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1 Introduction

Throughout this paper X denotes a real linear space and C ⊆ X a convex set, so that x, y ∈ C with
λ ∈ [0, 1] implies that λx+ (1− λ)y ∈ C.

Definition 1.1 A mapping f : C → IR is called quasiconvex on the convex set C if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} for all x, y ∈ C and λ ∈ [0, 1].

This class of functions strictly contains the class of convex functions defined on a convex set in a real
linear space. See [8] and citations therein for an overview of this issue.

Some recent studies have shown that quasiconvex functions have quite close resemblances to convex
functions – see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex
functions in the context of Hadamard’s pair of inequalities. Apart from generalizations to theory, weakening
the convexity condition can increase applicability. Thus in [9] use is made of quasiconvexity to obtain a
global extremum with rather less effort than via convexity. In this article we pursue the concept further
and derive a number of Jensen–type inequalities for quasiconvex functions. See also [5] for functions of
Godunova–Levin type in the context of Jensen’s inequality.

2 Preliminaries

For an arbitrary mapping f : C → IR and x, y two fixed elements in C, we can define the map gx,y :
[0, 1] → IR by gx,y(t) = f(tx+ (1− t)y). This provides a characterization of quasiconvexity.

Proposition 2.1 The following statements are equivalent:
(i) f is quasiconvex on C;
(ii) for every x, y ∈ C, the mapping gx,y is quasiconvex on [0, 1].

Proof. Suppose (i) holds. Let t1, t2 ∈ [0, 1] and α1, α2 ≥ 0 with α1 + α2 = 1. Then

gx,y

(
2∑

i=1

αiti

)
= f

(
2∑

i=1

αitix+

[
1−

2∑
i=1

αiti

]
y

)

= f

(
2∑

i=1

αi [tix+ (1− ti)y]

)
≤ max

i=1,2
[f (tix+ (1− ti)y)] = max

i=1,2
{gx,y(ti)} ,

which shows that the mapping gx,y is quasiconvex on [0, 1].

For the reverse implication, suppose (ii) holds. Then

f(tx+ (1− t)y) = gx,y(t) = gx,y((1− t).0 + t.1) ≤ max {gx,y(0), gx,y(1)} = max {f(x), f(y)} ,

which shows that f is quasiconvex on C. �
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Proposition 2.2 Suppose that φk is quasiconvex on [0, 1] for k = 1, . . . , n. Then max1≤k≤n φk is quasi-
convex on [0, 1].

Proof. Let t1, t2 ∈ [0, 1] and α1, α2 ≥ 0 with α1 + α2 = 1. Put φ(t) = max1≤k≤n φk(t). Then

φ(α1t1 + α2t2) = max
1≤k≤n

φk(α1t1 + α2t2) ≤ max
1≤k≤n

max
i=1,2

φk(ti) = max
i=1,2

max
1≤k≤n

φk(ti) = max
i=1,2

φ(ti),

establishing the quasiconvexity of φ. �

Lemma 2.3 If φ is quasiconvex on [0, 1] and φ(t) = φ(1− t) for all t ∈ [0, 1], then φ(t) ≥ φ(1/2) for all
t ∈ [0, 1].

Proof. From the given conditions, for each t ∈ [0, 1],
φ(t) = max [φ(t), φ(1− t)] ≥ φ ((1/2)(t+ (1− t))) = φ(1/2). �

For a given mapping f : C → IR we may also define a map Gt : C2 → IR by Gt(x, y) = f(tx+(1− t)y)
for fixed t ∈ [0, 1]. Again we have a characterization of quasiconvexity.

Proposition 2.4 We have the following:
(i) if f is quasiconvex on C, then Gt is quasiconvex on C2 for all t ∈ [0, 1];
(ii) if C is a cone in X and Gt is quasiconvex on C2 ∀t ∈ (0, 1), then f is quasiconvex on C.

