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WEIGHTED f�GINI MEAN DIFFERENCE FOR CONVEX AND
SYMMETRIC FUNCTIONS IN LINEAR SPACES

S.S. DRAGOMIR

Abstract. The concept of weighted f�Gini mean di¤ erence for convex and
symmetric functions in linear spaces is introduced. Some fundamental inequal-
ities and applications for norms are also provided.

1. Introduction

The Gini mean di¤erence of the sample a = (a1; : : : ; an) 2 Rn is de�ned by

G (a) =
1

2n2

nX
j=1

nX
i=1

jai � aj j =
1

n2

X
1�i<j�n

jai � aj j

and

R (a) =
1

�a
G (a)

is the Gini index of a, provided the sample mean �a is not zero [7, p. 257].
The Gini index of a equals the Gini mean di¤erence of the �scaled down�sample

~a =
�
a1
�a ; : : : ;

an
�a

�
(�a 6= 0)

R (a1; : : : ; an) =
1

2n2

nX
i=1

nX
j=1

���ai
�a
� aj
�a

��� :
The following elementary properties of the Gini index for an empirical distribution
of nonnegative data hold [7, p. 257]:

(i) Let (a1; : : : ; an) 2 Rn+ with
Pn

i=1 ai > 0: Then

0 = R (�a; : : : ; �a) � R (a1; : : : ; an) � R
 
0; : : : ; 0;

nX
i=1

ai

!
= 1� 1

n
< 1;

R (�a1; : : : ; �an) = R (a1; : : : ; an) for every � > 0

and

R (a1 + �; : : : ; an + �) =
�a

�a+ �
R (a1; : : : ; an) for � > 0:

(ii) R is a continuous function on Rn+:
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These and other properties have been investigated in [7], [4] and [5].
For a = (a1; : : : ; an) 2 Rn and p = (p1; : : : ; pn) a probability sequence, meaning

that pi � 0 (i 2 f1; : : : ; ng) and
Pn

i=1 pi = 1; we considered in [1] the weighted Gini
mean di¤erence de�ned by formula

(1.1) G (p;a) =
1

2

nX
j=1

nX
i=1

pipj jai � aj j =
X

1�i<j�n
pipj jai � aj j ;

and proved that

(1.2)
1

2
K (p;a) � G (p;a) � inf


2R

"
nX
i=1

pi jai � 
j
#
� K (p;a) ;

where K (p;a) is the mean absolute deviation, namely

(1.3) K (p;a) :=
nX
i=1

pi

������ai �
nX
j=1

pjaj

������ :
We have also shown that if more information on the sampling data a = (a1; : : : ; an)

is available, i.e., there exists the real numbers a and A such that a � ai � A for
each i 2 f1; : : : ; ng ; then

(1.4) G (p;a) � (A� a) max
J�f1;:::;ng

[PJ (1� PJ)]
�
� 1

4
(A� a)

�
;

where PJ :=
P

j2J pj : Also, we have shown that

(1.5) G (p;a) �
nX
i=1

pi

����ai � A+ a2
���� �

� 1

2
(A� a)

�
:

Notice that in general the bounds for the weighted Gini mean di¤erence G (p;a)
provided by (1.4) and (1.5) cannot be compared to conclude that one is always
better than the other [1].
For a = (a1; : : : ; an) 2 Rn and p = (p1; : : : ; pn) a probability sequence, meaning

that pi � 0 (i 2 f1; : : : ; ng) and
Pn

i=1 pi = 1; de�ne the r�weighted Gini mean
di¤erence, for r 2 [1;1); by the formula [1, p. 291]:

(1.6) Gr (p;a) :=
1

2

nX
j=1

nX
i=1

pipj jai � aj jr =
X

1�i<j�n
pipj jai � aj jr :

For r = 1 we have the weighted Gini mean di¤erence G (p;a) of (1.1) which be-
comes, for the uniform probability distribution p =

�
1
n ; : : : ;

1
n

�
the Gini mean

di¤erence

G (a) :=
1

2n2

nX
j=1

nX
i=1

jai � aj j =
1

n2

X
1�i<j�n

jai � aj j :

For the uniform probability distribution p =
�
1
n ; : : : ;

