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SOME SLATER’S TYPE INEQUALITIES FOR CONVEX
FUNCTIONS DEFINED ON LINEAR SPACES AND
APPLICATIONS

S.S. DRAGOMIR

ABSTRACT. Some inequalities of the Slater type for convex functions defined
on general linear spaces are given. Applications for norm inequalities and
f-divergence measures are also provided.

1. INTRODUCTION

Suppose that I is an interval of real numbers with interior I and f:I—-R
is a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z,y €l and z < y, then .. (x) < fl(z) <
I (y) < f% (y) which shows that both f’ and f/ are nondecreasing function on L
It is also known that a convex function must be differentiable except for at most
countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the

set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

f(x)> f(a)+ (x—a)p(a) for any z,a € I.

It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if ¢ € 9f, then

fL(x) <o (z) < fi(z) forany z € 1.
In particular, ¢ is a nondecreasing function.

If f is differentiable and convex on I, then 8f = {f’}.
The following result is well known in the literature as the Slater inequality:

Theorem 1 (Slater, 1981, [5]). If f : I — R is a nonincreasing (nondecreasing)
convex function, x; € I,p; > 0 with P, := > 1 p; > 0 and Y., pip (x;) # 0,
where ¢ € Jf, then

1 ¢ D i Pimip (24)
(1.1) S pif(@)<f ("1 -
P, FZI Zi:l pbip (xz)
As pointed out in [4, p. 208], the monotonicity assumption for the derivative ¢
can be replaced with the condition

D i1 Pitip (T:)
(1.2) imt PP ¢
Eizl pip (xz)
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2 S.S. DRAGOMIR

which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.

The main aim of the present paper is to extend Slater’s inequality for convex
functions defined on general linear spaces. A reverse of the Slater’s inequality is also
obtained. Natural applications for norm inequalities and f-divergence measures are
provided as well.

2. SLATER’S INEQUALITY FOR FUNCTIONS DEFINED ON LINEAR SPACES

Assume that f: X — R is a convex function on the real linear space X. Since
for any vectors z,y € X the function g, , : R — R, gz, (¢) := f (2 + ty) is convex
it follows that the following limits exist

. ty) —
Vi f @ ()= lm S+ yt> f ()

and they are called the right(left) Gateauz derivatives of the function f in the point
x over the direction y.
It is obvious that for any ¢t > 0 > s we have

f(z+ty) = f(x) fz+ty) = f(x)
t

(2.1) .

> 90f @) ) = jut |

t>0
g [FE ) =S @)
<0 S

fx+sy) - f(x)

S

|=vr@w=
for any z,y € X and, in particular,

(2.2) Vo f () (u=v) = f(u) = f(v) 2 Vif(v)(u—0)
for any u,v € X. We call this the gradient inequality for the convex function f.
It will be used frequently in the sequel in order to obtain various results related
toSlater’s inequality.

The following properties are also of importance:

(2.3) Vif(z)(—y)=-V_f(z)(y),
and
(2.4) Vi f (@) (ay) =aVyi)f(z) (y)

for any z,y € X and a > 0.
The right Gateaux derivative is subadditive while the left one is superadditive,
i.e.,

(2.5) Vif@) (y+2) <Vif(2)(y)+Vif(2)(z)
and
(2.6) V_of@)(y+z)=2V_f(z)(y) +V_f(z)(2)

for any z,y,z € X .

Some natural examples can be provided by the use of normed spaces.

