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INEQUALITIES IN TERMS OF THE GATEAUX DERIVATIVES
FOR CONVEX FUNCTIONS IN LINEAR SPACES WITH
APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. Some inequalities in terms of the Gateaux derivatives relatead
to Jensen’s inequality for convex functions defined on linear spaces are given.
Applications for norms, mean f-deviations and f-divergence measures are pro-
vided as well.

1. INTRODUCTION

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Holder and Minkowski inequalities, Ky Fan’s inequality
etc. can be obtained as particular cases of it.

Let C be a convex subset of the linear space X and f a convex function on C. If
p = (p1,...,pn) is a probability sequence and x = (z1,...,2,) € C™, then

(1.1) f <szl‘z) < Zpif(fﬂi),

is well known in the literature as Jensen’s inequality.
Recently the author obtained the following refinement of Jensen’s inequality (see

91)

ke{l,...n} 1 —px

(12) f ijwj < min l(l—pk)f<zj_1pjxj_pkxk> -‘rpkf(xk)]

T e e Y]
k=1 k=1
R e = R

IN

j=1

where f,x, and pg are as above.
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2 S.S. DRAGOMIR

The above result provides a different approach to the one that J. Pecari¢ and
the author obtained in 1989, namely (see [14]):

S S Tiy + 0+ Ty,
(1.3) f <;pzﬂ3z> < Z Piy - Pinin f <1k+1k+)

B1yeylkp1=1

n
Tiy + @,
I

iyein=1

S"-SZPJ(%%
=1

IA

for k£ > 1 and p,x as above.
If g1,...,qx > 0 with Z?Zl g; = 1, then the following refinement obtained in
1994 by the author [6] also holds:

(1.4) f <ZPL$1> < Z Diy - Dip f (W)
i=1

i1,ein=1

n
< >0 b bt (@@ o+ aewy)

i1,ein=1

< sz'f (i)
i=1

where 1 < k < n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the arith-
metic mean-geometric mean inequality, the generalised triangle inequality, the f-
divergence measures etc. see [3]-[9].

In this paper, motivated by the above results, some new inequalities in terms
of the Gateaux derivatives related to Jensen’s inequality for convex functions de-
fined on linear spaces are given. Applications for norms, mean f-deviations and
f-divergence measures are provided as well.

2. THE GATEAU DERIVATIVES OF CONVEX FUNCTIONS

Assume that f: X — R is a convex function on the real linear space X. Since
for any vectors z,y € X the function g, , : R = R, g, (¢) := f (2 + ty) is convex
it follows that the following limits exist

Vi f(@)(y) = Hloiin(_) flz+ tyt) — f(x)

and they are called the right(left) Gateaux derivatives of the function f in the point
x over the direction y.
It is obvious that for any ¢ > 0 > s we have

flz+ty) — f(x)
t

(2.1) > Vi f(z)(y) = inf

t>0
2w [+~ (2)
<0 S

[f(sth)—f(w)
t

f(z+sy)— f(x)

S

} SV f@) () >
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for any z,y € X and, in particular,
(22) V_fw)(u—=v)=f(u) = fv)=Vif(v)(u-0)

for any u,v € X. We call this the gradient inequality for the convex function f. It
will be used frequently in the sequel in order to obtain various results related to
Jensen’s inequality.

The following properties are also of importance:

(2.3) Vif(@)(~y)=-V_f(z)(y),
and
(2.4) Vi f (@) (ay) =aVyf(z)(y)

for any z,y € X and a > 0.
The right Gateaux derivative is subadditive while the left one is superadditive,
ie.,

(2.5) Vif(@)(y+2) <Vif(z)(y) + Vif(z)(2)
and
(2.6) V_of(x)(y+2) 2 V_[f(z)(y) +V_[(z)(2)

for any z,y,z € X .

Some natural examples can be provided by the use of normed spaces.

Assume that (X, ||-||) is a real normed linear space. The function f : X — R,
f(z):=12 |]|? is a convex function which generates the superior and the inferior
semi-inner products

R e 1
W T =, BT e

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [§].
For the convex function f, : X — R, f, (x) := ||z||” with p > 1, we have

pllz|P~? (@) fx#0
Vit (@) (y) =
0 ifxz=0

for any y € X.
If p =1, then we have

Hx”il (Y, 37>S(Z-) ifx#£0
Viohfi(@) (y) =
+ (=) yll ifz=0

for any y € X.

