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ČEBYŠEV’S TYPE INEQUALITIES FOR FUNCTIONS OF
SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some inequalities for continuous synchronous (asynchronous) func-
tions of selfadjoint linear operators in Hilbert spaces, under suitable assump-

tions for the involved operators, are given.

1. Introduction

Consider the real sequences (n− tuples) a = (a1, . . . , an) , b = (b1, . . . , bn) and
the nonnegative sequence p = (p1, . . . , pn) with Pn :=

∑n
i=1 pi > 0. Define the

weighted Čebyšev’s functional

(1.1) Tn (p;a,b) :=
1

Pn

n∑
i=1

piaibi −
1

Pn

n∑
i=1

piai ·
1

Pn

n∑
i=1

pibi.

In 1882 – 1883, Čebyšev [3] and [4] proved that if a and b are monotonic in the
same (opposite) sense, then

(1.2) Tn (p;a,b) ≥ (≤) 0.

In the special case p = a ≥ 0, it appears that the inequality (1.2) has been
obtained by Laplace long before Čebyšev (see for example [15, p. 240]).

The inequality (1.2) was mentioned by Hardy, Littlewood and Pólya in their
book [13] in 1934 in the more general setting of synchronous sequences, i.e., if a, b
are synchronous (asynchronous), this means that

(1.3) (ai − aj) (bi − bj) ≥ (≤) 0 for any i, j ∈ {1, . . . , n} ,

then (1.2) holds true as well.
A relaxation of the synchronicity condition was provided by M. Biernacki in

1951, [1], which showed that, if a, b are monotonic in mean in the same sense, i.e.,
for Pk :=

∑k
i=1 pi, k = 1, . . . , n− 1;

(1.4)
1
Pk

k∑
i=1

piai ≤ (≥)
1

Pk+1

k+1∑
i=1

piai, k ∈ {1, . . . , n− 1}

and

(1.5)
1
Pk

k∑
i=1

pibi ≤ (≥)
1

Pk+1

k+1∑
i=1

pibi, k ∈ {1, . . . , n− 1} ,
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then (1.2) holds with “ ≥ ”. If if a, b are monotonic in mean in the opposite sense
then (1.2) holds with “ ≤ ”.

If one would like to drop the assumption of nonnegativity for the components of
p, then one may state the following inequality obtained by Mitrinović and Pečarić
in 1991, [16]: If 0 ≤ Pi ≤ Pn for each i ∈ {1, . . . , n− 1} , then

(1.6) Tn (p;a,b) ≥ 0

provided a and b are sequences with the same monotonicity.
If a and b are monotonic in the opposite sense, the sign of the inequality (1.6)

reverses.
Similar integral inequalities may be stated, however we do not present them here.
For other recent results on the Čebyšev inequality in either discrete or integral

form see [2], [5], [6], [7], [8], [9], [15], [17], [18], [21], [22], [23], and the references
therein.

The main aim of the present paper is to provide operator versions for the Čebyšev
inequality in different settings. Related results and some particular cases of interest
are also given.

2. A Version of the Čebyšev Inequality for One Operator

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈., .〉) .
The Gelfand map establishes a ∗-isometrically isomorphism Φ between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A) ,
an the C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as
follows (see for instance [12, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ (f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [12] and the references therein.
For other results see [14] and [25].
We say that the functions f, g : [a, b] −→ R are synchronous (asynchronous) on

the interval [a, b] if they satisfy the following condition:

(f (t)− f (s)) (g (t)− g (s)) ≥ (≤) 0 for each t, s ∈ [a, b] .
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It is obvious that, if f, g are monotonic and have the same monotonicity on
the interval [a, b] , then they are synchronous on [a, b] while if they have opposite
monotonicity, they are asynchronous.

For some extensions of the discrete Čebyšev inequality for synchronous (asyn-
chronous) sequences of vectors in an inner product space, see [10] and [11].

The following result provides an inequality of Čebyšev type for functions of
selfadjoint operators.

Theorem 1. Let A be a selfadjoint operator with Sp (A) ⊆ [m,M ] for some real
numbers m < M. If f, g : [m,M ] −→ R are continuous and synchronous (asynchro-
nous) on [m,M ] , then

(2.1) 〈f (A) g (A) x, x〉 ≥ (≤) 〈f (A) x, x〉 · 〈g (A) x, x〉
for any x ∈ H with ‖x‖ = 1.