Proof. (i) Fix t ∈ [0, 1] and let (x, y), (z, u) ∈ C2. Then for all λ ∈ [0, 1]

Gt(λ(x, y) + (1− λ)(z, u)) = Gt(λx+ (1− λ)z, λy + (1− λ)u)
= f(t[λx+ (1− λ)z] + (1− t)[λy + (1− λ)u])
= f(λ(tx+ (1− t)y) + (1− λ)(tz + (1− t)u))
≤ max{f(tx+ (1− t)y), f(tz + (1− t)u)} = max{Gt(x, y), Gt(z, u)},

which shows that Gt is quasiconvex on C2.

(ii) Let x, y ∈ C and t ∈ (0, 1). If C is a cone in X, that is, C+C ⊆ C and αC ⊆ C for all α ≥ 0, then
t−1x, (1− t)−1y ∈ C and (t−1x, 0), (0, (1− t)−1y) ∈ C2. On the other hand, since Gt is quasiconvex on
C2, we have

f(tx+ (1− t)y) = Gt(x, y)
= Gt

(
t
(
t−1x, 0

)
+ (1− t)

(
0, (1− t)−1y

))
≤ max

{
Gt

(
t−1x, 0

)
, Gt

(
0, (1− t)−1y

)}
= max{f(x), f(y)}

for all t ∈ (0, 1). The inequality holds also for t = 0, 1, so the proposition is proved. �

3 Jensen’s inequality

Hereafter xi ∈ C (i = 1, . . . , n). We assume pi > 0 (1 ≤ i ≤ n) and define Pn =
∑n

i=1 pi.

Theorem 3.1 If f is quasiconvex, then

f

(
1
Pn

n∑
i=1

pixi

)
≤ max

{
f

(
1

Pn−1

n−1∑
i=1

pixi

)
, f(xn)

}

≤ max

{
f

(
1

Pn−2

n−2∑
i=1

pixi

)
, f(xn−1), f(xn)

}

≤ . . . ≤ max
{
f

(
p1x2 + p2x2

p1 + p2

)
, f(x3), . . . , f(xn)

}
≤ max

1≤i≤n
f(xi).
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Proof. We employ induction on n. The case n = 1 provides a trivial basis. Assume that the stated
inequality holds for n = 1, . . . , k (k ≥ 1). By quasiconvexity and the inductive assumption

f

(
1

Pk+1

k+1∑
i=1

pixi

)
= f

(
Pk

Pk+1
· 1
Pk

k∑
i=1

pixi +
pk+1

Pk+1
xk+1

)

≤ max

{
f

(
1
Pk

k∑
i=1

pixi

)
, f(xk+1)

}

≤ max

{
max

{
f

(
1

Pk−1

k−1∑
i=1

pixi

)
, f(xk)

}
, f(xk+1)

}
≤ . . . ≤ max

{
max
1≤i≤k

{f(xi)}, f(xk+1)
}
.

This may be written as the result of the theorem with n = k+1, giving the inductive step and so completing
the proof. �

Corollary 3.2 For f quasiconvex

f

(
1
Pn

n∑
i=1

pixi

)
≤ min

{
max

{
f

(
pi1xi + . . .+ pin−1xin−1

pi1 + . . .+ pin−1

)
, f(xin)

}}
,

where the minimum is over all distinct i1, . . . , in ∈ {1, . . . , n}.

In particular, we have the following for the unweighted case.

Corollary 3.3 For f quasiconvex

f

(
x1 + . . .+ xn

n

)
≤ max

{
f

(
x1 + . . .+ xn−1

n− 1

)
, f(xn)

}
≤ max

{
f

(
x1 + . . .+ xn−2

n− 2

)
, f(xn−1), f(xn)

}
≤ . . .

≤ max
{
f

(
x1 + x2

2

)
, f(x3), . . . , f(xn)

}
≤ max{f(x1), . . . , f(xn)}

and

f

(
x1 + . . .+ xn

n

)
≤ min

{
max

{
f

(
xi1 + . . .+ xin−1

n− 1

)
, f(xin

)
}}

,

where the minimum is over the same domain as in the previous corollary.

We now consider the mapping η given by η(I,p,x, f) = maxi∈I{f(xi)} − f
(

1
PI

∑
i∈I pixi

)
. Here

I ∈ Pf (IN), the collection of finite sets of natural numbers, p = (pi)i∈I with each pi > 0 and PI :=
∑

i∈I pi,
and x = (xi)i∈I with each xi ∈ C.

