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BOUNDS IN TERMS OF GÂTEAUX DERIVATIVES FOR THE
WEIGHTED f�GINI MEAN DIFFERENCE IN LINEAR SPACES

S.S. DRAGOMIR

Abstract. Some bounds in terms of Gâteaux lateral derivatives for the weighted
f�Gini mean di¤ erence generated by convex and symmetric functions in lin-
ear spaces are established. Applications for norms and semi-inner products
are also provided.

1. Introduction

For a = (a1; : : : ; an) 2 Rn and p = (p1; : : : ; pn) a probability sequence, meaning
that pi � 0 (i 2 f1; : : : ; ng) and

Pn
i=1 pi = 1; de�ne the r�weighted Gini mean

di¤erence, for r 2 [1;1); by the formula [1, p. 291]:

(1.1) Gr (p;a) :=
1

2

nX
j=1

nX
i=1

pipj jai � aj jr =
X

1�i<j�n
pipj jai � aj jr :

For the uniform probability distribution p =
�
1
n ; : : : ;

1
n

�
we denote

Gr (a) := Gr (p;a) =
1

2n2

nX
i=1

nX
j=1

jai � aj jr =
1

n2

X
1�i<j�n

jai � aj jr :

For r = 1 we have the weighted Gini mean di¤erence G (p;a) ; where

(1.2) G (p;a) :=
1

2

nX
j=1

nX
i=1

pipj jai � aj j =
X

1�i<j�n
pipj jai � aj j ;

which becomes, for the uniform probability distribution p =
�
1
n ; : : : ;

1
n

�
the Gini

mean di¤erence

G (a) :=
1

2n2

nX
j=1

nX
i=1

jai � aj j =
1

n2

X
1�i<j�n

jai � aj j :

For various properties of this and the Gini index

R (a) =
1

�a
G (a) ; where �a :=

1

n

nX
i=1

ai 6= 0;

see the papers [6], [7], [1] and [9].

Date : March 14, 2009.
1991 Mathematics Subject Classi�cation. 26D15; 94.
Key words and phrases. Convex functions, Jensen�s inequality, Gâteaux lateral derivatives,

Norms, Semi-inner products, Means, Weighted f�Gini mean di¤erence.
1



2 S.S. DRAGOMIR

Now, if we de�ne � := f(i; j) ji; j 2 f1; : : : ; ngg ; then we can simply write from
(1.1) that

(1.3) Gr (p;a) =
1

2

X
(i;j)2�

pipj jai � aj jr ; r � 1:

The following result concerning upper and lower bounds for Gr (p;a) may be stated
(see [2]):

Theorem 1. For any pi 2 (0; 1) ; i 2 f1; : : : ; ng with
Pn

i=1 pi = 1 and ai 2 R,
i 2 f1; : : : ; ng ; we have the inequalities

(1.4)
1

2
max
(i;j)2�

(
pri p

r
j + pipj (1� pipj)

r�1

(1� pipj)r�1
jai � aj jr

)

� Gr (p;a) �
1

2
max
(i;j)2�

jai � aj jr ;

where r 2 [1;1):

Remark 1. The case r = 2 is of interest, since

G2 (p;a) =
1

2

X
(i;j)2�

pipj jai � aj j2 =
nX
i=1

pia
2
i �

 
nX
i=1

piai

!2
;

for which we can obtain from Theorem 1 the following bounds:

(1.5)
1

2
max
(i;j)2�

�
pipj

1� pipj
(ai � aj)2

�
� G2 (p;a) �

1

2
max
(i;j)2�

(ai � aj)2 :

Remark 2. Since the function

hr (t) :=
tr + t (1� t)r�1

(1� t)r�1
= t+ tr (1� t)1�r

de�ned for t 2 [0; 1) and r > 1 is strictly increasing on [0; 1) from Theorem 1 we
can obtain a coarser but, perhaps, a more useful lower bound for the r�weighted
Gini mean di¤erence, namely (see [2]):

(1.6) Gr (p;a) �
1

2
�
p2rm + p

2
m

�
1� p2m

�r�1
(1� p2m)

r�1 � max
(i;j)2�

jai � aj jr ;

where pm is de�ned above.
For r = 2; we then have:

(1.7) G2 (p;a) �
1

2
� p2m
1� p2m

� max
(i;j)2�

(ai � aj)2 :

For other results related to the above, see the recent paper [2]. For various
inequalities concerning G2 (p;a) ; see the book [4] and the references therein.
The main purpose of the present paper is to provide some bounds in terms of

Gâteaux lateral derivatives for the weighted f�Gini mean di¤erence generated by
convex and symmetric functions in linear spaces that has been introduced in the
recent work [5] and brie�y recalled in the next section. Applications for norms and
semi-inner products are also provided.
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2. Some Preliminary Results

2.1. Weighted f�Gini Mean Di¤erence. Consider f : X ! R be a convex
function on the linear space X: Assume that f (0) = 0 and f is symmetric, i.e.,
f (x) = f (�x) for any x 2 X. In these circumstances we have

f (x) =
f (x) + f (�x)

2
� f

�
x� x
2

�
= f (0) = 0

showing that f is nonnegative on the entire space X:
For x = (x1; :::; xn) 2 Xn and p = (p1; :::; pn) 2 Pn we de�ne the weighted

f�Gini mean di¤erence of the n-tuple x with the probability distribution p the
positive quantity

(2.1) Gf (p;x) :=
1

2

nX
i;j=1

pipjf (xi � xj) =
nX

1�i<j�n
pipjf (xi � xj) � 0:

For the uniform distribution u =
�
1
n ; :::;

1
n

�
2 Pn we have the f�Gini mean

di¤erence de�ned by

Gf (x) :=
1

2n2

nX
i;j=1

f (xi � xj) =
1

n2

nX
1�i<j�n

f (xi � xj) :

A natural example of such f�Gini mean di¤erence can be provided by the convex
function f (x) := kxkr with r � 1 de�ned on a normed linear space (X; k�k) : We
denote this by

Gr (p;x) :=
1

2

nX
i;j=1

pipj kxi � xjkr =
nX

1�i<j�n
pipj kxi � xjkr :

Further on, we need to consider another quantity that is naturally related with
f�Gini mean di¤erence. For a convex function f : X ! R de�ned on the linear
space X with the properties that f (0) = 0 de�ne the mean f-deviation of an
n-tuple of vectors x = (x1; :::; xn) 2 Xn with the probability distribution p =
(p1; :::; pn) 2 Pn by the non-negative quantity

(2.2) Kf (p;x) :=
nX
i=1

pif

 
xi �

nX
k=1

pkxk

!
:

The fact that Kf (p;x) is non-negative follows by Jensen�s inequality, namely

Kf (p;x) � f
 

nX
i=1

pi

 
xi �

nX
k=1

pkxk

!!
= f (0) = 0:

A natural example of such deviations can be provided by the convex function
f (x) := kxkr with r � 1 de�ned on a normed linear space (X; k�k) :We denote this
by

(2.3) Kr (p;x) :=
nX
i=1

pi

xi �
nX
k=1

pkxk


r

and call it the mean r-absolute deviation of the n-tuple of vectors x = (x1; :::; xn) 2
Xn with the probability distribution p = (p1; :::; pn) 2 Pn:
The following connection between the f�Gini mean di¤erence and the mean

f -deviation holds true:
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Theorem 2. If f : X ! [0;1) is a symmetric convex function with f (0) = 0;
then for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequalities

(2.4) Gf (p;x) �
1

2
Kf (p;x) � Gf

�
p;
1

2
x

�
:

Both inequalities in (2.4) are sharp and the constant 12 best possible.

