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A NEW REFINEMENT OF JENSEN’S INEQUALITY IN LINEAR
SPACES WITH APPLICATIONS

S.S. DRAGOMIR

Abstract. A new refinement of Jensen’s celebrated inequality for functions

defined on convex sets in linear spaces is given. Applications for norms, mean
f -deviation and f -divergences are provided as well.

1. Introduction

Let C be a convex subset of the linear space X and f a convex function on C.
If p = (p1, . . . , pn) is a probability sequence and x = (x1, . . . , xn) ∈ Cn, then

(1.1) f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif (xi) ,

is well known in the literature as Jensen’s inequality.
The Jensen inequality for convex functions plays a crucial role in the Theory of

Inequalities due to the fact that other inequalities such as the arithmetic mean-
geometric mean inequality, Hölder and Minkowski inequalities, Ky Fan’s inequality
etc. can be obtained as particular cases of it.

In 1989, J. Pečarić and the author obtained the following refinement of (1.1) (see
[13]):

f

(
n∑

i=1

pixi

)
≤

n∑
i1,...,ik+1=1

pi1 . . . pik+1f

(
xi1 + · · ·+ xik+1

k + 1

)
(1.2)

≤
n∑

i1,...,ik=1

pi1 . . . pik
f

(
xi1 + · · ·+ xik

k

)

≤ · · · ≤
n∑

i=1

pif (xi) ,

for k ≥ 1 and p,x as above.
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If q1, . . . , qk ≥ 0 with
∑k

j=1 qj = 1, then the following refinement obtained in
1994 by the author also holds (see [6]):

f

(
n∑

i=1

pixi

)
≤

n∑
i1,...,ik=1

pi1 . . . pik
f

(
xi1 + · · ·+ xik

k

)
(1.3)

≤
n∑

i1,...,ik=1

pi1 . . . pik
f (q1xi1 + · · ·+ qkxik

)

≤
n∑

i=1

pif (xi) ,

where 1 ≤ k ≤ n and p, x are as above.
More recently the author obtained a different refinement of Jensen’s inequality

incorporated in (see [8]):

f

 n∑
j=1

pjxj

 ≤ min
k∈{1,...,n}

[
(1− pk) f

(∑n
j=1 pjxj − pkxk

1− pk

)
+ pkf (xk)

]
(1.4)

≤ 1
n

[
n∑

k=1

(1− pk) f

(∑n
j=1 pjxj − pkxk

1− pk

)
+

n∑
k=1

pkf (xk)

]

≤ max
k∈{1,...,n}

[
(1− pk) f

(∑n
j=1 pjxj − pkxk

1− pk

)
+ pkf (xk)

]

≤
n∑

j=1

pjf (xj) ,

where f, xk and pk are as above.
For other refinements and applications related to Ky Fan’s inequality, the arith-

metic mean-geometric mean inequality, the generalized triangle inequality, the f -
Divergence measure etc., see [3]-[12].

In this paper, a new refinement of Jensen’s celebrated inequality for functions
defined on convex sets in linear spaces is given. Applications for norms, mean
f -deviation and f -divergences are provided as well.

2. General Results

Let C be a convex subset in the real linear space X and assume that f : C → R
is a convex function on C. If xi ∈ C and pi > 0, i ∈ {1, ..., n} with

∑n
i=1 pi = 1,

then for any nonempty subset J of {1, ..., n} we put J̄ := {1, ..., n} \ J (6= ∅) and
define PJ :=

∑
i∈J pi and P̄J := PJ̄ =

∑
j∈J̄ pj = 1 −

∑
i∈J pi. For the convex

function f and the n-tuples x := (x1, ..., xn) and p := (p1, ..., pn) as above, we can
define the following functional

(2.1) D (f,p,x; J) := PJf

(
1

PJ

∑
i∈J

pixi

)
+ P̄Jf

 1
P̄J

∑
j∈J̄

pjxj


where here and everywhere below J ⊂ {1, ..., n} with J 6= ∅ and J 6= {1, ..., n} .
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It is worth to observe that for J = {k} , k ∈ {1, ..., n} we have the functional

Dk (f,p,x) := D (f,p,x; {k})(2.2)

= pkf (xk) + (1− pk) f

(∑n
i=1 pixi − pkxk

1− pk

)
that has been investigated in the earlier paper [8].