Theorem 3.4 For f quasiconvex,
(i) the mapping η(I, ·,x, f) is quasi-superadditive;
(ii) the mapping η(·,p,x, f) is quasi-superadditive as an index set mapping on Pf (IN).

Proof (i) Let p,q > 0 with PI , QI > 0 (I ∈ Pf (IN)). Then

η(I,p + q,x, f) = max
i∈I

{f(xi)} − f

(
1

PI +QI

∑
i∈I

(pi + qi)xi

)

= max
i∈I

{f(xi)} − f

(
PI

PI +QI
· 1
PI

∑
i∈I

pixi +
QI

PI +QI
· 1
QI

∑
i∈I

qixi

)

≥ max
i∈I

{f(xi)} −max

{
f

(
1
PI

∑
i∈I

pixi

)
, f

(
1
QI

∑
i∈I

qixi

)}
. (1)
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Since max{a, b} = (1/2)[a + b + |a − b|] for (a, b ∈ IR), we have from the definition of η that the last
maximum in (1) can be written as

1
2

[
2 max

i∈I
{f(xi)} − η(I,p,x, f)− η(I,q,x, f)− |η(I,p,x, f)− η(I,q,x, f)|

]
.

Because min{a, b} = (1/2)[a + b − |a − b|] for a, b ∈ IR, we thus have η(I,p + q,x, f) ≥
min{η(I,p,x, f), η(I,q,x, f)}, which establishes part (i).

For (ii), let I, J ∈ Pf (IN) with I ∩ J = ∅ and suppose p > 0 with PI , PJ > 0. Then

η(I ∪ J,p,x, f)

= max
i∈I∪J

{f(xi)} − f

(
1

PI∪J

∑
i∈I∪J

pixi

)

= max
{

max
i∈I

{f(xi)},max
j∈J

{f(xj)}
}
− f

 PI

PI + PJ
· 1
PI

∑
i∈I

pixi +
PJ

PI + PJ
· 1
PJ

∑
j∈J

pjxj


≤ 1

2

[
max
i∈I

{f(xi)}+ max
j∈J

{f(xj)}+
∣∣∣max

i∈I
{f(xi)} −max

j∈J
{f(xJ)}

∣∣∣]
− max

f
(

1
PI

∑
i∈I

pixi

)
, f

 1
PJ

∑
j∈J

pjxj


= 1

2

[
max
i∈I

{f(xi)}+ max
j∈J

{f(xj)}+
∣∣∣max

i∈I
{f(xi)} −max

j∈J
{f(xj)}

∣∣∣]
− 1

2

[
max
i∈I

{f(xi)}+ max
j∈J

{f(xj)} − η(I, p, x, f)− η(J, p, x, f)− |η(I, p, x, f)− η(J, p, x, f)|
]

=
1
2

[
η(I, p, x, f) + η(J, p, x, f)− |η(I, p, x, f)− η(J, p, x, f)|

]
+ 1

2

∣∣∣max
i∈I

{f(xi)} −max
j∈I

{f(xj)}
∣∣∣

≥ min{η(I, p, x, f), η(J, p, x, f)},

and we are done. �

4 Two mappings associated with Jensen’s inequality

Suppose xi, yj ∈ C for i = 1, . . . , n and j = 1, . . . ,m and θi,j = θi,j(t) = txi + (1− t)yj . In what follows,
the mappings H,F : [0, 1] → IR are given by

H(t) = max
1≤i≤n

max
1≤j≤m

f(θi,j), F(t) = max{H(t),H(1− t)}.

Theorem 4.1 For f quasiconvex,
(i) H,F are quasiconvex on [0, 1];
(ii) F(t) = F(1− t) for t ∈ [0, 1];
(iii) F(1/2) ≤ F(t) ≤ F(0) = F(1) for t ∈ [0, 1].

