
Inequalities of Hermite-Hadamard's Type for 
Functions Whose Derivatives Absolute Values are 
Quasi-Convex

This is the Published version of the following publication

Alomari, Mohammad, Darus, Maslina and Dragomir, Sever S (2009) 
Inequalities of Hermite-Hadamard's Type for Functions Whose Derivatives 
Absolute Values are Quasi-Convex. Research report collection, 12 (Supp).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/17948/ 



INEQUALITIES OF HERMITE-HADAMARD�S TYPE FOR
FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE

QUASI-CONVEX

M. ALOMARIA, M. DARUSA, AND S.S. DRAGOMIRB

Abstract. In this paper, some inequalities of Hermite-Hadamard type for
functions whose detivatives absolute values are quasi-convex, are given. Some
error estimates for the midpoint formula are also obtained.

1. Introduction

Let f : I � R! R be a convex function de�ned on the interval I of real numbers
and a; b 2 I, with a < b. The following inequality, known as the Hermite�Hadamard
inequality for convex functions, holds:

(1.1) f

�
a+ b

2

�
�
Z b

a

f (x) dx � f (a) + f (b)

2
:

In recent years many authors have established several inequalities connected
to Hermite-Hadamard�s inequality. For recent results, re�nements, counterparts,
generalizations and new Hermite-Hadamard-type inequalities see [1] �[5] and [7] �
[11].
In [2], Dragomir and Agarwal obtained inequalities for di¤erentiable convex map-

pings which are connected with Hermite-Hadamard�s inequality and they used the
following lemma to prove it.

Lemma 1. Let f : I � R ! R be a di¤erentiable mapping on I� where a; b 2 I
with a < b. If f 0 2 L[a; b], then the following equality holds:

(1.2)
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx =
b� a
2

Z 1

0

(1� 2t) f 0 (ta+ (1� t) b) dt:

The main inequality in [2] is pointed out as follows:

Theorem 1. Let f : I � R! R be a di¤erentiable mapping on I�, where a; b 2 I
with a < b. If jf 0j is convex on [a; b], then the following inequality holds:

(1.3)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
8

[jf 0 (a)j+ jf 0 (b)j] :

In [10] Pearce and Peµcaríc using the same Lemma 1 proved the following theorem.

Key words and phrases. Convex function, Hermite-Hadamard inequality, Quasi-convex
functions.
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Theorem 2. Let f : I � R! R be a di¤erentiable mapping on I�, where a; b 2 I
with a < b. If jf 0jq is convex on [a; b], for some q � 1, then the following inequality
holds:

(1.4)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

�
jf (a)jq + jf (b)jq

2

� 1
q

;

and

(1.5)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

�
jf (a)jq + jf (b)jq

2

� 1
q

:

If jf jq is concave on [a; b] for some q � 1, then

(1.6)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

����f 0�a+ b2
�����

and

(1.7)

�����f
�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

����f 0�a+ b2
����� :

In [7] some inequalities of Hermite-Hadamard type for di¤erentiable convex map-
pings were proved using the following lemma:

Lemma 2. Let f : I � R ! R be a di¤erentiable mapping on I� where a; b 2 I
with a < b. If f 0 2 L[a; b], then the following equality holds:

(1.8)
1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

�
= (b� a)

Z 1

0

K (t) f 0 (ta+ (1� t) b) dt

where,

K (t) =

(
t; t 2

�
0; 12
�
;

t� 1; t 2
�
1
2 ; 1
�
:

One more general result related to (1.7) was established in [8]. The main result
in [7] is as follows:

Theorem 3. Let f : I � R! R be a di¤erentiable mapping on I�, where a; b 2 I
with a < b. If jf 0j is convex on [a; b], then the following inequality holds:

(1.9)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � b� a
8

[jf 0 (a)j+ jf 0 (b)j] :

