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ON SOME WEIGHTED INTEGRAL INEQUALITIES FOR
CONVEX FUNCTIONS RELATED TO FEJÉR�S RESULT

K.-L. TSENG, SHIOW-RU HWANG, AND S.S. DRAGOMIR

Abstract. In this paper, we introduce some functionals associated with weighted
integral means for convex functions. Some new Fejér-type inequalities are ob-
tained as well.

1. Introduction

Throughout this paper, let f : [a; b] ! R be convex, g : [a; b] ! [0;1) be
integrable and symmetric to a+b

2 : We de�ne the following mappings on [0; 1] that
are associated with the well known Hermite-Hadamard inequality [1]

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

2
;

namely

G (t) =
1

2

�
f

�
ta+ (1� t) a+ b

2

�
+ f

�
tb+ (1� t) a+ b

2

��
;

Q (t) =
1

2
[f (ta+ (1� t) b) + f (tb+ (1� t) a)] ;

H (t) =
1

b� a

Z b

a

f

�
tx+ (1� t) a+ b

2

�
dx;

Hg (t) =

Z b

a

f

�
tx+ (1� t) a+ b

2

�
g (x) dx;

I (t) =

Z b

a

1

2

�
f

�
t
x+ a

2
+ (1� t) a+ b

2

�
+ f

�
t
x+ b

2
+ (1� t) a+ b

2

��
g (x) dx;

P (t) =
1

2 (b� a)

Z b

a

�
f

��
1 + t

2

�
a+

�
1� t
2

�
x

�
+f

��
1 + t

2

�
b+

�
1� t
2

�
x

��
dx;
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Pg (t) =

Z b

a

1

2

�
f

��
1 + t

2

�
a+

�
1� t
2

�
x

�
g

�
x+ a

2

�
+f

��
1 + t

2

�
b+

�
1� t
2

�
x

�
g

�
x+ b

2

��
dx;

N (t) =

Z b

a

1

2

�
f

�
ta+ (1� t) x+ a

2

�
+ f

�
tb+ (1� t) x+ b

2

��
g (x) dx;

L (t) =
1

2 (b� a)

Z b

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] dx;

Lg (t) =
1

2

Z b

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] g (x) dx

and

Sg (t) =
1

4

Z b

a

�
f

�
ta+ (1� t) x+ a

2

�
+ f

�
ta+ (1� t) x+ b

2

�
+f

�
tb+ (1� t) x+ a

2

�
+ f

�
tb+ (1� t) x+ b

2

��
g (x) dx:

Remark 1. We note that H = Hg = I; P = Pg = N and L = Lg = Sg on [0; 1] as
g (x) = 1

b�a (x 2 [a; b]).

For some results which generalize, improve, and extend the famous Hermite-
Hadamard integral inequality, see [2] �[19].
In [8], Fejér established the following weighted generalization of the Hermite-

Hadamard inequality (1:1) :

Theorem A. Let f; g be de�ned as above. Then

(1.2) f

�
a+ b

2

�Z b

a

g (x) dx �
Z b

a

f (x) g (x) dx � f (a) + f (b)

2

Z b

a

g (x) dx:

In [11], Tseng et al. established the following Fejér-type inequalities.

Theorem B. Let f; g be de�ned as above. Then we have

f

�
a+ b

2

�Z b

a

g (x) dx �
f
�
3a+b
4

�
+ f

�
a+3b
4

�
2

Z b

a

g (x) dx(1.3)

�
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

� 1

2

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

� Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

In [2], Dragomir established the following Hermite-Hadamard-type inequality
which re�nes the �rst inequality of (1:1).

Theorem C. Let f;H be de�ned as above. Then H is convex, increasing on [0; 1] ;
and for all t 2 [0; 1], we have

(1.4) f

�
a+ b

2

�
= H (0) � H (t) � H (1) = 1

b� a

Z b

a

f (x) dx:



ON SOME WEIGHTED INTEGRAL INEQUALITIES 3

In [15], Yang and Hong obtained the following Hermite-Hadamard-type inequal-
ity which is a re�nement of the second inequality in (1:1).

Theorem D. Let f; P be de�ned as above. Then P is convex, increasing on [0; 1] ;
and for all t 2 [0; 1], we have

(1.5)
1

b� a

Z b

a

f (x) dx = P (0) � P (t) � P (1) = f (a) + f (b)

2
:

Yang and Tseng [16] and Tseng et al. [11] established the following Fejér-type
inequalities which are weighted generalizations of Theorems C �D.

