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SOME INEQUALITIES FOR THE µCEBY�EV FUNCTIONAL OF
TWO FUNCTIONS OF SELFADJOINT OPERATORS IN

HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some inequalities for the µCeby�ev functional of two functions of
selfadjoint linear operators in Hilbert spaces, under suitable assumptions for
the involved functions and operators, are given.

1. Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h:; :i) :
The Gelfand map establishes a �-isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�ned on the spectrum of A; denoted Sp (A) ;
an the C�-algebra C� (A) generated by A and the identity operator 1H on H as
follows (see for instance [5, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) and �

�
�f
�
= �(f)

�
;

(iii) k� (f)k = kfk := supt2Sp(A) jf (t)j ;
(iv) � (f0) = 1H and � (f1) = A; where f0 (t) = 1 and f1 (t) = t; for t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) for all f 2 C (Sp (A))
and we call it the continuous functional calculus for a selfadjoint operator A:
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0; i:e: f (A) is a positive
operator on H: Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) � g (t) for any t 2 Sp (A) implies that f (A) � g (A)

in the operator order of B (H) :
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [5] and the references therein.
For other results see [7], [8], [9] and [10].
We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on

the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :
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It is obvious that, if f; g are monotonic and have the same monotonicity on
the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.
For some extensions of the discrete µCeby�ev inequality for synchronous (asyn-

chronous) sequences of vectors in an inner product space, see [3] and [4].
For a selfadjoint operator A on the Hilbert space A with Sp (A) � [m;M ] for

some real numbersm < M and for f; g : [m;M ] �! R that are continuous functions
on [m;M ] ; we can de�ne the following µCeby�ev functional

C (f; g;A;x) := hf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xi

where x 2 H with kxk = 1:
The following result provides an inequality of µCeby�ev type for functions of

selfadjoint operators, see [1]:

Theorem 1 (Dragomir, 2008, [1]). Let A be a selfadjoint operator with Sp (A) �
[m;M ] for some real numbers m < M: If f; g : [m;M ] �! R are continuous and
synchronous (asynchronous) on [m;M ] ; then

(1.1) C (f; g;A;x) � (�) 0

for any x 2 H with kxk = 1:

The following result of Grüss�Type can be stated as well, see [2]:

Theorem 2 (Dragomir, 2008, [2]). Let A be a selfadjoint operator on the Hilbert
space (H; h:; :i) and assume that Sp (A) � [m;M ] for some scalars m < M: If f and
g are continuous on [m;M ] and  := mint2[m;M ] f (t) and � := maxt2[m;M ] f (t)
then

(1.2) jC (f; g;A;x)j � 1

2
� (�� ) [C (g; g;A;x)]1=2

�
� 1

4
(�� ) (�� �)

�
for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :

The main aim of this paper is to provide other inequalities for the µCeby�ev
functional. Applications for particular functions of interest are also given.

2. The Case of Lipschitzian Functions

The following result can be stated:

Theorem 3. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] �! R is Lipschitzian with the constant L > 0 and g :
[m;M ] �! R is continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ;
then

(2.1) jC (f; g;A;x)j � 1

2
(�� �)L h`A;x (A)x; xi �

p
2

2
(�� �)LC (e; e;A;x)

for any x 2 H with kxk = 1; where

`A;x (t) := hjt � 1H �Ajx; xi

is a continuous function on [m;M ] ; e (t) = t and

(2.2) C (e; e;A;x) = kAxk2 � hAx; xi2 (� 0) :



µCEBY�EV FUNCTIONAL 3

Proof. First of all, by the Jensen inequality for convex functions of selfadjoint op-
erators (see for instance [5, p. 5]) applied for the modulus, we can state that

(M) jhh (A)x; xij � hjh (A)jx; xi
for any x 2 H with kxk = 1; where h is a continuous function on [m;M ] :
Since f is Lipschitzian with the constant L > 0; then for any t; s 2 [m;M ] we

have

(2.3) jf (t)� f (s)j � L jt� sj :
Now, if we �x t 2 [m;M ] and apply the property (P) for the inequality (2.3) and
the operator A we get

(2.4) hjf (t) � 1H � f (A)jx; xi � L hjt � 1H �Ajx; xi ;
for any x 2 H with kxk = 1:
Utilising the property (M) we get

jf (t)� hf (A)x; xij = jhf (t) � 1H � f (A)x; xij � hjf (t) � 1H � f (A)jx; xi
which together with (2.4) gives