Proof Part (i) follows from Propositions 2.1 and 2.2 and part (ii) from the definition of F . The first
inequality in (iii) derives from part (ii) and Lemma 2.3. The remainder of (iii) is a consequence of (ii) and
the quasiconvexity of F . �

Put µ := (1/Pn)
∑n

i=i pixi. In the special case m = 1 and y1 = µ we write H = H0 and F = F0.
In the special case m = n and yi = xi (i = 1, . . . , n), we write H = H1 and F = F1. These mappings
were introduced by Dragomir in the case of f convex but have more general applicability. For notational
convenience we rebadge the corresponding forms of θi,j as

ψi(t) = txi + (1− t)µ and ψi,j(t) = txi + (1− t)xj .

Theorem 4.2 For f quasiconvex and t ∈ [0, 1], we have
(a) H0(0) ≤ H0(t) ≤ H0(1);
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(b) f(µ) ≤ F1(1/2) ≤ F1(t) ≤ F1(1) = max1≤i≤n f(xi);
(c) F1(t) ≥ F0(t).

Proof The outermost inequality of Theorem 3.1 may be written f(µ) ≤ max1≤i≤n f(xi), so by the
definition of H0 and the quasiconvexity of f

H0(t) ≤ max
1≤i≤n

max {f(xi), f(µ)} = max
{

max
1≤i≤n

{f(xi)}, f(µ)
}

= max
1≤i≤n

f(xi),

whence we deduce the second inequality in (a).

The outermost inequality of Theorem 3.1 gives also that

H0(t) = max
i
f(ψi) ≥ f

(
1
Pn

n∑
i=1

piψi

)
.

Since
∑n

i=1 piψi =
∑n

i=1 pixi, this provides H0(t) ≥ f(µ), whence the first inequality in (a).

From Theorem 3.1, we have successively

F1(1/2) = max
1≤j≤n

max
1≤i≤n

f

(
xi + xj

2

)
≥ max

1≤j≤n
f

(
1
Pn

n∑
i=1

pi

(
xi + xj

2

))

= max
1≤j≤n

f

(
1
2

[
1
Pn

n∑
i=1

pixi + xj

])

≥ f

 1
2Pn

n∑
j=1

pj

[
1
Pn

n∑
i=1

pixi + xj

] = f

(
1
Pn

n∑
i=1

pixi

)

giving the first inequality in (b). Further, F1(t) ≤ max1≤i,j≤n max{f(xi), f(xj)} = max1≤i≤n f(xi) for all
t ∈ [0, 1], from which we have the rest of (b). Again by Theorem 3.1,

H0(t) = max
1≤i≤n

f(ψi) = max
1≤i≤n

f

 1
Pn

n∑
j=1

pjψi,j

 ≤ max
1≤i≤n

max
1≤j≤n

f(ψi,j) = F1(t)

for all t ∈ [0, 1]. Since F1(t) = F1(1− t), we have also H0(1− t) ≤ F1(t), so (c) holds. �

5 Further related maps

Some further maps on [0, 1] intimately related to H0, F1 are K(t) := (1/Pn)
∑n

i=1 pif(ψi),

L(t) :=
1
P 2

n

n∑
i,j=1

pipjf(ψi,j), T (t) :=
1
Pn

n∑
i=1

pi max
1≤j≤n

f(ψi,j), W (t) := max
1≤j≤n

1
Pn

n∑
i=1

pif(ψi,j).

The mappings K and L were introduced (with different notation) in [1] and their properties studied in
the case where f is convex. See also [2, 3]. These mappings provided useful interpolations of Jensen’s
discrete inequality. Their behaviour in the convex context is similar to that of H0 and F1 respectively of
the previous section. The present context is more subtle in that a sum of quasiconvex functions need not
be quasiconvex.

Remark 5.1 We have from the definitions that for all t ∈ [0, 1]

W (t) ≤ 1
Pn

n∑
i=1

pi max
1≤j≤n

f(ψi,j) = T (t).
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Proposition 5.2 For f quasiconvex

K(t) ≤ min{H(t), T (t)} for all t ∈ [0, 1] and (2)

K(t) ≤ 1
2

[
1
Pn

n∑
i=1

pif(xi) + f(µ)

]
+

1
2Pn

n∑
i=1

pi |f(xi)− f(µ)|

≤ 1
2

[
1
Pn

n∑
i=1

pif(xi) + max
1≤j≤n

f(xj)

]
+

1
2Pn

n∑
i=1

pi

∣∣∣f(xi)− max
1≤j≤n

f(xj)
∣∣∣ ≤ max

1≤j≤n
f(xj).