Now, we recall that the notion of quasi-convex functions generalizes the notion
of convex functions. More precisely, a function f : [a; b] ! R is said quasi-convex
on [a; b] if

f (�x+ (1� �) y) � max ff (x) ; f (y)g ;
for any x; y 2 [a; b] and � 2 [0; 1] : Clearly, any convex function is a quasi-convex
function. Furthermore, there exist quasi-convex functions which are not convex
(see [6]).
Recently, D.A. Ion [6] established two inequalities for functions whose �rst deriv-

atives in absolute value are quasi-convex. Namely, he obtained the following results
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Theorem 4. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0j is quasi-convex on [a; b], then the following inequality holds:

(1.10)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

max fjf 0 (a)j ; jf 0 (b)jg :

Theorem 5. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0j

p
p�1 is quasi-convex on [a; b], then the following inequality holds:

(1.11)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

�����
� (b� a)
2 (p+ 1)

1
p

�
max

n
jf 0 (a)j

p
p�1 ; jf 0 (b)j

p
p�1
o� p�1

p

:

The main purpose of this paper is to establish inequalities related to the left
hand side of Hermite-Hadamard�s type for functions whose derivatives in absolute
value are quasi-convex. The obtained results can be used to give estimates for the
approximation error of the integral

R b
a
f (x) dx by the use of the midpoint formula.

2. Hermite-Hadamard Type Inequalities

Let us start with an improvement and simpli�cation of the constants in Theorem
5 and consolidate this result with Theorem 4.

Theorem 6. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0jq is quasi-convex on [a; b], q � 1, then the following inequality holds:

(2.1)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

�
sup

�
jf 0 (a)jq ; jf 0 (b)jq

	� 1
q :

Proof. From Lemma 1, using the well-known power mean inequality, we have�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

�����
=

����b� a2
Z 1

0

(1� 2t) f 0 (ta+ (1� t) b) dt
����

� b� a
2

Z 1

0

j1� 2tj jf 0 (ta+ (1� t) b)j dt

� b� a
2

�Z 1

0

j1� 2tj dt
�1� 1

q
�Z 1

0

j1� 2tj jf 0 (ta+ (1� t) b)jq dt
� 1

q

� b� a
2

�Z 1

0

j1� 2tj dt
�1� 1

q
�
max

�
jf 0 (a)jq ; jf 0 (b)jq

	Z 1

0

j1� 2tj dt
� 1

q

� b� a
4

�
max

�
jf 0 (a)jq ; jf 0 (b)jq

	� 1
q :

�

Corollary 1. Let f be as in Theorem 6. Additionally, if
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(1) jf 0j is increasing, then we have

(2.2)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

jf 0 (b)j :

(2) jf 0j is decreasing, then we have

(2.3)

�����f (a) + f (b)2
� 1

b� a

Z b

a

f (x) dx

����� � b� a
4

jf 0 (a)j :

Remark 1. For q = 1 this reduces to Theorem 4. For q = p=(p � 1) (p > 1) we
have an improvement of the constants in Theorem 5, since 2p > p+ 1 if p > 1 and
accordingly

1

4
<

1

2 (p+ 1)
1
p

:

Next, our main result(s) present new inequalities of midpoint type for quasi-
convex functions.

Theorem 7. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0j is quasi-convex on [a; b], then the following inequality holds:

(2.4)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� b� a

8

�
max

�����f 0�a+ b2
����� ; jf 0 (b)j�+max�����f 0�a+ b2

����� ; jf 0 (a)j�� :
Proof. From Lemma 2, we have����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� (b� a)

"Z 1
2

0

t jf 0 (ta+ (1� t) b)j dt+
Z 1

1
2

j1� tj jf 0 (ta+ (1� t) b)j dt
#

� (b� a)
"Z 1

2

0

tmax

�����f 0�a+ b2
����� ; jf 0 (b)j� dt

+

Z 1

1
2

(1� t)max
�
jf 0 (a)j ;

����f 0�a+ b2
������ dt

#

� b� a
8

�
max

�����f 0�a+ b2
����� ; jf 0 (b)j�+max�����f 0�a+ b2

����� ; jf 0 (a)j�� :
�

In the following, we deduce and improve some inequalities of Hermite-Hadamard
type.

