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SUPERADDITIVITY AND MONOTONICITY OF SOME
FUNCTIONALS ASSOCIATED WITH THE

HERMITE-HADAMARD INEQUALITY FOR CONVEX
FUNCTIONS IN LINEAR SPACES

S.S. DRAGOMIR

Abstract. The superadditivity and monotonicity properties of some func-
tionals associated with convex functions and the Hermite-Hadamard inequal-
ity in the general setting of linear spaces are investigated. Applications for
norms and convex functions of a real variable are given. Some inequalities for
arithmetic, geometric, harmonic, logarithmic and identric means are improved.

1. Introduction

For any convex function we can consider the well-known inequality due to Her-
mite and Hadamard. It was �rst discovered by Ch. Hermite in 1881 in the journal
Mathesis (see [7]). Hermite mentioned that the following inequality holds for any
convex function f de�ned on R

(1.1) (b� a)f
�
a+ b

2

�
<

Z b

a

f(x)dx < (b� a)f(a) + f(b)
2

; a; b 2 R:

But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite�s result [8]. E.F. Beckenbach, a leading expert on the
history and the theory of convex functions, wrote that this inequality was proven
by J. Hadamard in 1893 [1]. In 1974, D.S. Mitrinovíc found Hermite�s note in
Mathesis [7]. Since (1.1) was known as Hadamard�s inequality, the inequality is
now commonly referred as the Hermite-Hadamard inequality [8].
Let X be a vector space, x; y 2 X; x 6= y. De�ne the segment [x; y] := f(1 �

t)x + ty; t 2 [0; 1]g: We consider the function f : [x; y] ! R and the associated
function g(x; y) : [0; 1]! R; g(x; y)(t) := f [(1� t)x+ ty]; t 2 [0; 1]: Note that f is
convex on [x; y] if and only if g(x; y) is convex on [0; 1].
For any convex function de�ned on a segment [x:y] � X, we have the Hermite-

Hadamard integral inequality (see [2, p. 2], [3, p. 2])

(1.2) f

�
x+ y

2

�
�
Z 1

0

f [(1� t)x+ ty]dt � f(x) + f(y)

2
;

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x; y) : [0; 1]! R.
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2 S.S. DRAGOMIR

Since f(x) = kxkp (x 2 X and 1 � p < 1) is a convex function, we have the
following norm inequality from (1.2) (see [6, p. 106])

(1.3)





x+ y2




p � Z 1

0

k(1� t)x+ tykpdt � kxkp + kykp
2

;

for any x; y 2 X. Particularly, if p = 2, then

(1.4)





x+ y2




2 � Z 1

0

k(1� t)x+ tyk2dt � kxk2 + kyk2
2

;

holds for any x; y 2 X. We also get the following re�nement of the triangle inequal-
ity when p = 1

(1.5)





x+ y2




 � Z 1

0

k(1� t)x+ tykdt � kxk+ kyk
2

:

2. Some Functional Properties

Consider a convex function f : C � X ! R de�ned on the convex subset C in
the real linear space X and two distinct vectors x; y 2 C . We denote by [x; y] the
closed segment de�ned by f(1� t)x+ ty, t 2 [0; 1]g : We also de�ne the functional
(2.1) 	f (x; y; t) := (1� t) f (x) + tf (y)� f ((1� t)x+ ty) � 0
where x; y 2 C and t 2 [0; 1] :

Theorem 1. Let f : C � X ! R be a convex function on the convex set C. Then
for each x; y 2 C and z 2 [x; y] we have
(2.2) (0 �)	f (x; z; t) + 	f (z; y; t) � 	f (x; y; t)
for each t 2 [0; 1] ; i.e., the functional 	f (�; �; t) is superadditive as a function of
interval.
If [z; u] � [x; y] ; then

(2.3) (0 �)	f (z; u; t) � 	f (x; y; t)
for each t 2 [0; 1] ; i.e., the functional 	f (�; �; t) is nondecreasing as a function of
interval.

Proof. Let z = (1� s)x+ sy with s 2 (0; 1) : For t 2 (0; 1) we have
	f (z; y; t) = (1� t) f ((1� s)x+ sy) + tf (y)� f ((1� t) [(1� s)x+ sy] + ty)

and

	f (x; z; t) = (1� t) f (x) + tf ((1� s)x+ sy)� f ((1� t)x+ t [(1� s)x+ sy])
giving that

(2.4) 	f (x; z; t) + 	f (z; y; t)�	f (x; y; t)
= f ((1� s)x+ sy) + f ((1� t)x+ ty)

� f ((1� t) (1� s)x+ [(1� t) s+ t] y)� f ((1� ts)x+ tsy) :
Now, for a convex function ' : I � R! R, where I is an interval, and any real

numbers t1; t2; s1 and s2 from I and with the properties that t1 � s1 and t2 � s2
we have that