Assume that (X, ||-||) is a real normed linear space. The function f : X — R,
f(z):=1 |z]|? is a convex function which generates the superior and the inferior
semi-inner products

B e 1
W T =, BT e



SOME SLATER’S TYPE INEQUALITIES 3

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [3].
For the convex function f, : X — R, f, (z) := ||z||” with p > 1, we have

p Hx||Z)72 <ya ‘r>s(z) lf x 7£ Oa
Vil (@) (y) =
0 ifx=0

for any y € X.
If p =1, then we have

217" (v, 2) sy if 2 #0,
Vi filz)(y) =
+ (=) lyll if =0

for any y € X.
For a given convex function f : X — R and a given n-tuple of vectors x =
(1, ..., zn) € X™ we consider the sets

(2.7)  Slayy (f,x):={ve X | Vi) f (i) (v—=) >0forallie{l,..,n}}

and

(2.8)  Slay(f,x,p):= {v EX| D PV f (@) (v—2)>0 }

i=1

where p = (p1,...,pn) € P™ is a given probability distribution.

Since V4 (_)f (z)(0) = 0 for any € X, then we observe that {z1,...,z,} C
Slay—y (f,x,p), therefore the sets Slay_)(f,x,p) are not empty for each f,x
and p as above.

The following properties of these sets hold:

Lemma 1. For a given convex function f : X — R, a given n-tuple of vectors
x = (21,...,2,) € X™ and a given probability distribution p = (p1,...,pn) € P™ we
have

(i) Sla_ (f,x) C Slay (f,x) and Sla_ (f,x,p) C Slay (f,x,p);

(i) Sla_ (f,x) C Sla_ (f,x,p) and Slay (f,x) C Slay (f,x,p)

for all p = (p1,...,pn) € P
(i1i) The sets Sla_ (f,x) and Sla_ (f,x,p) are convez.

Proof. The properties (i) and (ii) follow from the definition and the fact that

Vif(z)(y) > V_f(z)(y) for any z,y.

(iii) Let us only prove that Sla_ (f,x) is convex.

If we assume that y1,y2 € Sla_ (f,x) and «, 8 € [0,1] with « + 8 = 1, then by
the superadditivity and positive homogeneity of the Gateaux derivative V_f (-) ()
in the second variable we have

V_f(zi)(ayr + By =) = V_f(z:)]e(yr —xi) + B (y2 — zi)]
aV_f(xi) (y1 — ) + BV_f (i) (y2 —2:) > 0
for all ¢ € {1,...,n}, which shows that ay; + By2 € Sla_ (f,x).

The proof for the convexity of Sla_ (f,x, p) is similar and the details are omitted.
O

Y



4 S.S. DRAGOMIR

For the convex function f, : X — R, f,(z) := ||z||” with p > 1, defined on
the normed linear space (X, ||-||) and for the n-tuple of vectors x = (z1,...,z,) €
X"\ {(0,...,0)} we have, by the well known property of the semi inner products

(y+az,z) ) = (¥, )5 + @ |z||* for any z,y € X and a € R,
that

Slay—y (1", x) = Slay -y (|-, x)
_ {1} € X | (v,27), = llzjl)* for all j € {1, n}}

which, as can be seen, does not depend of p. We observe that, by the continuity
of the semi-inner products in the first variable that Slaj ) (||-||,x) is closed in
(X, ]|]l) . Also, we should remarks that if v € Slay ) (||-||,x) then for any v > 1
we also have that yv € Slay ) (||| ,x) .

The larger classes, which are dependent on the probability distribution p € P™
are described by

n
Star oy (P xp) == S v e X | Y pyllay 172 o.2y), ijnxjnp
=1

If the normed space is smooth, i.e., the norm is Gateaux differentiable in any
nonzero point, then the superior and inferior semi-inner products coincide with the
Lumer-Giles semi-inner product [-,-] that generates the norm and is linear in the
first variable (see for instance [3]). In this situation

Sta (|||, x) = {v € X | [v,2;] > |l;|® for all j € {1, n}}

and

n

Sla (|7, x,p) =g ve X | Y pjllayllP~* v, 2] Z 1Nk

j=1 j=1

If (X, (-,-)) is an inner product space then Sla (||-||”,x,p) can be described by

n n
-2
Sta (|l ,x,p) = qv € X | <’U,ij [l 17 $j> > pjllzsl”
j=1 j=1

and if the family {‘rj}jzl,u.,n is orthogonal, then obviously, by the Pythagoras
theorem, we have that the sum Z;;l x; belongs to Sla (||| ,x) and therefore to
Sla (|||, x, p) for any p > 1 and any probability distribution p = (p1, ..., pn) € P™.

