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A GENERALIZATION OF f-DIVERGENCE MEASURE TO
CONVEX FUNCTIONS DEFINED ON LINEAR SPACES

S.S. DRAGOMIR

Abstract. In this paper we generalise the concept of f -divergence to a convex
function de�ned on a convex cone in a linear space. Some fundamental results
are established.

1. Introduction

Given a convex function f : [0;1)! R, the f�divergence functional

(1.1) If (p;q) =
nX
i=1

qif

�
pi
qi

�
;

was introduced by Csiszár [3]-[4] as a generalized measure of information, a �dis-
tance function� on the set of probability distribution Pn: The restriction here to
discrete distributions is only for convenience, similar results hold for general distri-
butions. As in Csiszár [3]-[4] , we interpret unde�ned expressions by

f (0) = lim
t!0+

f (t) ; 0 f
�
0
0

�
= 0;

0 f
�
a
0

�
= lim

"!0+
"f
�
a
"

�
= a lim

t!1
f(t)
t ; a > 0:

The following results were essentially given by Csiszár and Körner [5].

Proposition 1. (Joint Convexity) If f : [0;1) ! R is convex, then If (p;q) is
jointly convex in p and q.

Proposition 2. (Jensen�s inequality) Let f : [0;1)! R be convex. Then for any

p;q 2 [0;1)n with Pn :=
nP
i=1

pi > 0, Qn :=
nP
i=1

qi > 0, we have the inequality

(1.2) If (p;q) � Qnf
�
Pn
Qn

�
:

If f is strictly convex, equality holds in (1.2) i¤
p1
q1
=
p2
q2
= ::: =

pn
qn
:

It is natural to consider the following corollary.

Corollary 1. (Nonnegativity) Let f : [0;1)! R be convex and normalised, i.e.,

(1.3) f (1) = 0:
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2 S.S. DRAGOMIR

Then for any p;q 2 [0;1)n with Pn = Qn, we have the inequality
(1.4) If (p;q) � 0:
If f is strictly convex, equality holds in (1.4) i¤

pi = qi for all i 2 f1; :::; ng .

In particular, if p;q are probability vectors, then Corollary 1 shows that, for
strictly convex and normalized f : [0;1)! R that

(1.5) If (p;q) � 0 and If (p;q) = 0 i¤ p = q.

We now give some examples of divergence measures in Information Theory which
are particular cases of f�divergences.
Kullback-Leibler distance ([14]). The Kullback-Leibler distance D (�; �) is

de�ned by

D (p;q) :=
nX
i=1

pi log

�
pi
qi

�
:

If we choose f (t) = t ln t, t > 0, then obviously

If (p;q) = D (p;q) :

Variational distance (l1�distance). The variational distance V (�; �) is de�ned
by

V (p;q) :=
nX
i=1

jpi � qij :

If we choose f (t) = jt� 1j, t 2 [0;1), then we have
If (p;q) = V (p;q) :

Hellinger discrimination ([1]). The Hellinger discrimination is de�ned byp
2h2 (�; �), where h2 (�; �) is given by

h2 (p;q) :=
1

2

nX
i=1

(
p
pi �

p
qi)

2
:

It is obvious that if f (t) = 1
2

�p
t� 1

�2
, then

If (p;q) = h
2 (p;q) :

Triangular discrimination ([17]). We de�ne triangular discrimination be-
tween p and q by

�(p;q) =
nX
i=1

jpi � qij2

pi + qi
:

It is obvious that if f (t) = (t�1)2
t+1 , t 2 (0;1), then

If (p;q) = � (p;q) :

Note that
p
�(p;q) is known in the literature as the Le Cam distance.

�2�distance. We de�ne the �2�distance (chi-square distance) by

D�2 (p;q) :=
nX
i=1

(pi � qi)2

qi
:
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It is clear that if f (t) = (t� 1)2, t 2 [0;1), then

If (p;q) = D�2 (p;q) :

Rényi�s divergences ([16]). For � 2 Rn f0; 1g ; consider

�� (p;q) :=
nX
i=1

p�i q
1��
i :

It is obvious that if f (t) = t� (t 2 (0;1)) ; then

If (p;q) = �� (p;q) :

Rényi�s divergences R� (p;q) := 1
�(��1) ln [�� (p;q)] have been introduced for all

real orders � 6= 0; � 6= 1 (and continuously extended for � = 0 and � = 1) in [15],
where the reader may �nd many inequalities valid for these divergences, without,
as well as with, some restrictions for p and q:
For other examples of divergence measures, see the paper [12] and the books [15]

and [18], where further references are given.
In this paper we generalize the concept of f -divergence to a convex function de-

�ned on a convex cone in a linear space. Some fundamental results are established.