Theorem E ([16]). Let f; g;Hg; Pg be de�ned as above. Then Hg; Pg are convex,
increasing on [0; 1] ; and for all t 2 [0; 1], we have

f

�
a+ b

2

�Z b

a

g (x) dx = Hg (0) � Hg (t) � Hg (1)(1.6)

=

Z b

a

f (x) g (x) dx

= Pg (0) � Pg (t) � Pg (1)

=
f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem F ([11]). Let f; g; I;N be de�ned as above. Then I;N are convex, in-
creasing on [0; 1] ; and for all t 2 [0; 1], we have

f

�
a+ b

2

�Z b

a

g (x) dx = I (0) � I (t) � I (1)(1.7)

=

Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

= N (0) � N (t) � N (1)

=
f (a) + f (b)

2

Z b

a

g (x) dx:

In [7], Dragomir et al. established the following Hermite-Hadamard-type in-
equality.

Theorem G. Let f;H;G;L be de�ned as above. Then G is convex, increasing on
[0; 1] ; L is convex on [0; 1] ; and for all t 2 [0; 1], we have

(1.8) H (t) � G (t) � L (t) � 1� t
b� a

Z b

a

f (x) dx+ t � f (a) + f (b)
2

� f (a) + f (b)

2
:

In [12] � [13], Tseng et al. obtained the following theorems related to Fejér�s
result which in their turn are weighted generalizations of the inequality (1:8) :
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Theorem H ([12]). Let f; g;G;Hg; Lg be de�ned as above. Then Lg is convex,
increasing on [0; 1] ; and for all t 2 [0; 1], we have

Hg (t) � G (t)
Z b

a

g (x) dx(1.9)

� Lg (t)

� (1� t)
Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem I ([13]). Let f; g;G; I; Sg be de�ned as above. Then Sg is convex, in-
creasing on [0; 1] ; and for all t 2 [0; 1], we have

I (t) � G (t)
Z b

a

g (x) dx � Sg (t)(1.10)

� (1� t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

In this paper, we provide some new Fejér-type inequalities related to the map-
pings G;Q;Hg; Pg; I;N; Lg; Sg de�ned above. They generalize known results ob-
tained in relation with the Hermite-Hadamard inequality and therefore are useful
in obtaining various results for means when the convex function and the weight
take particular forms.

2. Main Results

The following lemmae are needed in the proofs of our main results:

Lemma 2 (see [9]). Let f be de�ned as above and let a � A � C � D � B � b
with A+B = C +D: Then

f (C) + f (D) � f (A) + f (B) :

The assumptions in Lemma 2 can be weakened as in the following lemma:

Lemma 3. Let f be de�ned as above and let a � A � C � B � b and a � A �
D � B � b with A+B = C +D: Then

f (C) + f (D) � f (A) + f (B) :

Lemma 4 (see [14]). Let f;G;Q be de�ned as above. Then Q is symmetric about
1
2 , Q is decreasing on

�
0; 12

�
and increasing on

�
1
2 ; 1
�
,

G (2t) � Q (t)
�
t 2

�
0;
1

4

��
;

G (2t) � Q (t)
�
t 2

�
1

4
;
1

2

��
;
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G (2 (1� t)) � Q (t)
�
t 2

�
1

2
;
3

4

��
and

G (2 (1� t)) � Q (t)
�
t 2

�
3

4
; 1

��
:

Now, we are ready to state and prove our results.

Theorem 5. Let f; g;G;Hg; Pg; Lg; Sg be de�ned as above. Then:
(1) The inequalityZ b

a

f (x) g (x) dx � 2
"Z 3a+b

4

a

f (x) g (2x� a) dx+
Z b

a+3b
4

f (x) g (2x� b) dx
#

(2.1)

�
Z 1

0

Pg (t) dt

� 1

2

"Z b

a

f (x) g (x) dx+
f (a) + f (b)

2

Z b

a

g (x) dx

#
holds.

(2) The inequalities

Lg (t) � Pg (t)(2.2)

� (1� t)
Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

(2.3) 0 � N (t)�G (t)
Z b

a

g (x) dx � f (a) + f (b)

2

Z b

a

g (x) dx�N (t)

hold for all t 2 [0; 1] :
(3) If f is di¤erentiable on [a; b] ; then we have the inequalities

0 � t
"

1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

�#
� inf
x2[a;b]

g (x)(2.4)

� Pg (t)�
Z b

a

f (x) g (x) dx;