Proof. We consider only the case of synchronous functions. In this case we have
then

(2.2) f (t) g (t) + f (s) g (s) ≥ f (t) g (s) + f (s) g (t)

for each t, s ∈ [a, b] .
If we fix s ∈ [a, b] and apply the property (P) for the inequality (2.2) then we

have for each x ∈ H with ‖x‖ = 1 that

〈(f (A) g (A) + f (s) g (s) 1H)x, x〉 ≥ 〈(g (s) f (A) + f (s) g (A))x, x〉 ,
which is clearly equivalent with

(2.3) 〈f (A) g (A) x, x〉+ f (s) g (s) ≥ g (s) 〈f (A)x, x〉+ f (s) 〈g (A) x, x〉
for each s ∈ [a, b] .

Now, if we apply again the property (P) for the inequality (2.3), then we have
for any y ∈ H with ‖y‖ = 1 that

〈(〈f (A) g (A) x, x〉 1H + f (A) g (A)) y, y〉
≥ 〈(〈f (A) x, x〉 g (A) + 〈g (A) x, x〉 f (A)) y, y〉 ,

which is clearly equivalent with

(2.4) 〈f (A) g (A) x, x〉+ 〈f (A) g (A) y, y〉
≥ 〈f (A) x, x〉 〈g (A) y, y〉+ 〈f (A) y, y〉 〈g (A) x, x〉

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1. This is an inequality of interest in itself.
Finally, on making y = x in (2.4) we deduce the desired result (2.1).

Some particular cases are of interest for applications. In the first instance we
consider the case of power functions.

Example 1. Assume that A is a positive operator on the Hilbert space H and
p, q > 0. Then for each x ∈ H with ‖x‖ = 1 we have the inequality

(2.5)
〈
Ap+qx, x

〉
≥ 〈Apx, x〉 · 〈Aqx, x〉 .

If A is positive definite then the inequality (2.5) also holds for p, q < 0.
If A is positive definite and either p > 0, q < 0 or p < 0, q > 0, then the reverse

inequality holds in (2.5).

Another case of interest for applications is the exponential function.
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Example 2. Assume that A is a selfadjoint operator on H. If α, β > 0 or α, β < 0,
then

(2.6) 〈exp [(α + β)A]x, x〉 ≥ 〈exp (αA)x, x〉 · 〈exp (βA) x, x〉

for each x ∈ H with ‖x‖ = 1.
If either α > 0, β < 0 or α < 0, β > 0, then the reverse inequality holds in (2.6).

The following particular cases may be of interest as well:

Example 3. a. Assume that A is positive definite and p > 0. Then

(2.7) 〈Ap log Ax, x〉 ≥ 〈Apx, x〉 · 〈log Ax, x〉

for each x ∈ H with ‖x‖ = 1. If p < 0 then the reverse inequality holds in (2.7).
b. Assume that A is positive definite and Sp (A) ⊂ (0, 1) . If r, s > 0 or r, s < 0

then

(2.8)
〈
(1H −Ar)−1 (1H −As)−1

x, x
〉
≥

〈
(1H −Ar)−1

x, x
〉
·
〈
(1H −As)−1

x, x
〉

for each x ∈ H with ‖x‖ = 1.
If either r > 0, s < 0 or r < 0, s > 0, then the reverse inequality holds in (2.8).

Remark 1. We observe, from the proof of the above theorem that, if A and B
are selfadjoint operators and Sp (A) , Sp (B) ⊆ [m,M ] , then for any continuous
synchronous (asynchronous) functions f, g : [m,M ] −→ R we have the more general
result

(2.9) 〈f (A) g (A) x, x〉+ 〈f (B) g (B) y, y〉
≥ (≤) 〈f (A) x, x〉 〈g (B) y, y〉+ 〈f (B) y, y〉 〈g (A) x, x〉

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.
If f : [m,M ] −→ (0,∞) is continuous then the functions fp, fq are synchronous

in the case when p, q > 0 or p, q < 0 and asynchronous when either p > 0, q < 0
or p < 0, q > 0. In this situation if A and B are positive definite operators then we
have the inequality

(2.10)
〈
fp+q (A)x, x

〉
+

〈
fp+q (B) y, y

〉
≥ 〈fp (A) x, x〉 〈fq (B) y, y〉+ 〈fp (B) y, y〉 〈fq (A) x, x〉

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1 where either p, q > 0 or p, q < 0. If
p > 0, q < 0 or p < 0, q > 0 then the reverse inequality also holds in (2.10).