We can state now the following results that provides a generalization of Slater’s
inequality as well as a counterpart for it.

Theorem 2. Let f : X — R be a convex function on the real linear space X,
X = (21,...,x,) € X™ an n-tuple of vectors and p = (p1,...,pn) € P a probability
distribution. Then for any v € Slay (f,x,p) we have the inequalities

(2.9) V_f@) (@)= > pV_f ) (@) > f(v sz () >
i=1
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Proof. If we write the gradient inequality for v € Slay (f,x,p) and z;, then we
have that

(2.10) Vo f@) (=)= f0) = f(@:) 2 Vif(:)v—z)

for any ¢ € {1,...,n}.
By multiplying (2.10) with p; > 0 and summing over ¢ from 1 to n we get

211) Y pVof @) (0 —a) = f0) =S pif (@) = S pVaf (@) (0 —a,).
i=1 =1 i=1

Now, since v € Slay (f,x,p), then the right hand side of (2.11) is nonnegative,
which proves the second inequality in (2.9).

By the superadditivity of the Gateaux derivative V_f (-) (-) in the second vari-
able we have

V_f ) () =V_f@©)(z:) 2V_f(v)(v—1i),

which, by multiplying with p; > 0 and summing over ¢ from 1 to n, produces the
inequality

(2.12) V_f @) (v) - Zpiv—f (v) (z:) = ZPz’V—f (v) (v =)

Utilising (2.11) and (2.12) we deduce the desired result (2.9). O

Remark 1. The above result has the following form for normed linear spaces. Let
(X, 1) be a normed linear space, X = (%1, ...,x,) € X™ an n-tuple of vectors from
X and p =(p1,...,pn) € P™ a probability distribution. Then for any vector v € X
with the property

n n
—2
(2.13) D il wag), =D pi sl p> 1,
j=1 j=1

we have the inequalities

—2 J
(2.14) p 1ol = pj sl (v, 25), | = oll” =Y pj )" = 0.
j=1

j=1

Rearranging the first inequality in (2.14) we also have that

-2
(2.15) (=D lol” + D pjllzsll” = 2w 1”2 (v, 25), -

Jj=1 Jj=1

If the space is smooth, then the condition (2.13) becomes

n n
-2
(2.16) D i llasl" 2 o,25] = > pj gl p > 1,
j=1 j=1

implying the inequality

-2
(2.17) p (ol = pjllasl” o,z | = loll” =Y pj P = 0.
j=1

j=1
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Notice also that the first inequality in (2.17) is equivalent with

-2
(218)  (p— 1) [loll” + D pj lla 1" = p D pj llas |17 [, 2]
j=1 j=1

n
>p Y pjllal” >0
j=1

The following corollary is of interest:

Corollary 1. Let f : X — R be a convex function on the real linear space X,
x = (21,...,2,) € X™ an n-tuple of vectors and p = (p1,...,Pn) € P* a probability
distribution. If

(2.19) > piVif (i) (@) > (<)0

i=1

and there exists a vector s € X with
(2.20) D PV f (@) (s) = ()1
i=1

then

(2.21) V_f ijv+f(ilﬂj)($j)5) ijv+f(fﬂj)($j)5

=D onV S| Dop VS () () s | ()

Proof. Assume that Y. p;Vif (2;) (x;) > 0 and > piVif(z;)(s) > 1 and
define v := 377 p; Vi f (z) (x;) s. We claim that v € Sla (f,x,p).