0 � Pg (t)� f
�
a+ b

2

�Z b

a

g (x) dx(2.5)

� (f 0 (b)� f 0 (a)) (b� a)
4

Z b

a

g (x) dx;

(2.6) 0 � Lg (t)�Hg (t) �
(f 0 (b)� f 0 (a)) (b� a)

4

Z b

a

g (x) dx;

(2.7) 0 � Pg (t)� Lg (t) �
(f 0 (b)� f 0 (a)) (b� a)

4

Z b

a

g (x) dx;
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(2.8) 0 � Pg (t)�Hg (t) �
(f 0 (b)� f 0 (a)) (b� a)

4

Z b

a

g (x) dx;

(2.9) 0 � N (t)� I (t) � (f 0 (b)� f 0 (a)) (b� a)
4

Z b

a

g (x) dx

and

(2.10) 0 � Sg (t)� I (t) �
(f 0 (b)� f 0 (a)) (b� a)

4

Z b

a

g (x) dx

for all t 2 [0; 1] :

Proof. (1) By using simple integration techniques and the hypothesis of g, we have
the following identities

(2.11)
Z b

a

f (x) g (x) dx = 2

Z a+b
2

a

Z 1
2

0

[f (x) + f (a+ b� x)] g (x) dtdx;

2

"Z 3a+b
4

a

f (x) g (2x� a) dx+
Z b

a+3b
4

f (x) g (2x� b) dx
#

(2.12)

= 2

Z 3a+b
4

a

[f (x) + f (a+ b� x)] g (2x� a) dx

= 2

Z a+b
2

a

Z 1
2

0

�
f

�
a+ x

2

�
+ f

�
a+ 2b� x

2

��
g (x) dtdx;

Z 1

0

Pg (t) dt =

Z a+b
2

a

Z 1

0

f (ta+ (1� t)x) g (x) dtdx(2.13)

+

Z b

a+b
2

Z 1

0

f (tb+ (1� t)x) g (x) dtdx

=

Z a+b
2

a

Z 1

0

f (ta+ (1� t)x) g (x) dtdx

+

Z a+b
2

a

Z 1

0

f (tb+ (1� t) (a+ b+ x)) g (x) dtdx

=

Z a+b
2

a

Z 1
2

0

[f (tx+ (1� t) a) + f (ta+ (1� t)x)] g (x) dtdx

+

Z a+b
2

a

Z 1
2

0

[f (tb+ (1� t) (a+ b� x))

+f (t (a+ b� x) + (1� t) b)] g (x) dtdx
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and

(2.14)
1

2

"Z b

a

f (x) g (x) dx+
f (a) + f (b)

2

Z b

a

g (x) dx

#

=

Z a+b
2

a

Z 1
2

0

[f (a) + f (x)] g (x) dtdx

+

Z a+b
2

a

Z 1
2

0

[f (a+ b� x) + f (b)] g (x) dtdx:

By Lemma 2, the following inequalities hold for all t 2
�
0; 12

�
and x 2

�
a; a+b2

�
.

(2.15) f (x) + f (a+ b� x) � f
�
a+ x

2

�
+ f

�
a+ 2b� x

2

�

holds when A = a+x
2 ; C = x; D = a+ b� x and B = a+2b�x

2 in Lemma 2:

(2.16) f

�
a+ x

2

�
� 1

2
[f (tx+ (1� t) a) + f (ta+ (1� t)x)]

holds when A = tx+ (1� t) a; C = D = a+x
2 and B = ta+ (1� t)x in Lemma 2:

(2.17) f

�
a+ 2b� x

2

�
� 1

2
[f (tb+ (1� t) (a+ b� x)) + f (t (a+ b� x) + (1� t) b)]

holds when A = tb+ (1� t) (a+ b� x) ; C = D = a+2b�x
2 and B = t (a+ b� x) +

(1� t) b in Lemma 2:

(2.18)
1

2
[f (tx+ (1� t) a) + f (ta+ (1� t)x)] � f (a) + f (x)

2

holds when A = a; C = tx+ (1� t) a; D = ta+ (1� t)x and B = x in Lemma 2:

(2.19)
1

2
[f (tb+ (1� t) (a+ b� x)) + f (t (a+ b� x) + (1� t) b)]

� f (a+ b� x) + f (b)
2

holds as A = a + b � x; C = tb + (1� t) (a+ b� x) ; D = t (a+ b� x) + (1� t) b
and B = b in Lemma 2: Multiplying the inequalities (2:15) � (2:19) by g (x) and
integrating them over t on

