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1 Introduction

Throughout this paper X denotes a real linear space and C C X a convex set, so that z,y € C with
A € ]0,1] implies that Ax 4+ (1 — M)y € C.

Definition 1.1 A mapping f : C — IR is called quasiconvex on the convex set C' if

fOz+ (1 =Ny) <max{f(z), f(y)} forallz,ye C and X € [0, 1].

This class of functions strictly contains the class of convex functions defined on a convex set in a real
linear space. See [8] and citations therein for an overview of this issue.

Some recent studies have shown that quasiconvex functions have quite close resemblances to convex
functions — see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex
functions in the context of Hadamard’s pair of inequalities. Apart from generalizations to theory, weakening
the convexity condition can increase applicability. Thus in [9] use is made of quasiconvexity to obtain a
global extremum with rather less effort than via convexity. In this article we pursue the concept further
and derive a number of Jensen—type inequalities for quasiconvex functions. See also [5] for functions of
Godunova—Levin type in the context of Jensen’s inequality.

2 Preliminaries

For an arbitrary mapping f : C' — IR and z,y two fixed elements in C, we can define the map g, , :
[0,1] = IR by g4 ,(t) = f(tx + (1 —t)y). This provides a characterization of quasiconvexity.

Proposition 2.1 The following statements are equivalent:
(i) f is quasiconvex on C;
(it) for every x,y € C, the mapping gy, is quasiconvex on [0, 1].

Proof. Suppose (i) holds. Let t1,t2 € [0,1] and ay, s > 0 with oy + @ = 1. Then

2 2 2
G,y (Z aiti> f <Z otiz + |1 — Z aiti] y)
1=1 =1 =1

2
f (2; o [tix + (1 tz)y]> < max [f (tiw + (1= t)y)] = max {g. ()},
which shows that the mapping g, , is quasiconvex on [0, 1].

For the reverse implication, suppose (ii) holds. Then

[z + (1 =1)y) = gay(t) = oy (1 = 1).0 + £.1) < max{ge(0), ga 4 (1)} = max {f(z), f(y)},

which shows that f is quasiconvex on C. O



Proposition 2.2 Suppose that ¢y, is quasiconvexr on [0,1] for k =1,...,n. Then maxi<g<n @i S quasi-
convex on [0, 1].

Proof. Let t1,t2 € [0,1] and a1, a2 > 0 with a1 + ag = 1. Put ¢(t) = maxi<k<n ¢x(¢). Then

= < R p— .
Planty +aztz) = max on(aaty + aztz) < tpax max oy (h) = oy max. du(ti) = max olt),

establishing the quasiconvexity of ¢. O

Lemma 2.3 If ¢ is quasiconvez on [0,1] and ¢(t) = ¢(1 —t) for all t € [0,1], then ¢(t) > ¢(1/2) for all
t € 0,1].

Proof. From the given conditions, for each ¢ € [0, 1],

¢(t) = max[p(t), o(1 — )] = ¢ ((1/2)(t + (1 = 1))) = ¢(1/2). U

For a given mapping f : C — IR we may also define a map Gy : C? — R by Gy(z,y) = f(tx + (1 —1t)y)
for fixed t € [0,1]. Again we have a characterization of quasiconvexity.

Proposition 2.4 We have the following:
(i) if f is quasiconvex on C, then Gy is quasiconvex on C? for all t € [0,1];
(ii) if C is a cone in X and Gy is quasiconvex on C? ¥Vt € (0,1), then f is quasiconvex on C.

Proof. (i) Fix t € [0,1] and let (z,y), (,u) € C?. Then for all X € [0,1]

Gi(AM(z,y) + (1 = AN)(z,u)) = Gf(/\:r + A =Nz y+ (1= MNu)
[tz + (1 =A)z]+ (1 =) [Ay + (1= A)u))
Stz + (1 =)y) + (L= Atz + (1 = t)u))
< maX{f(tff + (1 =t)y), f(tz+ (1 — t)u)} = max{G(z,y), Ge(2,u)},

which shows that G; is quasiconvex on C?.