2. The f-Divergence of an n-tuple of Vectors

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satis�ed:
(i) for any x; y 2 K we have x+ y 2 K;
(ii) for any x 2 K and any � � 0 we have �x 2 K.
For a given n-tuple of vectors z = (z1; :::; zn) 2 Kn and a probability distribution

q =(q1; :::; qn) 2 Pn with all values nonzero, we can de�ne, for the convex function
f : K ! R, the following f-divergence of z with the distribution q (see [8]):

(2.1) If (z;q) :=
nX
i=1

qif

�
zi
qi

�
:

It is obvious that if X = R, K = [0;1) and x = p 2Pn then we obtain the usual
concept of the f -divergence associated with a function f : [0;1)! R.
The following result concerning the mutual convexity of the f -divergence holds.

Theorem 1. Let f : K ! R be a convex function on the cone K: Then the function
If (�; �) is convex on the convex set Kn � Pn.

Proof. Let z = (z1; :::; zn) ;v = (v1; :::; vn) 2 Kn, p =(p1; :::; pn) ;q =(q1; :::; qn) 2
Pn two probability distributions with all values nonzero and �; � � 0 with �+� = 1:
Then we have

(2.2) If [� (v;p) + � (z;q)] = If (�v + �z; �p+ �q)

=
nX
i=1

(�pi + �qi) f

�
�vi + �zi
�pi + �qi

�

=
nX
i=1

(�pi + �qi) f

��
�pi

�pi + �qi

�
� vi
pi
+

�
�qi

�pi + �qi

�
� zi
qi

�
:
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Due to the convexity of f; we have

(2.3) f

��
�pi

�pi + �qi

�
� vi
pi
+

�
�qi

�pi + �qi

�
� zi
qi

�
� �pi
�pi + �qi

� f
�
vi
pi

�
+

�qi
�pi + �qi

� f
�
zi
qi

�
for each i 2 f1; :::; ng :
Now, on multiplying (2.3) with �pi + �qi > 0; summing over i from 1 to n and

utilising (2.2) we get that

If [� (v;p) + � (z;q)] � �If (v;p) + �If (z;q)
proving the desired result. �
Now, for a given n-tuple of vectors x = (x1; :::; xn) 2 Kn, a probability distrib-

ution q 2 Pn with all values nonzero and for any nonempty subset J of f1; :::; ng
we have

qJ :=
�
QJ ; �QJ

�
2 P2

where QJ :=
P

j2J qj ;
�QJ := 1�QJ and

xJ :=
�
XJ ; �XJ

�
2 K2

where, as above,
XJ :=

X
i2J

xi; and �XJ := X �J :

It is obvious that

If (xJ ;qJ) = QJf

�
XJ
QJ

�
+ �QJf

� �XJ
�QJ

�
:

The following inequality for the f -divergence of an n-tuple of vectors in a linear
space holds [8]:

Theorem 2. Let f : K ! R be a convex function on the cone K: Then for any
n-tuple of vectors x = (x1; :::; xn) 2 Kn, a probability distribution q 2 Pn with all
values nonzero and for any nonempty subset J of f1; :::; ng we have

(2.4) If (x;q) � max
;6=J�f1;:::;ng

If (xJ ;qJ) � If (xJ ;qJ)

� min
;6=J�f1;:::;ng

If (xJ ;qJ) � f (Xn)

where Xn :=
Pn

i=1 xi:

We observe that, for a given n-tuple of vectors x = (x1; :::; xn) 2 Kn; a su¢ cient
condition for the positivity of If (x;q) for any probability distribution q 2 Pn with
all values nonzero is that f (Xn) � 0: In the scalar case and if x = p 2Pn; then a
su¢ cient condition for the positivity of the f -divergence If (p;q) is that f (1) � 0:
The case of functions of a real variable that is of interest for applications is

incorporated in [8]:

Corollary 2. Let f : [0;1) ! R be a normalized convex function. Then for any
p;q 2 Pn we have

(2.5) If (p;q) � max
;6=J�f1;:::;ng

�
QJf

�
PJ
QJ

�
+ (1�QJ) f

�
1� PJ
1�QJ

��
(� 0) :
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Remark 1. For various applications of the inequality (2.5) to particular divergence
measures of interest in applications, see [8]. In order to give an example, we point
out the following result

(2.6) J (p; q) � ln
 

max
;6=J�f1;:::;ng

(�
(1� PJ)QJ
(1�QJ)PJ

�(QJ�PJ )
)!