This class of functions will be used to illustrate the inequalities obtained in the
general case of convex functions defined on an entire linear space.

The following result holds:
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Theorem 1. Let f: X — R be a conver function. Then for any z,y € X and
t € 10,1] we have
27 tA-)[V_f)(y—2z)=Vif(2)(y—2)
Ztf(x)+ A=) f(y) - fltx+(1-1)y)
2t(1=)[Vifltz+ (1 -t)y)(y—z) - V_fltx+ (1 -t)y) (y —z)] = 0.
Proof. Utilising the gradient inequality we have

(2.8) fz+(1-t)y)—f(z) > (1 -t)Vif(z)(y— =)
and
(2.9) flz+ 1 —=t)y)—f(y) >-tV_f(y) (y—=).

If we multiply (2.8) with ¢ and (2.9) with 1 — ¢ and add the resultant inequalities
we obtain
flz+ 1A =t)y) —tf (@)= (1-1)f(y)
>(1=0)tVif(@)(y—2) -t =) V_f(y) (y —z)

which is clearly equivalent with the first part of (2.7)).
By the gradient inequality we also have

A=)V _flz+A-t)y)(y—x) = ftz+ (1 -1t)y) - f(z)

and
—tVifltz+ A -ty (y—=z) = ftz+ (1 -1)y) - [ (v)
which by the same procedure as above yields the second part of (2.7)). O

The following particular case for norms may be stated:

Corollary 1. If x and y are two vectors in the normed linear space (X, ||||) such
that 0 ¢ [z,y] := {(1 —s)x + sy,s € [0,1]}, then for any p > 1 we have the in-
equalities
(210) pt(1=1) [yl (g = w.9), — o”> (y — .29,

Z ]zl + (1 =) lyll” = flte + (L =) y|I”
>pt(L—1) |tz + (L= 1) y|"* [(y — @tz + (L= t)y), — (y —z,tw+ (1—1)y),] 20
for any t € [0,1]. If p > 2 the inequality holds for any x and y.
Remark 1. We observe that forp =1 in we derive the result

(2.11) t(1—1¢) [<y - ||§||> N <y - Hi>}

> tllel + (1= ) Iyl — itz + (1 — )]
_ A=y N/ e+ (1-ty
=t -1) Ky ’||tcc+<1—t>y|>s <y ’|tx+<1—t>y||>j20
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while for p =2 we have

(2.12) 2t(1-t)[{y —z,9), —(y — z,2) ]
>tlal® + @ =) Iy - Itz + 1 - 1) y|
>2(1—t)(y—zte+(1—t)y), — (y—z,txz+ (1 —t)y),] > 0.

We notice that the inequality holds for any x,y € X while in the inequality
we must assume that x,y and tx + (1 —t)y are not zero.

Remark 2. If the normed space is smooth, i.e., the norm is Gdteaux differentiable
in any nonzero point, then the superior and inferior semi-inner products coincide
with the Lumer-Giles semi-inner product |-, -] that generates the norm and is linear
in the first variable (see for instance [8]). In this situation the inequality
becomes

213) pt(1 =) (Il Iy = 2.] — al”~ [y — 2.2])
> el + (=) lyll” — lltz + (1 =) ylI” = 0

and holds for any nonzero x and y.
Moreover, if (X, (-,-)) is an inner product space, then becomes

-2 -2
(214) pt(1=1){y— gl y — 2" )
>tllz]” + (1 =) yl” =tz + (1 - ) y||” > 0.
From we deduce the particular inequalities of interest

(2.15) t(l—t)<y vy T

= Y > el + (1= 6 gl — b+ (= )yl > 0
Tl ||z||>

and
(2.16) 2t(1—t)ly — =l > t=* + (1 = t) yl* = [tz + (1 — ) y* > 0.

Obviously, the inequality can be proved directly on utilising the properties of
the inner products.

Problem 1. It is an open question for the author whether the inequality
characterizes or not the class of inner product spaces within the class of normed
spaces.

