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SOME SLATER�S TYPE INEQUALITIES FOR CONVEX
FUNCTIONS DEFINED ON LINEAR SPACES AND

APPLICATIONS

S.S. DRAGOMIR

Abstract. Some inequalities of the Slater type for convex functions de�ned
on general linear spaces are given. Applications for norm inequalities and
f -divergence measures are also provided.

1. Introduction

Suppose that I is an interval of real numbers with interior °I and f : I ! R
is a convex function on I. Then f is continuous on °I and has �nite left and right
derivatives at each point of°I. Moreover, if x; y 2°I and x < y; then f 0� (x) � f 0+ (x) �
f 0� (y) � f 0+ (y) which shows that both f 0� and f 0+ are nondecreasing function on°I.
It is also known that a convex function must be di¤erentiable except for at most
countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the

set of all functions ' : I ! [�1;1] such that '
�
°I
�
� R and

f (x) � f (a) + (x� a)' (a) for any x; a 2 I:
It is also well known that if f is convex on I; then @f is nonempty, f 0�, f

0
+ 2 @f

and if ' 2 @f , then
f 0� (x) � ' (x) � f 0+ (x) for any x 2°I.

In particular, ' is a nondecreasing function.
If f is di¤erentiable and convex on °I, then @f = ff 0g :
The following result is well known in the literature as the Slater inequality:

Theorem 1 (Slater, 1981, [5]). If f : I ! R is a nonincreasing (nondecreasing)
convex function, xi 2 I; pi � 0 with Pn :=

Pn
i=1 pi > 0 and

Pn
i=1 pi' (xi) 6= 0;

where ' 2 @f; then

(1.1)
1

Pn

nX
i=1

pif (xi) � f
�Pn

i=1 pixi' (xi)Pn
i=1 pi' (xi)

�
:

As pointed out in [4, p. 208], the monotonicity assumption for the derivative '
can be replaced with the condition

(1.2)

Pn
i=1 pixi' (xi)Pn
i=1 pi' (xi)

2 I;
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2 S.S. DRAGOMIR

which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.
The main aim of the present paper is to extend Slater�s inequality for convex

functions de�ned on general linear spaces. A reverse of the Slater�s inequality is also
obtained. Natural applications for norm inequalities and f -divergence measures are
provided as well.

2. Slater�s Inequality for Functions Defined on Linear Spaces

Assume that f : X ! R is a convex function on the real linear space X. Since
for any vectors x; y 2 X the function gx;y : R ! R; gx;y (t) := f (x+ ty) is convex
it follows that the following limits exist

r+(�)f (x) (y) := lim
t!0+(�)

f (x+ ty)� f (x)
t

and they are called the right(left) Gâteaux derivatives of the function f in the point
x over the direction y:
It is obvious that for any t > 0 > s we have

(2.1)
f (x+ ty)� f (x)

t
� r+f (x) (y) = inf

t>0

�
f (x+ ty)� f (x)

t

�
� sup

s<0

�
f (x+ sy)� f (x)

s

�
= r�f (x) (y) �

f (x+ sy)� f (x)
s

for any x; y 2 X and, in particular,

(2.2) r�f (u) (u� v) � f (u)� f (v) � r+f (v) (u� v)
for any u; v 2 X: We call this the gradient inequality for the convex function f:
It will be used frequently in the sequel in order to obtain various results related
toSlater�s inequality.
The following properties are also of importance:

(2.3) r+f (x) (�y) = �r�f (x) (y) ;
and

(2.4) r+(�)f (x) (�y) = �r+(�)f (x) (y)
for any x; y 2 X and � � 0:
The right Gâteaux derivative is subadditive while the left one is superadditive,

i.e.,

(2.5) r+f (x) (y + z) � r+f (x) (y) +r+f (x) (z)
and

(2.6) r�f (x) (y + z) � r�f (x) (y) +r�f (x) (z)
for any x; y; z 2 X .
Some natural examples can be provided by the use of normed spaces.
Assume that (X; k�k) is a real normed linear space. The function f : X ! R,

f (x) := 1
2 kxk

2 is a convex function which generates the superior and the inferior
semi-inner products

hy; xis(i) := lim
t!0+(�)

kx+ tyk2 � kxk2

t
:
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For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [3].
For the convex function fp : X ! R, fp (x) := kxkp with p > 1; we have

r+(�)fp (x) (y) =

8<: p kxkp�2 hy; xis(i) if x 6= 0;