(3)

Proof. From Theorem 3.1 we have for t ∈ [0, 1] that f
(

1
Pn

∑n
j=1 pjψi,j

)
≤ max1≤j≤n f(ψi,j), so that

K(t) =
1
Pn

n∑
i=1

pif

 1
Pn

n∑
j=1

pjψi,j

 ≤ 1
Pn

n∑
i=1

pi max
1≤j≤n

f(ψi,j) = T (t).

On the other hand, from its definition, K(t) ≤ max1≤i≤n f(yi) = H(t) for all t ∈ [0, 1]. Taken together,
these two results yield (2).

Also, by the definitions of quasiconvexity and K(t),

K(t) ≤ 1
Pn

n∑
i=1

pi max {f(xi), f(µ)}

=
1
Pn

n∑
i=1

pi ·
1
2

[f(xi) + f(µ) + |f(xi)− f(µ)| ]

=
1
2

[
1
Pn

n∑
i=1

pif(xi) + f(µ)

]
+

1
2Pn

n∑
i=1

pi |f(xi)− f(µ)| ,

which provides the first inequality in (3). For the remainder of (3), Theorem 3.1 provides
1
Pn

n∑
i=1

pi max {f(xi), f(µ)} ≤ 1
Pn

n∑
i=1

pi max
{
f(xi), max

1≤j≤n
f(xj)

}

=
1
2

[
1
Pn

n∑
i=1

pif(xi) + max
1≤j≤n

f(xj)

]
+

1
2Pn

n∑
i=1

pi

∣∣∣∣f(xi)− max
1≤j≤n

f(xj)
∣∣∣∣

≤ 1
Pn

n∑
i=1

pi max
1≤j≤n

f(xj) = max
1≤j≤n

f(xj). �

Proposition 5.3 For all t ∈ [0, 1], we have L(t) ≤W (t) and

L(t) ≤ 1
Pn

n∑
i=1

pif(xi) +
1
P 2

n

∑
1≤i<j≤n

pipj |f(xi)− f(xj)| ≤ max
1≤i≤n

f(xi). (4)

Proof. The first inequality is provided by

L(t) =
1
P 2

n

n∑
i,j=1

pipjf(ψi,j) =
1
Pn

n∑
j=1

pj

(
1
Pn

n∑
i=1

pif(ψi,j)

)
≤ max

1≤j≤n

{
1
Pn

n∑
i=1

pif(ψi,j)

}
.

Quasiconvexity yields f(ψi,j) ≤ max{f(xi), f(xj)} for all i, j ∈ {1, . . . , n} and t ∈ [0, 1]. Multiplying by
pipj and summation over i, j yields

L(t) ≤ 1
P 2

n

n∑
i,j=1

pipj max{f(xi), f(xj)}

=
1
P 2

n

n∑
i,j=1

pipj
f(xi) + f(xj) + |f(xi)− f(xj)|

2

=
1
2

 1
P 2

n

n∑
i,j=1

pipj [f(xi) + f(xj)] +
1
P 2

n

n∑
i,j=1

pipj |f(xi)− f(xj)|

 ,
6



which equals the right–hand side of the first inequality in (4).

Since max{f(xi), f(xj)} ≤ max1≤k≤n f(xk) for all i, j ∈ {1, 2, . . . , n}, we have

1
P 2

n

n∑
i,j=1

pipj max{f(xi), f(xj)} ≤
1
P 2

n

n∑
i,j=1

pipj max
1≤k≤n

f(xk),

which equals the right–hand side of the second inequality in (4). The proposition is proved. �

Proposition 5.4 For all t ∈ [0, 1], we have T (t) ≤ F (t) and

T (t) ≤ 1
2

[
1
Pn

n∑
i=1

pif(xi) + max
1≤i≤n

f(xi)

]
+

1
2

n∑
i=1

pi max
1≤j≤n

|f(xi)− f(xj)|,

W (t) ≤ 1
2

[
1
Pn

n∑
i=1

pif(xi) + max
1≤i≤n

f(xi)

]
+

1
2

max
1≤j≤n

{
1
Pn

n∑
i=1

pi|f(xi)− f(xj)|

}
.