3. A REFINEMENT OF JENSEN’S INEQUALITY

For a convex function f : X — R defined on a linear space X, perhaps one of
the most important result is the well known Jensen’s inequality

(3.1) f <ZP11’1> < sz'f(wi),
i=1 i=1
which holds for any n-tuple of vectors x = (z1,...,2,) € X™ and any probability
distribution p = (p1, ...,pn) € P™.
The following refinement of Jensen’s inequality holds:
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Theorem 2. Let f: X — R be a convex function defined on a linear space X. Then

for any n-tuple of vectors x = (x1,...,x,) € X™ and any probability distribution
p = (p1,-..,pn) € P" we have the inequality

) Sonste - (3ome)
> épkvu‘ (Zm%) ~Vif <szxz> (gpixi> >0

In particular, for the uniform distribution, we have
1< 1<
E;f(xz) - f (nZZ%)
> L imf lz —V.f le Zx >0
I et n i Z i=1 Vil

Proof. Utilising the gradient inequality (2.2)) we have

(3.4) o) = f (Zpﬁﬂz) >Vif (ZZ%%) (Ik - me)

for any k € {1,...,n}.
By the subadditivity of the functional V4 f (-) (-) in the second variable we also
have

w9 vor (o) (xkim)
o))

i=1 i=1

for any k € {1,...,n}.
Utilising the mequahtles and . we get

(3.6) f(xx) (Z p1x2>
v ()

for any k € {1,...,n}.

Now, if we multiply (3.6]) with py > 0 and sum over k from 1 to n, then we deduce
the first inequality in (3.2)). The second inequality is obvious by the subadditivity
property of the functional V4 f (-) (-) in the second variable. O

The following particular case that provides a refinement for the generalised tri-
angle inequality in normed linear spaces is of interest
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Corollary 2. Let (X, |||) be a normed linear space. Then for any p > 1, for

any n-tuple of vectors x = (x1,...,x,) € X™ and any probability distribution p =
(P1s ey P) € P™ with Y"1 | pix; # 0 we have the inequality

n
ZP:’H%HP—
=1

n n n n 2
- <zk,zpﬂj> S
=1 k=1 J=1 s =1

If p > 2 the inequality holds for any n-tuple of vectors and probability distribution.

In particular, we have the norm inequalities

n
> villaill —
i=1

i Ti

p—2

> 0.

i

i Ly

|20

lzpk N ).

and

i T

n

2
> vl ~
i=1

n n n 2
>2 Zpk <$k;2pi$i> - sz‘wz‘ > 0.
k=1 i=1 s i=1
We notice that the first inequality in (3.9) is equivalent with
n n 2 n n
> p ]| + > vl =2 p <$k7ZPi$¢>
i=1 i=1 k=1 i=1 s
which provides the result
n n
(3.10) sz a1 + 2 =y <$k,ZPi$i>
k=1 i=1 s
1

for any n-tuple of vectors and probability distribution.

Remark 3. If in the inequality we consider the uniform distribution, then
we get

(3.11) ZHLBZHP—TLl P Zml

2
> pn! 7P >

i=1

> 0.

n
D> i
i=1

k=1 i=1
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4. A REVERSE OF JENSEN’S INEQUALITY
The following result is of interest as well:

Theorem 3. Let f : X — R be a convex function defined on a linear space X. Then
for any n-tuple of vectors x = (z1,...,z,) € X™ and any probability distribution
p = (p1,---,pn) € P" we have the inequality

ZPkV f (k) (zi) Zpkv f(zw) (me)
k=1 k=1
>sz ) (me)

In particular, for the uniform distribution, we have

Zv f (1) (zx) Zv f (x, (i;x>]
(155,

i=1

>

:\)—'

Proof. Utilising the gradient inequality (2.2)) we can state that

(4.3) V_f(xk (zk - szx1> > f(xr) (szwz>

=1

for any k € {1,...,n}.
By the superadditivity of the functional V_f () (-) in the second variable we
also have

(4.4) V_f(zp) (xg) — V_f (zk) (Zpﬂ,) > V_f(xzk) <xk2p7mz>

=1
for any k € {1,...,n}.
Therefore, by (4.3) and (4.4) we get

(4.5)  V_f(x) (wr) — V_f (zx) <me> > f(zx) (me>

i=1
for any k € {1,...,n}.