As particular cases, we should observe that for p = q = 1 and f (t) = t, we get
from (2.10) the inequality

(2.11)
〈
A2x, x

〉
+

〈
B2y, y

〉
≥ 2 · 〈Ax, x〉 〈By, y〉

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.
For p = 1 and q = −1 we have from (2.10)

(2.12) 〈Ax, x〉
〈
B−1y, y

〉
+ 〈By, y〉

〈
A−1x, x

〉
≤ 2

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.
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3. A Version of the Čebyšev Inequality for n Operators

The following multiple operator version of Theorem 1 holds:

Theorem 2. Let Aj be selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M. If f, g : [m,M ] −→ R are continuous
and synchronous (asynchronous) on [m,M ] , then

(3.1)
n∑

j=1

〈f (Aj) g (Aj) xj , xj〉 ≥ (≤)
n∑

j=1

〈f (Aj) xj , xj〉 ·
n∑

j=1

〈g (Aj) xj , xj〉 ,

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

Proof. As in [12, p. 6], if we put

Ã :=


A1 . . . 0

.
.

.
0 . . . An

 and x̃ =


x1

.

.

.
xn


then we have Sp

(
Ã

)
⊆ [m,M ] , ‖x̃‖ = 1,〈

f
(
Ã

)
g

(
Ã

)
x̃, x̃

〉
=

n∑
j=1

〈f (Aj) g (Aj)xj , xj〉 ,

〈
f

(
Ã

)
x̃, x̃

〉
=

n∑
j=1

〈f (Aj) xj , xj〉 and
〈
g

(
Ã

)
x̃, x̃

〉
=

n∑
j=1

〈g (Aj)xj , xj〉 .

Applying Theorem 1 for Ã and x̃ we deduce the desired result (3.1).

The following particular cases may be of interest for applications.

Example 4. Assume that Aj , j ∈ {1, ..., n} are positive operators on the Hilbert
space H and p, q > 0. Then for each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1 we

have the inequality

(3.2)

〈
n∑

j=1

Ap+q
j xj , xj

〉
≥

n∑
j=1

〈
Ap

jxj , xj

〉
·

n∑
j=1

〈
Aq

jxj , xj

〉
.

If Aj are positive definite then the inequality (3.2) also holds for p, q < 0.
If Aj are positive definite and either p > 0, q < 0 or p < 0, q > 0, then the

reverse inequality holds in (3.2).

Another case of interest for applications is the exponential function.

Example 5. Assume that Aj , j ∈ {1, ..., n} are selfadjoint operators on H. If α, β >
0 or α, β < 0, then

(3.3)

〈
n∑

j=1

exp [(α + β) Aj ]xj , xj

〉

≥
n∑

j=1

〈exp (αAj) xj , xj〉 ·
n∑

j=1

〈exp (βAj)xj , xj〉
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for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

If either α > 0, β < 0 or α < 0, β > 0, then the reverse inequality holds in (3.3).

The following particular cases may be of interest as well:

Example 6. a. Assume that Aj , j ∈ {1, ..., n} are positive definite operators and
p > 0. Then

(3.4)

〈
n∑

j=1

Ap
j log Ajxj , xj

〉
≥

n∑
j=1

〈
Ap

jxj , xj

〉
·

n∑
j=1

〈log Ajxj , xj〉

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1. If p < 0 then the reverse
inequality holds in (3.4).

b. If Aj are positive definite and Sp (Aj) ⊂ (0, 1) for j ∈ {1, ..., n} then for
r, s > 0 or r, s < 0 we have the inequality

(3.5)

〈
n∑

j=1

(
1H −Ar

j

)−1 (
1H −As

j

)−1
xj , xj

〉

≥
n∑

j=1

〈(
1H −Ar

j

)−1
xj , xj

〉
·

n∑
j=1

〈(
1H −As

j

)−1
xj , xj

〉
for each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1.

