the standard error in individual fits is lower. The spread in values 

from one measurement to another is similar for decay and scan techniques. 

4.5 Summary 

The results presented in this chapter have demonstrated that a moderately large 

structure, such as a 300 mm cantilever, can be excited to vibrate thermoelastically 

using a low power laser diode source. The optical fibre interferometer has been 

successfully used to remotely monitor these vibrations so that the whole excitation 

and sensing system involves no physical contact with the structure. Experiments 

have been conducted to determine the accuracy with which the various vibration 

parameters (resonant frequency, half power bandwidth and damping factor) can be 

measured for the purposes of modal analysis. A number of different measurement 
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techniques have been assessed and their performance with lightly-damped 

structures quantified. 

The basic measurements were carried out using very high Q resonances under quiet 

nighttime conditions and it was shown that resonant frequency measurements give 

the smallest fractional errors and are the most suitable measurements for detecting 

small changes in resonance conditions. Measurements were carried out under 

conditions where the temperature of the structure was not controlled and it was 

found that small changes in ambient temperature had a significant effect on the 

resonant frequency. Thus very accurate measurements of vibration parameters 

require careful control of the temperature of the structure. 

The effects of environmental noise on the accuracy with which vibration 

parameters can be determined was assessed by carrying out the measurements 

under a range of environmental conditions typical of those found within a 

laboratory environment. Finally some measurements were carried out with 

increased damping to show the effects of increased loss on the technique. 
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5.1 Conclusion 

The objectives of the work described in this thesis were outlined in Chapter 1. 

Basically, these were to: 

• Construct an optical system suitable for making very accurate and sensitive 

non-contact measurements of modal frequencies and other modal oscillation 

parameters of transverse mechanical vibrations in small to medium size 

structures. 

• Investigate the advantages and disadvantages of alternative ways of making 

measurements of modal oscillation parameters which can be used to 

characterise the structure. 

• Determine the accuracy with which the system can make measurements of the 

modal oscillation parameters. A high-Q resonant structure was required for 

these measurements so that the parameters being measured would be 

reasonably sharply defined. 

• Determine the origin of the effects which are responsible for the ultimate 

limitation to the measurement accuracy. 

All these objectives have been achieved. The optical fibre interferometer was 

actively stabilised using a PZT modulator and achieved an RMS NED of 0.17 nm 

in a 200 kHz bandwidth. This NED figure could be improved by reducing the 

bandwidth but such a change was not necessary for the present measurements as 
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the sensitivity was more than adequate. The interferometer performance could also 

be improved by using a high power laser light source to increase the signal. This 

was not attempted as it was felt more important to assess the performance which 

could be achieved with a small and relatively inexpensive system. 

The structure used in the study was a clamped-free aluminium cantilever of 

dimensions 300 mm x 12 mm x 2.5 mm. This was mounted in a large steel vice 

which was solidly bolted to a concrete table which could be isolated from building 

vibrations with the use of rubber tubes under the legs. The overall cantilever 

structure had very low loss and Q factors in the range of about 350 - 1500 for the 

various modes. The temperature of the cantilever was not controlled and was 

subject to ambient temperature variations in the laboratory. The cantilever 

arrangement was such that it could be substantially isolated from air current 

movements using a covering box. 

Measurements were made using the first 5 transverse vibrational modes of the 

cantilever at frequencies between 22.5 Hz and 1275 Hz. These measurements were 

affected by environmental noise and the effect of this was evident from 

measurements conducted under three sets of environmental conditions which 

corresponded to "quiet", "intermediate" and "noisy" laboratory situations. 

Measurements were also conducted with slightly more lossy mountings (lower Q) 

involving rubber sandwiched between the metal clamp and cantilever. Even with 

the lower Q, all measurements were conducted in the low-loss lightly-damped 

regime (C, < 0.1). 
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Vibration measurements were made in two different ways: 

• The first involved scanning the excitation through resonance and measuring the 

resonance response as a function of excitation frequency (scan-based method). 

With this method some averaging was possible at each frequency to reduce the 

effects of environmental noise. The resonant frequency and its standard error 

are obtained from a Lorentzian fit to the power resonance curve. 

