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NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE

VALUES ARE QUASI-CONVEX

M. ALOMARIF,∗, M. DARUSF, AND S.S. DRAGOMIR�

Abstract. In this note we obtain some inequalities of Hermite-Hadamard
type for functions whose second derivatives have quasi-convex absolute values.

Applications for special means are also provided.

1. Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers
and a, b ∈ I, with a < b. The following two inequalities:

f

(
a + b

2

)
≤
∫ b

a

f (x) dx ≤ f (a) + f (b)
2

hold. This double inequality is known in the literature as the Hermite–Hadamard
inequality for convex functions.

In recent years many authors have established several inequalities connected to
this fact. For recent results, refinements, counterparts, generalizations and new
Hermite-Hadamard-type inequalities see [1] – [5] and [7] – [11].

We recall that the notion of quasi-convex functions generalizes the notion of
convex functions. More precisely, a function f : [a, b] → R is said to be quasi-
convex on [a, b] if

f (λx + (1− λ) y) ≤ max {f (x) , f (y)} , ∀x, y ∈ [a, b] .

Clearly, any convex function is a quasi-convex function. Furthermore, there exist
quasi-convex functions which are not convex, (see for instance [6]).

Recently, D.A. Ion [6] obtained two inequalities for the right hand side of the
Hermite-Hadamard inequality for functions whose derivatives in absolute values are
quasi-convex functions, as follows:

Theorem 1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′| is quasi-convex on [a, b], then the following inequality holds:∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ b− a

4
max {|f ′ (a)| , |f ′ (b)|} .

Key words and phrases. Convex function, s-Convex function, Hermite-Hadamard’s inequality.
∗The first author acknowledges the financial support of the Universiti Kebangsaan Malaysia,

Faculty of Science and Technology, (UKM–GUP–TMK–07–02–107).

1



2 M. ALOMARI, M. DARUS, AND S.S. DRAGOMIR

Theorem 2. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦, a, b ∈ I◦ with
a < b. If |f ′|p/(p−1) is quasi-convex on [a, b], then the following inequality holds:∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)

2 (p + 1)1/p

(
max

{
|f ′ (a)|p/(p−1)

, |f ′ (b)|p/(p−1)
})(p−1)/p

.

The main aim of this paper is to establish new refined inequalities of the right-
hand side of the Hermite-Hadamard result for the class of functions whose second
derivatives at certain powers are quasi-convex functions.

2. Hermite-Hadamard Type Inequalities

In order to prove our main theorems, we need the following lemma [5], [10].

Lemma 1. Let f : I ⊂ R → R be a twice differentiable mapping on I◦, a, b ∈ I
with a < b and f ′′ be integrable on [a, b], then the following equality holds:

f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx =
(b− a)2

2

∫ 1

0

t (1− t) f ′′ (ta + (1− t) b) dt.

A simple proof of this equality can be also done by twice integrating by parts in
the right hand side. The details are left to the interested reader.

The next theorem gives a new result of the upper Hermite-Hadamard inequality
for quasi-convex functions.

Theorem 3. Let f : I ⊂ R → R be a twice differentiable mapping on I◦, a, b ∈ I
with a < b and f ′′ be integrable on [a, b]. If |f ′′| is quasi-convex on [a, b], then the
following inequality holds:∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)2

12
max {|f ′′ (a)| , |f ′′ (b)|} .

Proof. From Lemma 1, we have∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)2

2

∫ 1

0

t (1− t) |f ′′ (ta + (1− t) b)| dt

≤ (b− a)2

2

∫ 1

0

t (1− t) max {|f ′′ (a)| , |f ′′ (b)|} dt

≤ (b− a)2

2
max {|f ′′ (a)| , |f ′′ (b)|}

∫ 1

0

t (1− t) dt

=
(b− a)2

12
max {|f ′′ (a)| , |f ′′ (b)|} ,

which completes the proof.

A similar result is embodied in the following theorem.

Theorem 4. Let f : I ⊂ R → R be a twice differentiable mapping on I◦, a, b ∈ I

with a < b and f ′′ is integrable on [a, b]. If |f ′′|p/(p−1) is quasi-convex on [a, b], for
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p > 1, then the following inequality holds:

∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)2

8

(√
π

2

) 1
p

(
Γ (1 + p)
Γ
(

3
2 + p

)) 1
p (

max
{
|f ′′ (a)|q , |f ′′ (b)|q

}) 1
q

where q = p/(p− 1).