Proof. From the definition of T , we have for t ∈ [0, 1] that

T (t) ≤ max
1≤i≤n

max
1≤j≤n

f(ψi,j) = max
1≤i,j≤n

f(ψi,j),

whence the first inequality follows. Again by quasiconvexity

max
1≤j≤n

f(ψi,j) ≤ max
1≤j≤n

{
1
2
[f(xi) + f(xj) + |f(xi)− f(xj)|

}
≤ 1

2

[
f(xi) + max

1≤j≤n
f(xj) + max

1≤j≤n
|f(xi)− f(xj)|

]
.

Multiplying by pi and summation over i yields the second inequality. Similarly quasiconvexity supplies
for all j ∈ {1, . . . , n} and t ∈ [0, 1] that

1
Pn

n∑
i=1

pif(ψi,j) ≤ 1
Pn

n∑
i=1

pi
1
2
[f(xi + f(xj) + |f(xi)− f(xj)|]

≤ 1
2

[
1
Pn

n∑
i=1

pif(xi) + f(xj) +
1
Pn

n∑
i=1

pi|f(xi)− f(xj)|

]
.

Taking the maximum over j provides the third and final inequality. �

6 Refinements of Jensen’s inequality for quasiconvex functions

We begin by extending Theorem 3.1 to multisums. The following elementary lemma is useful.

Lemma 6.1 Let K be a positive integer and σ1, σ2, · · · , σK real numbers. Real numbers ρ1, . . . , ρK are
defined by ρi = r1σi + r2σi+1 + · · · + rKσi+K , where we interpret σ`+K = σ`. If

∑K
`=1 r` = 1, then∑K

`=1 ρ` =
∑K

`=1 σ`.

Lemma 6.2 Suppose xi1,...,ik
∈ C, pi1,...,ik

> 0 for i1, . . . , ik ∈ {1, 2, . . . , n}. For f is quasiconvex

f

(∑n
i1,...,ik=1 pi1,...,ik

xi1,...,ik∑n
i1,...,ik=1 pi1,...,ik

)
≤ max

1≤i1,...,ik≤n
f(xi1,...,ik

).

Proof. The vectors in C may be relabelled by positive integers via

x1 = x1,1,...,1,1, x2 = x2,1,...,1,1, . . . , xnk−1 = xn,n,...,n,n−1, xnk = xn,n,...,n,n
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with a similar relabelling for pi1,...,ik
. The relation in the enunciation then becomes

f

(∑nk

`=1 p`x`∑nk

`=1 p`

)
≤ max

1≤`≤nk
f(x`),

which holds by virtue of Theorem 3.1. �

Theorem 6.3 Suppose f is quasiconvex. Let

y1,k = y1,k(xi1 , xi2 , . . . , xik
) = (1/k)[xi1 + xi2 + . . .+ xik

] and ak = max
1≤i1,i2,...,ik≤n

f(y1,k).

Then the sequence (ak)k≥1 is nonincreasing and bounded below by f(µ).

Proof. Take xi1,i2,...,ik
= y1,k in Lemma 6.2. The convexity of C ensures that xi1,i2,...,ik

∈ C. Then for
each k ≥ 1, Lemma 6.2 gives

f

(∑n
i1,...,ik=1 pi1 . . . pik

y1,k∑n
i1,...,ik=1 pi1 . . . pik

)
≤ ak. (5)

Easy inductions on k provide
n∑

i1,...,ik=1

pi1 . . . pik
= P k

n and
n∑

i1,...,ik=1

pi1 . . . pik
y1,k = P k−1

n

n∑
i=1

pixi,

so the left–hand side of (5) reduces to the required lower bound.

Put σ` = xi`
(1 ≤ ` ≤ k+1) in Lemma 6.1 with K = k+1 and ri = 1/k for 1 ≤ i ≤ k and rk+1 = 0. We

may extend the definition of y1,k to y`,k for 1 ≤ ` ≤ k+ 1 by setting y`,k = ρ`. The condition
∑K

`=1 r` = 1
holds, so

∑k+1
`=1 y`,k =

∑k+1
`=1 xi`

and by Theorem 3.1

f(y1,k+1) = f
(
(k + 1)−1[y1,k + . . .+ yk+1,k]

)
≤ max

1≤`≤k+1
f(y`,k).