(2.5)
' (t1)� ' (t2)

t1 � t2
� ' (s1)� ' (s2)

s1 � s2
:
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Indeed, since ' is convex on I then for any a 2 I the function  : In fag ! R

 (t) :=
' (t)� ' (a)

t� a
is monotonic nondecreasing where is de�ned. Utilising this property repeatedly we
have

' (t1)� ' (t2)
t1 � t2

� ' (s1)� ' (t2)
s1 � t2

=
' (t2)� ' (s1)

t2 � s1

� ' (s2)� ' (s1)
s2 � s1

=
' (s1)� ' (s2)

s1 � s2
which proves the inequality (2.5).
Consider the function ' : [0; 1]! R given by ' (t) := f ((1� t)x+ ty) : Since f

is convex on C it follows that ' is convex on [0; 1] : Now, if we consider for given
t; s 2 (0; 1)

t1 := ts < s =: s1 and t2 := t < t+ (1� t) s =: s2;
then we have

' (t1) = f ((1� ts)x+ tsy) ; ' (t2) = f ((1� t)x+ ty)
giving that

' (t1)� ' (t2)
t1 � t2

=
f ((1� ts)x+ tsy)� f ((1� t)x+ ty)

t (s� 1) :

Also

' (s1) = f ((1� s)x+ sy) ; ' (s2) = f ((1� t) (1� s)x+ [(1� t) s+ t] y)
giving that

' (s1)� ' (s2)
s1 � s2

=
f ((1� s)x+ sy)� f ((1� t) (1� s)x+ [(1� t) s+ t] y)

t (s� 1) :

Utilising the inequality (2.5) and multiplying with t (s� 1) < 0 we deduce the
inequality

(2.6) f ((1� ts)x+ tsy)� f ((1� t)x+ ty)
� f ((1� s)x+ sy)� f ((1� t) (1� s)x+ [(1� t) s+ t] y) :

Finally, by (2.4) and (2.6) we get the desired result (2.2).
Applying repeatedly the superadditivity property we have for [z; u] � [x; y] that

	f (x; z; t) + 	f (z; u; t) + 	f (u; y; t) � 	f (x; y; t)
giving that

0 � 	f (x; z; t) + 	f (u; y; t) � 	f (x; y; t)�	f (z; u; t)
which proves (2.3). �

For t = 1
2 we consider the functional

	f (x; y) := 	f

�
x; y;

1

2

�
=
f (x) + f (y)

2
� f

�
x+ y

2

�
;



4 S.S. DRAGOMIR

which obviously inherits the superadditivity and monotonicity properties of the
functional 	f (�; �; t) : We are able then to state the following
Corollary 1. Let f : C � X ! R be a convex function on the convex set C and
x; y 2 C: Then we have the bounds

(2.7) inf
z2[x;y]

�
f

�
x+ z

2

�
+ f

�
z + y

2

�
� f (z)

�
= f

�
x+ y

2

�
and

(2.8) sup
z;u2[x;y]

�
f (z) + f (u)

2
� f

�
z + u

2

��
=
f (x) + f (y)

2
� f

�
x+ y

2

�
:

Proof. By the superadditivity of the functional 	f (�; �) we have for each z 2 [x; y]
that

f (x) + f (y)

2
� f

�
x+ y

2

�
� f (x) + f (z)

2
� f

�
x+ z

2

�
+
f (z) + f (y)

2
� f

�
z + y

2

�
which is equivalent with

(2.9) f

�
x+ z

2

�
+ f

�
z + y

2

�
� f (z) � f

�
x+ y

2

�
:

Since the equality case in (2.9) is realized for either z = x or z = y we get the
desired bound (2.7).
The bound (2.8) is obvious by the monotonicity of the functional 	f (�; �) as a

function of interval. �
Consider now the following functional

�f (x; y; t) := f (x) + f (y)� f ((1� t)x+ ty)� f ((1� t) y + tx) ;
where, as above, f : C � X ! R is a convex function on the convex set C and
x; y 2 C while t 2 [0; 1] :
We notice that

�f (x; y; t) = �f (y; x; t) = �f (x; y; 1� t)
and

�f (x; y; t) = 	f (x; y; t) + 	f (x; y; 1� t) � 0
for any x; y 2 C and t 2 [0; 1] :
Therefore, we can state the following result as well

Corollary 2. Let f : C � X ! R be a convex function on the convex set C and
t 2 [0; 1] : The functional �f (�; �; t) is superadditive and monotonic nondecreasing
as a function of interval.