Theorem 1. Let C be a convex subset in the real linear space X and assume that
f : C → R is a convex function on C. If xi ∈ C and pi > 0, i ∈ {1, ..., n} with∑n

i=1 pi = 1 then for any nonempty subset J of {1, ..., n} we have

(2.3)
n∑

k=1

pkf (xk) ≥ D (f,p,x; J) ≥ f

(
n∑

k=1

pkxk

)
.

Proof. By the convexity of the function f we have

D (f,p,x; J) = PJf

(
1

PJ

∑
i∈J

pixi

)
+ P̄Jf

 1
P̄J

∑
j∈J̄

pjxj


≥ f

PJ

(
1

PJ

∑
i∈J

pixi

)
+ P̄J

 1
P̄J

∑
j∈J̄

pjxj


= f

(
n∑

k=1

pkxk

)
for any J, which proves the second inequality in (2.3).

By the Jensen inequality we also have
n∑

k=1

pkf (xk) =
∑
i∈J

pif (xi) +
∑
j∈J̄

pjf (xj)

≥ PJf

(
1

PJ

∑
i∈J

pixi

)
+ P̄Jf

 1
P̄J

∑
j∈J̄

pjxj


= D (f,p,x; J)

for any J, which proves the first inequality in (2.3). �

Remark 1. We observe that the inequality (2.3) can be written in an equivalent
form as

(2.4)
n∑

k=1

pkf (xk) ≥ max
∅6=J⊂{1,...,n}

D (f,p,x; J)

and

(2.5) min
∅6=J⊂{1,...,n}

D (f,p,x; J) ≥ f

(
n∑

k=1

pkxk

)
.

These inequalities imply the following results that have been obtained earlier by the
author in [8] utilising a different method of proof slightly more complicated:

(2.6)
n∑

k=1

pkf (xk) ≥ max
k∈{1,...,n}

Dk (f,p,x)
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and

(2.7) min
k∈{1,...,n}

Dk (f,p,x) ≥ f

(
n∑

k=1

pkxk

)
.

Moreover, since

max
∅6=J⊂{1,...,n}

D (f,p,x; J) ≥ max
k∈{1,...,n}

Dk (f,p,x)

and

min
k∈{1,...,n}

Dk (f,p,x) ≥ min
∅6=J⊂{1,...,n}

D (f,p,x; J) ,

then the new inequalities (2.4) and (2.4) are better than the earlier results developed
in [8].

The case of uniform distribution, namely, when pi = 1
n for all {1, ..., n} is of

interest as well. If we consider a natural number m with 1 ≤ m ≤ n− 1 and if we
define

(2.8) Dm (f,x) :=
m

n
f

(
1
m

m∑
i=1

xi

)
+

n−m

n
f

 1
n−m

n∑
j=m+1

xj


then we can state the following result:

Corollary 1. Let C be a convex subset in the real linear space X and assume that
f : C → R is a convex function on C. If xi ∈ C, then for any m ∈ {1, ..., n− 1} we
have

(2.9)
1
n

n∑
k=1

f (xk) ≥ Dm (f,x) ≥ f

(
1
n

n∑
k=1

xk

)
.

In particular, we have the bounds

(2.10)
1
n

n∑
k=1

f (xk)

≥ max
m∈{1,...,n−1}

m

n
f

(
1
m

m∑
i=1

xi

)
+

n−m

n
f

 1
n−m

n∑
j=m+1

xj


and

(2.11) min
m∈{1,...,n−1}

m

n
f

(
1
m

m∑
i=1

xi

)
+

n−m

n
f

 1
n−m

n∑
j=m+1

xj


≥ f

(
1
n

n∑
k=1

xk

)
.

The following version of the inequality (2.3) may be useful for symmetric convex
functions:
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Corollary 2. Let C be a convex function with the property that 0 ∈ C. If yj ∈ X
such that for pi > 0, i ∈ {1, ..., n} with

∑n
i=1 pi = 1 we have yj −

∑n
i=1 piyi ∈ C for

any j ∈ {1, ..., n} , then for any nonempty subset J of {1, ..., n} we have

(2.12)
n∑

k=1

pkf

(
yk −

n∑
i=1

piyi

)
≥ PJf

P̄J

 1
PJ

∑
i∈J

piyi −
1

P̄J

∑
j∈J̄

pjyj


+ P̄Jf

PJ

 1
P̄J

∑
j∈J̄

pjyj −
1

PJ

∑
i∈J

piyi

 ≥ f (0) .