(ii) Let z,y € C and t € (0,1). If C' is a cone in X, that is, C+C C C and aC C C for all & > 0, then
t~tz, (1—-t)"ly € C and (t1x,0), (0,(1 —t)~ty) € C%. On the other hand, since G is quasiconvex on
C?, we have

flte + (1 =1t)y) Gi(z,y)
Gy (t(t'2,0) + (1 —1)(0,(1 - t)_ly))

< max{G (t7'2,0),G (0,(1 —t)"'y) } = max{f(z), f(y)}

for all t € (0,1). The inequality holds also for t = 0, 1, so the proposition is proved. O

3 Jensen’s inequality

Hereafter z; € C (i =1,...,n). We assume p; > 0 (1 <i <n) and define P, = Z?:l ;.

Theorem 3.1 If f is quasiconvex, then

f (;n ;pﬁm) < max{f <Pn1—1 szxz> s J(@n }
< max {f (Pl ; sz$z> 7f($n—1)af($n)}
nTE =1

<...< max{f (W> ,f(xg),,f(xn)} < rilzix fz).

p1+ P2



Proof. We employ induction on n. The case n = 1 provides a trivial basis. Assume that the stated
inequality holds for n =1,...,k (k > 1). By quasiconvexity and the inductive assumption

s P 1 & ’
x| = ko — 1 DRAL
f ( Zp,xz> f (Pk+1 Py, 2y Pt xk“)

P
k+1 55 i—1

L&
< max{f (Pk me) 7f(9«"k+1)}
=1 1 -
< max {max {f (Pkl szxl> ,f(xk)} 7f(l’k+1)}
< o<max{ max (f(@)} ()}

This may be written as the result of the theorem with n = k+1, giving the inductive step and so completing
the proof. 0

Corollary 3.2 For f quasiconvex

1 < . Pin®i + ...+ Pi, T,
— i; | < min { max - , J (g ,
f<P” ;pz 1) N { {f< e ) A ’”’)}}

where the minimum is over all distinct i1,...,i, € {1,...,n}.

In particular, we have the following for the unweighted case.

Corollary 3.3 For f quasiconver
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where the minimum is over the same domain as in the previous corollary.
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We now consider the mapping n given by n(I,p,x, f) = max;er{f(x;)} — f(P% Yicr piaci) . Here
I € Py(IN), the collection of finite sets of natural numbers, p = (p;)ie; with each p; > 0and Py := >, pi,
and x = (x;);es; with each z; € C.

Theorem 3.4 For f quasiconvex,
(i) the mapping n(I,-,x, f) is quasi-superadditive;
(ii) the mapping n(-, p, X, f) is quasi-superadditive as an index set mapping on Py(IN).

Proof (i) Let p,q > 0 with P;,Q; > 0 (I € P¢(IN)). Then

1
nl,p+a,x,f) = r?ea}({f(xi)} - f (M ;(pz + qz)%)

_ )} — T o PPN S o P
- I?ealx{f(xz)} f (PI+QI PI ie] Dix; + P]+Q1 QI ie[ Qsz>
1 1
= r?ea;({f(xi)}—max{f (PI ;ejpixz) f (QI ;EI (szﬂz>} (1)



Since max{a,b} = (1/2)[a + b + |a — b|] for (a,b € IR), we have from the definition of n that the last
maximum in (1) can be written as

% [2%121)({]“(331)} —U(I,p,x,f) _"7([7q7xvf) - In(I7p>Xaf) _n(Iaq7X7f)|:|'

Because min{a,b} = (1/2)[a + b — |a — b|]] for a,b € IR, we thus have n(I,p + q,x,f) >
min{n(I,p,x, f),n(I,q,x, )}, which establishes part (i).

For (ii), let I, J € Py(IN) with I N J = () and suppose p > 0 with P;, P; > 0. Then

n(lUJ,p,x, f)
1
= mc{f(e)} - 1 (p 2 p)
eluJ

Pr 1 Py 1
max{ I?glx{f(xz)},r]nea}({f(m])}} f PP, P iezfper PP, P ;}Pﬂ?y

< & [ max{ (i)} + max{f(z;)} + | max{f(z.)} - max{f(e.)}|
— max f ([]; ZpﬁLQ) ,f Pi ij(ﬂj
I ier T jes
= § [ max{ ()} + max{£())} + [ max(F(@)} — max{f(x)}]
—3 [ max{f(z:)} +max{f(z;)} = n(L,p,x, [) = n(/p.x. [) = Inl,p.2, f) = (.., f)l}
= 5[t ) 400 = I £ =0 D] + 3 [ a0} - ma o)}
2 min{n(‘[apvxv f)vn(Japvxv f)}v
and we are done. (]