Finally, by multiplying (4.5) with pr > 0 and summing over k from 1 to n we
deduce the desired inequality (4.1)). O

Remark 4. If the function f is defined on the FEuclidian space R™ and is differen-
tiable and convez, then from we get the inequality

k=1
> sz'f (zi) — f (ZPN%)
i=1 i=1
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where, as usual, for i = (xi, . ) Vf(zk) = (8}”(7"1&),_“, %) . This inequal-

ity was obtained firstly by Dragomir & Goh in 1996, see [12).
For one dimension we get the inequality

Zpkwkf k) Z}%%Zpkf k)
> pif (zi) — f (ZPM%)
i=1 i=1

that was discovered in 1994 by Dragomir and Ionescu, see [I1].
The following reverse of the generalised triangle inequality holds:
Corollary 3. Let (X, ||||) be a normed linear space. Then for any p > 1, for any

n-tuple of vectors x = (x1,...,x,) € X"\ {(0,...,0)} and any probability distribution
p = (p1,-..,pn) € P" we have the inequality

n n
P [Zpk (e 2 7 <szwz7$k> ]
k=1 k=1
n
Z il -

n P
E piZ;
i=1

In particular, we have the norm inequalities

n n n

T
D vkl =Y _pe <§ :pixi,”;”>
k=1 k=1 i=1 kIS

> pilla] - .
i=1
for x, #0,k € {1,...,n} and
(4.10) Zpkuxku Zpk<zpjxj,xk>
k=1 j=1 i
2
> sz‘ 2" — iTi ||
i=1

for any zy.
We observe that the inequality (4.10]) is equivalent with

2 n n
~23 <zpjxj,xk>
k=1 Jj=1 i

T

n

2
> il +
i=1
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which provides the interesting result

(4.11) sz s | +

i

n n
Y <zpjmj,xk>
k=1 j=1 ;
n

n
Z Z PPk (Tj, Th);
k=1

holding for any n-tuple of vectors and probability distribution.

Remark 5. If in the inequality (@ we consider the uniform distribution, then
we get

(1.12) zuxknp—fznx - <z>
n
> Z 2|7 —n'~P
=1

p

n
2
i=1

For p € [1,2) all vectors x), should not be zero.

5. BOUNDS FOR THE MEAN f-DEVIATION

Let X be a real linear space. For a convex function f : X — R with the
property that f(0) > 0 we define the mean f-deviation of an n-tuple of vectors
y= (Y1, .-, Yn) € X™ with the probability distribution p = (p1, ..., p,) € P™ by the
non-negative quantity

(5.1) Ky (p,y) = Kf (pyy sz (yi—Zpkyk)
k=1

The fact that K (p,y) is non-negative follows by Jensen’s inequality, namely

Ky (py) = f <Zp¢ (y@ - Zm%)) = f(0) > 0.
i=1 k=1

Of course the concept can be extended for any function defined on X, however
if the function is not convex or if it is convex but f(0) < 0, then we are not sure
about the positivity of the quantity K (p,y).

A natural example of such deviations can be provided by the convex function
f () :==|ly||” with r > 1 defined on a normed linear space (X, ||-||) . We denote this
by

(5.2) K. (p,y) =Y _pi|vi— > pryn
=1 k=1

and call it the mean r-absolute deviation of the n-tuple of vectors y= (y1,...,yn) €
X™ with the probability distribution p = (p1, ..., pn) -

Utilising the result from [9] we can state then the following result providing a
non-trivial lower bound for the mean f-deviation:
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Theorem 4. Let f : X — [0,00) be a convexr function with f(0) = 0. If y=

(Y1, Yn) € X™ and p = (p1, .., Dn) 18 a probability distribution with all p; nonzero,
then

(5.3) Ky (p,y)

> s {(1 —or) f [1 fkpk (yk - ;mm) +prf (yk - ;mw) } (>0).

The case for mean r-absolute deviation is incorporated in

Corollary 4. Let (X, ||-||) be a normed linear space. If y= (y1,...,yn) € X™ and
P = (p1, .-, pn) is a probability distribution with all p; nonzero, then for r > 1 we

have

Remark 6. Since the function h, (t) :== (1 —t)" 7"t +t, 7 > 1, t € [0,1) is strictly
increasing on [0,1), then

n
Yk — Y DIy

(5.4) K. (p,y) > max { [(1 ), +pk}
=1

ke{l,...,n}

min {(1 - pk)l_rp}; +pk} = Pm + (1 _pm)l_rp:nv
ke{l,...,n}

where py, :== min  pg. By , we then obtain the following simpler inequality:
ke{l,...,n}

P

max
ke{l,...,n}

n
Yk — Zplyz

=1

(55) K (poy) > [pm+ (= p) )]

)

which is perhaps more useful for applications.
We have the following double inequality for the mean f-mean deviation:

Theorem 5. Let f : X — [0,00) be a convex function with f(0) = 0. If y=
(Y15 ey Yn) € X™ and p = (p1,...,Dn) s a probability distribution with all p; nonzero,
then

(5.6) Kv_ sy (P,y) > K¢y (P,Y) > Ky, 0y (P,y) > 0.