Remark 2. If C is as in Corollary 2 and yj ∈ X such that yj − 1
n

∑n
i=1 yi ∈ C for

any j ∈ {1, ..., n} then for any m ∈ {1, ..., n− 1} we have

(2.13)
1
n

n∑
k=1

f

(
yk −

1
n

n∑
i=1

yi

)
≥ m

n
f

n−m

n

 1
m

m∑
i=1

yi −
1

n−m

n∑
j=m+1

yj


+

n−m

n
f

m

n

 1
n−m

n∑
j=m+1

yj −
1
m

m∑
i=1

yi

 ≥ f (0) .

Remark 3. It is also useful to remark that if J = {k} where k ∈ {1, ..., n} then
the particular form we can derive from (2.12) can be written as

(2.14)
n∑

`=1

p`f

(
y` −

n∑
i=1

piyi

)

≥ pkf

(1− pk)

yk −
1

1− pk

 n∑
j=1

pjyj − pkyk


+ (1− pk) f

pk

 1
1− pk

 n∑
j=1

pjyj − pkyk

− yk

 ≥ f (0)

which is equivalent with

(2.15)
n∑

`=1

p`f

(
y` −

n∑
i=1

piyi

)
≥ pkf

yk −
n∑

j=1

pjyj


+ (1− pk) f

 pk

1− pk

 n∑
j=1

pjyj − yk

 ≥ f (0)

for any k ∈ {1, ..., n} .

Remark 4. Continuous versions for the Lebesgue integral are considered in [9].

3. A Lower Bound for Mean f-Deviation

Let X be a real linear space. For a convex function f : X → R with the
properties that f (0) = 0, define the mean f-deviation of an n-tuple of vectors



6 S.S. DRAGOMIR

x = (x1, ..., xn) ∈ Xn with the probability distribution p = (p1, ..., pn) by the
non-negative quantity

(3.1) Kf (p,x) :=
n∑

i=1

pif

(
xi −

n∑
k=1

pkxk

)
.

The fact that Kf (p,x) is non-negative follows by Jensen’s inequality, namely

Kf (p,x) ≥ f

(
n∑

i=1

pi

(
xi −

n∑
k=1

pkxk

))
= f (0) = 0.

A natural example of such deviations can be provided by the convex function
f (x) := ‖x‖r with r ≥ 1 defined on a normed linear space (X, ‖·‖) . We denote this
by

(3.2) Kr (p,x) :=
n∑

i=1

pi

∥∥∥∥∥xi −
n∑

k=1

pkxk

∥∥∥∥∥
r

and call it the mean r-absolute deviation of the n-tuple of vectors x = (x1, ..., xn) ∈
Xn with the probability distribution p = (p1, ..., pn) .

The following result that provides a lower bound for the mean f -deviation holds:

Theorem 2. Let f : X → [0,∞) be a convex function with f (0) = 0. If x =
(x1, ..., xn) ∈ Xn and p = (p1, ..., pn) is a probability distribution with all pi

nonzero, then

(3.3) Kf (p,x) ≥ max
∅6=J⊂{1,...,n}

PJf

P̄J

 1
PJ

∑
i∈J

pixi −
1

P̄J

∑
j∈J̄

pjxj


+PJf

 1
P̄J

∑
j∈J̄

pjyj −
1

PJ

∑
i∈J

piyi

 (≥ 0) .

In particular, we have

(3.4) Kf (p,x)

≥ max
k∈{1,...,n}

{
(1− pk) f

[
pk

1− pk

(
n∑

l=1

plxl − xk

)]
+ pkf

(
xk −

n∑
l=1

plxl

)}
(≥ 0) .