By the subadditivity and positive homogeneity of the mapping V. f (+) (+) in the
second variable we have
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D opiVif (@) (v—a)

> ipiv+f () (v) — iinJrf (i) (1)
- z;plvg ) (ijmrf ) z;pzvﬁ (@) (@)
- le]mf ;) (z; szvg ;) S)ipiv+f(xi)($i)
: P
= ZIPJVJJ x;) (z) [ZPNM )(5)1] >0,
j

as claimed. Applying Theorem 2 for this v we get the desired result.
I oV f(z) (z) <0and 31 p;V_f (2;) (s) <1 then for

w = ijv+f(37j) (x;) s

=1

we also have that

Zpiv+f (@i) (w — )

=1

szv+f () (Zpav+f a?]) z;) s ) szv+f () (4)

Y

i=1 j=1

= > piVif(m) ( (— > piVif(x;) (xj)) <—s)) =3 piVif (@) ()
i=1

= | =D wiViS () (z)) me (1) ZpN+f (i) ()
j=1 i=1 i=1

= | =D pVif (@) (=) (1 +) piVif(w) (—5)>
j:l =1

= =D _pVif(a) () (1 —Zpr(%)(S)) >0
j:l =1

where, for the last equality we have used the property (2.3). Therefore w €
Slay (f,x,p) and by Theorem 2 we get the desired result. O

It is natural to consider the case of normed spaces.

Remark 2. Let (X, ||-||) be a normed linear space, x = (x1,...,x,) € X™ an n-tuple
of vectors from X and p = (p1,...,pn) € P™ a probability distribution. Then for any
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vector s € X with the property that
n
-2
(2.22) pY_pi " (s, ), > 1,
i=1

we have the inequalities

p—1

n n n
—1
PP s (D py s plisl Y pjllasll” =D s (25, 8),
Jj=1 j=1 j=1

p
n n
> ls1” | Do willzil” ) =D pillesll” > 0.
J=1 j=1

The case of smooth spaces can be easily derived from the above, however the
details are left to the interested reader.

3. THE CASE OF FINITE DIMENSIONAL LINEAR SPACES

Consider now the finite dimensional linear space X = R™ and assume that C'
is an open convex subset of R™. Assume also that the function f : C — R is
differentiable and convex on C. Obviously, if x = (xl, ...,xm) € C then for any
y=(y',...,y™) € R™ we have

Vi@ () => Of (@ a’x';’xm) b

k=1

For the convex function f : C'— R and a given n-tuple of vectors x = (21, ..., T,) €

C™ with z; = (:zczl, ,x;”) with ¢ € {1,...,n}, we consider the sets

Of (xf, . a)
(3.1) Sla(f,x,C):= {1; eC| ;T v

Of (al, . a) )
2];1 " cz¥ foralli e {1,...,n}

B)
and
LI af leaax:n
(32) Sla(f,x,p,C) = { €CId > m % i
i=1 k=1
O Of (ah )
2 Y3 gt
i=1 k=1

where p = (p1, ..., pn) € P is a given probability distribution.

As in the previous section the sets Sla (f,x,C) and Sla (f,x,p,C) are convex
and closed subsets of clo(C), the closure of C. Also {x1,...,z,} C Sla(f,x,C) C
Sla (f,x,p,C) for any p = (p1,...,pn) € P a probability distribution.

Proposition 1. Let f : C — R be a convex function on the open conver set C
in the finite dimensional linear space R™, (z1,...,x,) € C™ an n-tuple of vectors
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and (p1,...,pn) € P" a probability distribution. Then for any v = (v',..,v") €
Sla (f,x,p,C) we have the inequalities

(33) af ( 81; Z sz ” 77 xzn) . Uk

k=1 i=1 k=1
Zf Zpl i, az)20~

The unidimensional case, i.e., m = 1 is of interest for applications. We will state
this case with the general assumption that f : I — R is a convex function on an
open interval I. For a given n-tuple of vectors x = (1, ...,x,) € I"™ we have