Taking the maximum yields

ak+1 ≤ max
1≤i1,...,ik+1≤n

{
max

1≤`≤k+1
f(y`,k)

}
= max

1≤`≤k+1

{
max

1≤i1,...,ik+1≤n
f(y`,k)

}
.

By symmetry, each of the inner maxima takes the value max1≤i1,...,ik≤n {f(y1,k)} = ak, so we have
ak+1 ≤ ak, and we are done. �

We may also derive a weighted refinement of Jensen’s inequality for quasiconvex mappings.

Theorem 6.4 Suppose f is quasiconvex and qj ≥ 0 (1 ≤ j ≤ k) with Qk =
∑k

j=1 qj > 0. Define

z1,k = (1/Qk) (q1xi1 + . . .+ qkxik
) and bk = max

1≤i1,i2,...,ik≤n
f(z1,k).

Then f(µ) ≤ ak ≤ bk ≤ max1≤i≤n f(xi).

Proof. We have just established the first inequality. For the second, take K = k in Lemma 6.1 with
σ` = xi`

and define r` = q`/Qk. We extend the definition of z1,k to z`,k for 1 ≤ ` ≤ k by z`,k = ρ`. Then∑K
`=1 r` = 1 and so y1,k = (1/k)

∑k
`=1 xi`

= (1/k)
∑k

`=1 z`,k. Thus

f(y1,k) = f((1/k)
k∑

`=1

z`,k) ≤ max
1≤`≤k

f(z`,k).

Taking maxima provides

ak ≤ max
1≤i1,...,ik≤n

{
max

1≤`≤k
f(z`,k),

}
= max

1≤i1,...,ik≤n
f(z1,k) = bk,

by symmetry, and we have the second inequality.

Finally, by quasiconvexity f(z1,k) ≤ max{f(xi1), . . . , f(xik
)}. Taking maxima yields bk ≤

max1≤i1,...,ik≤n{max1≤`≤k f(xi`
)} = max1≤i≤k f(xi) and we are done. �
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7 Associated sequences of mappings

We introduce a sequence of mappings L[k+1]
n : [0, 1] → IR defined by

L[k+1]
n (t) = max

1≤i1,...,ik+1≤n

{
f(ty1,k + (1− t)xik+1)

}
.

Theorem 7.1 For f quasiconvex, L[k+1]
n is quasiconvex on [0, 1] with

ak+1 ≤ L[k+1]
n (t) ≤ max

1≤i≤n
f(xi), (6)

ak+1 = Lk+1
n (k/(k + 1)) ≤ L[k+1]

n (t) ≤ L[k+1]
n (0) = max

1≤i≤n
f(xi).

Proof. Quasiconvexity is immediate from Proposition 2.2. Now put

ω1,k = ty1,k + (1− t)xik+1 and ω`,k = ty`,k + (1− t)xi`−1 for 2 ≤ ` ≤ k + 1.

Then
∑k+1

`=1 ω`,k =
∑k+1

`=1 xi`
= y1,k+1, while by Theorem 3.1

f
(
(k + 1)−1[ω1,k + ω2,k + . . .+ ωk+1,k]

)
≤ max

1≤`≤k+1
f(ω`,k).

Hence f(y1,k+1) ≤ max1≤`≤k+1 f(ω`,k) for all t ∈ [0, 1]. Taking maxima yields

a1,k+1 ≤ max
1≤i1,...,ik+1≤n

{
max

1≤j≤k+1
f(ωj,k)

}
= max

1≤i1,...,ik+1≤n
f(ω1,k),

by symmetry. This gives the first inequality in (6).

The quasiconvexity of f provides f(ω1,k) ≤ max{f(y1,k), f(xik+1)}. Taking maxima gives

L[k+1]
n (t) ≤ max

1≤i1,...,ik+1≤n

{
max

{
f(y1,k, f(xik+1)

}}
= max

{
max

1≤i1,...,ik+1≤n
f(y1,k), max

1≤i1,...,ik+1≤n
f(xik+1)

}
= max

{
max

1≤i1,...,ik≤n
f(y1,k), max

1≤i≤n
f(xi)

}
.