Proof. From Lemma 1 and using the well known Hölder integral inequality, we have
successively

∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)2

2

∫ 1

0

t (1− t) |f ′′ (ta + (1− t) b)| dt

≤ (b− a)2

2

(∫ 1

0

(
t− t2

)p
dt

) 1
p
(∫ 1

0

|f ′′ (ta + (1− t) b)|q dt

) 1
q

≤ (b− a)2

2
·

(
2−1−2p

√
π Γ (1 + p)

Γ
(

3
2 + p

) ) 1
p

·
(
max

{
|f ′′ (a)|q , |f ′′ (b)|q

}) 1
q

=
(b− a)2

8

(√
π

2

) 1
p

(
Γ (1 + p)
Γ
(

3
2 + p

)) 1
p (

max
{
|f ′′ (a)|q , |f ′′ (b)|q

}) 1
q ,

where 1/p + 1/q = 1, and we use the fact that

∫ 1

0

(
t− t2

)p
dt =

2−1−2p
√

π Γ (1 + p)
Γ
(

3
2 + p

) ,

which completes the proof.

A more general inequality is given using Lemma 1, as follows:

Theorem 5. Let f : I ⊂ R → R be twice differentiable mapping on I◦, a, b ∈ I
with a < b and f ′′ is integrable on [a, b]. If |f ′′|q is an quasi-convex on [a, b], q ≥ 1,
then the following inequality holds:

∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣ ≤ (b− a)2

12
(
max

{
|f ′′ (a)|q , |f ′′ (b)|q

})1/q
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Proof. From Lemma 1 and using well known power mean inequality, we have∣∣∣∣∣f (a) + f (b)
2

− 1
b− a

∫ b

a

f (x) dx

∣∣∣∣∣
≤ (b− a)2

2

∫ 1

0

t (1− t) |f ′′ (ta + (1− t) b)| dt

≤ (b− a)2

2

(∫ 1

0

(
t− t2

)
dt

)1− 1
q
(∫ 1

0

(
t− t2

)
|f ′′ (ta + (1− t) b)|q dt

) 1
q

≤ (b− a)2

2
·
(

1
6

)1− 1
q

·
(

1
6

max
{
|f ′′ (a)|q , |f ′′ (b)|q

}) 1
q

=
(b− a)2

12
(
max

{
|f ′′ (a)|q , |f ′′ (b)|q

}) 1
q ,

which completes the proof.

3. Applications to Special Means

We now consider the means for arbitrary real numbers α, β (α 6= β). We take
(1) Arithmetic mean:

A (α, β) =
α + β

2
, α, β ∈ R.

(2) Logarithmic mean:

L (α, β) =
α− β

ln |α| − ln |β|
, |α| 6= |β| , α, β 6= 0, α, β ∈ R.

(3) Generalized log-mean:

Ln (α, β) =
[

βn+1 − αn+1

(n + 1) (β − α)

] 1
n

, n ∈ Z\ {−1, 0} , α, β ∈ R, α 6= β.

Now, using the results of Section 2, we give some applications for special means
of real numbers.

Proposition 1. Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, we have

|Ln
n (a, b)−A (an, bn)| ≤ n (n− 1)

12
(b− a)2 max

{
|a|n−2

, |b|n−2
}

.

Proof. The assertion follows from Theorem 3 applied to the quasi-convex mapping
f (x) = xn, x ∈ R.

Proposition 2. Let a, b ∈ R, a < b and 0 /∈ [a, b]. Then, for all p > 1, we have∣∣L−1 (a, b)−A
(
a−1, b−1

)∣∣
≤ (b− a)2

4

(√
π

2

) 1
p

(
Γ (1 + p)
Γ
(

3
2 + p

)) 1
p (

max
{
|a|−3q

, |b|−3q
}) 1

q

.

Proof. The assertion follows from Theorem 4 applied to the quasi-convex mapping
f (x) = 1/x, x ∈ [a, b].
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Proposition 3. Let a, b ∈ R, a < b and n ∈ N, n ≥ 2. Then, for all q ≥ 1, we
have

|Ln
n (a, b)−An (a, b)| ≤ n (n− 1)

12
(b− a)2

(
max

{
|a|(n−2)q

, |b|(n−2)q
}) 1

q

.

Proof. The assertion follows from Theorem 5 applied to the quasi-convex mapping
f (x) = xn, x ∈ R.
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