0 if x = 0

for any y 2 X:
If p = 1; then we have

r+(�)f1 (x) (y) =

8<: kxk�1 hy; xis(i) if x 6= 0;

+(�) kyk if x = 0

for any y 2 X:
For a given convex function f : X ! R and a given n-tuple of vectors x =

(x1; :::; xn) 2 Xn we consider the sets

(2.7) Sla+(�) (f;x) :=
�
v 2 X j r+(�)f (xi) (v � xi) � 0 for all i 2 f1; :::; ng

	
and

(2.8) Sla+(�) (f;x;p) :=

(
v 2 X j

nX
i=1

pir+(�)f (xi) (v � xi) � 0
)

where p =(p1; :::; pn) 2 Pn is a given probability distribution.
Since r+(�)f (x) (0) = 0 for any x 2 X, then we observe that fx1; :::; xng �

Sla+(�) (f;x;p) ; therefore the sets Sla+(�) (f;x;p) are not empty for each f;x
and p as above.
The following properties of these sets hold:

Lemma 1. For a given convex function f : X ! R, a given n-tuple of vectors
x = (x1; :::; xn) 2 Xn and a given probability distribution p =(p1; :::; pn) 2 Pn we
have
(i) Sla� (f;x) � Sla+ (f;x) and Sla� (f;x;p) � Sla+ (f;x;p) ;
(ii) Sla� (f;x) � Sla� (f;x;p) and Sla+ (f;x) � Sla+ (f;x;p)

for all p =(p1; :::; pn) 2 Pn;
(iii) The sets Sla� (f;x) and Sla� (f;x;p) are convex.

Proof. The properties (i) and (ii) follow from the de�nition and the fact that
r+f (x) (y) � r�f (x) (y) for any x; y:
(iii) Let us only prove that Sla� (f;x) is convex.
If we assume that y1; y2 2 Sla� (f;x) and �; � 2 [0; 1] with � + � = 1; then by

the superadditivity and positive homogeneity of the Gâteaux derivative r�f (�) (�)
in the second variable we have

r�f (xi) (�y1 + �y2 � xi) = r�f (xi) [� (y1 � xi) + � (y2 � xi)]
� �r�f (xi) (y1 � xi) + �r�f (xi) (y2 � xi) � 0

for all i 2 f1; :::; ng ; which shows that �y1 + �y2 2 Sla� (f;x) :
The proof for the convexity of Sla� (f;x;p) is similar and the details are omitted.

�
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For the convex function fp : X ! R, fp (x) := kxkp with p � 1; de�ned on
the normed linear space (X; k�k) and for the n-tuple of vectors x = (x1; :::; xn) 2
Xn n f(0; :::; 0)g we have, by the well known property of the semi inner products

hy + �x; xis(i) = hy; xis(i) + � kxk
2 for any x; y 2 X and � 2 R,

that

Sla+(�) (k�kp ;x) = Sla+(�) (k�k ;x)

:=
n
v 2 X j hv; xjis(i) � kxjk

2 for all j 2 f1; :::; ng
o

which, as can be seen, does not depend of p: We observe that, by the continuity
of the semi-inner products in the �rst variable that Sla+(�) (k�k ;x) is closed in
(X; k�k) : Also, we should remarks that if v 2 Sla+(�) (k�k ;x) then for any  � 1
we also have that v 2 Sla+(�) (k�k ;x) :
The larger classes, which are dependent on the probability distribution p 2 Pn

are described by

Sla+(�) (k�kp ;x;p) :=

8<:v 2 X j
nX
j=1

pj kxjkp�2 hv; xjis(i) �
nX
j=1

pj kxjkp
9=; :

If the normed space is smooth, i.e., the norm is Gâteaux di¤erentiable in any
nonzero point, then the superior and inferior semi-inner products coincide with the
Lumer-Giles semi-inner product [�; �] that generates the norm and is linear in the
�rst variable (see for instance [3]). In this situation

Sla (k�k ;x) =
n
v 2 X j [v; xj ] � kxjk2 for all j 2 f1; :::; ng

o
and

Sla (k�kp ;x;p) =

8<:v 2 X j
nX
j=1

pj kxjkp�2 [v; xj ] �
nX
j=1

pj kxjkp
9=; :