� max
;6=J�f1;:::;ng

"
(QJ � PJ)2

PJ +QJ � 2PJQJ

#
� 0;

where the Je¤reys divergence is de�ned as

(2.7) J (p; q) :=
nX
j=1

qj �
�
pj
qj
� 1
�
ln

�
pj
qj

�
=

nX
j=1

(pj � qj) ln
�
pj
qj

�
;

which is an f-divergence for f (t) = (t� 1) ln t; t > 0:

3. Some Upper and Lower Bounds

Let K be a convex subset of the real linear space X and let f : K ! R be
a convex mapping. Here we consider the following well-known form of Jensen�s
discrete inequality:

f

 
1

PI

X
i2I

pixi

!
� 1

PI

X
i2I

pif (xi) ;

where I denotes a �nite subset of the set N of natural numbers, xi 2 K; pi � 0 for
i 2 I and PI :=

P
i2I pi > 0:

Let us �x I 2 Pf (N) (the class of �nite parts of N) and xi 2 K (i 2 I) : Now
consider the functional J : S+ (I)! R given by

JI (p) :=
X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!
� 0

where S+ (I) :=
�
p = (pi)i2I

�� pi � 0; i 2 I and PI > 0
	
and f is convex on K:

We observe that S+ (I) is a cone and the functional JI is nonnegative, superad-
ditive [10] and positive homogeneous on S+ (I) :
We have the following inequalities that are of interest in their turn as well (see

[9]):

Lemma 1. If p;q 2 S+ (I) and M � m � 0 such that Mp � q � mp; i.e.,
Mpi � qi � mpi for each i 2 I; then:

(3.1) M

"X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!#

�
X
i2I

qif (xi)�QIf
 
1

QI

X
i2I

qixi

!

� m
"X
i2I

pif (xi)� PIf
 
1

PI

X
i2I

pixi

!#
(� 0) :
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and

(3.2)

"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#MPI

�
"
1

QI

X
i2I

qif (xi)� f
 
1

QI

X
i2I

qixi

!#QI

�
"
1

PI

X
i2I

pif (xi)� f
 
1

PI

X
i2I

pixi

!#mPI
:

respectively.

We may state the following result:

Theorem 3. Let f : K ! R be a convex function on the cone K: Consider an
n-tuple of vectors z = (z1; :::; zn) 2 Kn and two probability distribution p;q 2 Pn
with all values nonzero and satisfying the condition

(3.3) Rpi � qi � rpi for each i 2 f1; :::; ng ;

where R � 1 � r > 0:
If we de�ne the vector

y =

�
p1
q1
z1; :::;

pn
qn
zn

�
2 Kn;

then we have the inequalities

(3.4) R [If (y;p)� f (Yn)] � If (z;q)� f (Zn) � r [If (y;p)� f (Yn)] (� 0)

and the inequalities

(3.5) [If (y;p)� f (Yn)]R � If (z;q)� f (Zn) � [If (y;p)� f (Yn)]r (� 0)

respectively, where Zn :=
Pn

i=1 zi and Yn :=
Pn

i=1 yi =
Pn

i=1
pi
qi
� zi 2 K:

The proof follows from Lemma 1 applied for M = R;m = r and xi = zi
qi
where

i 2 f1; :::; ng :

Corollary 3. Let f : [0;1) ! R be a normalized convex function. For two prob-
ability distributions p;q 2 Pn with all values nonzero assume that there exists the
constants R � 1 � r > 0 satisfying the condition (3.3).
If s = (s1; :::; sn) 2 Pn is such that the vector