�
0; 12

�
; over x on

�
a; a+b2

�
and using identities (2:11) �

(2:14), we derive (2:1) :
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(2) Using substitution rules for integration and the hypothesis of g, we have the
following identities

Pg (t) =

Z a+b
2

a

f (ta+ (1� t)x) g (x) dx(2.20)

+

Z b

a+b
2

f (tb+ (1� t)x) g (x) dx

=

Z a+b
2

a

[f (ta+ (1� t)x)

+ f (tb+ (1� t) (a+ b� x))] g (x) dx

and

Lg (t) =
1

2

"Z a+b
2

a

f (ta+ (1� t)x) g (x) dx(2.21)

+

Z b

a+b
2

f (tb+ (1� t)x) g (x) dx
#

+
1

2

"Z b

a+b
2

f (ta+ (1� t)x) g (x) dx

+

Z a+b
2

a

f (tb+ (1� t)x) g (x) dx
#

=
1

2
Pg (t) +

1

2

Z a+b
2

a

[f (ta+ (1� t) (a+ b� x))

+ f (tb+ (1� t)x)] g (x) dx

for all t 2 [0; 1] :
If we choose A = ta+ (1� t)x; C = ta+ (1� t) (a+ b� x) ; D = tb+ (1� t)x

and B = tb+ (1� t) (a+ b� x) in Lemma 3, then the inequality

(2.22) f (ta+ (1� t) (a+ b� x)) + f (tb+ (1� t)x)
� f (ta+ (1� t)x) + f (tb+ (1� t) (a+ b� x))

holds for all t 2 [0; 1] and x 2
�
a; a+b2

�
. Multiplying the inequality (2:22) by g (x),

integrating both sides over x on
�
a; a+b2

�
and using identities (2:20) � (2:21), we

derive the �rst inequality of (2:2) : The second and third inequalities of (2:2) can
be obtained by the convexity of f and (1:2) : This proves (2:2) :
Again, using substitution rules for integration and the hypothesis of g, we have

the following identity

N (t) =

Z b

a

1

2

�
f

�
ta+ (1� t) x+ a

2

�
+ f

�
tb+ (1� t) a+ 2b� x

2

��
g (x) dx
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=

Z a+b
2

a

[f (ta+ (1� t)x)

+ f (tb+ (1� t) (a+ b� x))] g (2x� a) dx(2.23)

=

Z 3a+b
4

a

[f (ta+ (1� t)x)

+ f

�
ta+ (1� t)

�
3a+ b

2
� x

��
+ f

�
tb+ (1� t)

�
b� a
2

+ x

��
+ f (tb+ (1� t) (a+ b� x))] g (2x� a) dx(2.24)

for all t 2 [0; 1] : By Lemma 2, the following inequalities hold for all t 2 [0; 1] and
x 2

�
a; 3a+b4

�
:

(2.25) f (ta+ (1� t)x) + f
�
ta+ (1� t)

�
3a+ b

2
� x

��
� f (a) + f

�
ta+ (1� t) a+ b

2

�
holds when A = a; C = ta + (1� t)x; D = ta + (1� t)

�
3a+b
2 � x

�
and B =

ta+ (1� t) a+b2 in Lemma 2:

(2.26) f

�
tb+ (1� t)

�
b� a
2

+ x

��
+ f (tb+ (1� t) (a+ b� x))

� f
�
tb+ (1� t) a+ b

2

�
+ f (b) :

holds whenA = tb+(1� t) a+b2 ; C = tb+(1� t)
�
b�a
2 + x

�
; D = tb+(1� t) (a+ b� x)

and B = b in Lemma 2: Multiplying the inequalities (2:25) � (2:26) by g (2x� a)
and integrating them over x on

�
a; 3a+b4

�
and using (2:24), we have

(2.27) N (t) � 1

2

�
f (a) + f (b)

2
+G (t)

� Z b

a

g (x) dx

for all t 2 [0; 1] : Using (2:27), we derive the second inequality of (2:3) :
Again, using Lemma 2, we have

(2.28) f

�
ta+ (1� t) a+ b

2

�
+ f

�
tb+ (1� t) a+ b

2

�
� f (ta+ (1� t)x) + f (tb+ (1� t) (a+ b� x))

for all t 2 [0; 1] and x 2
�
a; a+b2

�
: Multiplying the inequality (2:28) by g (2x� a),

integrating both sides over x on
�
a; a+b2

�
and using (2:23), we derive the �rst in-

equality of (2:3) :
This proves (2:3).
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(3) Integrating by parts, we have