The following particular case for norms is of interest due to its natural general-
ization for the scalar case that is used in applications:

Corollary 1. Let (X; k�k) be a normed space. Then for any n-tuple of vectors
x = (x1; :::; xn) 2 Xn and any probability distribution p = (p1; :::; pn) 2 Pn we
have

(2.5) Gr (p;x) �
1

2
Kr (p;x) �

1

2r
Gr (p;x)

or, equivalently,

(2.6)
nX

i;j=1

pipj kxi � xjkr �
nX
i=1

pi

xi �
nX
k=1

pkxk


r

� 1

2r�1

nX
i;j=1

pipj kxi � xjkr

for any r � 1:

Remark 3. By symmetrie reasons we have
nX

i;j=1

pipj kxi � xjkr = 2
nX

1�i<j�n
pipj kxi � xjkr

and since

nX
1�i<j�n

pipj =
1

2

0@ nX
i;j=1

pipj �
nX
i=1

p2i

1A =
1

2

 
1�

nX
i=1

p2i

!
=
1

2

nX
i=1

pi (1� pi)

then we may state from (2.6) the following simpler inequality:

(2.7)
nX
i=1

pi (1� pi) max
1�i<j�n

kxi � xjkr �
nX
i=1

pi

xi �
nX
k=1

pkxk


r

� 1

2r�1

nX
i=1

pi (1� pi) min
1�i<j�n

kxi � xjkr :

2.2. The Gâteaux Derivatives of Convex Functions. Assume that f : X ! R
is a convex function on the real linear space X. Since for any vectors x; y 2 X the
function gx;y : R ! R; gx;y (t) := f (x+ ty) is convex it follows that the following
limits exist

r+(�)f (x) (y) := lim
t!0+(�)

f (x+ ty)� f (x)
t

and they are called the right(left) Gâteaux derivatives of the function f in the point
x over the direction y:
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It is obvious that for any t > 0 > s we have

(2.8)
f (x+ ty)� f (x)

t
� r+f (x) (y) = inf

t>0

�
f (x+ ty)� f (x)

t

�
� sup

s<0

�
f (x+ sy)� f (x)

s

�
= r�f (x) (y) �

f (x+ sy)� f (x)
s

for any x; y 2 X and, in particular,

(2.9) r�f (u) (u� v) � f (u)� f (v) � r+f (v) (u� v)
for any u; v 2 X: We call this the gradient inequality for the convex function f: It
will be used frequently in the sequel in order to obtain various results related to
Jensen�s inequality.
The following properties are also of importance:

(2.10) r+f (x) (�y) = �r�f (x) (y) ;
and

(2.11) r+(�)f (x) (�y) = �r+(�)f (x) (y)
for any x; y 2 X and � � 0:
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(2.12) r+f (x) (y + z) � r+f (x) (y) +r+f (x) (z)
and

(2.13) r�f (x) (y + z) � r�f (x) (y) +r�f (x) (z)
for any x; y; z 2 X.
Some natural examples can be provided by the use of normed spaces.
Assume that (X; k�k) is a real normed linear space. The function f : X ! R,

f (x) := 1
2 kxk

2 is a convex function which generates the superior and the inferior
semi-inner products

hy; xis(i) := lim
t!0+(�)

kx+ tyk2 � kxk2

t
:

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [3].
For the convex function fp : X ! R, fp (x) := kxkp with p > 1; we have

r+(�)fp (x) (y) =

8<: p kxkp�2 hy; xis(i) if x 6= 0;

0 if x = 0;

for any y 2 X:
If p = 1; then we have

r+(�)f1 (x) (y) =

8<: kxk�1 hy; xis(i) if x 6= 0;

+(�) kyk if x = 0;

for any y 2 X:
This class of functions will be used to illustrate the inequalities obtained in the

general case of convex functions de�ned on an entire linear space.
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The following result for the general case of convex functions holds (see [5]):

Theorem 3. Let f : X ! R be a convex function. Then for any x; y 2 X and
t 2 [0; 1] we have

(2.14) t (1� t) [r�f (y) (y � x)�r+f (x) (y � x)]
� tf (x) + (1� t) f (y)� f (tx+ (1� t) y)

� t (1� t) [r+f (tx+ (1� t) y) (y � x)�r�f (tx+ (1� t) y) (y � x)] � 0:

The following particular case for norms may be stated:

Corollary 2. If x and y are two vectors in the normed linear space (X; k�k) such
that 0 =2 [x; y] := f(1� s)x+ sy; s 2 [0; 1]g ; then for any p � 1 we have the in-
equalities