If (X; h�; �i) is an inner product space then Sla (k�kp ;x;p) can be described by

Sla (k�kp ;x;p) =

8<:v 2 X j
*
v;

nX
j=1

pj kxjkp�2 xj

+
�

nX
j=1

pj kxjkp
9=;

and if the family fxjgj=1;:::;n is orthogonal, then obviously, by the Pythagoras
theorem, we have that the sum

Pn
j=1 xj belongs to Sla (k�k ;x) and therefore to

Sla (k�kp ;x;p) for any p � 1 and any probability distribution p =(p1; :::; pn) 2 Pn:
We can state now the following results that provides a generalization of Slater�s

inequality as well as a counterpart for it.

Theorem 2. Let f : X ! R be a convex function on the real linear space X,
x = (x1; :::; xn) 2 Xn an n-tuple of vectors and p =(p1; :::; pn) 2 Pn a probability
distribution. Then for any v 2 Sla+ (f;x;p) we have the inequalities

(2.9) r�f (v) (v)�
nX
i=1

pir�f (v) (xi) � f (v)�
nX
i=1

pif (xi) � 0:
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Proof. If we write the gradient inequality for v 2 Sla+ (f;x;p) and xi; then we
have that

(2.10) r�f (v) (v � xi) � f (v)� f (xi) � r+f (xi) (v � xi)

for any i 2 f1; :::; ng.
By multiplying (2.10) with pi � 0 and summing over i from 1 to n we get

(2.11)
nX
i=1

pir�f (v) (v � xi) � f (v)�
nX
i=1

pif (xi) �
nX
i=1

pir+f (xi) (v � xi) :

Now, since v 2 Sla+ (f;x;p) ; then the right hand side of (2.11) is nonnegative,
which proves the second inequality in (2.9).
By the superadditivity of the Gâteaux derivative r�f (�) (�) in the second vari-

able we have

r�f (v) (v)�r�f (v) (xi) � r�f (v) (v � xi) ;
which, by multiplying with pi � 0 and summing over i from 1 to n, produces the
inequality

(2.12) r�f (v) (v)�
nX
i=1

pir�f (v) (xi) �
nX
i=1

pir�f (v) (v � xi) :

Utilising (2.11) and (2.12) we deduce the desired result (2.9). �

Remark 1. The above result has the following form for normed linear spaces. Let
(X; k�k) be a normed linear space, x = (x1; :::; xn) 2 Xn an n-tuple of vectors from
X and p =(p1; :::; pn) 2 Pn a probability distribution. Then for any vector v 2 X
with the property

(2.13)
nX
j=1

pj kxjkp�2 hv; xjis �
nX
j=1

pj kxjkp ; p � 1;

we have the inequalities

(2.14) p

24kvkp � nX
j=1

pj kxjkp�2 hv; xjii

35 � kvkp � nX
j=1

pj kxjkp � 0:

Rearranging the �rst inequality in (2.14) we also have that

(2.15) (p� 1) kvkp +
nX
j=1

pj kxjkp � p
nX
j=1

pj kxjkp�2 hv; xjii :

If the space is smooth, then the condition (2.13) becomes

(2.16)
nX
j=1

pj kxjkp�2 [v; xj ] �
nX
j=1

pj kxjkp ; p � 1;

implying the inequality

(2.17) p

24kvkp � nX
j=1

pj kxjkp�2 [v; xj ]

35 � kvkp � nX
j=1

pj kxjkp � 0:
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Notice also that the �rst inequality in (2.17) is equivalent with

(2.18) (p� 1) kvkp +
nX
j=1

pj kxjkp � p
nX
j=1

pj kxjkp�2 [v; xj ]0@� p nX
j=1

pj kxjkp � 0

1A :
The following corollary is of interest:

Corollary 1. Let f : X ! R be a convex function on the real linear space X,
x = (x1; :::; xn) 2 Xn an n-tuple of vectors and p =(p1; :::; pn) 2 Pn a probability
distribution. If