The proof follows from Corollary 2 and Remark 3.
As a particular case of interest, we have the following:

Corollary 3. Let (X, ‖·‖) be a normed linear space. If x = (x1, ..., xn) ∈ Xn and
p = (p1, ..., pn) is a probability distribution with all pi nonzero, then for r ≥ 1 we
have

(3.5) Kr (p,x)

≥ max
∅6=J⊂{1,...,n}

PJ P̄J

(
P̄ r−1

J + P r−1
J

) ∥∥∥∥∥∥ 1
PJ

∑
i∈J

pixi −
1

P̄J

∑
j∈J̄

pjxj

∥∥∥∥∥∥
r (≥ 0) .
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Remark 5. By the convexity of the power function f (t) = tr, r ≥ 1 we have

PJ P̄J

(
P̄ r−1

J + P r−1
J

)
= PJ P̄ r

J + P̄JP r
J

≥
(
PJ P̄J + P̄JPJ

)r = 2rP r
J P̄ r

J

therefore

(3.6) PJ P̄J

(
P̄ r−1

J + P r−1
J

) ∥∥∥∥∥∥ 1
PJ

∑
i∈J

pixi −
1

P̄J

∑
j∈J̄

pjxj

∥∥∥∥∥∥
r

≥ 2rP r
J P̄ r

J

∥∥∥∥∥∥ 1
PJ

∑
i∈J

pixi −
1

P̄J

∑
j∈J̄

pjxj

∥∥∥∥∥∥
r

= 2r

∥∥∥∥∥∥P̄J

∑
i∈J

pixi − PJ

∑
j∈J̄

pjxj

∥∥∥∥∥∥
r

.

Since

P̄J

∑
i∈J

pixi − PJ

∑
j∈J̄

pjxj = (1− PJ)
∑
i∈J

pixi − PJ

(
n∑

k=1

pkxk −
∑
i∈J

pixi

)
(3.7)

=
∑
i∈J

pixi − PJ

n∑
k=1

pkxk,

then by (3.5)-(3.7) we deduce the coarser but perhaps more useful lower bound

(3.8) Kr (p,x) ≥ 2r max
∅6=J⊂{1,...,n}

{∥∥∥∥∥∑
i∈J

pixi − PJ

n∑
k=1

pkxk

∥∥∥∥∥
r}

(≥ 0) .

The case for mean r-absolute deviation is incorporated in:

Corollary 4. Let (X, ‖·‖) be a normed linear space. If x = (x1, ..., xn) ∈ Xn and
p = (p1, ..., pn) is a probability distribution with all pi nonzero, then for r ≥ 1 we
have

(3.9) Kr (p,x) ≥ max
k∈{1,...,n}

{[
(1− pk)1−r

pr
k + pk

] ∥∥∥∥∥xk −
n∑

l=1

plxl

∥∥∥∥∥
r}

.

Remark 6. Since the function hr (t) := (1− t)1−r
tr + t, r ≥ 1, t ∈ [0, 1) is strictly

increasing on [0, 1) , then

min
k∈{1,...,n}

{
(1− pk)1−r

pr
k + pk

}
= pm + (1− pm)1−r

pr
m,

where pm := min
k∈{1,...,n}

pk. By (3.9), we then obtain the following simpler inequality:

(3.10) Kr (p,x) ≥
[
pm + (1− pm)1−r · pr

m

]
max

k∈{1,...,n}

∥∥∥∥∥xk −
n∑

l=1

plxl

∥∥∥∥∥
p

,

which is perhaps more useful for applications(see also [8]).
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4. Applications for f-Divergence Measures

Given a convex function f : [0,∞) → R, the f -divergence functional

(4.1) If (p,q) :=
n∑

i=1

qif

(
pi

qi

)
,

where p = (p1, . . . , pn) , q = (q1, . . . , qn) are positive sequences, was introduced by
Csiszár in [1], as a generalized measure of information, a “distance function” on the
set of probability distributions Pn. As in [1], we interpret undefined expressions by

f (0) = lim
t→0+

f (t) , 0f

(
0
0

)
= 0,

0f
(a

0

)
= lim

q→0+
qf

(
a

q

)
= a lim

t→∞

f (t)
t

, a > 0.

The following results were essentially given by Csiszár and Körner [2]:
(i) If f is convex, then If (p,q) is jointly convex in p and q;
(ii) For every p,q ∈ Rn

+, we have

(4.2) If (p,q) ≥
n∑

j=1

qjf

(∑n
j=1 pj∑n
j=1 qj

)
.

If f is strictly convex, equality holds in (4.2) iff
p1

q1
=

p2

q2
= · · · = pn

qn
.

If f is normalized, i.e., f (1) = 0, then for every p,q ∈ Rn
+ with

∑n
i=1 pi =∑n

i=1 qi, we have the inequality

(4.3) If (p,q) ≥ 0.

In particular, if p,q ∈ Pn, then (4.3) holds. This is the well-known positivity
property of the f -divergence.