• The second involved excitation of steady-state structural vibration at the 

resonant frequency followed by free decay after the excitation was removed 

(decay-based method). This permitted measurement of the decay time by 

fitting an exponential to the decay envelope. Alternatively, measurement of 

both the damped oscillation frequency and the decay time was possible by 

fitting a damped sinusoid to the recorded decay waveform. 

Whatever the method of making the measurement, the vibrating structure was 

finally characterised by the resonant frequency and/or a loss parameter. This latter 

parameter depended on the type of measurement being conducted and was either 

the half power bandwidth for scan-based measurements or decay time for decay-

based measurements. In either case the measured parameter could be converted to 

a damping factor (Q. Any calculation of £ requires a knowledge of the resonant 

frequency and hence the accuracy of £ is limited by the accuracy of the resonant 

frequency determination. This limitation does not apply if the bandwidth or decay 

time is used directly as loss parameters. 

5-4 



Chapter 5: Conclusion 

The best performance of the system is obtained under "quiet" environmental 

conditions. Despite the fact that the excitation efficiency decreased by about a 

factor of 50 as the LD modulation frequency was increased to tune to different 

modes, the resonant frequency could be determined to an accuracy of about 3-10 

x 10"6 for all modes using the data from a single scan. No significant difference in 

fractional uncertainty can be discerned between the modes since the excitation 

conditions were not identical for all modes. There was however a significant 

variation in modal resonant frequency measured in consecutive scans of a 

particular mode. This difference which was generally about 10 times greater than 

the standard error of the resonant frequency determined from a single scan. This 

difference was ascribed to ambient temperature fluctuations of less than 0.5 °C 

between scans. This lack of temperature control of the vibrating structure and 

exposure to ambient temperature fluctuations turned out to be the major factor 

which limited the accuracy of measurements of all vibration parameters. The 

fractional error for the half power bandwidth obtained from a single scan was only 

about IO"2 and hence this parameter can not be determined with an accuracy which 

is even close to that which can be obtained for the resonant frequency. Hence if 

one is trying to sense small changes in resonance parameters as a means of 

detecting changes in the structure under investigation, then resonant frequency is 

the best parameter to measure. Under quiet environmental conditions, the scan 

method can be used for all 5 modes with similar accuracy. However, the signals 

are much stronger for lower frequencies and so in general it is probably preferable 

to use the first few modes for scan measurements. 
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Decay time measurements had the advantage that they could be carried out much 

more simply and quickly than scan ones. However they were much more sensitive 

to the signal-to-noise ratio of the data as no averaging was possible. Even under 

quiet conditions, only three modes could be measured using the envelope method 

and two using the damped sinusoid fit. When the method could be used, the 

accuracy of the decay time was about 1% for the envelope method and about 0.2% 

for the damped sinusoid fit. The damped frequency could be measured to about 1 -

5 x 10" in the latter case but interpretation of this as the resonant frequency 

depended on careful adjustment of the LD modulation to the centre of the 

resonance before the measurement was made. Any measurement of decay time 

requires first a reasonable knowledge of the resonant frequency so the LD 

modulation can be adjusted so that significant amplitude vibrations are obtained. 

To the extent that C, varies slowly with frequency, the need for an accurate resonant 

frequency is reduced if one is calculating £. 

Under conditions where there is greater environmental noise, the fractional errors 

in the measurements becomes larger and so the measurements are a less sensitive 

indicator of the state of the structure under investigation. Reliable decay 

measurements were not possible under conditions B and C. Scan measurements 

were still possible for all modes. With increasing loss, the amplitude of the 

vibrational resonance decreased sharply. Hence useful measurements of more 

heavily-damped structures require the use of lower order modes and also possibly 

higher power diode laser excitation (or excitation with other lasers). When all 

factors are considered, the first couple of modes are the most suitable for practical 

resonance measurements. 
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The most significant limitation to the accuracy of measurements is ambient 

temperature fluctuations. Temperature control of the structure is possible but the 

attachment of electrical elements for this purpose may affect the resonances being 

measured and runs counter to the philosophy of making fully remote 

measurements. Control of the temperature of the environment is possible but the 

accuracy, which can be achieved, is often limited in practical situations. For the 

present structure, the basic reason for the temperature sensitivity is due to a change 

in stiffness caused by the temperature variation of the Young's modulus. This 

effect is calculated to produce a change in resonant frequency of about 0.03% "C"1 

for all modes. 

