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INEQUALITIES IN TERMS OF THE GÂTEAUX DERIVATIVES
FOR CONVEX FUNCTIONS IN LINEAR SPACES WITH

APPLICATIONS

S.S. DRAGOMIR

Abstract. Some inequalities in terms of the Gâteaux derivatives relatead
to Jensen�s inequality for convex functions de�ned on linear spaces are given.
Applications for norms, mean f -deviations and f -divergence measures are pro-
vided as well.

1. Introduction

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Hölder and Minkowski inequalities, Ky Fan�s inequality
etc. can be obtained as particular cases of it.
Let C be a convex subset of the linear space X and f a convex function on C: If

p = (p1; : : : ; pn) is a probability sequence and x = (x1; : : : ; xn) 2 Cn; then

(1.1) f

 
nX
i=1

pixi

!
�

nX
i=1

pif (xi) ;

is well known in the literature as Jensen�s inequality.
Recently the author obtained the following re�nement of Jensen�s inequality (see

[9])

f

0@ nX
j=1

pjxj

1A � min
k2f1;:::;ng

"
(1� pk) f

 Pn
j=1 pjxj � pkxk

1� pk

!
+ pkf (xk)

#
(1.2)

� 1

n

"
nX
k=1

(1� pk) f
 Pn

j=1 pjxj � pkxk
1� pk

!
+

nX
k=1

pkf (xk)

#

� max
k2f1;:::;ng

"
(1� pk) f

 Pn
j=1 pjxj � pkxk

1� pk

!
+ pkf (xk)

#

�
nX
j=1

pjf (xj) ;

where f; xk and pk are as above.
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The above result provides a di¤erent approach to the one that J. Peµcaríc and
the author obtained in 1989, namely (see [14]):

f

 
nX
i=1

pixi

!
�

nX
i1;:::;ik+1=1

pi1 : : : pik+1f

�
xi1 + � � �+ xik+1

k + 1

�
(1.3)

�
nX

i1;:::;ik=1

pi1 : : : pikf

�
xi1 + � � �+ xik

k

�

� � � � �
nX
i=1

pif (xi) ;

for k � 1 and p,x as above.
If q1; : : : ; qk � 0 with

Pk
j=1 qj = 1; then the following re�nement obtained in

1994 by the author [6] also holds:

f

 
nX
i=1

pixi

!
�

nX
i1;:::;ik=1

pi1 : : : pikf

�
xi1 + � � �+ xik

k

�
(1.4)

�
nX

i1;:::;ik=1

pi1 : : : pikf (q1xi1 + � � �+ qkxik)

�
nX
i=1

pif (xi) ;

where 1 � k � n and p, x are as above.
For other re�nements and applications related to Ky Fan�s inequality, the arith-

metic mean-geometric mean inequality, the generalised triangle inequality, the f -
divergence measures etc. see [3]-[9].
In this paper, motivated by the above results, some new inequalities in terms

of the Gâteaux derivatives related to Jensen�s inequality for convex functions de-
�ned on linear spaces are given. Applications for norms, mean f -deviations and
f -divergence measures are provided as well.

2. The Gâteau Derivatives of Convex Functions

Assume that f : X ! R is a convex function on the real linear space X. Since
for any vectors x; y 2 X the function gx;y : R ! R; gx;y (t) := f (x+ ty) is convex
it follows that the following limits exist

r+(�)f (x) (y) := lim
t!0+(�)

f (x+ ty)� f (x)
t

and they are called the right(left) Gâteaux derivatives of the function f in the point
x over the direction y:
It is obvious that for any t > 0 > s we have

(2.1)
f (x+ ty)� f (x)

t
� r+f (x) (y) = inf

t>0

�
f (x+ ty)� f (x)

t

�
� sup

s<0

�
f (x+ sy)� f (x)

s

�
= r�f (x) (y) �

f (x+ sy)� f (x)
s
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for any x; y 2 X and, in particular,

(2.2) r�f (u) (u� v) � f (u)� f (v) � r+f (v) (u� v)

for any u; v 2 X: We call this the gradient inequality for the convex function f: It
will be used frequently in the sequel in order to obtain various results related to
Jensen�s inequality.
The following properties are also of importance:

(2.3) r+f (x) (�y) = �r�f (x) (y) ;

and

(2.4) r+(�)f (x) (�y) = �r+(�)f (x) (y)

for any x; y 2 X and � � 0:
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(2.5) r+f (x) (y + z) � r+f (x) (y) +r+f (x) (z)

and

(2.6) r�f (x) (y + z) � r�f (x) (y) +r�f (x) (z)

for any x; y; z 2 X .
Some natural examples can be provided by the use of normed spaces.
Assume that (X; k�k) is a real normed linear space. The function f : X ! R,

f (x) := 1
2 kxk

2 is a convex function which generates the superior and the inferior
semi-inner products

hy; xis(i) := lim
t!0+(�)

kx+ tyk2 � kxk2

t
:

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [8].
For the convex function fp : X ! R, fp (x) := kxkp with p > 1; we have

r+(�)fp (x) (y) =

8<: p kxkp�2 hy; xis(i) if x 6= 0

0 if x = 0

for any y 2 X:
If p = 1; then we have

r+(�)f1 (x) (y) =

8<: kxk�1 hy; xis(i) if x 6= 0

+ (�) kyk if x = 0

for any y 2 X:
This class of functions will be used to illustrate the inequalities obtained in the

general case of convex functions de�ned on an entire linear space.
The following result holds:
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Theorem 1. Let f : X ! R be a convex function. Then for any x; y 2 X and
t 2 [0; 1] we have

(2.7) t (1� t) [r�f (y) (y � x)�r+f (x) (y � x)]
� tf (x) + (1� t) f (y)� f (tx+ (1� t) y)

� t (1� t) [r+f (tx+ (1� t) y) (y � x)�r�f (tx+ (1� t) y) (y � x)] � 0:

Proof. Utilising the gradient inequality (2.2) we have

(2.8) f (tx+ (1� t) y)� f (x) � (1� t)r+f (x) (y � x)

and

(2.9) f (tx+ (1� t) y)� f (y) � �tr�f (y) (y � x) :

If we multiply (2.8) with t and (2.9) with 1 � t and add the resultant inequalities
we obtain

f (tx+ (1� t) y)� tf (x)� (1� t) f (y)
� (1� t) tr+f (x) (y � x)� t (1� t)r�f (y) (y � x)

which is clearly equivalent with the �rst part of (2.7).
By the gradient inequality we also have

(1� t)r�f (tx+ (1� t) y) (y � x) � f (tx+ (1� t) y)� f (x)

and

�tr+f (tx+ (1� t) y) (y � x) � f (tx+ (1� t) y)� f (y)

which by the same procedure as above yields the second part of (2.7). �

The following particular case for norms may be stated:

Corollary 1. If x and y are two vectors in the normed linear space (X; k�k) such
that 0 =2 [x; y] := f(1� s)x+ sy; s 2 [0; 1]g ; then for any p � 1 we have the in-
equalities

(2.10) pt (1� t)
h
kykp�2 hy � x; yii � kxk

p�2 hy � x; xis
i

� t kxkp + (1� t) kykp � ktx+ (1� t) ykp

� pt (1� t) ktx+ (1� t) ykp�2 [hy � x; tx+ (1� t) yis � hy � x; tx+ (1� t) yii] � 0

for any t 2 [0; 1] : If p � 2 the inequality holds for any x and y:

Remark 1. We observe that for p = 1 in (2.10) we derive the result

(2.11) t (1� t)
��
y � x; ykyk

�
i

�
�
y � x; xkxk

�
s

�
� t kxk+ (1� t) kyk � ktx+ (1� t) yk

� t (1� t)
��
y � x; tx+ (1� t) yktx+ (1� t) yk

�
s

�
�
y � x; tx+ (1� t) yktx+ (1� t) yk

�
i

�
� 0
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while for p = 2 we have

(2.12) 2t (1� t) [hy � x; yii � hy � x; xis]
� t kxk2 + (1� t) kyk2 � ktx+ (1� t) yk2

� 2t (1� t) [hy � x; tx+ (1� t) yis � hy � x; tx+ (1� t) yii] � 0:

We notice that the inequality (2.12) holds for any x; y 2 X while in the inequality
(2.11) we must assume that x; y and tx+ (1� t) y are not zero.