4 Two mappings associated with Jensen’s inequality

Suppose z;,y; € Cfori=1,...,nand j=1,...,m and 0, ; = 6, ;(t) = tx; + (1 — t)y;. In what follows,
the mappings H, F : [0,1] — IR are given by
H(t) = max max f(6;;), F(t)=max{H(t),H(1—1t)}.

1<i<n 1<j<m

Theorem 4.1 For f quasiconvex,
(i) H,F are quasiconvez on [0,1];
(ii) F(t) = F(1 —t) fort e [0,1];
(ii) F(1/2) < F(t) < F(0) = F(1) fort € [0,1].

Proof Part (i) follows from Propositions 2.1 and 2.2 and part (ii) from the definition of F. The first
inequality in (iii) derives from part (ii) and Lemma 2.3. The remainder of (iii) is a consequence of (ii) and
the quasiconvexity of F. (]

Put p := (1/P,) > ;. piz;. In the special case m = 1 and y; = p we write H = Hy and F = F.
In the special case m = n and y; = z; (i = 1,...,n), we write H = H; and F = F;. These mappings
were introduced by Dragomir in the case of f convex but have more general applicability. For notational
convenience we rebadge the corresponding forms of 6; ; as

Yi(t) =t + (1 —t)p  and 1 ;(t) = ta; + (1 — t)z;.

Theorem 4.2 For f quasiconvex and t € [0,1], we have
(a) Ho(0) < Holt) < Ho(1);



(b) f(u) < Fi(1/2) < Fi(t) < Fi(1) = maxi<i<n f2;);
(¢) Fi(t) > Fo(t).

Proof The outermost inequality of Theorem 3.1 may be written f(p) < maxi<;<n f(2;), so by the
definition of Hy and the quasiconvexity of f

Ho(t) < max max {f(z;), f(u)} = maX{lrgan{f(fEi)},f(u)} — max f(x),

1<i<n 1<i<n

whence we deduce the second inequality in (a).

The outermost inequality of Theorem 3.1 gives also that

Ho(t) = maxf&bl ) > f < ZPZ¢Z> .

Since Y- | pithi = >+, pi;, this provides Hy(t) > f(u), whence the first inequality in (a).

From Theorem 3.1, we have successively

Fi(1/2) = max max < )

1<j<n 1<i<n

" T; +T;
> KBRS
w7 20 (57))
:1<J<n < szxﬂ_m])
s s e ) 2 (S
el 2Pn jilpj Pn pat pi%; -T] Pn P Di%q

giving the first inequality in (b). Further, F(t) < maxi<; j<, max{f(z;), f(z;)} = maxi<,<, f(z;) for all
t € [0,1], from which we have the rest of (b). Again by Theorem 3.1,

Hy(t) = max f(i;) = max f %Zpﬂbi’j < max max f(¢; ;) = Fi(t)
no

1<i<n 1<i<n 1<i<n 1<j<n

for all ¢ € [0,1]. Since Fy(t) = Fy(1 —t), we have also Hy(1 —t) < Fy(t), so (c) holds. O

5 Further related maps
Some further maps on [0, 1] intimately related to Hy, Fy are K(t) := (1/P,) > i, pif (¢:),

n
== T(t t) := —
P2 ZZ: pip; | wl] Zpl 11232( J (W j) Wi(t) 1r<nja<xn ZI% U’zg
The mappings K and L were introduced (with different notation) in [1] and their properties studied in
the case where f is convex. See also [2, 3]. These mappings provided useful interpolations of Jensen’s
discrete inequality. Their behaviour in the convex context is similar to that of Hy and F} respectively of
the previous section. The present context is more subtle in that a sum of quasiconvex functions need not

be quasiconvex.