If either r > 0, s < 0 or r < 0, s > 0, then the reverse inequality holds in (3.5).

4. Another Version of the Čebyšev Inequality for n Operators

The following different version of the Čebyšev inequality for a sequence of oper-
ators also holds:

Theorem 3. Let Aj be selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M. If f, g : [m,M ] −→ R are continuous
and synchronous (asynchronous) on [m,M ] , then

(4.1)

〈
n∑

j=1

pjf (Aj) g (Aj) x, x

〉
≥ (≤)

〈
n∑

j=1

pjf (Aj) x, x

〉
·

〈
n∑

j=1

pjg (Aj) x, x

〉
,

for any pj ≥ 0, j ∈ {1, ..., n} with
∑n

j=1 pj = 1 and x ∈ H with ‖x‖ = 1.
In particular

(4.2)

〈
1
n

n∑
j=1

f (Aj) g (Aj) x, x

〉

≥ (≤)

〈
1
n

n∑
j=1

f (Aj) x, x

〉
·

〈
1
n

n∑
j=1

g (Aj) x, x

〉
,

for each x ∈ H with ‖x‖ = 1.

Proof. We provide here two proofs. The first is based on the inequality (2.9) and
generates as a byproduct a more general result. The second is derived from Theorem
2.
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1. If we make use of the inequality (2.9), then we can write

(4.3) 〈f (Aj) g (Aj) x, x〉+ 〈f (Bk) g (Bk) y, y〉
≥ (≤) 〈f (Aj)x, x〉 〈g (Bk) y, y〉+ 〈f (Bk) y, y〉 〈g (Aj) x, x〉 ,

which holds for any Aj and Bk selfadjoint operators with Sp (Aj) , Sp (Bk) ⊆
[m,M ] , j, k ∈ {1, ..., n} and for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Now, if pj ≥ 0, qk ≥ 0, j, k ∈ {1, ..., n} and
∑n

j=1 pj =
∑n

k=1 qk = 1 then, by
multiplying (4.3) with pj ≥ 0, qk ≥ 0 and summing over j and k from 1 to n we
deduce the following inequality that is of interest in its own right:

(4.4)

〈
n∑

j=1

pjf (Aj) g (Aj) x, x

〉
+

〈
n∑

k=1

qkf (Bk) g (Bk) y, y

〉

≥ (≤)

〈
n∑

j=1

pjf (Aj) x, x

〉〈
n∑

k=1

qkg (Bk) y, y

〉

+

〈
n∑

k=1

qkf (Bk) y, y

〉〈
n∑

j=1

pjg (Aj) x, x

〉
for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Finally, the choice Bk = Ak, qk = pk and y = x in (4.4) produces the desired
result (4.1).

2. In we choose in Theorem 2 xj = √
pj · x, j ∈ {1, ..., n} , where pj ≥ 0, j ∈

{1, ..., n} ,
∑n

j=1 pj = 1 and x ∈ H, with ‖x‖ = 1 then a simple calculation shows
that the inequality (3.1) becomes (4.1). The details are omitted.

Remark 2. We remark that the case n = 1 in (4.1) produces the inequality (2.1).

The following particular cases are of interest:

Example 7. Assume that Aj , j ∈ {1, ..., n} are positive operators on the Hilbert
space H, pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and p, q > 0. Then for each x ∈ H

with ‖x‖ = 1 we have the inequality

(4.5)

〈
n∑

j=1

pjA
p+q
j x, x

〉
≥

〈
n∑

j=1

pjA
p
jx, x

〉
·

〈
n∑

j=1

pjA
q
jx, x

〉
.

If Aj , j ∈ {1, ..., n} are positive definite then the inequality (4.5) also holds for
p, q < 0.

If Aj , j ∈ {1, ..., n} are positive definite and either p > 0, q < 0 or p < 0, q > 0,
then the reverse inequality holds in (4.5).

Another case of interest for applications is the exponential function.