Remark 2. If the normed space is smooth, i.e., the norm is Gâteaux di¤erentiable
in any nonzero point, then the superior and inferior semi-inner products coincide
with the Lumer-Giles semi-inner product [�; �] that generates the norm and is linear
in the �rst variable (see for instance [8]). In this situation the inequality (2.10)
becomes

(2.13) pt (1� t)
�
kykp�2 [y � x; y]� kxkp�2 [y � x; x]

�
� t kxkp + (1� t) kykp � ktx+ (1� t) ykp � 0

and holds for any nonzero x and y:
Moreover, if (X; h�; �i) is an inner product space, then (2.13) becomes

(2.14) pt (1� t)
D
y � x; kykp�2 y � kxkp�2 x

E
� t kxkp + (1� t) kykp � ktx+ (1� t) ykp � 0:

From (2.14) we deduce the particular inequalities of interest

(2.15) t (1� t)
�
y � x; ykyk �

x

kxk

�
� t kxk+ (1� t) kyk � ktx+ (1� t) yk � 0

and

(2.16) 2t (1� t) ky � xk2 � t kxk2 + (1� t) kyk2 � ktx+ (1� t) yk2 � 0:

Obviously, the inequality (2.16) can be proved directly on utilising the properties of
the inner products.

Problem 1. It is an open question for the author whether the inequality (2.16)
characterizes or not the class of inner product spaces within the class of normed
spaces.

3. A Refinement of Jensen�s Inequality

For a convex function f : X ! R de�ned on a linear space X; perhaps one of
the most important result is the well known Jensen�s inequality

(3.1) f

 
nX
i=1

pixi

!
�

nX
i=1

pif (xi) ;

which holds for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability
distribution p = (p1; :::; pn) 2 Pn:
The following re�nement of Jensen�s inequality holds:
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Theorem 2. Let f : X ! R be a convex function de�ned on a linear space X: Then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(3.2)
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!

�
nX
k=1

pkr+f
 

nX
i=1

pixi

!
(xk)�r+f

 
nX
i=1

pixi

! 
nX
i=1

pixi

!
� 0:

In particular, for the uniform distribution, we have

(3.3)
1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!

� 1

n

"
nX
k=1

r+f
 
1

n

nX
i=1

xi

!
(xk)�r+f

 
1

n

nX
i=1

xi

! 
nX
i=1

xi

!#
� 0:

Proof. Utilising the gradient inequality (2.2) we have

(3.4) f (xk)� f
 

nX
i=1

pixi

!
� r+f

 
nX
i=1

pixi

! 
xk �

nX
i=1

pixi

!
for any k 2 f1; :::; ng :
By the subadditivity of the functional r+f (�) (�) in the second variable we also

have

(3.5) r+f
 

nX
i=1

pixi

! 
xk �

nX
i=1

pixi

!

� r+f
 

nX
i=1

pixi

!
(xk)�r+f

 
nX
i=1

pixi

! 
nX
i=1

pixi

!
for any k 2 f1; :::; ng :
Utilising the inequalities (3.4) and (3.5) we get

(3.6) f (xk)� f
 

nX
i=1

pixi

!

� r+f
 

nX
i=1

pixi

!
(xk)�r+f

 
nX
i=1

pixi

! 
nX
i=1

pixi

!
for any k 2 f1; :::; ng :
Now, if we multiply (3.6) with pk � 0 and sum over k from 1 to n, then we deduce

the �rst inequality in (3.2). The second inequality is obvious by the subadditivity
property of the functional r+f (�) (�) in the second variable. �

The following particular case that provides a re�nement for the generalised tri-
angle inequality in normed linear spaces is of interest
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Corollary 2. Let (X; k�k) be a normed linear space. Then for any p � 1; for
any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution p =
(p1; :::; pn) 2 Pn with