(2.19)
nX
i=1

pir+f (xi) (xi) � (<) 0

and there exists a vector s 2 X with

(2.20)
nX
i=1

pir+(�)f (xi) (s) � (�) 1

then

(2.21) r�f

0@ nX
j=1

pjr+f (xj) (xj) s

1A0@ nX
j=1

pjr+f (xj) (xj) s

1A
�

nX
i=1

pir�f

0@ nX
j=1

pjr+f (xj) (xj) s

1A (xi)
� f

0@ nX
j=1

pjr+f (xj) (xj) s

1A� nX
i=1

pif (xi) � 0:

Proof. Assume that
Pn

i=1 pir+f (xi) (xi) � 0 and
Pn

i=1 pir+f (xi) (s) � 1 and
de�ne v :=

Pn
j=1 pjr+f (xj) (xj) s: We claim that v 2 Sla+ (f;x;p) :

By the subadditivity and positive homogeneity of the mapping r+f (�) (�) in the
second variable we have
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nX
i=1

pir+f (xi) (v � xi)

�
nX
i=1

pir+f (xi) (v)�
nX
i=1

pir+f (xi) (xi)

=
nX
i=1

pir+f (xi)

0@ nX
j=1

pjr+f (xj) (xj) s

1A� nX
i=1

pir+f (xi) (xi)

=
nX
j=1

pjr+f (xj) (xj)
nX
i=1

pir+f (xi) (s)�
nX
i=1

pir+f (xi) (xi)

=
nX
j=1

pjr+f (xj) (xj)
"

nX
i=1

pir+f (xi) (s)� 1
#
� 0;

as claimed. Applying Theorem 2 for this v we get the desired result.
If
Pn

i=1 pir+f (xi) (xi) < 0 and
Pn

i=1 pir�f (xi) (s) � 1 then for

w :=
nX
j=1

pjr+f (xj) (xj) s

we also have that
nX
i=1

pir+f (xi) (w � xi)

�
nX
i=1

pir+f (xi)

0@ nX
j=1

pjr+f (xj) (xj) s

1A� nX
i=1

pir+f (xi) (xi)

=
nX
i=1

pir+f (xi)

0@0@� nX
j=1

pjr+f (xj) (xj)

1A (�s)
1A� nX

i=1

pir+f (xi) (xi)

=

0@� nX
j=1

pjr+f (xj) (xj)

1A nX
i=1

pir+f (xi) (�s)�
nX
i=1

pir+f (xi) (xi)

=

0@� nX
j=1

pjr+f (xj) (xj)

1A 1 + nX
i=1

pir+f (xi) (�s)
!

=

0@� nX
j=1

pjr+f (xj) (xj)

1A 1� nX
i=1

pir�f (xi) (s)
!
� 0

where, for the last equality we have used the property (2.3). Therefore w 2
Sla+ (f;x;p) and by Theorem 2 we get the desired result. �

It is natural to consider the case of normed spaces.

Remark 2. Let (X; k�k) be a normed linear space, x = (x1; :::; xn) 2 Xn an n-tuple
of vectors from X and p =(p1; :::; pn) 2 Pn a probability distribution. Then for any
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vector s 2 X with the property that

(2.22) p
nX
i=1

pi kxikp�2 hs; xiis � 1;

we have the inequalities

pp kskp�1
0@ nX
j=1

pj kxjkp
1Ap�10@p ksk nX

j=1

pj kxjkp �
nX
j=1

pj hxj ; sii

1A
� pp kskp

0@ nX
j=1

pj kxjkp
1Ap

�
nX
j=1

pj kxjkp � 0:

The case of smooth spaces can be easily derived from the above, however the
details are left to the interested reader.

3. The Case of Finite Dimensional Linear Spaces

Consider now the �nite dimensional linear space X = Rm and assume that C
is an open convex subset of Rm: Assume also that the function f : C ! R is
di¤erentiable and convex on C: Obviously, if x =

�
x1; :::; xm

�
2 C then for any

y =
�
y1; :::; ym

�
2 Rm we have

rf (x) (y) =
mX
k=1

@f
�
x1; :::; xm

�
@xk

� yk

For the convex function f : C ! R and a given n-tuple of vectors x = (x1; :::; xn) 2
Cn with xi =