In particular, if z 2 [x; y] then we have the inequality

(2.10)
1

2
[f ((1� t)x+ ty) + f ((1� t) y + tx)]

� 1

2
[f ((1� t)x+ tz) + f ((1� t) z + tx)]

+
1

2
[f ((1� t) z + ty) + f ((1� t) y + tz)]� f (z)
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Also, if z; u 2 [x; y] then we have the inequality

(2.11) f (x) + f (y)� f ((1� t)x+ ty)� f ((1� t) y + tx)
� f (z) + f (u)� f ((1� t) z + tu)� f ((1� t) z + tu)

for any t 2 [0; 1] :
Perhaps the most interesting functional we can consider from the above is the

following one:

(2.12) �f (x; y) :=
f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt � 0;

which is related to the second Hermite-Hadamard inequality.
We observe that

(2.13) �f (x; y) =

Z 1

0

	f (x; y; t) dt =

Z 1

0

	f (x; y; 1� t) dt:

Utilising this representation, we can state the following result as well:

Corollary 3. Let f : C � X ! R be a convex function on the convex set C and
t 2 [0; 1] : The functional �f (�; �) is superadditive and monotonic nondecreasing as
a function of interval. Moreover, we have the bounds

(2.14) inf
z2[x;y]

�Z 1

0

[f ((1� t)x+ tz) + f ((1� t) z + ty)] dt� f (z)
�

=

Z 1

0

f ((1� t)x+ ty) dt

and

(2.15) sup
z;u2[x;y]

�
f (z) + f (u)

2
�
Z 1

0

f ((1� t) z + tu) dt
�

=
f (x) + f (y)

2
�
Z 1

0

f ((1� t)x+ ty) dt:

For other functionals associated with the Hermite-Hadamard see the paper [4].

3. Applications for Norms

Let (X; k�k) be a normed space and x; y two distinct vectors in X. Then for any
p � 1 the function f : X ! [0;1); f (x) = kxkp is convex and utilising the results
from the above section we can state the following norm inequalities:

(3.1) inf
z2[x;y]

�



x+ z2




p + 



z + y2





p � kzkp� = 



x+ y2




p ;

and

(3.2) sup
z;u2[x;y]

�
kzkp + kukp

2
�




z + u2





p� = kxkp + kykp

2
�




x+ y2





p ;
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Moreove, we can state the following results as well

(3.3)
1

2
[k(1� t)x+ tykp + k(1� t) y + txkp]

� 1

2
[k(1� t)x+ tzkp + k(1� t) z + txkp]

+
1

2
[k(1� t) z + tykp + k(1� t) y + tzkp]� kzkp

for any z 2 [x; y] and t 2 [0; 1] ; and

(3.4) kxkp + kykp � k(1� t)x+ tykp � k(1� t) y + txkp

� kzkp + kukp � k(1� t) z + tukp � k(1� t) z + tukp

for any z; u 2 [x; y] and t 2 [0; 1] :
In [5] Kikianty & Dragomir have introduced the concept of p-HH-norm as k�kp�HH :

X �X ! [0;1) with

k(x; y)kp�HH :=
�Z 1

0

k(1� t)x+ tykp dt
�1=p

; p � 1

and studied its various properties.
From the integral inequalities established in the above section we can deduce

the following results for the p-HH-norm of two distinct vectors x; y in the normed
linear space (X; k�k):

(3.5) inf
z2[x;y]

h
k(x; z)kpp�HH + k(z; y)k

p
p�HH � k(z; z)k

p
p�HH

i
= k(x; y)kpp�HH

and

(3.6) sup
z;u2[x;y]

"
k(z; z)kpp�HH + k(u; u)k

p
p�HH

2
� k(z; u)kpp�HH

#

=
k(x; x)kpp�HH + k(y; y)k

p
p�HH

2
� k(x; y)kpp�HH :

4. Applications for Convex Functions of a Real Variable

Let f : I ! R be a convex function on the interval I � R and x; y 2 I with
x < y: Due to the obvious fact thatZ 1

0

f ((1� t)x+ ty) = 1

y � x

Z y

x

f (s) ds

the functional

�f (x; y) :=
f (x) + f (y)

2
� 1

y � x

Z y

x

f (s) ds

is superadditive and monotonic nondecreasing as a function of interval. We have
also the inequalities

(4.1) inf
z2[x;y]

�
1

z � x

Z z

x

f (s) ds+
1

y � z

Z y

z

f (s) ds� f (z)
�
=

1

y � x

Z y

x

f (s) ds
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and

(4.2) sup
z;u2[x;y]

�
f (z) + f (u)

2
� 1

z � u

Z z

u

f (s) ds

�
=
f (x) + f (y)

2
� 1

y � x

Z y

x

f (s) ds:

The above inequalities may be used to obtain some interesting results for means.
For 0 < x � y < 1 and t 2 (0; 1) consider the weighted arithmetic, geometric

and harmonic means de�ned by

At (x; y) := (1� t)x+ ty; Gt (x; y) := x1�tyt and Ht (x; y) :=
1

1�t
x + t

y

:

For t = 1
2 we simply write A (x; y) ; G (x; y) and H (x; y) :

It is well know that the following inequality holds

At (x; y) � Gt (x; y) � Ht (x; y) :

1. Consider the convex function f : (0;1) ! (0;1), f (s) = s�1: Then for
0 < x � y <1 and t 2 (0; 1) we have

(4.3) 	(�)�1 (x; y; t) = (1� t)x�1 + ty�1 � [(1� t)x+ ty]
�1

= H�1
t (x; y)�A�1t (x; y) =

At (x; y)�Ht (x; y)

At (x; y)Ht (x; y)
:

On making use of Theorem 1 we have for 0 < x � z � y <1 and t 2 (0; 1) that

(4.4) (0 �) At (x; z)�Ht (x; z)

At (x; z)Ht (x; z)
+
At (z; y)�Ht (z; y)

At (z; y)Ht (z; y)
� At (x; y)�Ht (x; y)

At (x; y)Ht (x; y)

and, in particular,

(4.5) (0 �) A (x; z)�H (x; z)
A (x; z)H (x; z)

+
A (z; y)�H (z; y)
A (z; y)H (z; y)

� A (x; y)�H (x; y)
A (x; y)H (x; y)

and for 0 < x � z � u � y <1 and t 2 (0; 1) that

(4.6) (0 �) At (z; u)�Ht (z; u)

At (z; u)Ht (z; u)
� At (x; y)�Ht (x; y)

At (x; y)Ht (x; y)

and, in particular,

(4.7) (0 �) A (z; u)�H (z; u)
A (z; u)H (z; u)

� A (x; y)�H (x; y)
A (x; y)H (x; y)

:

Now, if we consider the logarithmic mean of two positive numbers x; y de�ned
as

L (x; y) :=

8<:
y�x

ln y�ln x if x 6= y

x if x = y

then

(4.8) �(�)�1 (x; y) :=
x�1 + y�1

2
� 1

y � x

Z y

x

s�1ds

= H�1 (x; y)� L�1 (x; y) = L (x; y)�H (x; y)
L (x; y)H (x; y)

:
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On making use of the Corollary 3 we have for 0 < x � z � y <1 that

(4.9) (0 �) L (x; z)�H (x; z)
L (x; z)H (x; z)

+
L (z; y)�H (z; y)
L (z; y)H (z; y)

� L (x; y)�H (x; y)
L (x; y)H (x; y)

and for 0 < x � z � u � y <1 that

(4.10) (0 �) L (z; u)�H (z; u)
L (z; u)H (z; u)

� L (x; y)�H (x; y)
L (x; y)H (x; y)

:

2. Consider the convex function f : (0;1) ! (0;1), f (s) = � ln s: Then for
0 < x � y <1 and t 2 (0; 1) we have

	� ln (x; y; t) = ln [(1� t)x+ ty]� (1� t) lnx� t ln y = ln
�
At (x; y)

Gt (x; y)

�
:

On making use of Theorem 1 we have for 0 < x � z � y <1 and t 2 (0; 1) that

(4.11) (1 �) At (x; z)
Gt (x; z)

� At (z; y)
Gt (z; y)

� At (x; y)

Gt (x; y)

and, in particular,

(4.12) (1 �) A (x; z)
G (x; z)

� A (z; y)
G (z; y)

� A (x; y)

G (x; y)

and for 0 < x � z � u � y <1 and t 2 (0; 1) that

(4.13) (1 �) At (z; u)
Gt (z; u)

� At (x; y)

Gt (x; y)

and, in particular,

(4.14) (1 �) At (z; u)
Gt (z; u)

� At (x; y)

Gt (x; y)
:

Now, if we consider the identric mean of two positive numbers x; y de�ned as

I (x; y) :=

8><>:
1
e �
�
yy

xx

� 1
y�x

if x 6= y

x if x = y

then

�� ln (x; y) :=
1

y � x

Z y

x

ln s ds� lnx+ ln y
2

= ln

�
I (x; y)

G (x; y)

�
:

On making use of the Corollary 3 we have for 0 < x � z � y <1 that

(4.15) (1 �) I (x; z)
G (x; z)

� I (z; y)
G (z; y)

� I (x; y)

G (x; y)

and for 0 < x � z � u � y <1 that

(4.16) (1 �) I (z; u)
G (z; u)

� I (x; y)

G (x; y)
:
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