Pn
i=1 pixi 6= 0 we have the inequality

(3.7)
nX
i=1

pi kxikp �

nX
i=1

pixi


p

� p

nX
i=1

pixi


p�2

24 nX
k=1

pk

*
xk;

nX
j=1

pjxj

+
s

�

nX
i=1

pixi


2
35 � 0:

If p � 2 the inequality holds for any n-tuple of vectors and probability distribution.
In particular, we have the norm inequalities

(3.8)
nX
i=1

pi kxik �

nX
i=1

pixi


�
"

nX
k=1

pk

�
xk;

Pn
i=1 pixi

k
Pn

i=1 pixik

�
s

�

nX
i=1

pixi


#
� 0:

and

(3.9)
nX
i=1

pi kxik2 �

nX
i=1

pixi


2

� 2

24 nX
k=1

pk

*
xk;

nX
i=1

pixi

+
s

�

nX
i=1

pixi


2
35 � 0:

We notice that the �rst inequality in (3.9) is equivalent with

nX
i=1

pi kxik2 +

nX
i=1

pixi


2

� 2
nX
k=1

pk

*
xk;

nX
i=1

pixi

+
s

which provides the result

(3.10)
1

2

24 nX
i=1

pi kxik2 +

nX
i=1

pixi


2
35 � nX

k=1

pk

*
xk;

nX
i=1

pixi

+
s0@� 

nX
i=1

pixi


2
1A

for any n-tuple of vectors and probability distribution.

Remark 3. If in the inequality (3.7) we consider the uniform distribution, then
we get

(3.11)
nX
i=1

kxikp � n1�p

nX
i=1

xi


p

� pn1�p

nX
i=1

xi


p�2

24 nX
k=1

*
xk;

nX
i=1

xi

+
s

�

nX
i=1

xi


2
35 � 0:
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4. A Reverse of Jensen�s Inequality

The following result is of interest as well:

Theorem 3. Let f : X ! R be a convex function de�ned on a linear space X: Then
for any n-tuple of vectors x = (x1; :::; xn) 2 Xn and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(4.1)
nX
k=1

pkr�f (xk) (xk)�
nX
k=1

pkr�f (xk)
 

nX
i=1

pixi

!

�
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
:

In particular, for the uniform distribution, we have

(4.2)
1

n

"
nX
k=1

r�f (xk) (xk)�
nX
k=1

r�f (xk)
 
1

n

nX
i=1

xi

!#

� 1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!
:

Proof. Utilising the gradient inequality (2.2) we can state that

(4.3) r�f (xk)
 
xk �

nX
i=1

pixi

!
� f (xk)� f

 
nX
i=1

pixi

!
for any k 2 f1; :::; ng :
By the superadditivity of the functional r�f (�) (�) in the second variable we

also have

(4.4) r�f (xk) (xk)�r�f (xk)
 

nX
i=1

pixi

!
� r�f (xk)

 
xk �

nX
i=1

pixi

!
for any k 2 f1; :::; ng :
Therefore, by (4.3) and (4.4) we get

(4.5) r�f (xk) (xk)�r�f (xk)
 

nX
i=1

pixi

!
� f (xk)� f

 
nX
i=1

pixi

!
for any k 2 f1; :::; ng :
Finally, by multiplying (4.5) with pk � 0 and summing over k from 1 to n we

deduce the desired inequality (4.1). �

Remark 4. If the function f is de�ned on the Euclidian space Rn and is di¤eren-
tiable and convex, then from (4.1) we get the inequality

(4.6)
nX
k=1

pk hrf (xk) ; xki �
*

nX
k=1

pkrf (xk) ;
nX
i=1

pixi

+

�
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!
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where, as usual, for xk =
�
x1k; :::; x

n
k

�
;rf (xk) =

�
@f(xk)
@x1 ; :::; @f(xk)@xn

�
: This inequal-

ity was obtained �rstly by Dragomir & Goh in 1996, see [12].
For one dimension we get the inequality

(4.7)
nX
k=1

pkxkf
0 (xk)�

nX
i=1

pixi

nX
k=1

pkf
0 (xk)

�
nX
i=1

pif (xi)� f
 

nX
i=1

pixi

!

that was discovered in 1994 by Dragomir and Ionescu, see [11].