Example 8. Assume that Aj , j ∈ {1, ..., n} are selfadjoint operators on H and
pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1. If α, β > 0 or α, β < 0, then

(4.6)

〈
n∑

j=1

pj exp [(α + β) Aj ]x, x

〉

≥

〈
n∑

j=1

pj exp (αAj)x, x

〉
·

〈
n∑

j=1

pj exp (βAj) x, x

〉
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for each x ∈ H with ‖x‖ = 1.
If either α > 0, β < 0 or α < 0, β > 0, then the reverse inequality holds in (4.6).

The following particular cases may be of interest as well:

Example 9. a. Assume that Aj , j ∈ {1, ..., n} are positive definite operators on
the Hilbert space H, pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and p > 0. Then

(4.7)

〈
n∑

j=1

pjA
p
j log Ajx, x

〉
≥

〈
n∑

j=1

pjA
p
jx, x

〉
·

〈
n∑

j=1

pj log Ajx, x

〉
.

If p < 0 then the reverse inequality holds in (4.7).
b. Assume that Aj , j ∈ {1, ..., n} are positive definite operators on the Hilbert

space H,Sp (Aj) ⊂ (0, 1) and pj ≥ 0, j ∈ {1, ..., n} with
∑n

j=1 pj = 1. If r, s > 0 or
r, s < 0 then

(4.8)

〈
n∑

j=1

pj

(
1H −Ar

j

)−1 (
1H −As

j

)−1
x, x

〉

≥

〈
n∑

j=1

pj

(
1H −Ar

j

)−1
x, x

〉
·

〈
n∑

j=1

pj

(
1H −As

j

)−1
x, x

〉
for each x ∈ H with ‖x‖ = 1.

If either r > 0, s < 0 or r < 0, s > 0, then the reverse inequality holds in (4.8).

We remark that the following operator norm inequality can be stated as well:

Corollary 1. Let Aj be selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M. If f, g : [m,M ] −→ R are continuous,
asynchronous on [m,M ] and for pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 the opera-

tor
∑n

j=1 pjf (Aj) g (Aj) is positive, then

(4.9)

∥∥∥∥∥∥
n∑

j=1

pjf (Aj) g (Aj)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

n∑
j=1

pjf (Aj)

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

pjg (Aj)

∥∥∥∥∥∥ .

Proof. We have from (4.1) that

0 ≤

〈
n∑

j=1

pjf (Aj) g (Aj) x, x

〉
≤

〈
n∑

j=1

pjf (Aj) x, x

〉
·

〈
n∑

j=1

pjg (Aj)x, x

〉
for each x ∈ H with ‖x‖ = 1. Taking the supremum in this inequality over x ∈ H
with ‖x‖ = 1 we deduce the desired result (4.9).

The bove Corollary 1 provides some interesting norm inequalities for sums of
positive operators as follows:

Example 10. a. If Aj , j ∈ {1, ..., n} are positive definite and either p > 0, q < 0
or p < 0, q > 0, then for pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 we have the norm

inequality:

(4.10)

∥∥∥∥∥∥
n∑

j=1

pjA
p+q
j

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

n∑
j=1

pjA
p
j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

pjA
q
j

∥∥∥∥∥∥ .
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In particular

(4.11) 1 ≤

∥∥∥∥∥∥
n∑

j=1

pjA
r
j

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

pjA
−r
j

∥∥∥∥∥∥
for any r > 0.

b. Assume that Aj , j ∈ {1, ..., n} are selfadjoint operators on H and pj ≥ 0, j ∈
{1, ..., n} with

∑n
j=1 pj = 1. If either α > 0, β < 0 or α < 0, β > 0, then

(4.12)

∥∥∥∥∥∥
n∑

j=1

pj exp [(α + β)Aj ]

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

n∑
j=1

pj exp (αAj)

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

pj exp (βAj)

∥∥∥∥∥∥ .

In particular

(4.13) 1 ≤

∥∥∥∥∥∥
n∑

j=1

pj exp (γAj)

∥∥∥∥∥∥ ·
∥∥∥∥∥∥

n∑
j=1

pj exp (−γAj)

∥∥∥∥∥∥ .

for any γ > 0.