�
x1i ; :::; x

m
i

�
with i 2 f1; :::; ng ; we consider the sets

(3.1) Sla (f;x;C) :=

(
v 2 C j

mX
k=1

@f
�
x1i ; :::; x

m
i

�
@xk

� vk

�
mX
k=1

@f
�
x1i ; :::; x

m
i

�
@xk

� xki for all i 2 f1; :::; ng
)

and

(3.2) Sla (f;x;p;C) :=

(
v 2 C j

nX
i=1

mX
k=1

pi
@f
�
x1i ; :::; x

m
i

�
@xk

� vk

�
nX
i=1

mX
k=1

pi
@f
�
x1i ; :::; x

m
i

�
@xk

� xki

)
where p =(p1; :::; pn) 2 Pn is a given probability distribution.
As in the previous section the sets Sla (f;x;C) and Sla (f;x;p;C) are convex

and closed subsets of clo(C) ; the closure of C: Also fx1; :::; xng � Sla (f;x;C) �
Sla (f;x;p;C) for any p =(p1; :::; pn) 2 Pn a probability distribution.

Proposition 1. Let f : C ! R be a convex function on the open convex set C
in the �nite dimensional linear space Rm, (x1; :::; xn) 2 Cn an n-tuple of vectors
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and (p1; :::; pn) 2 Pn a probability distribution. Then for any v =
�
v1; :::; vn

�
2

Sla (f;x;p;C) we have the inequalities

(3.3)
mX
k=1

@f
�
v1; :::; vm

�
@xk

� vk �
nX
i=1

mX
k=1

pi
@f
�
x1i ; :::; x

m
i

�
@xk

� vk

� f
�
v1; :::; vn

�
�

nX
i=1

pif
�
x1i ; :::; x

m
i

�
� 0:

The unidimensional case, i.e., m = 1 is of interest for applications. We will state
this case with the general assumption that f : I ! R is a convex function on an
open interval I: For a given n-tuple of vectors x = (x1; :::; xn) 2 In we have

Sla+(�) (f;x;I) :=
n
v 2 I j f 0+(�) (xi) � (v � xi) � 0 for all i 2 f1; :::; ng

o
and

Sla+(�) (f;x;p; I) :=

(
v 2 Ij

nX
i=1

pif
0
+(�) (xi) � (v � xi) � 0

)
;

where (p1; :::; pn) 2 Pn is a probability distribution. These sets inherit the general
properties pointed out in Lemma 1. Moreover, if we make the assumption thatPn

i=1 pif
0
+ (xi) 6= 0 then for

Pn
i=1 pif

0
+ (xi) > 0 we have

Sla+ (f;x;p; I) =

�
v 2 Ij v �

Pn
i=1 pif

0
+ (xi)xiPn

i=1 pif
0
+ (xi)

�
while for

Pn
i=1 pif

0
+ (xi) < 0 we have

v =

�
v 2 Ij v �

Pn
i=1 pif

0
+ (xi)xiPn

i=1 pif
0
+ (xi)

�
:

Also, if we assume that f 0+ (xi) � 0 for all i 2 f1; :::; ng and
Pn

i=1 pif
0
+ (xi) > 0

then

vs :=

Pn
i=1 pif

0
+ (xi)xiPn

i=1 pif
0
+ (xi)

2 I

due to the fact that xi 2 I and I is a convex set.

Proposition 2. Let f : I ! R be a convex function on an open interval I: For
a given n-tuple of vectors x = (x1; :::; xn) 2 In and (p1; :::; pn) 2 Pn a probability
distribution we have

(3.4) f 0� (v)

 
v �

nX
i=1

pixi

!
� f (v)�

nX
i=1

pif (xi) � 0

for any v 2 Sla+ (f;x;p; I) :
In particular, if we assume that

Pn
i=1 pif

0
+ (xi) 6= 0 andPn

i=1 pif
0
+ (xi)xiPn

i=1 pif
0
+ (xi)

2 I
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then

(3.5) f 0�

�Pn
i=1 pif

0
+ (xi)xiPn

i=1 pif
0
+ (xi)

�"Pn
i=1 pif

0
+ (xi)xiPn

i=1 pif
0
+ (xi)

�
nX
i=1

pixi

#

� f
�Pn

i=1 pif
0
+ (xi)xiPn

i=1 pif
0
+ (xi)

�
�

nX
i=1

pif (xi) � 0

Moreover, if f 0+ (xi) � 0 for all i 2 f1; :::; ng and
Pn

i=1 pif
0
+ (xi) > 0 then (3.5)

holds true as well.