Slay—y (f,x,I) = {v €l fiy (@) (v—a;)>0foralliec{l, ,n}}

and

Slay—y (f,x,p,1I) := {v€I| Zpif;()(:ci)-(v—xi)>0}7
i=1

where (p1,...,pn) € P" is a probability distribution. These sets inherit the general
properties pointed out in Lemma 1. Moreover, if we make the assumption that

St pifl (@) # 0 then for Y1 pifi (x;) > 0 we have

St pifl (@) @ }
S pifh (@)

Sla-i—(fvxapal): {UEIl v 2>

while for 31", p; f% (2;) < 0 we have

v = {veIl v < LicyPill (@) o }

Z?:l Pz‘fi (Sﬂz)
Also, if we assume that f (z;) > 0 for all i € {1,...,n} and > | p; f} (x;) >0
then

V. = Z?ﬂpz‘fﬁr (i) x;
Y pif ()

due to the fact that x; € I and I is a convex set.

el

Proposition 2. Let f : I — R be a convex function on an open interval I. For
a given n-tuple of vectors x = (x1,...,2,) € I and (p1,...,pn) € P" a probability
distribution we have

(34) l— (U - ZP;%) > f Zpl mt el
for any v € Slay (f,x,p,I).

In particular, if we assume that > | p; fi (x;) # 0 and

Z?:l pifl (z:) z;
Z?:l pifjr (LUZ)

el
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then

Simi Pift (1‘2):%) Sy Difh (i) @
Z?:lpifjr (mz) [ Zz 1plf+ xz Zple]

Zl 1pzf+ xl z>
2f< Zz 1p1f+ ‘r’L sz xL -

Moreover, if f (z;) >0 for all i € {1,...,n} and 31" | pif} (x;) > 0 then (3.5)

holds true as well.

(3.5) f. (

Remark 3. We remark that the first inequality in (3.5) provides a reverse inequality
for the classical result due to Slater.

4. SOME APPLICATIONS FOR f-DIVERGENCES

Given a convex function f : [0,00) — R, the f-divergence functional

(4.1) I; (p.a) = équ <§) ,

where p = (p1,...,Pn), 4 = (q1,...,qn) are positive sequences, was introduced by
Csiszér in [1], as a generalized measure of information, a “distance function” on the
set of probability distributions P". As in [1], we interpret undefined expressions by

. 0
ro=m @, o (g)-
a . a . f(t)
0f (6) = lim of (q) —ajim =2, a>0.

t—oo

The following results were essentially given by Csiszar and Kérner [2]:

(i) If f is convex, then Iy (p,q) is jointly convezr in p and q;
(ii) For every p,q € R, we have

Dj
(4.2) af 2P .
Z ! Z] 14
If f is strictly convex, equality holds in (4.2) iff
pr_pP2_  _Pn

q1 q2 dn ’

If f is normalized, i.e., f (1) = 0, then for every p,q € R with Y ;| p; =
Z:-L:l q;, we have the inequality

(4.3) Ir (p,q) > 0.

In particular, if p,q € P", then (4.3) holds. This is the well-known positivity
property of the f-divergence.

It is obvious that the above definition of I (p,q) can be extended to any func-
tion f : [0,00) — R however the positivity condition will not generally hold for
normalized functions and p,q € R with Y, pi = Y 1y G-
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For a normalized convex function f : [0,00) — R and two probability distribu-
tions p,q € P we define the set

(44)  Slay (f,p,a) = { € [0,00) gqif; (2) (v-2) 20 }

Now, observe that
St (2)-(o-2) 20
el di di

).

is equivalent with
= D & bi
(45) DTACIES A
i=1 i i=1 i

Y afh (z—) > 0, then (4.5) is equivalent with

S mfs ()
Sl (2)

v >

therefore in this case
[0, 00) if Y0 pifh (%) <0
(4.6) Slay (f,p,q) =

{thiﬁ(g;)’” if Yy pif () >0

Y afl (%) < 0, then (4.5) is equivalent with
Siwifi (%)
Siaf; (%)