We endeavour to extend this concept for functions defined on a cone in a linear
space as follows.

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satisfied:

(i) for any x, y ∈ K we have x + y ∈ K;
(ii) for any x ∈ K and any α ≥ 0 we have αx ∈ K.
For a given n-tuple of vectors z = (z1, ..., zn) ∈ Kn and a probability distribution

q ∈ Pn with all values nonzero, we can define, for the convex function f : K → R,
the following f-divergence of z with the distribution q

(4.4) If (z,q) :=
n∑

i=1

qif

(
zi

qi

)
.

It is obvious that if X = R, K = [0,∞) and x = p ∈Pn then we obtain the usual
concept of the f -divergence associated with a function f : [0,∞) → R.

Now, for a given n-tuple of vectors x = (x1, ..., xn) ∈ Kn, a probability distribu-
tion q ∈ Pn with all values nonzero and for any nonempty subset J of {1, ..., n} we
have

qJ :=
(
QJ , Q̄J

)
∈ P2
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and
xJ :=

(
XJ , X̄J

)
∈ K2

where, as above

XJ :=
∑
i∈J

xi, and X̄J := XJ̄ .

It is obvious that

If (xJ ,qJ) = QJf

(
XJ

QJ

)
+ Q̄Jf

(
X̄J

Q̄J

)
.

The following inequality for the f -divergence of an n-tuple of vectors in a linear
space holds:

Theorem 3. Let f : K → R be a convex function on the cone K. Then for any
n-tuple of vectors x = (x1, ..., xn) ∈ Kn, a probability distribution q ∈ Pn with all
values nonzero and for any nonempty subset J of {1, ..., n} we have

If (x,q) ≥ max
∅6=J⊂{1,...,n}

If (xJ ,qJ) ≥ If (xJ ,qJ)(4.5)

≥ min
∅6=J⊂{1,...,n}

If (xJ ,qJ) ≥ f (Xn)

where Xn :=
∑n

i=1 xi.

The proof follows by Theorem 1 and the details are omitted.
We observe that, for a given n-tuple of vectors x = (x1, ..., xn) ∈ Kn, a sufficient

condition for the positivity of If (x,q) for any probability distribution q ∈ Pn with
all values nonzero is that f (Xn) ≥ 0. In the scalar case and if x = p ∈Pn, then a
sufficient condition for the positivity of the f -divergence If (p,q) is that f (1) ≥ 0.

The case of functions of a real variable that is of interest for applications is
incorporated in:

Corollary 5. Let f : [0,∞) → R be a normalized convex function. Then for any
p,q ∈ Pn we have

(4.6) If (p,q) ≥ max
∅6=J⊂{1,...,n}

[
QJf

(
PJ

QJ

)
+ (1−QJ) f

(
1− PJ

1−QJ

)]
(≥ 0) .

In what follows we provide some lower bounds for a number of f -divergences that
are used in various fields of Information Theory, Probability Theory and Statistics.

The total variation distance is defined by the convex function f (t) = |t− 1| ,
t ∈ R and given in:

(4.7) V (p, q) :=
n∑

j=1

qj

∣∣∣∣pj

qj
− 1
∣∣∣∣ = n∑

j=1

|pj − qj | .

The following improvement of the positivity inequality for the total variation
distance can be stated as follows.

Proposition 1. For any p,q ∈ Pn, we have the inequality:

(4.8) V (p, q) ≥ 2 max
∅6=J⊂{1,...,n}

|PJ −QJ | (≥ 0) .
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The proof follows by the inequality (4.6) for f (t) = |t− 1| , t ∈ R.

The K. Pearson χ2-divergence is obtained for the convex function f (t) = (1− t)2 ,
t ∈ R and given by

(4.9) χ2 (p, q) :=
n∑

j=1

qj

(
pj

qj
− 1
)2

=
n∑

j=1

(pj − qj)
2

qj
.

Proposition 2. For any p,q ∈ Pn,

χ2 (p, q) ≥ max
∅6=J⊂{1,...,n}

{
(PJ −QJ)2

QJ (1−QJ)

}
(4.10)

≥ 4 max
∅6=J⊂{1,...,n}

(PJ −QJ)2 (≥ 0) .