(3.6) y =

�
p1
q1
s1; :::;

pn
qn
sn

�
2 Rn+

is a probability distribution, then we have the inequalities

(3.7) RIf (y;p) � If (s;q) � rIf (y;p)

and the inequalities

(3.8) [If (y;p)]
R � If (z;q) � [If (y;p)]r :
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Remark 2. It is natural to ask if we can �nd probability distributions p;q; s 2 Pn
such that y de�ned by (3.6) is a probability distribution as well.
Let consider the simplest example, namely for n = 2: In this case for, say

p =(0:1; 0:9), q =(0:2; 0:8) and s =(s1; s2) 2 P2 we have y =
�
1
2s1;

9
8s2
�
which

should satisfy the condition that 1
2s1 +

9
8s2 = 1 for some s1; s2 2 [0; 1] with

s1 + s2 = 1: We observe that this system of equations has the unique solution
s1 =

1
5 and s2 =

4
5 ; showing that (s1; s2) 2 P

2:

4. Other Bounds in Terms of Gâteau Derivatives

Assume that f : X ! R is a convex function on the real linear space X. Since
for any vectors x; y 2 X the function gx;y : R ! R; gx;y (t) := f (x+ ty) is convex
it follows that the following limits exist

(4.1) r+(�)f (x) (y) := lim
t!0+(�)

f (x+ ty)� f (x)
t

and they are called the right(left) Gâteaux derivatives of the function f in the point
x over the direction y:
It is obvious that for any t > 0 > s we have

(4.2)
f (x+ ty)� f (x)

t
� r+f (x) (y) = inf

t>0

�
f (x+ ty)� f (x)

t

�
� sup

s<0

�
f (x+ sy)� f (x)

s

�
= r�f (x) (y) �

f (x+ sy)� f (x)
s

for any x; y 2 X and, in particular,

(4.3) r�f (u) (u� v) � f (u)� f (v) � r+f (v) (u� v)

for any u; v 2 X: We call this the gradient inequality for the convex function f: It
will be used frequently in the sequel in order to obtain various results related to
Jensen�s inequality.
The following properties are also of importance:

(4.4) r+f (x) (�y) = �r�f (x) (y) ;

and

(4.5) r+(�)f (x) (�y) = �r+(�)f (x) (y)

for any x; y 2 X and � � 0:
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(4.6) r+f (x) (y + z) � r+f (x) (y) +r+f (x) (z)

and

(4.7) r�f (x) (y + z) � r�f (x) (y) +r�f (x) (z)

for any x; y; z 2 X .
Some natural examples can be provided by the use of normed spaces.
Assume that (X; k�k) is a real normed linear space. The function f : X ! R,

f (x) := 1
2 kxk

2 is a convex function which generates the superior and the inferior
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semi-inner products

hy; xis(i) := lim
t!0+(�)

kx+ tyk2 � kxk2

t
:

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [7].
For the convex function fp : X ! R, fp (x) := kxkp with p > 1; we have

r+(�)fp (x) (y) =

8<: p kxkp�2 hy; xis(i) if x 6= 0

0 if x = 0

for any y 2 X:
If p = 1; then we have

r+(�)f1 (x) (y) =

8<: kxk�1 hy; xis(i) if x 6= 0

+ (�) kyk if x = 0

for any y 2 X:
This class of functions will be used to illustrate the inequalities obtained in the

general case of convex functions de�ned on an entire linear space.
The following result holds:

Lemma 2. Let f : X ! R be a convex function. Then for any x; y 2 X and
t 2 [0; 1] we have

(4.8) t (1� t) [r�f (y) (y � x)�r+f (x) (y � x)]
� tf (x) + (1� t) f (y)� f (tx+ (1� t) y)

� t (1� t) [r+f (tx+ (1� t) y) (y � x)�r�f (tx+ (1� t) y) (y � x)] � 0:

Proof. Utilising the gradient inequality (4.3) we have

(4.9) f (tx+ (1� t) y)� f (x) � (1� t)r+f (x) (y � x)

and

(4.10) f (tx+ (1� t) y)� f (y) � �tr�f (y) (y � x) :

If we multiply (4.9) with t and (4.10) with 1� t and add the resultant inequalities
we obtain

f (tx+ (1� t) y)� tf (x)� (1� t) f (y)
� (1� t) tr+f (x) (y � x)� t (1� t)r�f (y) (y � x)

which is clearly equivalent with the �rst part of (4.8).
By the gradient inequality we also have