(2.15) pt (1� t)
h
kykp�2 hy � x; yii � kxk

p�2 hy � x; xis
i

� t kxkp + (1� t) kykp � ktx+ (1� t) ykp

� pt (1� t) ktx+ (1� t) ykp�2 [hy � x; tx+ (1� t) yis � hy � x; tx+ (1� t) yii] � 0

for any t 2 [0; 1] : If p � 2 the inequality holds for any x and y:

Remark 4. If the normed space (X; k�k) is smooth and the norm generated by the
semi-inner product [�; �] : X �X ! R, then the inequality (2.15) can be written as

(2.16) pt (1� t)
nh
y � x; kykp�2 y

i
�
h
y � x; kxkp�2 x

io
� t kxkp + (1� t) kykp � ktx+ (1� t) ykp

for any t 2 [0; 1] :
Moreover, if (X; h�; �i) is an inner product space, then (2.16) becomes

(2.17) pt (1� t)
D
y � x; kykp�2 y � kxkp�2 x

E
� t kxkp + (1� t) kykp � ktx+ (1� t) ykp

for any t 2 [0; 1] :

3. Bounds in Terms of Gâteaux Derivatives

The following result in which we provide some upper and lower bounds for the
nonnegative quantity

Gf (p;x)�
1

2
Kf (p;x)

considered in Theorem 2 may be stated:

Theorem 4. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
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p = (p1; :::; pn) 2 Pn we have the inequalities

1

2

nX
j=1

nX
i=1

pipjr�f (xi � xj)
 

nX
k=1

pkxk � xj

!
(3.1)

� Gf (p;x)�
1

2
Kf (p;x)

� 1

2

nX
j=1

nX
i=1

pipjr+f
 

nX
k=1

pkxk � xi

! 
xj �

nX
k=1

pkxk

!
� 0:

Proof. Utilising the gradient inequality (2.9) we have

r�f (xi � xj)
 

nX
k=1

pkxk � xj

!
(3.2)

� f (xi � xj)� f
 
xi �

nX
k=1

pkxk

!

� r+f
 
xi �

nX
k=1

pkxk

! 
nX
k=1

pkxk � xj

!

for any i; j 2 f1; :::; ng :
By the symmetrie of the function f and the subadditivity of the Gâteaux deriv-

ative r+f (�) (�) in the second variable we also have

r+f
 
xi �

nX
k=1

pkxk

! 
nX
k=1

pkxk � xj

!
(3.3)

= r+f
 

nX
k=1

pkxk � xi

! 
xj �

nX
k=1

pkxk

!

� r+f
 

nX
k=1

pkxk � xi

!
(xj)�r+f

 
nX
k=1

pkxk � xi

! 
nX
k=1

pkxk

!

for any i; j 2 f1; :::; ng :
Utilising (3.2) and (3.3) we may state that

r�f (xi � xj)
 

nX
k=1

pkxk � xj

!
(3.4)

� f (xi � xj)� f
 
xi �

nX
k=1

pkxk

!

� r+f
 

nX
k=1

pkxk � xi

! 
xj �

nX
k=1

pkxk

!

� r+f
 

nX
k=1

pkxk � xi

!
(xj)�r+f

 
nX
k=1

pkxk � xi

! 
nX
k=1

pkxk

!

for any i; j 2 f1; :::; ng :
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Now, if we multiply the inequality with pj � 0 and sum over j from 1 to n we
get

nX
j=1

pjr�f (xi � xj)
 

nX
k=1

pkxk � xj

!
(3.5)

�
nX
j=1

pjf (xi � xj)� f
 
xi �

nX
k=1

pkxk

!

�
nX
j=1

pjr+f
 

nX
k=1

pkxk � xi

! 
xj �

nX
k=1

pkxk

!