(2.29)
1

b� a

Z a+b
2

a

[(a� x) f 0 (x) + (x� a) f 0 (a+ b� x)] dx

=
1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

�
:

Using substitution rules for integration, we have the following identity

(2.30)
1

b� a

Z b

a

f (x) dx =
1

b� a

Z a+b
2

a

[f (x) + f (a+ b� x)] dx:

Now, using the convexity of f and g (x) � 0 on [a; b], the inequality

[f (ta+ (1� t)x)� f (x)] g (x)
+ [f (tb+ (1� t) (a+ b� x))� f (a+ b� x)] g (x)

� t (a� x) f 0 (x) g (x) + t (x� a) f 0 (a+ b� x) g (x)
= t (x� a) [f 0 (a+ b� x)� f 0 (x)] g (x)
� t (x� a) [f 0 (a+ b� x)� f 0 (x)] inf

x2[a;b]
g (x)

holds for all t 2 [0; 1] and x 2
�
a; a+b2

�
. Integrating the above inequality over x on�

a; a+b2
�
, dividing both sides by (b� a) and using (1:1) ; (2:20) ; (2:29) and (2:30) ;

we derive (2:4) :
On the other hand, we have

f (a)� f
�
a+b
2

�
2

Z b

a

g (x) dx � 1

2

�
a� a+ b

2

�
f 0 (a)

Z b

a

g (x) dx

=
a� b
4
f 0 (a)

Z b

a

g (x) dx

and

f (b)� f
�
a+b
2

�
2

Z b

a

g (x) dx � 1

2

�
b� a+ b

2

�
f 0 (b)

Z b

a

g (x) dx

=
b� a
4
f 0 (b)

Z b

a

g (x) dx

and taking their sum we obtain:

(2.31)
�
f (a) + f (b)

2
� f

�
a+ b

2

��Z b

a

g (x) dx

� (f 0 (b)� f 0 (a)) (b� a)
4

Z b

a

g (x) dx:

Finally, (2:5)� (2:10) follow from (1:6) ; (1:7) ; (1:9) ; (1:10) ; (2:2) and (2:31) :
This completes the proof. �

Let g (x) = 1
b�a (x 2 [a; b]) : Then the following Hermite-Hadamard-type in-

equalities, which are also given in [14], are natural consequences of Theorem 5.

Corollary 6. Let f;G;H;L; P be de�ned as above. Then:
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(1) The inequality

1

b� a

Z b

a

f (x) dx � 2

b� a

Z
[a; 3a+b4 ][[ a+3b4 ;b]

f (x) dx

�
Z 1

0

P (t) dt

� 1

2

"
1

b� a

Z b

a

f (x) dx+
f (a) + f (b)

2

#
holds.

(2) The inequalities

L (t) � P (t) � 1� t
b� a

Z b

a

f (x) dx+ t � f (a) + f (b)
2

� f (a) + f (b)

2

and

0 � P (t)�G (t) � f (a) + f (b)

2
� P (t)

hold for all t 2 [0; 1] :
(3) If f is di¤erentiable on [a; b] ; then we have the inequalities

0 � t
"

1

b� a

Z b

a

f (x) dx� f
�
a+ b

2

�#

� P (t)� 1

b� a

Z b

a

f (x) dx;

0 � P (t)� f
�
a+ b

2

�
� (f 0 (b)� f 0 (a)) (b� a)

4
;

0 � L (t)�H (t) � (f 0 (b)� f 0 (a)) (b� a)
4

;

0 � P (t)� L (t) � (f 0 (b)� f 0 (a)) (b� a)
4

and

0 � P (t)�H (t) � (f 0 (b)� f 0 (a)) (b� a)
4

for all t 2 [0; 1] :

Remark 7. In Theorem 5, the inequality (2:1) gives a new re�nement of the Fejér
inequality (1:2) :

Remark 8. In Theorem 5, the inequality (2:2) re�nes the Fejér-type inequality
(1:9) :

In the next theorem, we point out some inequalities for the functionsG;Q;Hg; Pg; Sg
considered above:

Theorem 9. Let f; g;G;Q;Hg; Pg; Sg be de�ned as above. Then:
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(1) The inequalities