(2.5) jf (t)� hf (A)x; xij � L`A;x (t)

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
Since � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; we also have

(2.6)

����g (t)� �+ �2
���� � 1

2
(�� �)

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
If we multiply the inequality (2.5) with (2.6) we get����f (t) g (t)� hf (A)x; xi g (t)� �+ �2 f (t) +

� + �

2
hf (A)x; xi

����(2.7)

� 1

2
(�� �)L`A;x (t) =

1

2
(�� �)L hjt � 1H �Ajx; xi

� 1

2
(�� �)L

D
jt � 1H �Aj2 x; x

E1=2
=
1

2
(�� �)L

�

A2x; x

�
� 2 hAx; xi t+ t2

�1=2
;

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
Now, if we apply the property (P) for the inequality (2.7) and a selfadjoint

operator B with Sp (B) � [m;M ] ; then we get the following inequality of interest
in itself:

jhf (B) g (B) y; yi � hf (A)x; xi hg (B) y; yi(2.8)

��+ �
2

hf (B) y; yi+ �+ �
2

hf (A)x; xi
����

� 1

2
(�� �)L h`A;x (B) y; yi

� 1

2
(�� �)L

D�

A2x; x

�
1H � 2 hAx; xiB +B2

�1=2
y; y
E

� 1

2
(�� �)L

�

A2x; x

�
� 2 hAx; xi hBy; yi+



B2y; y

��1=2
;
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for any x; y 2 H with kxk = kyk = 1:
Finally, if we choose in (2.8) y = x and B = A; then we deduce the desired result

(2.1). �

In the case of two Lipschitzian functions, the following result may be stated as
well:

Theorem 4. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f; g : [m;M ] �! R are Lipschitzian with the constants L;K >
0; then

(2.9) jC (f; g;A;x)j � LKC (e; e;A;x) ;

for any x 2 H with kxk = 1:

Proof. Since f; g : [m;M ] �! R are Lipschitzian, then

jf (t)� f (s)j � L jt� sj and jg (t)� g (s)j � K jt� sj

for any t; s 2 [m;M ] ; which gives the inequality

jf (t) g (t)� f (t) g (s)� f (s) g (t) + f (s) g (s)j � KL
�
t2 � 2ts+ s2

�
for any t; s 2 [m;M ] :
Now, �x t 2 [m;M ] and if we apply the properties (P) and (M) for the operator

A we get successively

jf (t) g (t)� hg (A)x; xi f (t)� hf (A)x; xi g (t) + hf (A) g (A)x; xij(2.10)

= jh[f (t) g (t) � 1H � f (t) g (A)� f (A) g (t) + f (A) g (A)]x; xij
� hjf (t) g (t) � 1H � f (t) g (A)� f (A) g (t) + f (A) g (A)jx; xi
� KL


�
t2 � 1H � 2tA+A2

�
x; x

�
= KL

�
t2 � 2t hAx; xi+



A2x; x

��
for any x 2 H with kxk = 1:
Further, �x x 2 H with kxk = 1: On applying the same properties for the

inequality (2.10) and another selfadjoint operator B with Sp (B) � [m;M ] ; we
have

(2.11) jhf (B) g (B) y; yi � hg (A)x; xi hf (B) y; yi
� hf (A)x; xi hg (B) y; yi+ hf (A) g (A)x; xij

= jh[f (B) g (B)� hg (A)x; xi f (B)� hf (A)x; xi g (B) + hf (A) g (A)x; xi 1H ] y; yij
� hjf (B) g (B)� hg (A)x; xi f (B)� hf (A)x; xi g (B) + hf (A) g (A)x; xi 1H j y; yi

� KL

�
B2 � 2 hAx; xiB +



A2x; x

�
1H
�
y; y
�

= KL
�

B2y; y

�
� 2 hAx; xi hBy; yi+



A2x; x

��
for any x; y 2 H with kxk = kyk = 1; which is an inequality of interest in its own
right.
Finally, on making B = A and y = x in (2.11) we deduce the desired result