Remark 5.1 We have from the definitions that for all t € [0, 1]



Proposition 5.2 For f quasiconver

K(t) < min{H(t) T(t)} foralltel0,1] and (2)

K(t)ﬁ% l HZ]% zi) + f(p sz|f ;) ()]
T (3)
<3 E;pif(xi)+lr£]ax 2P sz (2:) = max f(z;)] < max f(z;).

Proof. From Theorem 3.1 we have for ¢ € [0,1] that f ( Z;L 1P, ]> < maxi<j<n f(¥i,;), so that

;n;pif Zm}” spfg-lglagfwm ().

On the other hand, from its definition, K (¢) < maxi<i<n f(y;) = H(t) for all ¢ € [0,1]. Taken together,
these two results yield (2).

Also, by the definitions of quasiconvexity and K (t),

K@) < pinzmmax{f(xi),f(u)}

- fzpl S U@ + 700 + 17 () — F)] ]
- :l5 sz () + f(u me ()l

which provides the first inequality in (3). For the remainder of (3), Theorem 3.1 provides

pizpimax{f(%)»f(u)} < ;ZpimaX{ z), max }
" i=1 no=

1
=5 |5 Zpl ;) + max fl’] 2P Zpl (z;) — mja<xnf(:rj)
1 n
<—S'p )= Y.
<& Z;pz ax f(z;) = max f(z;) O
Proposition 5.3 For all t € [0, 1], we have L(t) < W(t) and
< o sz z Pig Z pipj‘f('ri) - (xj)| < 1rilla‘<xnf(zl) (4)

1<i<j<n

Proof. The first inequality is provided by
1 n
0= 35 32 mttvi) = 3 o (3 o)) = e { 3 st
1,7 1= 1=

Quasiconvexity yields f(v; ;) < max{f(x;), f(z;)} for all ¢,j € {1,...,n} and ¢ € [0,1]. Multiplying by
pip; and summation over ¢, yields

Lit) < % > pipj max{f(z;), f(x;)}
=1
Ly S ) S )
nogi=1
111 1 <&
= 5 P2 Z pzpj ) +f($J + P2 Z pipj|f(xi) — f(:rj)| ,
i,j=1 nog5=1



which equals the right-hand side of the first inequality in (4).

Since max{ f(z;), f(z;)} < maxi<g<n f(xy) for all i, € {1,2,...,n}, we have

Z pipj max{ f(x;), f(x;)} < P2 Z pip; max f(wy),

i3 - 1<k<n
1,j=1 1,j=1

which equals the right—hand side of the second inequality in (4). The proposition is proved. O

Proposition 5.4 For all t € [0,1], we have T(t) < F(t) and

T(t) < % [ sz zi) + max f ;) Zpl Jpex | f (@) = f(z5)],
wi(t) < % l Zpl x;) + ma<x fxy) +§1< ax, {Ji sz|f($z) —f(l"])|}
n i=1 ™i=1

Proof. From the definition of T', we have for ¢ € [0, 1] that

< —
T(t) < max max f(i;) = max f(vi;),

whence the first inequality follows. Again by quasiconvexity

e f(01s) < ma { 3150+ flp) + 1) — 1(o)1

1<j<n 1<j<n

< E |:f(33i) + max f(z;) + gjagxnlf(xi) - f(mj)l] :

2 1<5<

Multiplying by p; and summation over i yields the second inequality. Similarly quasiconvexity supplies
for all j € {1,...,n} and ¢ € [0, 1] that

LS nd W) € S m sl + fa) + |F) — fa)]
™ i=1 PuiH

1
< 5 sz L Jrij sz|f 1'2 )|] .
Taking the maximum over j provides the third and final inequality. O

6 Refinements of Jensen’s inequality for quasiconvex functions

We begin by extending Theorem 3.1 to multisums. The following elementary lemma is useful.

Lemma 6.1 Let K be a positive integer and 01,02, -+ ,0x real numbers. Real numbers p1,...,px are
defined by p; = 110; + 10041 + -+ + T Ok, where we interpret ooy = op. If 2511 re = 1, then

K K
Ze:1 pe = 25:1 Og.