Remark 3. We remark that the �rst inequality in (3.5) provides a reverse inequality
for the classical result due to Slater.

4. Some Applications for f-divergences

Given a convex function f : [0;1)! R, the f -divergence functional

(4.1) If (p;q) :=

nX
i=1

qif

�
pi
qi

�
;

where p = (p1; : : : ; pn) ; q = (q1; : : : ; qn) are positive sequences, was introduced by
Csiszár in [1], as a generalized measure of information, a �distance function�on the
set of probability distributions Pn: As in [1], we interpret unde�ned expressions by

f (0) = lim
t!0+

f (t) ; 0f

�
0

0

�
= 0;

0f
�a
0

�
= lim

q!0+
qf

�
a

q

�
= a lim

t!1

f (t)

t
; a > 0:

The following results were essentially given by Csiszár and Körner [2]:

(i) If f is convex, then If (p;q) is jointly convex in p and q;
(ii) For every p;q 2 Rn+; we have

(4.2) If (p;q) �
nX
j=1

qjf

 Pn
j=1 pjPn
j=1 qj

!
:

If f is strictly convex, equality holds in (4.2) i¤

p1
q1
=
p2
q2
= � � � = pn

qn
:

If f is normalized, i.e., f (1) = 0; then for every p;q 2 Rn+ with
Pn

i=1 pi =Pn
i=1 qi; we have the inequality

(4.3) If (p;q) � 0:

In particular, if p;q 2 Pn; then (4.3) holds. This is the well-known positivity
property of the f -divergence.
It is obvious that the above de�nition of If (p;q) can be extended to any func-

tion f : [0;1) ! R however the positivity condition will not generally hold for
normalized functions and p;q 2 Rn+ with

Pn
i=1 pi =

Pn
i=1 qi:
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For a normalized convex function f : [0;1) ! R and two probability distribu-
tions p;q 2 Pn we de�ne the set

(4.4) Sla+ (f;p;q) :=

(
v 2 [0;1)j

nX
i=1

qif
0
+

�
pi
qi

�
�
�
v � pi

qi

�
� 0

)
:

Now, observe that
nX
i=1

qif
0
+

�
pi
qi

�
�
�
v � pi

qi

�
� 0

is equivalent with

(4.5) v
nX
i=1

qif
0
+

�
pi
qi

�
�

nX
i=1

pif
0
+

�
pi
qi

�
:

If
Pn

i=1 qif
0
+

�
pi
qi

�
> 0; then (4.5) is equivalent with

v �

Pn
i=1 pif

0
+

�
pi
qi

�
Pn

i=1 qif
0
+

�
pi
qi

�
therefore in this case

(4.6) Sla+ (f;p;q) =

8>>><>>>:
[0;1) if

Pn
i=1 pif

0
+

�
pi
qi

�
< 0

�Pn
i=1 pif

0
+

�
pi
qi

�
Pn

i=1 qif
0
+

�
pi
qi

� ;1
�

if
Pn

i=1 pif
0
+

�
pi
qi

�
� 0:

If
Pn

i=1 qif
0
+

�
pi
qi

�
< 0; then (4.5) is equivalent with

v �

Pn
i=1 pif

0
+

�
pi
qi

�
Pn

i=1 qif
0
+

�
pi
qi

�
therefore

(4.7) Sla+ (f;p;q) =

8>>><>>>:
�
0;

Pn
i=1 pif

0
+

�
pi
qi

�
Pn

i=1 qif
0
+

�
pi
qi

�� if
Pn

i=1 pif
0
+

�
pi
qi

�
� 0

; if
Pn

i=1 pif
0
+

�
pi
qi

�
> 0:

Utilising the extended f -divergences notation, we can state the following result:

Theorem 3. Let f : [0;1) ! R be a normalized convex function and p;q 2 Pn
two probability distributions. If v 2 Sla+ (f;p;q) then we have

(4.8) f 0� (v) (v � 1) � f (v)� If (p;q) � 0:

In particular, if we assume that If 0+ (p;q) 6= 0 and

If 0+(�)(�) (p;q)

If 0+ (p;q)
2 [0;1)
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then

(4.9) f 0�

 
If 0+(�)(�) (p;q)

If 0+ (p;q)

!"
If 0+(�)(�) (p;q)

If 0+ (p;q)
� 1
#

� f
 
If 0+(�)(�) (p;q)

If 0+ (p;q)

!
� If (p;q) � 0:

Moreover, if f 0+
�
pi
qi

�
� 0 for all i 2 f1; :::; ng and If 0+ (p;q) > 0 then (4.9) holds

true as well.