(1� t)r�f (tx+ (1� t) y) (y � x) � f (tx+ (1� t) y)� f (x)

and
�tr+f (tx+ (1� t) y) (y � x) � f (tx+ (1� t) y)� f (y)

which by the same procedure as above yields the second part of (4.8). �
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Theorem 4. Let f : K ! R be a convex function on the cone K: If z = (z1; :::; zn) ;
v = (v1; :::; vn) 2 Kn, p =(p1; :::; pn) ; q =(q1; :::; qn) 2 Pn are two probability
distributions with all values nonzero and �; � � 0 with �+ � = 1; then we have

��
nX
i=1

piqi
�pi + �qi

�
r�f

�
zi
qi

��
zi
qi
� vi
pi

�
�r+f

�
vi
pi

��
zi
qi
� vi
pi

��
(4.11)

� �If (v;p) + �If (z;q)� If [� (v;p) + � (z;q)]

� ��
nX
i=1

piqi
�pi + �qi

�
�
r+f

�
�vi + �zi
�pi + �qi

��
zi
qi
� vi
pi

�
�r�f

�
�vi + �zi
�pi + �qi

��
zi
qi
� vi
pi

��
� 0

Proof. If we write the inequality (4.8) for

x =
vi
pi
; y =

zi
qi
and t =

�pi
�pi + �qi

then we get

��piqi

(�pi + �qi)
2

�
r�f

�
zi
qi

��
zi
qi
� vi
pi

�
�r+f

�
vi
pi

��
zi
qi
� vi
pi

��
(4.12)

� �pi
�pi + �qi

f

�
vi
pi

�
+

�qi
�pi + �qi

f

�
zi
qi

�
� f

�
�vi + �zi
�pi + �qi

�
� ��piqi

(�pi + �qi)
2

�
�
r+f

�
�vi + �zi
�pi + �qi

��
zi
qi
� vi
pi

�
�r�f

�
�vi + �zi
�pi + �qi

��
zi
qi
� vi
pi

��
� 0;

for each i 2 f1; :::; ng :
Now, if we multiply (4.12) by �pi+�qi > 0 and sum over i from 1 to n we derive

the desired result (4.11). �

It is natural now to consider the corresponding result for convex functions of a
real variable.

Corollary 4. Let f : [0;1) ! R be a normalized convex function. If z =
(z1; :::; zn) ; v = (v1; :::; vn), p =(p1; :::; pn) ; q =(q1; :::; qn) 2 Pn are probability
distributions with all values nonzero and �; � � 0 with �+ � = 1; then we have

��
nX
i=1

det

�
zi vi
qi pi

�
�pi + �qi

�
f 0�

�
zi
qi

�
� f 0+

�
vi
pi

��
(4.13)

� �If (v;p) + �If (z;q)� If [� (v;p) + � (z;q)]

� ��
nX
i=1

det

�
zi vi
qi pi

�
�pi + �qi

�
f 0+

�
�vi + �zi
�pi + �qi

�
� f 0�

�
�vi + �zi
�pi + �qi

��
� 0:
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Remark 3. It is obvious that for di¤erentiable convex functions on (0;1) the lower
bound vanishes and the inequality (4.13) becomes:

(4.14) 0 � �If (v;p) + �If (z;q)� If [� (v;p) + � (z;q)]

� ��
nX
i=1

det

�
zi vi
qi pi

�
�pi + �qi

�
f 0
�
zi
qi

�
� f 0

�
vi
pi

��
that can be used for particular divergence measures.
Indeed, if we consider the normalised convex function f (t) = (t� 1)2, t 2 [0;1),

then
If (p;q) = D�2 (p;q)

where, as in the introduction, the �2�distance (chi-square distance) is de�ned by

D�2 (p;q) :=

nX
i=1

(pi � qi)2

qi
:

It is clear that the inequality (4.14) becomes then

(4.15) 0 � �D�2 (v;p) + �D�2 (z;q)�D�2 [� (v;p) + � (z;q)]

� 2��
nX
i=1

det2
�
zi vi
qi pi

�
piqi (�pi + �qi)

:

The Kullback-Leibler distance D (�; �) is de�ned by

D (p;q) :=
nX
i=1

pi log

�
pi
qi

�
:

If we choose f (t) = t ln t, t > 0, then obviously

If (p;q) = D (p;q)

and the inequality (4.14) becomes then

(4.16) 0 � �D (v;p) + �D (z;q)�D [� (v;p) + � (z;q)]

� �� ln

8<:
nY
i=1

24�zipi
qivi

� pizi�qivi
�pi+�qi

359=; :
Similar results could be obtained for other particular instances of divergence mea-

sures, however the details are omitted.