1
n

�
we denote

Gr (a) := Gr (p;a) =
1

2n2

nX
i=1

nX
j=1

jai � aj jr =
1

n2

X
1�i<j�n

jai � aj jr :
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Now, if we de�ne � := f(i; j) ji; j 2 f1; : : : ; ngg ; then we can simply write from
(1.6)

(1.7) Gr (p;a) =
1

2

X
(i;j)2�

pipj jai � aj jr ; r � 1:

The following result concerning upper and lower bounds for Gr (p;a) may be stated
(see [2]):

Theorem 1. For any pi 2 (0; 1) ; i 2 f1; : : : ; ng with
Pn

i=1 pi = 1 and ai 2 R,
i 2 f1; : : : ; ng ; we have the inequalities

(1.8)
1

2
max
(i;j)2�

(
pri p

r
j + pipj (1� pipj)

r�1

(1� pipj)r�1
jai � aj jr

)

� Gr (p;a) �
1

2
max
(i;j)2�

jai � aj jr ;

where r 2 [1;1):

Remark 1. The case r = 2 is of interest, since

G2 (p;a) =
1

2

X
(i;j)2�

pipj jai � aj j2 =
nX
i=1

pia
2
i �

 
nX
i=1

piai

!2
;

for which we can obtain from Theorem 1 the following bounds:

(1.9)
1

2
max
(i;j)2�

�
pipj

1� pipj
(ai � aj)2

�
� G2 (p;a) �

1

2
max
(i;j)2�

(ai � aj)2 :

Remark 2. Since the function

hr (t) :=
tr + t (1� t)r�1

(1� t)r�1
= t+ tr (1� t)1�r

de�ned for t 2 [0; 1) and r > 1 is strictly increasing on [0; 1) from Theorem 1 we
can obtain a coarser but, perhaps, a more useful lower bound for the r�weighted
Gini mean di¤erence, namely (see [2]):

(1.10) Gr (p;a) �
1

2
�
p2rm + p

2
m

�
1� p2m

�r�1
(1� p2m)

r�1 � max
(i;j)2�

jai � aj jr ;

where pm is de�ned above.
For r = 2; we then have:

(1.11) G2 (p;a) �
1

2
� p2m
1� p2m

� max
(i;j)2�

(ai � aj)2 :

For other results related to the above, see the recent paper [2]. For various
inequalities concerning G2 (p;a) ; see the book [3] and the references therein.
In this paper, motivated by the above results, we introduce the more general

concept of weighted f�Gini mean di¤erence for convex and symmetric functions
in linear spaces. Moreover, we provide some fundamental inequalities for the new
quantity and apply them for norms that naturally extend to vectors the results
obtained for real numbers.
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2. Weighted f�Gini Mean Difference

Consider f : X ! R be a convex function on the linear space X: Assume
that f (0) = 0 and f is symmetric, i.e., f (x) = f (�x) for any x 2 X. In these
circumstances we have

f (x) =
f (x) + f (�x)

2
� f

�
x� x
2

�
= f (0) = 0

showing that f is nonnegative on the entire space X:
For x = (x1; :::; xn) 2 Xn and p = (p1; :::; pn) 2 Pn we de�ne the weighted

f�Gini mean di¤erence of the n-tuple x with the probability distribution p the
positive quantity

(2.1) Gf (p;x) :=
1

2

nX
i;j=1

pipjf (xi � xj) =
nX

1�i<j�n
pipjf (xi � xj) � 0:

For the uniform distribution u =
�
1
n ; :::;

1
n

�
2 Pn we have the f�Gini mean

di¤erence de�ned by

Gf (x) :=
1

2n2

nX
i;j=1

f (xi � xj) =
1

n2

nX
1�i<j�n

f (xi � xj) :

A natural example of such f�Gini mean di¤erence can be provided by the convex
function f (x) := kxkr with r � 1 de�ned on a normed linear space (X; k�k) : We
denote this by

Gr (p;x) :=
1

2

nX
i;j=1

pipj kxi � xjkr =
nX

1�i<j�n
pipj kxi � xjkr :

Further on, we need to consider another quantity that is naturally related with
f�Gini mean di¤erence. For a convex function f : X ! R de�ned on the linear
space X with the properties that f (0) = 0 de�ne the mean f-deviation of an
n-tuple of vectors x = (x1; :::; xn) 2 Xn with the probability distribution p =
(p1; :::; pn) 2 Pn by the non-negative quantity