Hg (t) � Q (t)
Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

�
t 2

�
0;
1

3

��
(2.32)

and

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx

� Pg (t)
�
t 2

�
1

3
; 1

��
(2.33)

hold for all t 2 [0; 1] :
(2) The inequality

0 � Sg (t)�G (t)
Z b

a

g (x) dx

� 1

2

�
f (a) + f (b)

2
+Q (t)

� Z b

a

g (x) dx� Sg (t)(2.34)

holds for all t 2 [0; 1] :

Proof. (1) We discuss the following two cases.
Case 1. t 2

�
0; 13

�
:

Using substitution rules for integration and the hypothesis of g, we have the
following identity

(2.35) H (t) =

Z a+b
2

a

�
f

�
tx+ (1� t) a+ b

2

�
+ f

�
t (a+ b� x) + (1� t) a+ b

2

��
g (x) dx:

If we choose A = (1� t) a+ tb; C = tx+(1� t) a+b2 ; D = t (a+ b� x)+(1� t) a+b2
and B = ta+ (1� t) b in Lemma 2, then the inequality

(2.36) f

�
tx+ (1� t) a+ b

2

�
+ f

�
t (a+ b� x) + (1� t) a+ b

2

�
� f ((1� t) a+ tb) + f (ta+ (1� t) b)

holds for all t 2
�
0; 13

�
and x 2

�
a; a+b2

�
. Multiplying the inequality (2:36) by g (x),

integrating both sides over x on
�
a; a+b2

�
and using identity (2:35), we derive the

�rst inequality of (2:32) : From Lemma 4, we have

sup
t2[0; 13 ]

Q (t) =
f (a) + f (b)

2
:

Then the second inequality of (2:32) can be obtained. This proves (2:32) :

Case 2. t 2
�
1
3 ; 1
�
:
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If we choose A = ta + (1� t)x; C = ta + (1� t) b; D = (1� t) a + tb and
B = tb+ (1� t) (a+ b� x) in Lemma 3, then the inequality

(2.37) f (ta+ (1� t) b) + f (tb+ (1� t) a)
� f (ta+ (1� t)x) + f (tb+ (1� t) (a+ b� x))

holds for all t 2
�
1
3 ; 1
�
and x 2

�
a; a+b2

�
. Multiplying the inequality (2:37) by g (x),

integrating both sides over x on
�
a; a+b2

�
and using identity (2:20), we obtain the

second inequality of (2:33) : From Lemma 4, we have

inf
t2[ 13 ;1]

Q (t) = f

�
a+ b

2

�
:

Then the �rst inequality of (2:33) can be obtained. This proves (2:33) :

(2) Using substitution rules for integration and the hypothesis of g, we have the
following identity

2Sg (t) =

Z a+b
2

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] g (2x� a) dx(2.38)

+

Z b

a+b
2

[f (ta+ (1� t)x) + f (tb+ (1� t)x)] g (2x� b) dx

=

Z a+b
2

a

[f (ta+ (1� t)x) + f (tb+ (1� t)x)

+ f (ta+ (1� t) (a+ b� x)) + f (tb+ (1� t) (a+ b� x))]
� g (2x� a) dx

=

Z 3a+b
4

a

�
f (ta+ (1� t)x) + f

�
ta+ (1� t)

�
3a+ b

2
� x

��
+ f

�
ta+ (1� t)

�
b� a
2

+ x

��
+ f (ta+ (1� t) (a+ b� x))

+ f (tb+ (1� t)x) + f
�
tb+ (1� t)

�
3a+ b

2
� x

��
+ f

�
tb+ (1� t)

�
b� a
2

+ x

��
+ f (tb+ (1� t) (a+ b� x))

�
� g (2x� a) dx

for all t 2 [0; 1] :
By Lemma 2, the following inequalities hold for all t 2 [0; 1] and x 2

�
a; 3a+b4

�
.

(2.39) f (ta+ (1� t)x) + f
�
ta+ (1� t)

�
3a+ b

2
� x

��
� f (a) + f

�
ta+ (1� t) a+ b

2

�
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holds when A = a; C = ta + (1� t)x; D = ta + (1� t)
�
3a+b
2 � x

�
and B =

ta+ (1� t) a+b2 in Lemma 2:

(2.40) f

�
ta+ (1� t)

�
b� a
2

+ x

��
+ f (ta+ (1� t) (a+ b� x))

� f
�
ta+ (1� t) a+ b

2

�
+ f (ta+ (1� t) b)

holds whenA = ta+(1� t) a+b2 ; C = ta+(1� t)
�
b�a
2 + x

�
; D = ta+(1� t) (a+ b� x)

and B = ta+ (1� t) b in Lemma 2:

(2.41) f (tb+ (1� t)x) + f
�
tb+ (1� t)

�
3a+ b

2
� x

��
� f (tb+ (1� t) a) + f

�
tb+ (1� t) a+ b

2

�
holds when A = tb+ (1� t) a; C = tb+ (1� t)x; D = tb+ (1� t)

�
3a+b
2 � x

�
and

B = tb+ (1� t) a+b2 in Lemma 2:

(2.42) f

�
tb+ (1� t)

�
b� a
2

+ x

��
+ f (tb+ (1� t) (a+ b� x))

� f
�
tb+ (1� t) a+ b

2

�
+ f (b)

holds whenA = tb+(1� t) a+b2 ; C = tb+(1� t)
�
b�a
2 + x

�
; D = tb+(1� t) (a+ b� x)

and B = b in Lemma 2: Multiplying the inequalities (2:39) � (2:42) by g (2x� a),
integrating them over x on

�
a; 3a+b4

�
and using identity (2:38), we have

(2.43) 2Sg (t) � G (t)
Z b

a

g (x) dx+
1

2

�
f (a) + f (b)

2
+Q (t)

� Z b

a

g (x) dx

for all t 2 [0; 1] : Using (1:10) and (2:43), we derive (2:34) : This completes the
proof. �

Let g (x) = 1
b�a (x 2 [a; b]) : Then the following Hermite-Hadamard-type inequal-

ities, which are given in [14], are natural consequences of Theorem 9.

Corollary 10. Let f;G;H;L; P be de�ned as above. Then:

(1) The inequalities

H (t) � Q (t) � f (a) + f (b)

2

�
t 2

�
0;
1

3

��
and

f

�
a+ b

2

�
� Q (t) � P (t)

�
t 2

�
1

3
; 1

��
hold for all t 2 [0; 1] :

(2) The inequality

0 � L (t)�G (t) � 1

2

�
f (a) + f (b)

2
+Q (t)

�
� L (t)

holds for all t 2 [0; 1] :
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The following Fejér-type inequalities are natural consequences of Theorems A �
B, E �I, 5, 9 and Lemma 4 and we shall omit their proofs.

Theorem 11. Let f; g;G;Hg; Pg; I; Lg; Sg be de�ned as above.

f

�
a+ b

2

�Z b

a

g (x) dx � Hg (t) � G (t)
Z b

a

g (x) dx � Sg (t)

� (1� t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � I (t) � G (t)
Z b

a

g (x) dx

� Lg (t) � Pg (t)

� (1� t)
Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem 12. Let f; g;G;Q;Hg; I be de�ned as above. Then, for all t 2
�
0; 14

�
; we

have

f

�
a+ b

2

�Z b

a

g (x) dx � Hg (t) � Hg (2t) � G (2t)
Z b

a

g (x) dx

� Q (t)
Z b

a

g (x) dx � f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � I (t) � I (2t) � G (2t)
Z b

a

g (x) dx

� Q (t)
Z b

a

g (x) dx � f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem 13. Let f; g;G;Q;Hg; Pg; Lg; Sg be de�ned as above. Then, for all t 2�
1
4 ;

1
3

�
; we have

f

�
a+ b

2

�Z b

a

g (x) dx � Hg (t) � Q (t)
Z b

a

g (x) dx � G (2t)
Z b

a

g (x) dx

� Lg (2t) � Pg (2t)

� (1� 2t)
Z b

a

f (x) g (x) dx+ 2t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx
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and

f

�
a+ b

2

�Z b

a

g (x) dx � Hg (t) � Q (t)
Z b

a

g (x) dx

� G (2t)
Z b

a

g (x) dx � Sg (2t)

� (1� 2t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ 2t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem 14. Let f; g;G;Q; Pg; Lg; Sg be de�ned as above. Then, for all t 2�
1
3 ;

1
2

�
; we have

f

�
a+ b

2

�Z b

a

g (x) d � Q (t)
Z b

a

g (x) dx

� G (2t)
Z b

a

g (x) dx � Lg (2t) � Pg (2t)

� (1� 2t)
Z b

a

f (x) g (x) dx+ 2t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx;

f

�
a+ b

2

�Z b

a

g (x) d � Q (t)
Z b

a

g (x) dx

� G (2t)
Z b

a

g (x) dx � Sg (2t)