Proof. If we use the inequality (3.2) for z; =y, — > ,_, pryr we get
n n n n
> pif (Z/i - Zm%) —f (Zpi (yz - me))
i=1 k=1 i=1 k=1
> piVif (Zpi (?Ji - me)) (yj - me)
j=1 i1 k=1 k=1

which is equivalent with the second part of (5.6).
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Now, by utilising the inequality (4.1)) for the same choice of z; we get
> piV_f (yj - ZPk%) (yj - me)
j=1 k=1 k=1
- pV_f (yj - me) (Zpi (yz - me))
k=1 k=1 i=1 k=1
> pif (yi - Zm%) —f (Zpi (yL - Zm%)) ,
=1 k=1 =1 k=1

which in its turn is equivalent with the first inequality in (5.6]). O

We observe that as examples of convex functions defined on the entire normed
linear space (X, ||-||) that are convex and vanishes in 0 we can consider the functions

f)=g(lzl), ze X
where g : [0,00) — [0,00) is a monotonic nondecreasing convex function with

9(0)=0.
For this kind of functions we have by direct computation that

V4 f(0) (u) =g/ (0) [Jul| for any u e X

and
V_f(u) (u) =g~ (Jull) [lu] for any u e X.
We then have the following norm inequalities that are of interest:

Corollary 5. Let (X,|]|) be a normed linear space. If g : [0,00) — [0,00)
is a monotonic nondecreasing convex function with g (0) = 0, then for any y=
(Y1, -, yn) € X™ and p = (p1,...,pn) a probability distribution, we have

(5.7) Y pmig- ( Yi— > PrUk ) Yi— > Pk
i=1 k=1 k=1
> pig ( Yi— Y PkUk ) > ¢ (0)) pi
i=1 k=1

6. BOUNDS FOR f-DIVERGENCE MEASURES

n
Yi — Zpkyk- .
k=1

=1

Given a convex function f : [0,00) — R, the f-divergence functional
i=1 ¢

where p = (p1,...,0n), 4= (q1,.--,qn) are positive sequences, was introduced by
Csiszér in [I], as a generalized measure of information, a “distance function” on the
set of probability distributions P". As in [I], we interpret undefined expressions by

. 0
o=t s, of(F)=o

ay .. a\ . f@®
07 () = b af <q> =a lim ==, >0

The following results were essentially given by Csiszar and Kérner [2]:
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(i) If f is convex, then Iy (p,q) is jointly convezr in p and q;
(ii) For every p,q € R, we have

(62 I ED S @‘5) .

j=14

If f is strictly convex, equality holds in iff
pr _P2_  _Pn
q1 q2 qn

If f is normalized, i.e., f (1) = 0, then for every p,q € R with ;" | p; =
Z?Zl qi, we have the inequality

(6.3) Iy (p.a) > 0.

In particular, if p,q € P”, then holds. This is the well-known positivity
property of the f-divergence.

We endeavour to extend this concept for functions defined on a cone in a linear
space as follows (see also [10]).

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satisfied:

(1) for any z,y € K we have x +y € K;

(#) for any z € K and any o > 0 we have ax € K.

For a given n-tuple of vectors z = (21, ..., z,) € K™ and a probability distribution
q € P" with all values nonzero, we can define, for the convex function f: K — R,
the following f-divergence of z with the distribution q

(6.4 Iy (5q) = équ <q> .

It is obvious that if X = R, K = [0,00) and x = p €P™ then we obtain the usual
concept of the f-divergence associated with a function f : [0,00) — R.

Now, for a given n-tuple of vectors x = (z1, ..., z,) € K™, a probability distrib-
ution q € P™ with all values nonzero and for any nonempty subset J of {1,...,n}
we have

as = (Qs.Qy) € P?
and

Xy = (XJ,)_(J) e K?
where, as above

XJ::in, and XJ::XJ_.

icJ

It is obvious that
Iy (x7,97) = Quf <é§j> +Qsf <gj) :
The following inequality for the f-divergence of an n-tuple of vectors in a linear

space holds [10]:
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Theorem 6. Let f : K — R be a convex function on the cone K. Then for any
n-tuple of vectors x = (x1,...,x,) € K™, a probability distribution q € P™ with all
values nonzero and for any nonempty subset J of {1,...,n} we have

6.5 I (x,q) > Iy (x5,qy) > 17 (%,
(6.5) r(x q)_@#g}{&}f.ﬂ}f(xJ qas) > Iy (x7,q7)

> ' I (xs,qy) > f (X,
= f(xs,a7) > f(Xy)

where X,, := ZLI ;.