(2.2) Kf (p;x) :=
nX
i=1

pif

 
xi �

nX
k=1

pkxk

!
:

The fact that Kf (p;x) is non-negative follows by Jensen�s inequality, namely

Kf (p;x) � f
 

nX
i=1

pi

 
xi �

nX
k=1

pkxk

!!
= f (0) = 0:

A natural example of such deviations can be provided by the convex function
f (x) := kxkr with r � 1 de�ned on a normed linear space (X; k�k) :We denote this
by

(2.3) Kr (p;x) :=
nX
i=1

pi






xi �
nX
k=1

pkxk







r

and call it the mean r-absolute deviation of the n-tuple of vectors x = (x1; :::; xn) 2
Xn with the probability distribution p = (p1; :::; pn) 2 Pn:
The following connection between the f�Gini mean di¤erence and the mean

f -deviation holds true:
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Theorem 2. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequalities

(2.4) Gf (p;x) �
1

2
Kf (p;x) � Gf

�
p;
1

2
x

�
:

Both inequalities in (2.4) are sharp and the constant 12 best possible.

Proof. By the Jensen inequality we have

Gf (p;x) =
1

2

nX
i=1

pi

0@ nX
j=1

pjf (xi � xj)

1A
� 1

2

nX
i=1

pif

0@ nX
j=1

pj (xi � xj)

1A =
1

2

nX
i=1

pif

0@xi � nX
j=1

pjxj

1A
=
1

2
Kf (p;x)

which proves the �rst part of (2.4).
By the convexity and symmetry of f we also have

f

�
1

2
xi �

1

2
xj

�
= f

 
1

2
xi �

1

2

nX
k=1

pkxk +
1

2

nX
k=1

pkxk �
1

2
xj

!
(2.5)

= f

"
1

2

 
xi �

nX
k=1

pkxk

!
+
1

2

 
nX
k=1

pkxk � xj

!#

� 1

2

"
f

 
xi �

nX
k=1

pkxk

!
+ f

 
xj �

nX
k=1

pkxk

!#

for any i; j 2 f1; : : : ; ng :
Multiplying the inequality (2.5) by pipj and summing over i and j from 1 to n

we get

2Gf

�
p;
1

2
x

�
� 1

2

nX
i;j=1

pipj

"
f

 
xi �

nX
k=1

pkxk

!
+ f

 
xj �

nX
k=1

pkxk

!#
= Kf (p;x)

which proves the last part of (2.4).
Now, if assume that (X; k�k) is a normed space and consider f (x) = kxk ; then

for n = 2 and p1; p2 2 [0; 1] with p1 + p2 = 1 we have

G1 (p;x) = p1p2 kx1 � x2k and K1 (p;x) = 2p1p2 kx1 � x2k

which shows that the equality can be realized in (2.4) for a nonzero quantity when
x1 6= x2 and p1; p2 2 (0; 1) : �

The following particular case for norms is of interest due to its natural general-
ization for the scalar case that is used in applications:
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Corollary 1. Let (X; k�k) be a normed space. Then for any n-tuple of vectors
x = (x1; :::; xn) 2 Xn and any probability distribution p = (p1; :::; pn) 2 Pn we
have

(2.6) Gr (p;x) �
1

2
Kr (p;x) �

1

2r
Gr (p;x)

or, equivalently,

(2.7)
nX

i;j=1

pipj kxi � xjkr �
nX
i=1

pi






xi �
nX
k=1

pkxk







r

� 1

2r�1

nX
i;j=1

pipj kxi � xjkr

for any r � 1:

3. A Lower Bound for Gf (p;x)

As in the introduction, consider � := f(i; j) ji; j 2 f1; : : : ; ngg and denote by �
a nonempty subset of �; namely � = I � J where I and J are nonempty parts of
f1; : : : ; ng : We denote by Gn the set of all nonempty � as above.
We de�ne, for a given probability distribution p = (p1; :::; pn) 2 Pn and � = I�J

the following quantities

P� :=
X

(i;j)2�

pipj =
X
i2I

pi
X
j2J

pj = PIPJ ; and �P� := P�� where �� := � n �:

Since P� =
P

(i;j)2� pipj =
Pn

i;j=1 pipj = 1; then obviously P� 2 [0; 1] and �P� =

1� P� = 1� PIPJ :
We can state the following result:

Theorem 3. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn with all terms nonzero we have the inequality

(3.1) Gf (p;x) �
1

2
max

I�J2Gn
Lf (p;x; I� J) (� 0)

where

(3.2) Lf (p;x; I� J) := PIPJf

0@ 1

PI

X
i2I

pixi �
1

PJ

X
j2J

pjxj

1A
+ (1� PIPJ) f

24 PIPJ
1� PIPJ

0@ 1

PI

X
i2I

pixi �
1

PJ

X
j2J

pjxj

1A35 :
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Proof. On applying Jensen�s inequality for multiple sums we have for � = I � J
that

Gf (p;x) =
1

2

X
(i;j)2�

pipjf (xi � xj)(3.3)

=
1

2

X
(i;j)2�

pipjf (xi � xj) +
1

2

X
(i;j)2��

pipjf (xi � xj)

� 1

2

X
(i;j)2�

pipjf

"P
(i;j)2� pipj (xi � xj)P

(i;j)2� pipj

#

+
1

2

X
(i;j)2��

pipjf

"P
(i;j)2�� pipj (xi � xj)P

(i;j)2�� pipj

#
:

However X
(i;j)2�

pipj = PIPJ ;
X

(i;j)2��

pipj = 1� PIPJ

X
(i;j)2�

pipj (xi � xj) =
X

(i;j)2I�J

pipj (xi � xj)

= PJ
X
i2I

pixi � PI
X
j2J

pjxj

andX
(i;j)2��

pipj (xi � xj) =
X

(i;j)2�n�

pipj (xi � xj)

=
X

(i;j)2�

pipj (xi � xj)�
X

(i;j)2�

pipj (xi � xj)

= �
X

(i;j)2�

pipj (xi � xj) = �

0@PJX
i2I

pixi � PI
X
j2J

pjxj

1A :
Utilising the inequality (3.3) and the symmetry of the function f we get

Gf (p;x) �
1

2
PIPJf

�
PJ
P

i2I pixi � PI
P

j2J pjxj

PIPJ

�
+
1

2
(1� PIPJ) f

�
PJ
P

i2I pixi � PI
P

j2J pjxj

1� PIPJ

�
:

which is equivalent with the desired inequality (3.2). �
A particular case of interest is for I = fig and J = fjg giving the following

Corollary 2. If f : X ! R is a symmetric convex function with f (0) = 0; then
we have the inequality

(3.4) Gf (p;x) �
1

2
max
(i;j)2�

Lf (p;x;i; j) (� 0)

where

(3.5) Lf (p;x;i; j) := pipjf (xi � xj) + (1� pipj) f
�

pipj
1� pipj

(xi � xj)
�
:
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Remark 3. Let (X; k�k) be a normed space. Then for any n-tuple of vectors x =
(x1; :::; xn) 2 Xn and any probability distribution p = (p1; :::; pn) 2 Pn with all
terms nonzero we have from (3.1) that

(3.6) Gr (p;x) �
1

2

h
PIPJ + (1� PIPJ)1�r P rI P rJ

i 





 1PI
X
i2I

pixi �
1

PJ

X
j2J

pjxj








r

for any I � J 2 Gn .
In particular, we have

(3.7) Gr (p;x) �
1

2

h
pipj + (1� pipj)1�r pri prj

i
kxi � xjkr

for any (i; j) 2 �; which extends and improves the scalar case obtained in [2].