�
nX
j=1

pjr+f
 

nX
k=1

pkxk � xi

!
(xj)�r+f

 
nX
k=1

pkxk � xi

! 
nX
k=1

pkxk

!
� 0

where the last inequality follows by the subadditivity of the function

r+f
 

nX
k=1

pkxk � xi

!
(�) with i 2 f1; :::; ng :

Finally, if we multiply the inequality (3.5) with pi � 0 and sum over i from 1 to
n we get the desired result (3.1). �
The following particular case for norm holds:

Corollary 3. Let (X; k�k) be a normed space. Then for an n-tuple of vectors
x = (x1; :::; xn) 2 Xn and the probability distribution p = (p1; :::; pn) 2 Pn we have
the inequalities:

r
nX
j=1

nX
l=1

plpj kxl � xjkr�2
*

nX
k=1

pkxk � xj ; xl � xj

+
i

(3.6)

�
nX

l;j=1

plpj kxl � xjkr �
nX
l=1

pl

xl �
nX
k=1

pkxk


r

� r
nX
j=1

nX
l=1

plpj


nX
k=1

pkxk � xl


r�2*

xj �
nX
k=1

pkxk;
nX
k=1

pkxk � xl

+
s

� 0:

If r � 2 then we have no restiction for x and p: If r 2 [1; 2) then we need to assume
that xl � xj 6= 0 and

Pn
k=1 pkxk � xl 6= 0 for all l; j 2 f1; :::; ng :

Remark 5. The case r = 2 produces the following simpler inequality

2
nX
j=1

nX
l=1

plpj

*
nX
k=1

pkxk � xj ; xl � xj

+
i

(3.7)

�
nX

l;j=1

plpj kxl � xjk2 �
nX
l=1

pl

xl �
nX
k=1

pkxk


2

� 2
nX
j=1

nX
l=1

plpj

*
xj �

nX
k=1

pkxk;
nX
k=1

pkxk � xl

+
s

� 0:
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that holds for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability
distribution p = (p1; :::; pn) 2 Pn:

Remark 6. If the normed space (X; k�k) is smooth and the norm generated by the
semi-inner product [�; �] : X �X ! R, then the inequality (3.7) can be written as

(3.8) 2
nX
j=1

nX
l=1

plpj

"
nX
k=1

pkxk � xj ; xl � xj

#

�
nX

l;j=1

plpj kxl � xjk2 �
nX
l=1

pl

xl �
nX
k=1

pkxk


2

� 0:

Further on we provide upper and lower bounds for the nonnegative quantity
considered in the second part of Theorem 2, namely:

1

2
Kf (p;x)�Gf

�
p;
1

2
x

�
:

Theorem 5. If f : X ! R is a symmetric convex function with f (0) = 0; then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequalities

1

2

nX
j=1

nX
i=1

pipjr�f
 

nX
k=1

pkxk � xj

! 
nX
k=1

pkxk �
xi + xj
2

!
(3.9)

� 1

2
Kf (p;x)�Gf

�
p;
1

2
x

�

� 1

4

24 nX
j=1

nX
i=1

pipjr+f
�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!

�
nX
j=1

nX
i=1

pipjr�f
�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!35 � 0:
Proof. Consider the inequality (2.14) for t = 1

2 to get

(3.10)
1

4
[r�f (y) (y � x)�r+f (x) (y � x)] �

f (x) + f (y)

2
� f

�
x+ y

2

�
� 1

4

�
r+f

�
x+ y

2

�
(y � x)�r�f

�
x+ y

2

�
(y � x)

�
� 0

for any x; y 2 X:
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Now, if in (3.10) we choose x = xi �
Pn

k=1 pkxk and y =
Pn

k=1 pkxk � xj with
i; j 2 f1; :::; ng and take into account the symmetrie of the function f , then we have

1

2

"
r�f

 
nX
k=1

pkxk � xj

! 
nX
k=1

pkxk �
xi + xj
2

!
(3.11)

�r+f
 
xi �

nX
k=1

pkxk

! 
nX
k=1

pkxk �
xi + xj
2

!#

� 1

2

"
f

 
xi �

nX
k=1

pkxk

!
+ f

 
xj �

nX
k=1

pkxk

!#
� f

�
1

2
(xi � xj)

�

� 1

2

"
r+f

�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!