We observe that, for a given n-tuple of vectors x = (x4, ..., ) € K", a sufficient
condition for the positivity of Iy (x,q) for any probability distribution q € P™ with
all values nonzero is that f (X,) > 0. In the scalar case and if x = p €P", then a
sufficient condition for the positivity of the f-divergence If (p,q) is that f (1) > 0.

The case of functions of a real variable that is of interest for applications is
incorporated in [I0]:

Corollary 6. Let f : [0,00) — R be a normalized convex function. Then for any
P,q € P"* we have

60 Loz, me o () ra-ans (120 o

T p#£JC{1,...,

In what follows, by the use of the results in Theorem [2] and Theorem [3] we can
provide an upper and a lower bound for the positive difference Iy (x,q) — f (X,).

Theorem 7. Let f : K — R be a convex function on the cone K. Then for any
n-tuple of vectors x = (x1,...,x,) € K™ and a probability distribution q € P™ with
all values nonzero we have
(6.7) Iv_joye) (xa) = Iv_poyx,) (x.0) = I (x,q) — f(Xn)
> IV+f(Xn)(') (qu) - v+f (Xn) (Xn) > 0.
The case of functions of a real variable that is useful for applications is as follows:

Corollary 7. Let f : [0,00) — R be a normalized convex function. Then for any
P,q € P* we have

(6.8) I oy (Psq) = Iy (Pyq) = I (p,aq) >0,
or, equivalently,
(6.9) Iy (-1 (Pya) > I (P,q) > 0.

The above corollary is useful to provide an upper bound in terms of the varia-
tional distance for the f-divergence Iy (p,q) of normalized convex functions whose
derivatives are bounded above and below.

Proposition 1. Let f : [0,00) — R be a normalized convex function and p,q € P™.
If there exists the constants v and T with

—co <y < fL (pk) <T'<oo foralke{l,..n},
gk
then we have the inequality

B = Y b - ail

DO =

(6.10) 0<I¢(p,q) <

where V (p,q) = > .11 G
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Proof. By the inequality we have successively that

0<1I;(p,q) < Iy (yi)-1 (P;a)

S (zo1)[r (2)-557

n
<Ya |-l (B) -5
= 14 i 2
1 ~ |ps
< (- N L
<309 alt
which proves the desired result (6.10)). O

Corollary 8. Let f :[0,00) — R be a normalized convex function and p,q € P".
If there exist the constants v and R with

0<7“§Iﬁ§R<ooforallk6{17...711}7
qk

then we have the inequality
1
(6.11) 0<1Iy(p,a) <5 [fL(B) = fL(M]V(p.a).
The K. Pearson y2-divergence is obtained for the convex function f (t) = (1 — ¢)?,
t € R and given by

n 2
D
X (p,q) = g (7 - ) =
Finally, the following proposition giving another upper bound in terms of the x2-

divergence can be stated:

Proposition 2. Let f : [0,00) — R be a normalized convex function and p,q € P™.
If there exists the constant 0 < A < oo with

ro(B) -
B

(6.12)

<A foralke{l,..,n},

then we have the inequality
(6.13) 0<I;(p,a) <AX*(p,q).

In particular, if f' (-) satisfies the local Lipschitz condition
(6.14) |f2 (x) = fL (V)] < Alz —1] for any z € (0,00)

then holds true for any p,q € P".
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Proof. We have from that

0<1I;(p,q) < Iy (yi)-1 (P;a)

_ iq <Z - 1) {f’_ <§) ~f (1)]

Si%’ (pi—l)2 () -

JI—
qi

n ) 2
SAE
i=1 v

and the inequality (6.13)) is obtained. O

Remark 7. It is obvious that if one chooses in the above inequalities particular

no
or

rmalized conver functions that generates the Kullback-Leibler, Jeffreys, Hellinger
other divergence measures or discrepancies, that one can obtain some results of

interest. However the details are not provided here.
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