4. Another Lower Bound

Before we provide another lower bound for the weighted f�Gini mean di¤erence
we need to introduce some notations.
For the vector e = (1; 2; :::; n) 2 Rn and the probability distribution p =

(p1; :::; pn) 2 Pn we de�ne the weighted arithmetic mean

Aj (p; e) :=

jX
k=1

kpk

and, similarly, for the n-tuple x = (x1; :::; xn) 2 Xn and the probability distribution
p = (p1; :::; pn) 2 Pn we de�ne

Aj (p;x) :=

jX
k=1

pkxk:

Theorem 4. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(4.1) Gf (p;x) � G (p; e) f
�
G (p;x)

G (p; e)

�
(� 0)

where

G (p; e) :=
nX
j=1

pj [jPj �Aj (p; e)] > 0

and

G (p;x) :=
nX
j=1

pj [Pjxj �Aj (p;x)] :

Proof. By the convexity of f and the fact that f (0) = 0 we have that

f (tx) = f [(1� t) � 0 + t � x] � (1� t) f (0) + tf (x) = tf (x)
for any t 2 [0; 1] and x 2 X:
Now, if 1 � i < j � n then t := 1

j�i 2 [0; 1] and writing the above inequality for
this t and for x = xj � xi we get

(4.2) f (xj � xi) � (j � i) f
�
xj � xi
j � i

�
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for any 1 � i < j � n.
Multiplying (4.2) with pipj � 0; summing over i; j with 1 � i < j � n and

applying the Jensen inequality for multiple sums we get successively

Gf (p;x) =
nX

1�i<j�n
pipjf (xi � xj) �

nX
1�i<j�n

pipj (j � i) f
�
xi � xj
j � i

�
(4.3)

�
nX

1�i<j�n
pipj (j � i) f

24 nX
1�i<j�n

pipj (j � i)
�
xi � xj
j � i

�35
=

nX
1�i<j�n

pipj (j � i) f

24 nX
1�i<j�n

pipj (xi � xj)

35 :
However

(0 <)
nX

1�i<j�n
pipj (j � i) =

nX
j=1

pj

jX
i=1

pi (j � i)

=

nX
j=1

pj

 
Pj �

jX
i=1

ipi

!
= G (p; e)

and

nX
1�i<j�n

pipj (xi � xj) =
nX
j=1

pj

jX
i=1

pi (xj � xi)

=
nX
j=1

pj

 
Pjxj �

jX
i=1

ixi

!
= G (p;x)

which together with (4.3) produces the desired result (4.1). �

The case of normed linear spaces is of interest. We have:

Corollary 3. Let (X; k�k) be a normed space. Then for any n-tuple of vectors
x = (x1; :::; xn) 2 Xn and any probability distribution p = (p1; :::; pn) 2 Pn we
have

(4.4) Gr (p;x) � G1�r (p; e) kG (p;x)kr (� 0)

or, equivalently,

(4.5)
1

2

nX
i;j=1

pipj kxi � xjkr

�

0@ nX
j=1

pj [jPj �Aj (p; e)]

1A1�r 






nX
j=1

pj [Pjxj �Aj (p;x)]








r

for any r � 1:
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5. Some Upper Bounds

From the de�nition of the weighted f�Gini mean di¤erence we have

(5.1) Gf (p;x) =
1

2

nX
i;j=1

pipjf (xi � xj)

� max
1�i<j�n

f (xi � xj)
1

2

nX
i;j=1

pipj =
1

2
max

1�i<j�n
f (xi � xj)

and

(5.2) Gf (p;x) =
nX

1�i<j�n
pipjf (xi � xj) � max

1�i<j�n
f (xi � xj)

nX
1�i<j�n

pipj

=
1

2
max

1�i<j�n
f (xi � xj)

 
1�

nX
i=1

p2i

!
=
1

2
max

1�i<j�n
f (xi � xj)

nX
i=1

pi (1� pi)

since, obviously,

nX
1�i<j�n

pipj =
1

2

0@ nX
i;j=1

pipj �
nX
i=1

p2i

1A =
1

2

 
1�

nX
i=1

p2i

!
=
1

2

nX
i=1

pi (1� pi) :

Observe that the second approach provides a better inequality, therefore we can
state the following result:

Proposition 1. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(5.3)
1

2
max

1�i<j�n
f (xi � xj)

nX
i=1

pi (1� pi) � Gf (p;x) :

The following particular case for norms holds true:

Corollary 4. Let (X; k�k) be a normed space. Then for any n-tuple of vectors
x = (x1; :::; xn) 2 Xn and any probability distribution p = (p1; :::; pn) 2 Pn we
have

1

2
max

1�i<j�n
kxi � xjkr

nX
i=1

pi (1� pi) � Gr (p;x)

for any r � 1:

For two vectors x; y 2 X we de�ne the segment [x; y] by f(1� t)x+ ty; t 2 [0; 1]g :
If 0 2 [x; y], then there exists a unique t with t 2 [0; 1] such that (1� t)x+ ty = 0:
The following result may be stated as well:

Theorem 5. Assume that f : X ! R is a symmetric convex function with f (0) =
0: If x and y are two vectors and t 2 [0; 1] with (1� t)x + ty = 0 then for any
n-tuple of vectors x = (x1; :::; xn) 2 Xn with the property that xi � xj 2 [x; y] for
all i; j 2 f1; :::; ng we have the inequality

(5.4)
1

2
[(1� t) f (x) + tf (y)] � Gf (p;x)

for any probability distribution p = (p1; :::; pn) 2 Pn:
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Proof. Since xi � xj 2 [x; y] for i; j 2 f1; :::; ng ; then there exists the numbers
tij 2 [0; 1] such that xi � xj = (1� tij)x+ tijy for i; j 2 f1; :::; ng :
Let p = (p1; :::; pn) 2 Pn: Then by the above equality we get that

pipj (xi � xj) = (1� tij) pipjx+ tijpipjy

for any i; j 2 f1; :::; ng : If we sum over i; j from 1 to n; then we get

(5.5) 0 =
nX

i;j=1

pipj (xi � xj) =
nX

i;j=1

[(1� tij) pipjx+ tijpipjy]

=

0@1� nX
i;j=1

tijpipj

1Ax+
0@ nX
i;j=1

tijpipj

1A y:
Now, due to the fact that (1� t)x + ty = 0 and the representation is unique, we
get that t =

Pn
i;j=1 tijpipj :

On the other hand, due to the convexity of the function f we have that

Gf (p;x) =
1

2

nX
i;j=1

pipjf (xi � xj) �
1

2

nX
i;j=1

pipjf [(1� tij)x+ tijy]

� 1

2

nX
i;j=1

pipj [(1� tij) f (x) + tijf (y)]

=
1

2

240@1� nX
i;j=1

tijpipj

1A f (x) +
0@ nX
i;j=1

tijpipj

1A f (y)
35

=
1

2
[(1� t) f (x) + tf (y)]

and the theorem is proved. �

In applications one may be able to provide the �smallest� symmetric interval
[�z; z] containing all the di¤erences xi � xj : In that situation we can state the
following particular case of interest:

Corollary 5. Assume that f : X ! R is a symmetric convex function with f (0) =
0: If z is a nonzero vector in X then for any n-tuple of vectors x = (x1; :::; xn) 2 Xn

with the property that xi�xj 2 [�z; z] for all i; j 2 f1; :::; ng we have the inequality

(5.6)
1

2
f (z) � Gf (p;x)

for any probability distribution p = (p1; :::; pn) 2 Pn:

Remark 4. If X is a normed linear space and x = (x1; :::; xn) 2 Xn and z satisfy
the condition from Corollary 5, then we have the inequality

(5.7)
1

2
kzkr � Gr (p;x)

for each r � 1:
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For an n-tuple of vectors x = (x1; :::; xn) 2 Xn and a probability distribution
p = (p1; :::; pn) 2 Pn we consider the condition

(5.8) xi �
nX
j=1

pjxj 2 [x; y] for any i 2 f1; :::; ng :

Since the segment [x; y] is a convex set then 0 =
P
pj

�
xi �

Pn
j=1 pjxj

�
2 [x; y] :

Moreover, the fact that xi � xj 2 [x; y] for all i; j 2 f1; :::; ng also imply that the
condition (5.8) holds true.
We can state the following result that provides an upper bound for the mean

f -deviation Kf (p;x) :

Theorem 6. Let f : X ! R be a convex function de�ned on the linear space X with
the properties that f (0) = 0: If, for an n-tuple of vectors x = (x1; :::; xn) 2 Xn and
a probability distribution p = (p1; :::; pn) 2 Pn we have the condition (5.8), then
(5.9) (1� t) f (x) + tf (y) � Kf (p;x) ;

where t is the unique real number for which we have (1� t)x+ ty = 0:

The argument is similar to that in the proof of Theorem 5 and the details are
omitted.
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