�r�f
�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!#
� 0

for any i; j 2 f1; :::; ng :
Further on, if we multiply (3.11) with pipj � 0 and sum over i and j from 1 to

n we deduce

1

4

24 nX
j=1

nX
i=1

pipjr�f
 

nX
k=1

pkxk � xj

! 
nX
k=1

pkxk �
xi + xj
2

!
(3.12)

�
nX
j=1

nX
i=1

pipjr+f
 
xi �

nX
k=1

pkxk

! 
nX
k=1

pkxk �
xi + xj
2

!35
� 1

2
Kf (p;x)�Gf

�
p;
1

2
x

�

� 1

4

24 nX
j=1

nX
i=1

pipjr+f
�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!

�
nX
j=1

nX
i=1

pipjr�f
�
xi � xj
2

� nX
k=1

pkxk �
xi + xj
2

!35 � 0:
By the symmetrie of the function and the symmetrie of summation we have

nX
j=1

nX
i=1

pipjr+f
 
xi �

nX
k=1

pkxk

! 
nX
k=1

pkxk �
xi + xj
2

!
(3.13)

=
nX
j=1

nX
i=1

pipjr+f
 
xj �

nX
k=1

pkxk

! 
nX
k=1

pkxk �
xi + xj
2

!

=
nX
j=1

nX
i=1

pipjr+f
 

nX
k=1

pkxk � xj

! 
xi + xj
2

�
nX
k=1

pkxk

!

= �
nX
j=1

nX
i=1

pipjr�f
 

nX
k=1

pkxk � xj

! 
nX
k=1

pkxk �
xi + xj
2

!
:
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Finally, on utilising the relations (3.12) and (3.13) we deuce the desired result
(3.9). �

The following particular case for norms can be stated:

Corollary 4. Let (X; k�k) be a normed space. Then for an n-tuple of vectors
x = (x1; :::; xn) 2 Xn and the probability distribution p = (p1; :::; pn) 2 Pn we have
the inequalities:

r
nX
j=1

nX
l=1

plpj


nX
k=1

pkxk � xj


r�2* nX

k=1

pkxk �
xl + xj
2

;
nX
k=1

pkxk � xj

+
i

(3.14)

�
nX
i=1

pi

xi �
nX
k=1

pkxk


r

� 1

2r�1

nX
i;j=1

pipj kxi � xjkr

� 1

2r
r

nX
j=1

nX
l=1

plpj kxl � xjkr�2
"*

nX
k=1

pkxk �
xl + xj
2

; xl � xj

+
s

�
*

nX
k=1

pkxk �
xl + xj
2

; xl � xj

+
i

#
� 0:

If r � 2 then we have no restiction for x and p: If r 2 [1; 2) then we need to
assume that xl � xj 6= 0 and

Pn
k=1 pkxk � xj 6= 0 for all l; j 2 f1; :::; ng :

Remark 7. The case r = 2 is of interest since produces a much simpler inequality

2
nX
j=1

nX
l=1

plpj

*
nX
k=1

pkxk �
xl + xj
2

;
nX
k=1

pkxk � xj

+
i

(3.15)

�
nX
i=1

pi

xi �
nX
k=1

pkxk


2

� 1
2

nX
i;j=1

pipj kxi � xjk2

� 1

2

nX
j=1

nX
l=1

plpj

"*
nX
k=1

pkxk �
xl + xj
2

; xl � xj

+
s

�
*

nX
k=1

pkxk �
xl + xj
2

; xl � xj

+
i

#
� 0

that holds for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability
distribution p = (p1; :::; pn) 2 Pn:

Remark 8. f the normed space (X; k�k) is smooth and the norm generated by the
semi-inner product [�; �] : X �X ! R, then the inequality (3.15) can be written as

(3.16) 2
nX
j=1

nX
l=1

plpj

"
nX
k=1

pkxk �
xl + xj
2

;
nX
k=1

pkxk � xj

#

�
nX
i=1

pi

xi �
nX
k=1

pkxk


2

� 1
2

nX
i;j=1

pipj kxi � xjk2 � 0:
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4. Other Bounds

In [5] we also established the following upper bound for the weighted f�Gini
mean di¤erence:

Theorem 6. Assume that f : X ! R is a symmetric convex function with f (0) =
0: If x and y are two vectors and t 2 [0; 1] with (1� t)x + ty = 0 then for any
n-tuple of vectors x = (x1; :::; xn) 2 Xn with the property that xi � xj 2 [x; y] for
all i; j 2 f1; :::; ng we have the inequality

(4.1)
1

2
[(1� t) f (x) + tf (y)] � Gf (p;x) ;

for any probability distribution p = (p1; :::; pn) 2 Pn:

It is thus natural to ask for an uper bound for the positive quantity

1

2
[(1� t) f (x) + tf (y)]�Gf (p;x) :

The following result holds:

Theorem 7. Assume that f : X ! R is a symmetric convex function with f (0) =
0: If x and y are two vectors and t 2 [0; 1] with (1� t)x + ty = 0 then for any
n-tuple of vectors x = (x1; :::; xn) 2 Xn with the property that xi � xj 2 [x; y] for
all i; j 2 f1; :::; ng we have the inequality

(4.2) 0 � 1

2
[(1� t) f (x) + tf (y)]�Gf (p;x)

� 1

8
[r�f (y) (y � x)�r+f (x) (y � x)] ;

for any probability distribution p = (p1; :::; pn) 2 Pn:

Proof. Since xi � xj 2 [x; y] for i; j 2 f1; :::; ng ; then there exists the numbers
tij 2 [0; 1] such that xi � xj = (1� tij)x+ tijy for i; j 2 f1; :::; ng :
Let p = (p1; :::; pn) 2 Pn: Then by the above equality we get that

pipj (xi � xj) = (1� tij) pipjx+ tijpipjy

for any i; j 2 f1; :::; ng : If we sum over i; j from 1 to n; then we get

(4.3) 0 =
nX

i;j=1

pipj (xi � xj) =
nX

i;j=1

[(1� tij) pipjx+ tijpipjy]

=

0@1� nX
i;j=1

tijpipj

1Ax+
0@ nX
i;j=1

tijpipj

1A y:
Now, due to the fact that (1� t)x + ty = 0 and the representation is unique, we
get that t =

Pn
i;j=1 tijpipj :

On the other hand we have (see

(4.4) tij (1� tij) [r�f (y) (y � x)�r+f (x) (y � x)]
� tijf (x) + (1� tij) f (y)� f [tijx+ (1� tij) y]

= tijf (x) + (1� tij) f (y)� f (xi � xj) :
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Now, if we multiply (4.4) by pipj � 0, sum over i and j from 1 to n and divide
by 2; then we get

(4.5)
1

2
[r�f (y) (y � x)�r+f (x) (y � x)]

nX
i;j=1

pipjtij (1� tij)

� 1

2
[(1� t) f (x) + tf (y)]�Gf (p;x) ;

which is an interesting inequality in itself provided that one knows the parameters
tij for any i; j 2 f1; :::; ng :
In the case that these are not known, since tij (1� tij) � 1

4 for any i; j 2
f1; :::; ng ; then

nX
i;j=1

pipjtij (1� tij) �
1

4
;

which together with (4.5) provides the desired result (4.2). �

The following particular case for norms is of interest:

Corollary 5. Let (X; k�k) be a normed space. If x and y are two nonzero vectors
and t 2 [0; 1] with (1� t)x+ty = 0 then for any n-tuple of vectors x = (x1; :::; xn) 2
Xn with the property that xi � xj 2 [x; y] for all i; j 2 f1; :::; ng we have the
inequality

(4.6) 0 � 1

2
[(1� t) kxkr + t kykr]�Gr (p;x)

� 1

8
r
h
hy � x; yii kyk

r�2 � hy � x; xis kxk
r�2
i
;

for any probability distribution p = (p1; :::; pn) 2 Pn and r � 1:

Remark 9. We observe that if (X; h�; �i) is an inner product space, then the in-
equality (4.7) has a simpler form, namely

(4.7) 0 � 1

2
[(1� t) kxkr + t kykr]�Gr (p;x)

� 1

8
r
D
y � x; kykr�2 y � kxkr�2 x

E
;

for any probability distribution p = (p1; :::; pn) 2 Pn and r � 1:
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