Corollary 2. Let f be as in Theorem 7. Additionally, if
(1) jf 0j is increasing, then we have

(2.5)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � b� a
8

�
jf 0 (b)j+

����f 0�a+ b2
������ :
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(2) jf 0j is decreasing, then we have

(2.6)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � b� a
8

�
jf 0 (a)j+

����f 0�a+ b2
������ :

(3) f 0
�
a+b
2

�
= 0, then we have

(2.7)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � b� a
8

[jf 0 (a)j+ jf 0 (b)j] :

(4) f 0 (a) = f 0 (b) = 0, then we have

(2.8)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � b� a
4

����f 0�a+ b2
�����

Proof. It follows directly by Theorem 7. �

Similar result(s) are embodied in the following theorem.

Theorem 8. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0jp=(p�1) is quasi-convex on [a; b], p > 1, then the following inequality
holds:

(2.9)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� (b� a)
4 (p+ 1)

1
p

24 max(����f 0�a+ b2
�����p=(p�1) ; jf 0 (b)jp=(p�1)

)! p�1
p

+

 
max

(����f 0�a+ b2
�����p=(p�1) ; jf 0 (a)jp=(p�1)

)! p�1
p

35 :
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Proof. From Lemma 2, using well known Hölder integral inequality, we have����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� (b� a)

"Z 1
2

0

t jf 0 (ta+ (1� t) b)j dt+
Z 1

1
2

j1� tj jf 0 (ta+ (1� t) b)j dt
#

� (b� a)
 Z 1

2

0

tpdt

! 1
p
 Z 1

2

0

jf 0 (ta+ (1� t) b)jq dt
! 1

q

+ (b� a)
 Z 1

1
2

(1� t)p dt
! 1

p
 Z 1

1
2

jf 0 (ta+ (1� t) b)jq dt
! 1

q

� (b� a)
 Z 1

2

0

tpdt

! 1
p
 Z 1

2

0

max

�����f 0�a+ b2
�����q ; jf 0 (b)jq�dt

! 1
q

+ (b� a)
 Z 1

1
2

(1� t)p dt
! 1

p
 Z 1

1
2

max

�
jf 0 (a)jq ;

����f 0�a+ b2
�����q�dt

! 1
q

=
(b� a)
4 (p+ 1)

1
p

"�
max

�����f 0�a+ b2
�����q ; jf 0 (b)jq��

1
q

+

�
max

�����f 0�a+ b2
�����q ; jf 0 (a)jq��

1
q

#
;

where 1
p +

1
q = 1, which completes the proof. �

Corollary 3. Let f be as in Theorem 8. Additionally, if

(1) jf 0jp=(p�1) is increasing, then we have

(2.10)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � (b� a)
4 (p+ 1)

1
p

�
jf 0 (b)j+

����f 0�a+ b2
������ :

(2) jf 0jp=(p�1) is decreasing, then we have

(2.11)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � (b� a)
4 (p+ 1)

1
p

�
jf 0 (a)j+

����f 0�a+ b2
������ :

(3) f 0
�
a+b
2

�
= 0, then we have

(2.12)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � (b� a)
4 (p+ 1)

1
p

[jf 0 (a)j+ jf 0 (b)j] :

(4) f 0 (a) = f 0 (b) = 0, then we have

(2.13)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������ � (b� a)
2 (p+ 1)

1
p

����f 0�a+ b2
����� :

An improvement of the constants in Theorem 8 and consolidate this result with
Theorem 7 is as follows:
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Theorem 9. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b. If jf 0jq is quasi-convex on [a; b], q � 1, then the following inequality holds:

(2.14)

����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� b� a

8

"�
max

�����f 0�a+ b2
�����q ; jf 0 (b)jq��

1
q

+

�
max

�����f 0�a+ b2
�����q ; jf 0 (a)jq��

1
q

#
:

Proof. From Lemma 2, using the well-known power mean inequality, we have����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� (b� a)