(2.9). �



µCEBY�EV FUNCTIONAL 5

3. Some Inequalities for Sequences of Operators

Consider the sequence of selfadjoint operators A = (A1; :::; An) with Sp (Aj) �
[m;M ] for j 2 f1; :::; ng and for some scalars m < M: If x = (x1; :::; xn) 2 Hn

are such that
Pn
j=1 kxjk

2
= 1; then we can consider the following µCeby�ev type

functional

C (f; g;A;x) :=
nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji :

As a particular case of the above functional and for a probability sequence p =(p1; :::; pn) ;
i.e., pj � 0 for j 2 f1; :::; ng and

Pn
j=1 pj = 1; we can also consider the functional

C (f; g;A;p;x) :=

*
nX
j=1

pjf (Aj) g (Aj)x; x

+

�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+

where x 2 H; kxk = 1:
We know, from [1] that for the sequence of selfadjoint operators A = (A1; :::; An)

with Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for the synchronous (asynchronous)
functions f; g : [m;M ] �! R we have the inequality

(3.1) C (f; g;A;x) � (�) 0

for any x = (x1; :::; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1: Also, for any probability

distribution p =(p1; :::; pn) and any x 2 H; kxk = 1 we have

(3.2) C (f; g;A;p;x) � (�) 0:

On the other hand, the following Grüss�type inequality is valid as well [2]:

(3.3) jC (f; g;A;x)j � 1

2
� (�� ) [C (g; g;A;x)]1=2

�
� 1

4
(�� ) (�� �)

�
for any x = (x1; :::; xn) 2 Hn with

Pn
j=1 kxjk

2
= 1; where f and g are continuous

on [m;M ] and  := mint2[m;M ] f (t), � := maxt2[m;M ] f (t), � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) :
Similarly, for any probability distribution p =(p1; :::; pn) and any x 2 H; kxk = 1

we also have the inequality:

(3.4) jC (f; g;A;p;x)j � 1

2
� (�� ) [C (g; g;A;p;x)]1=2

�
� 1

4
(�� ) (�� �)

�
:

We can state now the following new result:

Theorem 5. Let A = (A1; :::; An) be a sequence of selfadjoint operators with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalars m < M: If f : [m;M ] �!
R is Lipschitzian with the constant L > 0 and g : [m;M ] �! R is continuous with
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� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then

(3.5) jC (f; g;A;x)j � 1

2
(�� �)L

nX
k=1

h`A;x (Ak)xk; xki

�
p
2

2
(�� �)LC (e; e;A;x)

for any x = (x1; :::; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1; where

`A;x (t) :=
nX
j=1

hjt � 1H �Aj jxj ; xji

is a continuous function on [m;M ] ; e (t) = t and

C (e; e;A;x) =
nX
j=1

kAxjk2 �

0@ nX
j=1

hAjxj ; xji

1A2

(� 0) :

Proof. As in [5, p. 6], if we put

eA :=
0BBBB@

A1 : : : 0
:
:
:

0 : : : An

1CCCCA and ex =
0BBBB@

x1
:
:
:
xn

1CCCCA
then we have Sp

� eA� � [m;M ] ; kexk = 1;D
f
� eA� g � eA� ex; exE = nX

j=1

hf (Aj) g (Aj)xj ; xji ;

D
f
� eA� ex; exE = nX

j=1

hf (Aj)xj ; xji ,
D
g
� eA� ex; exE = nX

j=1

hg (Aj)xj ; xji ;

and so on.
Applying Theorem 3 for eA and ex we deduce the desired result (3.5). �
As a particular case we have:

Corollary 1. Let A = (A1; :::; An) be a sequence of selfadjoint operators with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalars m < M: If f : [m;M ] �!
R is Lipschitzian with the constant L > 0 and g : [m;M ] �! R is continuous with
� := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then for any pj � 0; j 2 f1; :::; ng
with

Pn
j=1 pj = 1 and x 2 H with kxk = 1 we have

(3.6) jC (f; g;A;p;x)j � 1

2
(�� �)L

*
nX
k=1

pk`A;p;x (Ak)x; x

+

�
p
2

2
(�� �)LC (e; e;A;p;x)

where

`A;p;x (t) :=

*
nX
j=1

pj jt � 1H �Aj jx; x
+
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is a continuous function on [m;M ] and