5. Related Results for One Operator

The following result that is related to the Čebyšev inequality may be stated:

Theorem 4. Let A be a selfadjoint operator with Sp (A) ⊆ [m,M ] for some real
numbers m < M. If f, g : [m,M ] −→ R are continuous and synchronous on [m,M ] ,
then

(5.1) 〈f (A) g (A) x, x〉 − 〈f (A)x, x〉 · 〈g (A) x, x〉
≥ [〈f (A) x, x〉 − f (〈Ax, x〉)] · [g (〈Ax, x〉)− 〈g (A)x, x〉]

for any x ∈ H with ‖x‖ = 1.
If f, g are asynchronous, then

(5.2) 〈f (A) x, x〉 · 〈g (A)x, x〉 − 〈f (A) g (A) x, x〉
≥ [〈f (A) x, x〉 − f (〈Ax, x〉)] · [〈g (A) x, x〉 − g (〈Ax, x〉)]

for any x ∈ H with ‖x‖ = 1.

Proof. Since f, g are synchronous and m ≤ 〈Ax, x〉 ≤ M for any x ∈ H with
‖x‖ = 1, then we have

(5.3) [f (t)− f (〈Ax, x〉)] [g (t)− g (〈Ax, x〉)] ≥ 0

for any t ∈ [a, b] and x ∈ H with ‖x‖ = 1.
On utilising the property (P) for the inequality (5.3) we have that

(5.4) 〈[f (B)− f (〈Ax, x〉)] [g (B)− g (〈Ax, x〉)] y, y〉 ≥ 0

for any B a bounded linear operator with Sp (B) ⊆ [m,M ] and y ∈ H with ‖y‖ = 1.
Since

(5.5) 〈[f (B)− f (〈Ax, x〉)] [g (B)− g (〈Ax, x〉)] y, y〉
= 〈f (B) g (B) y, y〉+ f (〈Ax, x〉) g (〈Ax, x〉)

− 〈f (B) y, y〉 g (〈Ax, x〉)− f (〈Ax, x〉) 〈g (B) y, y〉 ,
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then from (5.4) we get

〈f (B) g (B) y, y〉+ f (〈Ax, x〉) g (〈Ax, x〉)
≥ 〈f (B) y, y〉 g (〈Ax, x〉) + f (〈Ax, x〉) 〈g (B) y, y〉

which is clearly equivalent with

(5.6) 〈f (B) g (B) y, y〉 − 〈f (A) y, y〉 · 〈g (A) y, y〉
≥ [〈f (B) y, y〉 − f (〈Ax, x〉)] · [g (〈Ax, x〉)− 〈g (B) y, y〉]

for each x, y ∈ H with ‖x‖ = ‖y‖ = 1. This inequality is of interest in its own right.
Now, if we choose B = A and y = x in (5.6), then we deduce the desired result

(5.1).

The following result which improves the Čebyšev inequality may be stated:

Corollary 2. Let A be a selfadjoint operator with Sp (A) ⊆ [m,M ] for some real
numbers m < M. If f, g : [m,M ] −→ R are continuous, synchronous and one is
convex while the other is concave on [m,M ] , then

(5.7) 〈f (A) g (A) x, x〉 − 〈f (A)x, x〉 · 〈g (A) x, x〉
≥ [〈f (A) x, x〉 − f (〈Ax, x〉)] · [g (〈Ax, x〉)− 〈g (A) x, x〉] ≥ 0

for any x ∈ H with ‖x‖ = 1.
If f, g are asynchronous and either both of them are convex or both of them

concave on [m,M ], then

(5.8) 〈f (A) x, x〉 · 〈g (A)x, x〉 − 〈f (A) g (A) x, x〉
≥ [〈f (A) x, x〉 − f (〈Ax, x〉)] · [〈g (A) x, x〉 − g (〈Ax, x〉)] ≥ 0

for any x ∈ H with ‖x‖ = 1.

Proof. The second inequality follows by making use of the result due to Mond &
Pečarić, see [19], [20] or [12, p. 5]:

(MP) 〈h (A) x, x〉 ≥ (≤)h (〈Ax, x〉)
for any x ∈ H with ‖x‖ = 1 provided that A is a selfadjoint operator with Sp (A) ⊆
[m,M ] for some real numbers m < M and h is convex (concave) on the given
interval [m,M ] .