� (1� 2t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ 2t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx � Pg (t) � Pg (2t)

� (1� 2t)
Z b

a

f (x) g (x) dx+ 2t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:
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Theorem 15. Let f; g;G;Q; Pg; Lg; Sg be de�ned as above. Then, for all t 2�
1
2 ;

2
3

�
; we have

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx � G (2 (1� t))
Z b

a

g (x) dx

� Lg (2 (1� t)) � Pg (2 (1� t))

� (2t� 1)
Z b

a

f (x) g (x) dx+ 2 (1� t) � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx

� G (2 (1� t))
Z b

a

g (x) dx � Sg (2 (1� t))

� (2t� 1)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ 2 (1� t) � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem 16. Let f; g;G;Q;Hg; Pg; Lg; Sg be de�ned as above. Then, for all t 2�
2
3 ;

3
4

�
; we have

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx

� G (2 (1� t))
Z b

a

g (x) dx

� G (t)
Z b

a

g (x) dx � Lg (t) � Pg (t)

� (1� t)
Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � Q (t)
Z b

a

g (x) dx � G (2 (1� t))
Z b

a

g (x) dx

� G (t)
Z b

a

g (x) dx � Sg (t)
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� (1� t)
Z b

a

1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
g (x) dx

+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Theorem 17. Let f; g;G;Q;Hg; Pg; I; Sg be de�ned as above. Then, for all t 2�
3
4 ; 1
�
; we have

f

�
a+ b

2

�Z b

a

g (x) dx � Hg (2 (1� t)) � G (2 (1� t))
Z b

a

g (x) dx

� Q (t)
Z b

a

g (x) dx � Pg (t)

� 1� t
b� a

Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx

and

f

�
a+ b

2

�Z b

a

g (x) dx � I (2 (1� t)) � G (2 (1� t))
Z b

a

g (x) dx

� Q (t)
Z b

a

g (x) dx � Pg (t)

� 1� t
b� a

Z b

a

f (x) g (x) dx+ t � f (a) + f (b)
2

Z b

a

g (x) dx

� f (a) + f (b)

2

Z b

a

g (x) dx:

Let g (x) = 1
b�a (x 2 [a; b]) : Then the following Hermite-Hadamard-type inequal-

ities are natural consequences of Theorems 11 �17, which are given in [14].

Corollary 18. Let f;Q;G;H; P; L be de�ned as above. Then we have:

(1) For all t 2
�
0; 14

�
one has the inequality

f

�
a+ b

2

�
� H (t) � H (2t) � G (2t) � Q (t) � f (a) + f (b)

2
:

(2) For all t 2
�
1
4 ;

1
3

�
one has the inequality

f

�
a+ b

2

�
� H (t) � Q (t) � G (2t) � L (2t) � P (2t)

� 1� 2t
b� a

Z b

a

f (x) dx+ 2t � f (a) + f (b)
2

� f (a) + f (b)

2
:
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(3) For all t 2
�
1
3 ;

1
2

�
one has the inequalities

f

�
a+ b

2

�
� Q (t) � G (2t) � L (2t) � P (2t)

� 1� 2t
b� a

Z b

a

f (x) dx+ 2t � f (a) + f (b)
2

� f (a) + f (b)

2

and

f

�
a+ b

2

�
� Q (t) � P (t) � P (2t)

� 1� 2t
b� a

Z b

a

f (x) dx+ 2t � f (a) + f (b)
2

� f (a) + f (b)

2
:

(4) For all t 2
�
1
2 ;

2
3

�
one has the inequality

f

�
a+ b

2

�
� Q (t) � G (2 (1� t)) � L (2 (1� t)) � P (2 (1� t))

� 2t� 1
b� a

Z b

a

f (x) dx+ 2 (1� t) � f (a) + f (b)
2

� f (a) + f (b)

2
:

(5) For all t 2
�
2
3 ;

3
4

�
one has the inequality

f

�
a+ b

2

�
� Q (t) � G (2 (1� t)) � G (t) � L (t) � P (t)

� 1� t
b� a

Z b

a

f (x) dx+ t � f (a) + f (b)
2

� f (a) + f (b)

2
:

(6) For all t 2
�
3
4 ; 1
�
one has the inequality

f

�
a+ b

2

�
� H (2 (1� t)) � G (2 (1� t)) � Q (t) � P (t)

� 1� t
b� a

Z b

a

f (x) dx+ t � f (a) + f (b)
2

� f (a) + f (b)

2
:
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