The following reverse of the generalised triangle inequality holds:

Corollary 3. Let (X; k�k) be a normed linear space. Then for any p � 1; for any
n-tuple of vectors x = (x1; :::; xn) 2 Xnnf(0; :::; 0)g and any probability distribution
p = (p1; :::; pn) 2 Pn we have the inequality

(4.8) p

"
nX
k=1

pk kxkkp �
nX
k=1

pk kxkkp�2
*

nX
i=1

pixi; xk

+
i

#

�
nX
i=1

pi kxikp �

nX
i=1

pixi


p

:

In particular, we have the norm inequalities

(4.9)
nX
k=1

pk kxkk �
nX
k=1

pk

*
nX
i=1

pixi;
xk
kxkk

+
i

�
nX
i=1

pi kxik �

nX
i=1

pixi


for xk 6= 0; k 2 f1; :::; ng and

(4.10) 2

24 nX
k=1

pk kxkk2 �
nX
k=1

pk

*
nX
j=1

pjxj ; xk

+
i

35
�

nX
i=1

pi kxik2 �

nX
i=1

pixi


2

;

for any xk:
We observe that the inequality (4.10) is equivalent with

nX
i=1

pi kxik2 +

nX
i=1

pixi


2

� 2
nX
k=1

pk

*
nX
j=1

pjxj ; xk

+
i



10 S.S. DRAGOMIR

which provides the interesting result

(4.11)
1

2

24 nX
i=1

pi kxik2 +

nX
i=1

pixi


2
35 � nX

k=1

pk

*
nX
j=1

pjxj ; xk

+
i0@� nX

k=1

nX
j=1

pjpk hxj ; xkii

1A
holding for any n-tuple of vectors and probability distribution.

Remark 5. If in the inequality (4.8) we consider the uniform distribution, then
we get

(4.12) p

24 nX
k=1

kxkkp �
1

n

nX
k=1

kxkkp�2
*

nX
j=1

xj ; xk

+
i

35
�

nX
i=1

kxikp � n1�p

nX
i=1

xi


p

:

For p 2 [1; 2) all vectors xk should not be zero.

5. Bounds for the Mean f-Deviation

Let X be a real linear space. For a convex function f : X ! R with the
property that f (0) � 0 we de�ne the mean f-deviation of an n-tuple of vectors
y= (y1; :::; yn) 2 Xn with the probability distribution p = (p1; :::; pn) 2 Pn by the
non-negative quantity

(5.1) Kf(�) (p;y) = Kf (p;y) :=
nX
i=1

pif

 
yi �

nX
k=1

pkyk

!
:

The fact that Kf (p;y) is non-negative follows by Jensen�s inequality, namely

Kf (p;y) � f
 

nX
i=1

pi

 
yi �

nX
k=1

pkyk

!!
= f (0) � 0:

Of course the concept can be extended for any function de�ned on X; however
if the function is not convex or if it is convex but f (0) < 0; then we are not sure
about the positivity of the quantity Kf (p;y) :
A natural example of such deviations can be provided by the convex function

f (y) := kykr with r � 1 de�ned on a normed linear space (X; k�k) :We denote this
by

(5.2) Kr (p;y) :=
nX
i=1

pi

yi �
nX
k=1

pkyk


r

and call it the mean r-absolute deviation of the n-tuple of vectors y= (y1; :::; yn) 2
Xn with the probability distribution p = (p1; :::; pn) :
Utilising the result from [9] we can state then the following result providing a

non-trivial lower bound for the mean f -deviation:
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Theorem 4. Let f : X ! [0;1) be a convex function with f (0) = 0: If y=
(y1; :::; yn) 2 Xn and p = (p1; :::; pn) is a probability distribution with all pi nonzero,
then

(5.3) Kf (p;y)

� max
k2f1;:::;ng

(
(1� pk) f

"
pk

1� pk

 
yk �

nX
l=1

plyl

!#
+ pkf

 
yk �

nX
l=1

plyl

!)
(� 0) :

The case for mean r-absolute deviation is incorporated in

Corollary 4. Let (X; k�k) be a normed linear space. If y= (y1; :::; yn) 2 Xn and
p = (p1; :::; pn) is a probability distribution with all pi nonzero, then for r � 1 we
have