In what follows we provide some lower and upper bounds for the nonnegative
di¤erence If (x;q)� If (xJ ;qJ) where J is a nonempty subset of f1; :::; ng and

If (xJ ;qJ) = QJf

�
XJ
QJ

�
+ �QJf

� �XJ
�QJ

�
:

For a nonempty subset K of f1; :::; ng we also use the notation

If;K (x;q) :=
X
i2K

qif

�
xi
qi

�
:
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Theorem 5. Let f : K ! R be a convex function on the cone K: Then for any
n-tuple of vectors x = (x1; :::; xn) 2 Kn, a probability distribution q 2 Pn with all
values nonzero and for any nonempty subset J of f1; :::; ng we have

(4.17) Ir�f(�)
�
��XJ

QJ

�
;J
(x;q) + Ir�f(�)

�
��

�XJ
�QJ

�
; �J
(x;q) � If (x;q)� If (xJ ;qJ)

� Ir+f
�
XJ
QJ

��
��XJ

QJ

�
;J
(x;q) + Ir+f

� �XJ
�QJ

��
��

�XJ
�QJ

�
; �J
(x;q) � 0

Proof. Utilising the gradient inequality we have, for a given nonempty set J of
f1; :::; ng with J 6= f1; :::; ng ; that

(4.18) r�f
�
xi
qi

��
xi
qi
� XJ
QJ

�
� f

�
xi
qi

�
� f

�
XJ
QJ

�
� r+f

�
XJ
QJ

��
xi
qi
� XJ
QJ

�
for any i 2 J: If we multiply (4.18) with qi � 0 and sum over i 2 J; we get

(4.19) Ir�f(�)
�
��XJ

QJ

�
;J
(x;q) � If;J (x;q)�QJf

�
XJ
QJ

�
� Ir+f

�
XJ
QJ

��
��XJ

QJ

�
;J
(x;q) � 0:

From the gradient inequality we also have

(4.20) r�f
�
xj
qj

��
xj
qj
�
�XJ
�QJ

�
� f

�
xj
qj

�
� f

� �XJ
�QJ

�
� r+f

� �XJ
�QJ

��
xj
qj
�
�XJ
�QJ

�
for any j 2 �J: If we multiply (4.18) with qj � 0 and sum over j 2 �J; we get

(4.21) Ir�f(�)
�
��

�XJ
�QJ

�
; �J
(x;q) � If; �J (x;q)� �QJf

� �XJ
�QJ

�
� Ir+f

� �XJ
�QJ

��
��

�XJ
�QJ

�
; �J
(x;q) � 0:

Now, if we sum the inequalities (4.19) with (4.21) and take into account that

If;J (x;q) + If; �J (x;q) = If (x;q)

and

QJf

�
XJ
QJ

�
+ �QJf

� �XJ
�QJ

�
= If (xJ ;qJ)

then we get the desired result (4.17). �

The case of functions of a real variable that is of interest for applications is
incorporated in :



12 S.S. DRAGOMIR

Corollary 5. Let f : [0;1) ! R be a normalized convex function. Then for any
p;q 2 Pn and ; 6= J � f1; :::; ng we have

I
f 0�(�)

�
�� PJ

QJ

�
;J
(p;q) + I

f 0�(�)
�
�� 1�PJ

1�QJ

�
; �J
(p;q)(4.22)

� If (p;q)�QJf
�
PJ
QJ

�
� (1�QJ) f

�
1� PJ
1�QJ

�
� I

f 0+

�
XJ
QJ

��
�� PJ

QJ

�
;J
(p;q) + I

f 0+

�
1�PJ
1�QJ

��
�� 1�PJ

1�QJ

�
; �J
(p;q) � 0:

Remark 4. If one chooses di¤erent convex functions generating particular diver-
gence measures such as the Kullback-Leibler, Je¤reys or Hellinger divergences, that
one can obtain some particular results of interest. However the details are not
presented here.
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