This technique can clearly be used for remote NDT applications within the 

limitations pointed out above. The actual limitations depend on the nature of the 

structure and the environment. Structures with high frequency resonances or those 

with higher loss resonances are more difficult to excite and will in general have 

poorer signal-to-noise ratios for the measurements. Similarly, use of the technique 

is more difficult in noisy environments. In very noisy environments it may be that 

there is sufficient environmental excitation of the resonance modes to allow some 

measurements without LD excitation although such measurements are likely to 

have relatively poor accuracy. Measurements with less ideal structures or in very 

noisy environments would benefit from higher power laser sources for the 

interferometer and for excitation. 
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(XE temperature coefficient 

cct thermal expansion co-efficient 

ccs absorption coefficient 

A cross sectional area 

fin dimensionless parameter (fin=knL) 

fi homodyne efficiency 

Y=Gb- COi half power bandwidth 

Yf fringe visibility 

F surface reflectivity 

8 penetration depth of the light 

8S skin depth 

8t logarithmic decrement 

e dielectric constant 

£,. responsivity of a photodetector 

es(X) thermal strain 

£ damping factor 

77 loss factor 

0 angle between two polarisation vectors 

k stiffness constant 

A wavelength 

p-pA mass per unit length of a beam 
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Av source mode spacing 

p mass density 

on dimensionless parameter 

x decay time 

Tt source coherence time 

X distance from the mid-plane 

0« phase angle 

fac control phase shift 

fad thermal phase shift 

(j>s signal phase amplitude 

Afa phase angle change 

COco circular frequency of the light 

coon natural circular frequency 

0)d damped natural circular frequency 

OJf forced circular frequency 

60s signal modulation frequency 

An generalised amplitude 

b dimension, width of a beam 

Bin, Rin general constants 

c damping constant 

cc critical damping constant 

c velocity of light 

C/n, C2n general constants 

dp piezoelectric co-efficient 
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List of Symbols 

E Young's (Elasticity) modulus 

Ex signal output of interferometer 

Er reference output of interferometer 

E energy 

AE 

fc 

fn 

Fn, F(x) 

Fo 

8 

h 

stored energy 

characteristic frequency 

frequency of nth mode 

force 

force amplitude 

amplifier gain 

dimension, thickness of a beam 

i output current 

l(t), Imax surface irradiance 

/,- moment of inertia of area 

/, /;, I2 output intensity 

lo initial output intensity 

Jn(fas) Bessel function of order n 

k thermal diffusivity 

K thermal conductivity 

Kj, K2 power coupling coefficients 

L, I length of a beam 

Lc source coherence length 

Lr optical path length of the reference arm 

Lv optical path length of the signal arm 

AL, linear thermal expansion 
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AL=Lr-Ls optical path length difference 

m mass 

M(t) bending moment 

Na force amplitude reference 

n refraction index 

p(x, t) force, function of position and of time 

P(t) force, function of time only 

P(x) force, function of position only 

P(X) force as a function of distance from the mid-plane 

Q quality factor 

r, r, radius 

r frequency ratio r=co/cOo 

R(co) response function 

S mirror displacement amplitude 

t time 

t° temperature (C°) 

T° temperature (K°) 

T(x) temperature as a function of distance from the mid-plane 

AT temperature change 

U(x,y,z,t) heat function 

V(t) output voltage signal 

Va interferometer peak signal 

Vb reduced interferometer signal 

Vc correction signal 
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Vs shear force 

dVjb feedback control signal 

w(t) normalised laser pulse shape 

y(t) displacement as function of time 

y velocity 

y acceleration 

yt(t) transient vibration term 

y/t) forced vibration term 

Y(x) displacement as function of position only 

Y(x, t) displacement as a function of position and of time 
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