(5.4) Kr (p;y) � max
k2f1;:::;ng

(h
(1� pk)1�r prk + pk

i yk �
nX
l=1

plyl


r)
:

Remark 6. Since the function hr (t) := (1� t)1�r tr+ t; r � 1; t 2 [0; 1) is strictly
increasing on [0; 1) ; then

min
k2f1;:::;ng

n
(1� pk)1�r prk + pk

o
= pm + (1� pm)1�r prm;

where pm := min
k2f1;:::;ng

pk: By (5.4), we then obtain the following simpler inequality:

(5.5) Kr (p;y) �
h
pm + (1� pm)1�r � prm

i
max

k2f1;:::;ng

yk �
nX
l=1

plyl


p

;

which is perhaps more useful for applications.

We have the following double inequality for the mean f -mean deviation:

Theorem 5. Let f : X ! [0;1) be a convex function with f (0) = 0: If y=
(y1; :::; yn) 2 Xn and p = (p1; :::; pn) is a probability distribution with all pi nonzero,
then

(5.6) Kr�f(�)(�) (p;y) � Kf(�) (p;y) � Kr+f(0)(�) (p;y) � 0:

Proof. If we use the inequality (3.2) for xi = yi �
Pn

k=1 pkyk we get

nX
i=1

pif

 
yi �

nX
k=1

pkyk

!
� f

 
nX
i=1

pi

 
yi �

nX
k=1

pkyk

!!

�
nX
j=1

pjr+f
 

nX
i=1

pi

 
yi �

nX
k=1

pkyk

!! 
yj �

nX
k=1

pkyk

!

�r+f
 

nX
i=1

pi

 
yi �

nX
k=1

pkyk

!! 
nX
i=1

pi

 
yi �

nX
k=1

pkyk

!!
� 0

which is equivalent with the second part of (5.6).
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Now, by utilising the inequality (4.1) for the same choice of xi we get

nX
j=1

pjr�f
 
yj �

nX
k=1

pkyk

! 
yj �

nX
k=1

pkyk

!

�
nX
k=1

pjr�f
 
yj �

nX
k=1

pkyk

! 
nX
i=1

pi

 
yi �

nX
k=1

pkyk

!!

�
nX
i=1

pif

 
yi �

nX
k=1

pkyk

!
� f

 
nX
i=1

pi

 
yi �

nX
k=1

pkyk

!!
;

which in its turn is equivalent with the �rst inequality in (5.6). �

We observe that as examples of convex functions de�ned on the entire normed
linear space (X; k�k) that are convex and vanishes in 0 we can consider the functions

f (x) := g (kxk) ; x 2 X
where g : [0;1) ! [0;1) is a monotonic nondecreasing convex function with
g (0) = 0:
For this kind of functions we have by direct computation that

r+f (0) (u) = g0+ (0) kuk for any u 2 X
and

r�f (u) (u) = g0� (kuk) kuk for any u 2 X:
We then have the following norm inequalities that are of interest:

Corollary 5. Let (X; k�k) be a normed linear space. If g : [0;1) ! [0;1)
is a monotonic nondecreasing convex function with g (0) = 0; then for any y=
(y1; :::; yn) 2 Xn and p = (p1; :::; pn) a probability distribution, we have

(5.7)
nX
i=1

pig
0
�

 yi �
nX
k=1

pkyk


!yi �

nX
k=1

pkyk


�

nX
i=1

pig

 yi �
nX
k=1

pkyk


!
� g0+ (0)

nX
i=1

pi

yi �
nX
k=1

pkyk

 :
6. Bounds for f-Divergence Measures

Given a convex function f : [0;1)! R, the f -divergence functional

(6.1) If (p;q) :=
nX
i=1

qif

�
pi
qi

�
;

where p = (p1; : : : ; pn) ; q = (q1; : : : ; qn) are positive sequences, was introduced by
Csiszár in [1], as a generalized measure of information, a �distance function�on the
set of probability distributions Pn: As in [1], we interpret unde�ned expressions by

f (0) = lim
t!0+

f (t) ; 0f

�
0

0

�
= 0;