ORRS

therefore
S pif] % ) '_
{Om] if 35 pifl (%)SO
(4.7) Sla, (f.p.q) ot (2

. n i
0 if > pify (%) > 0.
Utilising the extended f-divergences notation, we can state the following result:

Theorem 3. Let f : [0,00) — R be a normalized convex function and p,q € P
two probability distributions. If v € Slay (f,p,q) then we have

(4.8) L (W) (v=1)> f(v)—1If(p,q) > 0.
In particular, if we assume that Ip, (p,q) # 0 and
It (y¢) (Pra)

Ty (o) <)



12 S.S. DRAGOMIR

then

19) f <If;(~>(-> (PaQ)> [If;(-)t) (p.a) 1]

Iy (p,a) Iy (p,q)

> f

(Iﬂ(‘)(-) (p,q)

Iy (p,q) ) —Ir (p,q) > 0.

Moreover, if f) (2) >0 for allt € {1,....,n} and I (p,q) > 0 then (4.9) holds
+ 4

qi
true as well.

The proof follows immediately from Proposition 2 and the details are omitted.
The K. Pearson x2-divergence is obtained for the convex function f (t) = (1 — ¢)?,
t € R and given by

(4.10) 2 (p q)::iq(%_ )QZiW:iP?_L
7 =1 "\ o

PR

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) = R, f(t) =tInt and is defined by

n p p n p
(4-11) KL(p,@):=) ¢;- I (j> =2 _piln <J>
j=1 4 J J=1 4

q
If we consider the convex function f : (0,00) — R, f (¢) = —Int, then we observe
that
(4.12)

Ir(p,a) ==Y af <2;) =-> g <2;) => g¢ln <§> =KL(q,p).
i=1 v i=1 v i=1 v

For the function f (¢) = —Int we have obviously have that

(4.13)  Sla(~1In,p,q) = {v e [0,00)| — f:q,- (’;) o <u - p%’) >0 }

i1 i qi

g2
_{ve[(),oo)|vz;];—1§0}
i=1 "

1
=0, 5——|.
[ x*(a,p) + J
Utilising the first part of the Theorem 3 we can state the following

Proposition 3. Let p,q € P” two probability distributions. If v € [0, m}
then we have
1—-wv

(

(4.14)

> —In(v) - KL(q,p) > 0.

In particular, for v = we get

1
x2(q,p)+1

(4.15) x*(a,p) > In[x*(q,p) + 1] — KL(q,p) > 0.
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If we consider now the function f : (0,00) — R, f (¢) =tlnt, then f’' (¢) =Int+1
and

(4.16)  Sla((-)In(-),p,q)

~[remar Euln(z) ) (-3) =0
fremmieSa(n(z) 1) (n(2) 1) 0]

={ve0,00)]v(l-KL(q,p)) >1 +KL(p, Q)}-
We observe that if p, q € P™ two probability distributions such that 0 < KL (q,p) <

1, then
Sta ()10 (). pva) = |1y oY o).

If KL(q,p) > 1 then Sla((-)In(-),p,q) = 0.
By the use of Theorem 3 we can state now the following

Proposition 4. Let p,q € P" two probability distributions such that 0 < KL (q,p) <
1. Ifv e [M oo) then we have

1-KL(q,p)’
(4.17) (lnv+1)(v—1) >vln(v) — KL (p,q) > 0.
In particular, for v = %Egg; we get
1+KL(p,C1)} ) <1+KL(p,q) )
4.18 In|——=|+4+1| | ————= -1

S 1+ EL(pa) [1 +KL(p,q)
~1-KL(q,p) [1-KL(q,p)
Similar results can be obtained for other divergence measures of interest such as

the Jeffreys divergence, Hellinger discrimination, etc...However the details are left
to the interested reader.

|- KL =0
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