By Theorem 6.3, f(y1,k) ≤ max1≤i≤n f(xi), whence we derive the second inequality in (6). The remaining
inequalities follow directly. �

Remark 7.2. For k = 1 we recover the mapping L[2]
n (t) = max1≤i1,i2≤n f(ψi1,i2) = max1≤i,j≤n f(ψi,j) =

F1(t) studied in Section 4.

Define uk = uk(xik+1 , . . . , xi2k
) by uk = (xik+1 + . . . + xi2k

)/k. A further sequence of mappings
F

[2k]
n : [0, 1] → IR (k ≥ 1) associated with a quasiconvex f is given by

F [2k]
n (t) = max

1≤i1,...,i2k≤n
f (ty1,k + (1− t)uk)

where again each xi ∈ C (1 ≤ i ≤ n) and k ≥ 1.

Theorem 7.3 For f quasiconvex
(i) F [2k]

n is quasiconvex on [0, 1];
(ii) F [2k]

n (1− t) = F
[2k]
n (t) for all t ∈ [0, 1];

(iii) we have for all t ∈ [0, 1] the bounds

F [2k]
n (t) ≤ F [2k]

n (0) = F [2k]
n (1) = ak and F [2k]

n (t) ≥ F [2k]
n (1/2) = a2k.

Proof. The proof follows familiar lines. We address only the pair of inequalities ak ≥ F
[2k]
n (t) ≥ a2k. By

quasiconvexity, f(ty1,k + (1− t)uk) ≤ max {f(y1,k), f(uk)} . Taking maxima yields

max
1≤i1,...,i2k≤n

f(ty1,k + (1− t)uk) ≤ max
1≤i1,...,i2k≤n

{max {f(y1,k), f(uk)}}

= max
{

max
1≤i1,...,i2k≤n

{f(y1,k)} , max
1≤i1,...,i2k≤n

{f(uk)}
}

= max
1≤i1,...,ik≤n

f(y1,k) = ak,
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which proves the first inequality. By the symmetry and quasiconvexity of F [2k]
n ,

F [2k]
n (t) = max

{
F [2k]

n (t), F [2k]
n (1− t)

}
≥ F [2k]

n ((1/2)[t+ (1− t)]) = F [2k] (1/2) = a2k

and the second is proved. �

Finally, we consider for t ∈ [0, 1] the mappings H [k]
n (t) := max1≤i1,...,ik≤n f(ty1,k + (1− t)uk).

Theorem 7.4 The mapping H [k]
n is quasiconvex on [0, 1] with

f(µ) = H [k]
n (0) ≤ H [k]

n (t) ≤ max
1≤i1,...,ik+1≤n

f(ty1,k + (1− t)xik+1) = L[k+1]
n (t), (7)

ak = H [k]
n (1) ≥ H [k]

n (t). (8)

Proof. Quasiconvexity is immediate. By Lemma 6.2,

H [k]
n (t) ≥ f

 1
P k

n

∑
1≤i1,...,ik≤n

pi1 . . . pik
(ty1,k + (1− t)µ)

 = f(µ)

and the first two relations in (7) are established. For the rest, observe that

H [k]
n (t) = max

1≤i1,...,ik≤n

f
 1
Pn

n∑
ik+1=1

pik+1

(
ty1,k + (1− t)xik+1

)
≤ max

1≤i1,...,ik≤n

{
max

1≤ik+1≤n

{
f
(
ty1,k + (1− t)xik+1

)}}
= L[k+1]

n (t).

By the quasiconvexity of f , we have f (ty1,k + (1− t)µ) ≤ max {f(y1,k), f (µ)}, so

H [k]
n (t) ≤ max

1≤i1,...,ik≤n
{max {f(y1,k), f (µ)}}

= max
{

max
1≤i1,...,ik≤n

f(y1,k), f(µ)
}

= max
1≤i1,...,ik≤n

f(y1,k) = ak

and (8) is proved. �
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