The proof follows immediately from Proposition 2 and the details are omitted.
The K. Pearson �2-divergence is obtained for the convex function f (t) = (1� t)2 ;

t 2 R and given by

(4.10) �2 (p;q) :=

nX
j=1

qj

�
pj
qj
� 1
�2
=

nX
j=1

(pj � qj)2

qj
=

nX
j=1

p2i
qi
� 1:

The Kullback-Leibler divergence can be obtained for the convex function f :
(0;1)! R, f (t) = t ln t and is de�ned by

(4.11) KL (p;q) :=

nX
j=1

qj �
pj
qj
ln

�
pj
qj

�
=

nX
j=1

pj ln

�
pj
qj

�
:

If we consider the convex function f : (0;1)! R, f (t) = � ln t; then we observe
that
(4.12)

If (p;q) :=
nX
i=1

qif

�
pi
qi

�
= �

nX
i=1

qi ln

�
pi
qi

�
=

nX
i=1

qi ln

�
qi
pi

�
= KL (q;p) :

For the function f (t) = � ln t we have obviously have that

Sla (� ln;p;q) :=
(
v 2 [0;1)j �

nX
i=1

qi

�
pi
qi

��1
�
�
v � pi

qi

�
� 0

)
(4.13)

=

(
v 2 [0;1)j v

nX
i=1

q2i
pi
� 1 � 0

)

=

�
0;

1

�2 (q;p) + 1

�
:

Utilising the �rst part of the Theorem 3 we can state the following

Proposition 3. Let p;q 2 Pn two probability distributions. If v 2
h
0; 1

�2(q;p)+1

i
then we have

(4.14)
1� v
v

� � ln (v)�KL (q;p) � 0:

In particular, for v = 1
�2(q;p)+1 we get

(4.15) �2 (q;p) � ln
�
�2 (q;p) + 1

�
�KL (q;p) � 0:



SOME SLATER�S TYPE INEQUALITIES 13

If we consider now the function f : (0;1)! R, f (t) = t ln t , then f 0 (t) = ln t+1
and

Sla ((�) ln (�) ;p;q)(4.16)

:=

(
v 2 [0;1)j

nX
i=1

qi

�
ln

�
pi
qi

�
+ 1

�
�
�
v � pi

qi

�
� 0

)

=

(
v 2 [0;1)j v

nX
i=1

qi

�
ln

�
pi
qi

�
+ 1

�
�

nX
i=1

pi �
�
ln

�
pi
qi

�
+ 1

�
� 0

)
= fv 2 [0;1)j v (1�KL (q;p)) � 1 +KL (p;q)g :

We observe that if p;q 2 Pn two probability distributions such that 0 < KL (q;p) <
1; then

Sla ((�) ln (�) ;p;q) =
�
1 +KL (p;q)

1�KL (q;p) ;1
�
:

If KL (q;p) � 1 then Sla ((�) ln (�) ;p;q) = ;:
By the use of Theorem 3 we can state now the following

Proposition 4. Let p;q 2 Pn two probability distributions such that 0 < KL (q;p) <
1: If v 2

h
1+KL(p;q)
1�KL(q;p) ;1

�
then we have

(4.17) (ln v + 1) (v � 1) � v ln (v)�KL (p;q) � 0:

In particular, for v = 1+KL(p;q)
1�KL(q;p) we get

(4.18)
�
ln

�
1 +KL (p;q)

1�KL (q;p)

�
+ 1

��
1 +KL (p;q)

1�KL (q;p) � 1
�

� 1 +KL (p;q)

1�KL (q;p) ln
�
1 +KL (p;q)

1�KL (q;p)

�
�KL (p;q) � 0:

Similar results can be obtained for other divergence measures of interest such as
the Je¤reys divergence, Hellinger discrimination, etc...However the details are left
to the interested reader.
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