C (e; e;A;p;x) =
nX
j=1

pj kAxjk2 �
*

nX
j=1

pjAjx; x

+2
(� 0) :

Proof. In we choose in Theorem 5 xj =
p
pj � x; j 2 f1; :::; ng ; where pj � 0; j 2

f1; :::; ng ;
Pn
j=1 pj = 1 and x 2 H; with kxk = 1 then a simple calculation shows

that the inequality (3.5) becomes (3.6). The details are omitted. �
In a similar way we obtain the following results as well:

Theorem 6. Let A = (A1; :::; An) be a sequence of selfadjoint operators with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalarsm < M: If f; g : [m;M ] �!
R are Lipschitzian with the constants L;K > 0; then

(3.7) jC (f; g;A;x)j � LKC (e; e;A;x) ;

for any x = (x1; :::; xn) 2 Hn with
Pn
j=1 kxjk

2
= 1:

Corollary 2. Let A = (A1; :::; An) be a sequence of selfadjoint operators with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalarsm < M: If f; g : [m;M ] �!
R are Lipschitzian with the constants L;K > 0; then for any pj � 0; j 2 f1; :::; ng
with

Pn
j=1 pj = 1 we have

(3.8) jC (f; g;A;p;x)j � LKC (e; e;A;p;x) ;

for any x 2 H with kxk = 1:

4. The Case of (';�)�Lipschitzian Functions

The following lemma may be stated.

Lemma 1. Let u : [a; b] ! R and ';� 2 R with � > ': The following statements
are equivalent:

(i) The function u�'+�
2 �e; where e (t) = t; t 2 [a; b] ; is 12 (�� ')�Lipschitzian;

(ii) We have the inequality:

(4.1) ' � u (t)� u (s)
t� s � � for each t; s 2 [a; b] with t 6= s;

(iii) We have the inequality:

(4.2) ' (t� s) � u (t)� u (s) � � (t� s) for each t; s 2 [a; b] with t > s:

Following [6], we can introduce the concept:

De�nition 1. The function u : [a; b] ! R which satis�es one of the equivalent
conditions (i) �(iii) is said to be (';�)�Lipschitzian on [a; b] :
Notice that in [6], the de�nition was introduced on utilising the statement (iii)

and only the equivalence (i) , (iii) was considered.
Utilising Lagrange�s mean value theorem, we can state the following result that

provides practical examples of (';�)�Lipschitzian functions.
Proposition 1. Let u : [a; b] ! R be continuous on [a; b] and di¤erentiable on
(a; b) : If

(4.3) �1 <  := inf
t2(a;b)

u0 (t) ; sup
t2(a;b)

u0 (t) =: � <1

then u is (;�)�Lipschitzian on [a; b] :
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The following result can be stated:

Theorem 7. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f : [m;M ] �! R is (';�)�Lipschitzian on [a; b] and g :
[m;M ] �! R is continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ;
then

(4.4)

����C (f; g;A;x)� '+�

2
C (e; g;A;x)

���� � 1

4
(�� �) (�� ') h`A;x (A)x; xi

�
p
2

4
(�� �) (�� ')C (e; e;A;x)

for any x 2 H with kxk = 1:

The proof follows by Theorem 3 applied for the 12 (�� ')�Lipschitzian function
f � '+�

2 � e (see Lemma 1) and the details are omitted.

Theorem 8. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M and f; g : [m;M ] �! R. If f is (';�)�Lipschitzian and g is
( ;	)�Lipschitzian on [a; b] ; then

(4.5)

����C (f; g;A;x)� �+ '2 C (e; g;A;x)

�	+  
2

C (f; e;A;x) +
� + '

2
� 	+  

2
C (e; e;A;x)

����
� 1

4
(�� ') (	�  )C (e; e;A;x) ;

for any x 2 H with kxk = 1:

The proof follows by Theorem 4 applied for the 12 (�� ')�Lipschitzian function
f � '+�

2 � e and the 1
2 (	�  )�Lipschitzian function g �

	+ 
2 � e: The details are

omitted.
Similar results can be derived for sequences of operators, however they will not

be presented here.