Proof. On applying the inequality (4.6) for the function f (t) = (1− t)2 , t ∈ R, we
get

χ2 (p, q) ≥ max
∅6=J⊂{1,...,n}

{
(1−QJ)

(
1− PJ

1−QJ
− 1
)2

+ QJ

(
PJ

QJ
− 1
)2
}

= max
∅6=J⊂{1,...,n}

{
(PJ −QJ)2

QJ (1−QJ)

}
.

Since
QJ (1−QJ) ≤ 1

4
[QJ + (1−QJ)]2 =

1
4
,

then
(PJ −QJ)2

QJ (1−QJ)
≥ 4 (PJ −QJ)2

for each J ⊂ {1, . . . , n} , which proves the last part of (4.10). �

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,∞) → R, f (t) = t ln t and is defined by

(4.11) KL (p, q) :=
n∑

j=1

qj ·
pj

qj
ln
(

pj

qj

)
=

n∑
j=1

pj ln
(

pj

qj

)
.

Proposition 3. For any p,q ∈ Pn, we have:

(4.12) KL (p, q) ≥ ln

[
max

∅6=J⊂{1,...,n}

{(
1− PJ

1−QJ

)1−PJ

·
(

PJ

QJ

)PJ
}]

≥ 0.

Proof. The first inequality is obvious by Corollary 5. Utilising the inequality be-
tween the geometric mean and the harmonic mean,

xαy1−α ≥ 1
α
x + 1−α

y

, x, y > 0, α ∈ [0, 1]

we have for x = PJ

QJ
, y = 1−PJ

1−QJ
and α = PJ that(

1− PJ

1−QJ

)1−PJ

·
(

PJ

QJ

)PJ

≥ 1,

for any J ⊂ {1, . . . , n} , which implies the second part of (4.12). �
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Another divergence measure that is of importance in Information Theory is the
Jeffreys divergence

(4.13) J (p, q) :=
n∑

j=1

qj ·
(

pj

qj
− 1
)

ln
(

pj

qj

)
=

n∑
j=1

(pj − qj) ln
(

pj

qj

)
,

which is an f -divergence for f (t) = (t− 1) ln t, t > 0.

Proposition 4. For any p,q ∈ Pn, we have:

J (p, q) ≥ ln

(
max

k∈{1,...,n}

{[
(1− PJ) QJ

(1−QJ)PJ

](QJ−PJ )
})

(4.14)

≥ max
k∈{1,...,n}

[
(QJ − PJ)2

PJ + QJ − 2PJQJ

]
≥ 0.

Proof. On making use of the inequality (4.6) for f (t) = (t− 1) ln t, we have

J (p, q)

≥ max
k∈{1,...,n}

{
(1−QJ)

[(
1− PJ

1−QJ
− 1
)

ln
(

1− PJ

1−QJ

)]
+ QJ

(
PJ

QJ
− 1
)

ln
(

PJ

QJ

)}
= max

k∈{1,...,n}

{
(QJ − PJ) ln

(
1− PJ

1−QJ

)
− (QJ − PJ) ln

(
PJ

QJ

)}
= max

k∈{1,...,n}

{
(QJ − PJ) ln

[
(1− PJ) QJ

(1−QJ) PJ

]}
,

proving the first inequality in (4.14).
Utilising the elementary inequality for positive numbers,

ln b− ln a

b− a
≥ 2

a + b
, a, b > 0

we have

(QJ − PJ)
[
ln
(

1− PJ

1−QJ

)
− ln

(
PJ

QJ

)]

= (QJ − PJ) ·
ln
(

1−PJ

1−QJ

)
− ln

(
PJ

QJ

)
1−PJ

1−QJ
− PJ

QJ

·
[

1− PJ

1−QJ
− PJ

QJ

]

=
(QJ − PJ)2

QJ (1−QJ)
·
ln
(

1−PJ

1−QJ

)
− ln

(
PJ

QJ

)
1−PJ

1−QJ
− PJ

QJ

≥ (QJ − PJ)2

QJ (1−QJ)
· 2

1−PJ

1−QJ
+ PJ

QJ

=
2 (QJ − PJ)2

PJ + QJ − 2PJQJ
≥ 0,

for each J ⊂ {1, . . . , n} , giving the second inequality in (4.14). �
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[12] S.S. Dragomir, J. Pečarić and L.E. Persson, Properties of some functionals related to Jensen’s

inequality, Acta Math. Hung., 70(1-2) (1996), 129-143.
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