0f
�a
0

�
= lim

q!0+
qf

�
a

q

�
= a lim

t!1

f (t)

t
; a > 0:

The following results were essentially given by Csiszár and Körner [2]:
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(i) If f is convex, then If (p;q) is jointly convex in p and q;
(ii) For every p;q 2 Rn+; we have

(6.2) If (p;q) �
nX
j=1

qjf

 Pn
j=1 pjPn
j=1 qj

!
:

If f is strictly convex, equality holds in (6.2) i¤

p1
q1
=
p2
q2
= � � � = pn

qn
:

If f is normalized, i.e., f (1) = 0; then for every p;q 2 Rn+ with
Pn

i=1 pi =Pn
i=1 qi; we have the inequality

(6.3) If (p;q) � 0:

In particular, if p;q 2 Pn; then (6.3) holds. This is the well-known positivity
property of the f -divergence.
We endeavour to extend this concept for functions de�ned on a cone in a linear

space as follows (see also [10]).
Firstly, we recall that the subset K in a linear space X is a cone if the following

two conditions are satis�ed:
(i) for any x; y 2 K we have x+ y 2 K;
(ii) for any x 2 K and any � � 0 we have �x 2 K.
For a given n-tuple of vectors z = (z1; :::; zn) 2 Kn and a probability distribution

q 2 Pn with all values nonzero, we can de�ne, for the convex function f : K ! R,
the following f-divergence of z with the distribution q

(6.4) If (z;q) :=

nX
i=1

qif

�
zi
qi

�
:

It is obvious that if X = R, K = [0;1) and x = p 2Pn then we obtain the usual
concept of the f -divergence associated with a function f : [0;1)! R.
Now, for a given n-tuple of vectors x = (x1; :::; xn) 2 Kn, a probability distrib-

ution q 2 Pn with all values nonzero and for any nonempty subset J of f1; :::; ng
we have

qJ :=
�
QJ ; �QJ

�
2 P2

and

xJ :=
�
XJ ; �XJ

�
2 K2

where, as above

XJ :=
X
i2J

xi; and �XJ := X �J :

It is obvious that

If (xJ ;qJ) = QJf

�
XJ
QJ

�
+ �QJf

� �XJ
�QJ

�
:

The following inequality for the f -divergence of an n-tuple of vectors in a linear
space holds [10]:
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Theorem 6. Let f : K ! R be a convex function on the cone K: Then for any
n-tuple of vectors x = (x1; :::; xn) 2 Kn, a probability distribution q 2 Pn with all
values nonzero and for any nonempty subset J of f1; :::; ng we have

If (x;q) � max
;6=J�f1;:::;ng

If (xJ ;qJ) � If (xJ ;qJ)(6.5)

� min
;6=J�f1;:::;ng

If (xJ ;qJ) � f (Xn)

where Xn :=
Pn

i=1 xi:

We observe that, for a given n-tuple of vectors x = (x1; :::; xn) 2 Kn; a su¢ cient
condition for the positivity of If (x;q) for any probability distribution q 2 Pn with
all values nonzero is that f (Xn) � 0: In the scalar case and if x = p 2Pn; then a
su¢ cient condition for the positivity of the f -divergence If (p;q) is that f (1) � 0:
The case of functions of a real variable that is of interest for applications is

incorporated in [10]:

Corollary 6. Let f : [0;1) ! R be a normalized convex function. Then for any
p;q 2 Pn we have

(6.6) If (p;q) � max
;6=J�f1;:::;ng

�
QJf

�
PJ
QJ

�
+ (1�QJ) f

�
1� PJ
1�QJ

��
(� 0) :

In what follows, by the use of the results in Theorem 2 and Theorem 3 we can
provide an upper and a lower bound for the positive di¤erence If (x;q)� f (Xn) :
Theorem 7. Let f : K ! R be a convex function on the cone K: Then for any
n-tuple of vectors x = (x1; :::; xn) 2 Kn and a probability distribution q 2 Pn with
all values nonzero we have

(6.7) Ir�f(�)(�) (x;q)� Ir�f(�)(Xn) (x;q) � If (x;q)� f (Xn)
� Ir+f(Xn)(�) (x;q)�r+f (Xn) (Xn) � 0:

The case of functions of a real variable that is useful for applications is as follows:

Corollary 7. Let f : [0;1) ! R be a normalized convex function. Then for any
p;q 2 Pn we have
(6.8) If 0�(�)(�) (p;q)� If 0�(�) (p;q) � If (p;q) � 0;
or, equivalently,

(6.9) If 0�(�)[(�)�1] (p;q) � If (p;q) � 0:
The above corollary is useful to provide an upper bound in terms of the varia-

tional distance for the f -divergence If (p;q) of normalized convex functions whose
derivatives are bounded above and below.

Proposition 1. Let f : [0;1)! R be a normalized convex function and p;q 2 Pn.
If there exists the constants  and � with

�1 <  � f 0�
�
pk
qk

�
� � <1 for all k 2 f1; :::; ng ;

then we have the inequality

(6.10) 0 � If (p;q) �
1

2
(�� )V (p;q) ;

where V (p;q) =
Pn

i=1 qi

���piqi � 1��� =Pn
i=1 jpi � qij :
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Proof. By the inequality (6.9) we have successively that

0 � If (p;q) � If 0�(�)[(�)�1] (p;q)

=
nX
i=1

qi

�
pi
qi
� 1
��
f 0�

�
pi
qi

�
� � + 

2

�

�
nX
i=1

qi

����piqi � 1
���� ����f 0��piqi

�
� � + 

2

����
� 1

2
(�� )

nX
i=1

qi

����piqi � 1
����

which proves the desired result (6.10). �

Corollary 8. Let f : [0;1) ! R be a normalized convex function and p;q 2 Pn.
If there exist the constants r and R with

0 < r � pk
qk
� R <1 for all k 2 f1; :::; ng ;

then we have the inequality

(6.11) 0 � If (p;q) �
1

2

�
f 0� (R)� f 0� (r)

�
V (p;q) :

The K. Pearson �2-divergence is obtained for the convex function f (t) = (1� t)2 ;
t 2 R and given by

�2 (p; q) :=

nX
j=1

qj

�
pj
qj
� 1
�2
=

nX
j=1

(pj � qj)2

qj
:

Finally, the following proposition giving another upper bound in terms of the �2-
divergence can be stated:

Proposition 2. Let f : [0;1)! R be a normalized convex function and p;q 2 Pn.
If there exists the constant 0 < � <1 with

(6.12)

������
f 0�

�
pi
qi

�
� f 0� (1)

pi
qi
� 1

������ � � for all k 2 f1; :::; ng ;

then we have the inequality

(6.13) 0 � If (p;q) � ��2 (p; q) :

In particular, if f 0� (�) satis�es the local Lipschitz condition

(6.14)
��f 0� (x)� f 0� (1)�� � � jx� 1j for any x 2 (0;1)

then (6.13) holds true for any p;q 2 Pn:
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Proof. We have from (6.9) that

0 � If (p;q) � If 0�(�)[(�)�1] (p;q)

=
nX
i=1

qi

�
pi
qi
� 1
��
f 0�

�
pi
qi

�
� f 0� (1)

�

�
nX
i=1

qi

�
pi
qi
� 1
�2 ������

f 0�

�
pi
qi

�
� f 0� (1)

pi
qi
� 1

������
� �

nX
i=1

qi

�
pi
qi
� 1
�2

and the inequality (6.13) is obtained. �
Remark 7. It is obvious that if one chooses in the above inequalities particular
normalized convex functions that generates the Kullback-Leibler, Je¤reys, Hellinger
or other divergence measures or discrepancies, that one can obtain some results of
interest. However the details are not provided here.
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Univ. Babeş-Bolyai, Mathematica, 24(1) (1989), 15-19.

Research Group in Mathematical Inequalities & Applications, School of Engineering
& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/


	1. Introduction
	2. The Gâteau Derivatives of Convex Functions
	3. A Refinement of Jensen's Inequality
	4. A Reverse of Jensen's Inequality
	5. Bounds for the Mean f-Deviation
	6. Bounds for f-Divergence Measures
	References