Lemma 6.2 Suppose z;, i € C, piy... i >0 foriy, ... i € {1,2,...,n}. For f is quasiconvex

n
f (Zzh ;zk 1 i1, ik i, ,Zk> < max f(l‘il,,,,,ik>-

. . ; ; <i1,enik, <
Zzl,...,zkzlpllamﬂk 1<iy,..ip<n

Proof. The vectors in C' may be relabelled by positive integers via

1 = T1,1,...,1,1, L2 =T21,...,1,1s-++yLpk—_1 = Tnn,...nn—-15 Lnk = Tpn,..nn



with a similar relabelling for p;, . ;. . The relation in the enunciation then becomes

f (Z?”m) < max f(r),

;le pe ) T 1St<n

which holds by virtue of Theorem 3.1. O

Theorem 6.3 Suppose f is quasiconvex. Let

Yk = Y1k(Tiy Tig, oy i) = (k) [wsy, + @iy + ...+ 2] and  ag = max Fyik)-

1<iy,i2,.., ik <N
Then the sequence (ak)r>1 is nonincreasing and bounded below by f(u).
Proof. Take z;, i, .. i, = Y1, in Lemma 6.2. The convexity of C' ensures that z;, ;, .., € C. Then for

each k > 1, Lemma 6.2 gives

n

i ip=1Di '.'pl'yl,k}

f Zzl,ﬁ..,lk 1 ik S . (5)
Zi1v~~7ik:1 Piy -+ - Piy,

Easy inductions on k provide
n n n
Z i ---pi, = Py and Z Pir - Py = P! Zpiwu
i1y =1 i1yereyin=1 i=1
so the left-hand side of (5) reduces to the required lower bound.

Put oy =2, (1 <€ <k+1)in Lemma 6.1 with K = k+1andr; =1/kfor1 <i<kandryy; =0. We
may extend the definition of y; ; to yer for 1 < ¢ < k+1 by setting ¢ = pe. The condition Zle rp=1
holds, so Z]ZLI Yo = Z]Z;rll x;, and by Theorem 3.1

Jirsr) = f ((k + D) e+ yk+1,k]) < 15122(“ flye.r)

Taking the maximum yields

apr1 < max max k) ¢ = max max k) -
+ 1<iy, . yigg1<n (1<€<k+1 f(y ) 1<e<k+1 ISil,u-,ikﬂSnf(y’ )

By symmetry, each of the inner maxima takes the value maxi<;, . i,<n{f(¥1,6)} = ag, so we have
ap+1 < ag, and we are done. O

We may also derive a weighted refinement of Jensen’s inequality for quasiconvex mappings.
Theorem 6.4 Suppose f is quasiconver and ¢; > 0 (1 < j <k) with Q) = Zle g; > 0. Define

zip = (1/Qr) (quws, + ...+ qrwyy,)  and by, = max f(z1,k)-

1<y i, ik <n

Then f(p) < ar < by < maxi<i<p f(x;).

Proof. We have just established the first inequality. For the second, take K = k in Lemma 6.1 with
o¢ = z;, and define 7y = q;/Qr. We extend the definition of z1 1 to zp for 1 < ¢ < k by 2z, = pe. Then

St re=1and so y1x = (1/k) Xb_, @i, = (1/k) X4_; zek- Thus

k
Flyre) = F(U/R) Y zen) < max f(ze)-
{=1 -

k

Taking maxima provides

ar < max { max f(zf,k)v} = max _ f(z1x) = b,

TGt Sn [ 1<6<k 1<iy,..ik<n
by symmetry, and we have the second inequality.

Finally, by quasiconvexity f(z1%) < max{f(x;),...,f(z;)}. Taking maxima yields by <
maxi<i,...i.<nimaxi<e<i f(z;,)} = maxi<;<k f(z;) and we are done. O



7 Associated sequences of mappings

We introduce a sequence of mappings LL?H] :[0,1] — IR defined by
LI+ ) = oo max Lyt (L=t )

Si1yelk+1 <

Theorem 7.1 For f quasiconvexz, L%c s quasiconvez on [0,1] with

[k+1] )
ap+1 < LIFH(#) < 1rélia§xnf(mz), (6)

n

arir = LEF (k) (b + 1)) < L) < LEF(0) = max f(,).