5. Some Applications

It is clear that all the inequalities obtained in the previous sections can be applied
to obtain particular inequalities of interest for di¤erent selections of the functions
f and g involved. However we will present here only some particular results that
can be derived from the inequality

(5.1) jC (f; g;A;x)j � LKC (e; e;A;x) ;

that holds for the Lipschitzian functions f and g; the �rst with the constant L > 0
and the second with the constant K > 0:
1. Now, if we consider the functions f; g : [m;M ] � (0;1) ! R with f (t) =

tp; g (t) = tq and p; q 2 (�1; 0) [ (0;1) then they are Lipschitzian with the con-
stants L = kf 0k1 and K = kg0k1 : Since f 0 (t) = ptp�1; g (t) = qtq�1; hence

kf 0k1 =

8<: pMp�1 for p 2 [1;1);

jpjmp�1 for p 2 (�1; 0) [ (0; 1)
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and

kg0k1 =

8<: qMq�1 for q 2 [1;1);

jqjmq�1 for q 2 (�1; 0) [ (0; 1)
:

Therefore we can state the following inequalities for the powers of a positive
de�nite operator A with Sp (A) � [m;M ] � (0;1) :
If p; q � 1; then

(5.2) (0 �)


Ap+qx; x

�
� hApx; xi � hAqx; xi � pqMp+q�2

�
kAxk2 � hAx; xi2

�
for each x 2 H with kxk = 1:
If p � 1 and q 2 (�1; 0) [ (0; 1) ; then

(5.3)
��
Ap+qx; x�� hApx; xi � hAqx; xi�� � p jqjMp�1mq�1

�
kAxk2 � hAx; xi2

�
for each x 2 H with kxk = 1:
If p 2 (�1; 0) [ (0; 1) and q � 1; then

(5.4)
��
Ap+qx; x�� hApx; xi � hAqx; xi�� � jpj qMq�1mp�1

�
kAxk2 � hAx; xi2

�
for each x 2 H with kxk = 1:
If p; q 2 (�1; 0) [ (0; 1) ; then

(5.5)
��
Ap+qx; x�� hApx; xi � hAqx; xi�� � jpqjmp+q�2

�
kAxk2 � hAx; xi2

�
for each x 2 H with kxk = 1:
Moreover, if we take p = 1 and q = �1 in (5.3), then we get the following result

(5.6) (0 �) hAx; xi �


A�1x; x

�
� 1 � m�2

�
kAxk2 � hAx; xi2

�
for each x 2 H with kxk = 1:
2. Consider now the functions f; g : [m;M ] � (0;1) ! R with f (t) = tp; p 2

(�1; 0) [ (0;1) and g (t) = ln t: Then g is also Lipschitzian with the constant
K = kg0k1 = m�1: Applying the inequality (5.1) we then have for any x 2 H with
kxk = 1 that

(5.7) (0 �) hAp lnAx; xi � hApx; xi � hlnAx; xi � pMp�1m�1
�
kAxk2 � hAx; xi2

�
if p � 1;

(5.8) (0 �) hAp lnAx; xi � hApx; xi � hlnAx; xi � pmp�2
�
kAxk2 � hAx; xi2

�
if p 2 (0; 1) and

(5.9) (0 �) hApx; xi � hlnAx; xi � hAp lnAx; xi � (�p)mp�2
�
kAxk2 � hAx; xi2

�
if p 2 (�1; 0) :
3. Now consider the functions f; g : [m;M ] � R! R given by f (t) = exp (�t)

and g (t) = exp (�t) with �; � nonzero real numbers. It is obvious that

kf 0k1 = j�j �

8<: exp (�M) for � > 0;

exp (�m) for � < 0
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and

kg0k1 = j�j �

8<: exp (�M) for � > 0;

exp (�m) for � < 0
:

Finally, on applying the inequality (5.1) we get

(0 �) hexp [(�+ �)A]x; xi � hexp (�A)x; xi � hexp (�A)x; xi(5.10)

� j��j
�
kAxk2 � hAx; xi2

�
�

8<: exp [(�+ �)M ] for �; � > 0;

exp [(�+ �)m] for �; � < 0

and

(0 �) hexp (�A)x; xi � hexp (�A)x; xi � hexp [(�+ �)A]x; xi(5.11)

� j��j
�
kAxk2 � hAx; xi2

�
�

8<: exp (�M + �m) for � > 0; � < 0

exp (�m+ �M) for � < 0; � > 0

for each x 2 H with kxk = 1:
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