Z 1
2

0

t jf 0 (ta+ (1� t) b)j dt+
Z 1

1
2

(1� t) jf 0 (ta+ (1� t) b)j dt

� (b� a)
 Z 1

2

0

tdt

!1� 1
q
 Z 1

2

0

t jf 0 (ta+ (1� t) b)jq dt
! 1

q

(2.15)

+ (b� a)
 Z 1

1
2

(1� t) dt
!1� 1

q
 Z 1

1
2

(1� t) jf 0 (ta+ (1� t) b)jq dt
! 1

q

:

Since jf 0jq is quasi-convex we haveZ 1
2

0

t jf 0 (ta+ (1� t) b)jq dt � 1

8
max

�����f 0�a+ b2
�����q ; jf 0 (b)jq�

and Z 1

1
2

j1� tj jf 0 (ta+ (1� t) b)jq dt � 1

8
max

�
jf 0 (a)jq ;

����f 0�a+ b2
�����q� :

Therefore, we have����� 1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

������
� b� a

8

"�
max

�����f 0�a+ b2
�����q ; jf 0 (b)jq��

1
q

+

�
max

�����f 0�a+ b2
�����q ; jf 0 (a)jq��

1
q

#
:

�
Remark 2. For q = 1 this reduces to Theorem 7. For q = p=(p � 1) (p > 1) we
have an improvement of the constants in Theorem 8, since 4p > p+ 1 if p > 1 and
accordingly

1

8
<

1

4 (p+ 1)
1
p

:
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Improvements of the inequalities (2.5), (2.6), (2.7) and (2.8) are given in the
following result:

Corollary 4. Let f be as in Theorem 9. Additionally, if

(1) jf 0j is increasing, then (2.5) holds.
(2) jf 0j is decreasing, then (2.6) holds.
(3) f 0

�
a+b
2

�
= 0, then (2.7) holds.

(4) f 0 (a) = f 0 (b) = 0, then (2.8) holds.

Proof. Follows directly from Theorem 9. �

3. Applications to the Midpoint Formula

Let d be a division of the interval [a; b], i.e., d : a = x0 < x1 < � � � < xn�1 <
xn = b, and consider the midpoint formula

(3.1) M (f; d) =
n�1X
i=0

(xi+1 � xi) f
�
xi + xi+1

2

�
:

It is well known that if the mapping f : [a; b]! R, is di¤erentiable such that f 00 (x)
exists on (a; b) and K = supx2(a;b) jf 00 (x)j <1, then

(3.2) I =

Z b

a

f (x) dx =M (f; d) + E (f; d) ;

where the approximation error E (f; d) of the integral I by the midpoint formula
M (f; d) satis�es

(3.3) jE (f; d)j � K

24

n�1X
i=0

(xi+1 � xi)3:

It is clear that if the mapping f is not twice di¤erentiable or the second derivative
is not bounded on (a; b), then (3.3) cannot be applied.
In the following, we propose some new estimates for the remainder term E(f; d)

in terms of the �rst derivative which are better than the estimations of [7, 8] and
[10].

Proposition 1. Let f : I� � R ! R be a di¤erentiable mapping on I�, a; b 2 I�
with a < b. If jf 0j is quasi-convex on [a; b], then in (3.2), for every division d of
[a; b], the following holds:

(3.4) jE (f; d)j � 1

8

n�1X
i=1

(xi+1 � xi)
�
max

�����f 0�xi + xi+12

����� ; jf 0 (xi+1)j�
+max

�����f 0�xi + xi+12

����� ; jf 0 (xi)j�� :
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Proof. Applying Theorem 6 on the subintervals [xi; xi+1], (i = 0; 1; :::; n� 1) of the
division d, we get����(xi+1 � xi) f �xi + xi+12

�
�
Z xi+1

xi

f (x) dx

����
� (xi+1 � xi)

�
max

�����f 0�xi + xi+12

����� ; jf 0 (xi+1)j�
+max

�����f 0�xi + xi+12

����� ; jf 0 (xi)j�� :
Summing over i from 0 to n� 1 and taking into account that jf 0j is quasi-convex,
we deduce that�����M (f; d)�

Z b

a

f (x) dx

����� � 1

8

n�1X
i=1

(xi+1 � xi)
�
max

�����f 0�xi + xi+12

����� ; jf 0 (xi+1)j�
+max

�����f 0�xi + xi+12

����� ; jf 0 (xi)j�� ;
which completes the proof. �

Corollary 5. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b, and f 0 2 L[a; b]. Given that jf 0j is quasi-convex on [a; b], then in (3.2), for
every division d of [a; b],

(1) if jf 0j is increasing, then we have

(3.5) jE (f; d)j � 1

8

n�1X
i=1

(xi+1 � xi)
�����f 0�xi + xi+12

�����+ jf 0 (xi+1)j� :
(2) if jf 0j is decreasing, then we have

(3.6) jE (f; d)j � 1

8

n�1X
i=1

(xi+1 � xi)
�����f 0�xi + xi+12

�����+ jf 0 (xi)j� :
(3) if f 0

�
xi+xi+1

2

�
= 0, then we have

(3.7) jE (f; d)j � 1

8

n�1X
i=1

(xi+1 � xi) (jf 0 (xi)j+ jf 0 (xi+1)j) :

(4) if f 0 (xi) = f 0 (xi+1) = 0, then we have

(3.8) jE (f; d)j � 1

4

n�1X
i=1

(xi+1 � xi)
����f 0�xi + xi+12

����� :
Proof. The proof is similar to that of Proposition 1, using Corollary 2. �

Proposition 2. Let f : I� � R ! R be a di¤erentiable mapping on I�, a; b 2 I�
with a < b. If jf 0jp=(p�1) is quasi-convex on [a; b], p > 1, then in (3.2), for every
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division d of [a; b], the following holds:

(3.9) jE (f; d)j � 1

4 (p+ 1)
1
p

n�1X
i=1

(xi+1 � xi)
" 
max

(����f 0�xi + xi+12

�����
p

p�1

;

jf 0 (xi+1)j
p

p�1
o� p�1

p

+

 
max

(����f 0�xi + xi+12

�����
p

p�1

;

jf 0 (xi)j
p

p�1
o� p�1

p

�
:

Proof. The proof is similar to that of Proposition 1, using Theorem 8. �

Corollary 6. Let f : I� � R! R be a di¤erentiable mapping on I�, a; b 2 I� with
a < b, and f 0 2 L[a; b]. Given that jf 0j is quasi-convex on [a; b], then in (3.2), for
every division d of [a; b],

(1) if jf 0j is increasing, then we have

jE (f; d)j � 1

4 (p+ 1)
1
p

n�1X
i=1

(xi+1 � xi)
�����f 0�xi + xi+12

�����+ jf 0 (xi+1)j� :
(2) if jf 0j is decreasing, then we have

jE (f; d)j � 1

4 (p+ 1)
1
p

n�1X
i=1

(xi+1 � xi)
�����f 0�xi + xi+12

�����+ jf 0 (xi)j� :
Proof. The proof is similar to that of Proposition 1, using Corollary 3. �

Proposition 3. Let f : I� � R ! R be a di¤erentiable mapping on I�, a; b 2 I�
with a < b. If jf 0jq is quasi-convex on [a; b], q � 1, then in (3.2), for every division
d of [a; b], the following holds:

(3.10)

jE (f; d)j � 1

8

n�1X
i=1

(xi+1 � xi)
"�
max

�����f 0�xi + xi+12

�����q ; jf 0 (xi+1)jq��
1
q

+

 
max

(����f 0�xi + xi+12

����� 1q ; jf 0 (xi)jq
)! 1

q

35 :
Proof. The proof is similar to that of Proposition 1, using Theorem 9. �

Corollary 7. Let f as in Proposition 3, if in addition
(1) jf 0j is increasing, then (3.5) holds.
(2) jf 0j is decreasing, then (3.6) holds.

Proof. The proof is similar to that of Proposition 3, using Corollary 4. �
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