Proof. Quasiconvexity is immediate from Proposition 2.2. Now put
wig =ty e+ 1 =0z, and wep=tyer+ (1 —t)r;,_, for2<l<k+1.
Then Zi:ll Weg = Z]Z;l Zi, = Y1 k+1, while by Theorem 3.1

f ((k + 1) [wlvk + W2k + ...+ wk+1,k]) < 1§%1§,§+1f(w47k).

Hence f(y1,64+1) < maxi<s<g+1 f(wer) for all ¢ € [0,1]. Taking maxima yields

a1 g1 < max max fl(wig)e = max flwk
okt 1<ty oipg1<n | 1<j<k+1 (wjk) 1<i1 i s1<n (Wrk),

by symmetry. This gives the first inequality in (6).
The quasiconvexity of f provides f(wi ) < max{f(yix), f(2i,.,,)}. Taking maxima gives

Lgﬁ'l] (t) < max - {maX {f(yuw f($lk+1)}}

1<ig,yipt1

max { max f(yl,k)7 max f(‘rikJrl )}

1<iy, . igr1<n 1<iy,.yigr1<n

1§i1,...,ik§n STS

= max{ max  f(y1,k), 1r£1a<xnf(xz)} .

By Theorem 6.3, f(y1,x) < maxi<i<n f(;), whence we derive the second inequality in (6). The remaining
inequalities follow directly. O

Remark 7.2. For k = 1 we recover the mapping LE} (t) = maxi<i, iy<n [(Viy,in) = MaXi<; j<n f(¥ij) =

F1(t) studied in Section 4.

Define up = ug (i, ) Tiy) by ux = (T4, + ... + x4,,)/k. A further sequence of mappings

ol [0,1] = IR (k > 1) associated with a quasiconvex f is given by
FPH@) = max _ f(tyrs+ (1 - t)uy)

1<idy,..i2k<n

where again each z; € C' (1 <i<n)and k > 1.

Theorem 7.3 For f quasiconvex

(i) FPH s quasiconvez on [0, 1];

(it) FP(1 — ) = FPM() for all t € [0,1);
(#i3) we have for all t € [0, 1] the bounds

FRH(1) < FI2K(0) = FP¥(1) = ap  and  F2(t) > FRH(1/2) = ag.

Proof. The proof follows familiar lines. We address only the pair of inequalities aj > ka] (t) > agk. By
quasiconvexity, f(ty1r + (1 —t)ur) < max{f(yix), f(ux)}. Taking maxima yields
max _ f(tyie+ (1 —tue) < max _ {max {f(yik), f(ur)}}

1<iy,. ..y <0 1<iy,..,i2g <n

— wa{ e (7n) max ()}

lSil,...,ingn 1§11,...,i2k§n

= max =a
v X Fe) = ax,



which proves the first inequality. By the symmetry and quasiconvexity of F,[l%],

FIR(t) = maox { F2H (1), FP (1= 1)} > B9 ((1/2)f + (1 - 6)]) = F9 (1/2) = oy
and the second is proved. O
Finally, we consider for ¢ € [0,1] the mappings ol (t) == maxi<i,,..ip<n f(ty1e + (1 —t)ug).

Theorem 7.4 The mapping a7 s quasiconvez on [0,1] with

f(:u’) = H7[1k] (0) S H’r[Lk] (t) S max f(tyl,k + (1 - t)xik+l) = L%H_l] (t)7 (7)

1<iy,..ig+1<n

ar, = HF(1) > HIF (). (8)

Proof. Quasiconvexity is immediate. By Lemma 6.2,
1
HIW > f | 5p D pi--pi s+ (L=t | = f()
" 1<iy,...,ig<n

and the first two relations in (7) are established. For the rest, observe that

1 n
k _
H7[L ](t) B 1§i1rf-1i§k§n / Fn ) Z lpik+1 (tyl’k +(1 - t)xik+l)
Te+1=

max max {f (tyl’k +(1- t)xik+1)}} — Lgfﬂ] (t).

1<iy, ik <n {léikHSn

By the quasiconvexity of f, we have f (ty1 5 + (1 —t)p) < max{f(y1x), f (1)}, so

HP@) < max  {max{f(y1x). f (1)}}
1<iy,...,ix<n
= ma{_max ). S0 | = max_ Fna) =
and (8) is proved. O
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