The above Corollary 2 offers the possibility to improve some of the results es-
tablished before for power function as follows:

Example 11. a. Assume that A is a positive operator on the Hilbert space H. If
p ∈ (0, 1) and q ∈ (1,∞) , then for each x ∈ H with ‖x‖ = 1 we have the inequality

(5.9)
〈
Ap+qx, x

〉
− 〈Apx, x〉 · 〈Aqx, x〉

≥ [〈Aqx, x〉 − 〈Ax, x〉q] [〈Ax, x〉p − 〈Apx, x〉] ≥ 0.

If A is positive definite and p > 1, q < 0, then

(5.10) 〈Apx, x〉 · 〈Aqx, x〉 −
〈
Ap+qx, x

〉
≥ [〈Aqx, x〉 − 〈Ax, x〉q] [〈Apx, x〉 − 〈Ax, x〉p] ≥ 0

for each x ∈ H with ‖x‖ = 1.
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b. Assume that A is positive definite and p > 1. Then

(5.11) 〈Ap log Ax, x〉 − 〈Apx, x〉 · 〈log Ax, x〉
≥ [〈Apx, x〉 − 〈Ax, x〉p] [log 〈Ax, x〉 − 〈log Ax, x〉] ≥ 0

for each x ∈ H with ‖x‖ = 1.

6. Related Results for n Operators

We can state now the following generalisation of Theorem 4 for n operators:

Theorem 5. Let Aj be selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M.

(i) If f, g : [m,M ] −→ R are continuous and synchronous on [m,M ] , then

(6.1)
n∑

j=1

〈f (Aj) g (Aj) xj , xj〉 −
n∑

j=1

〈f (Aj)xj , xj〉 ·
n∑

j=1

〈g (Aj) xj , xj〉

≥

 n∑
j=1

〈f (Aj) xj , xj〉 − f

 n∑
j=1

〈Ajxj , xj〉


·

g

 n∑
j=1

〈Ajxj , xj〉

−
n∑

j=1

〈g (Aj) xj , xj〉


for each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1. Moreover, if one function is

convex while the other is concave on [m,M ] , then the right hand side of (6.1) is
nonnegative.

(ii) If f, g are asynchronous on [m,M ] , then

(6.2)
n∑

j=1

〈f (Aj) xj , xj〉 ·
n∑

j=1

〈g (Aj) xj , xj〉 −
n∑

j=1

〈f (Aj) g (Aj)xj , xj〉

≥

 n∑
j=1

〈f (Aj)xj , xj〉 − f

 n∑
j=1

〈Ajxj , xj〉


·

 n∑
j=1

〈g (Aj) xj , xj〉 − g

 n∑
j=1

〈Ajxj , xj〉


for each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1. Moreover, if either both of

them are convex or both of them are concave on [m,M ], then the right hand side of
(6.2) is nonnegative as well.

Proof. The argument is similar to the one from the proof of Theorem 2 on utilising
the results from one operator obtained in Theorem 4.

The nonnegativity of the right hand sides of the inequalities (6.1) and (6.2)
follows by the use of the Jensen’s type result from [12, p. 5]

(6.3)
n∑

j=1

〈h (Aj)xj , xj〉 ≥ (≤) h

 n∑
j=1

〈Ajxj , xj〉


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for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1, which holds provided that
Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and for some
scalars m < M and h is convex (concave) on [m,M ] .

The details are omitted.

Example 12. a. Assume that Aj , j ∈ {1, ..., n} are positive operators on the
Hilbert space H. If p ∈ (0, 1) and q ∈ (1,∞) , then for each xj ∈ H, j ∈ {1, ..., n}
with

∑n
j=1 ‖xj‖2 = 1 we have the inequality

(6.4)
n∑

j=1

〈
Ap+q

j xj , xj

〉
−

n∑
j=1

〈
Ap

jxj , xj

〉
·

n∑
j=1

〈
Aq

jxj , xj

〉

≥

 n∑
j=1

〈
Aq

jxj , xj

〉
−

 n∑
j=1

〈Ajxj , xj〉

q
·

 n∑
j=1

〈Ajxj , xj〉

p

−
n∑

j=1

〈
Ap

jxj , xj

〉 ≥ 0.

If Aj are positive definite and p > 1, q < 0, then

(6.5)
n∑

j=1

〈
Ap

jxj , xj

〉
·

n∑
j=1

〈
Aq

jxj , xj

〉
−

n∑
j=1

〈
Ap+q

j xj , xj

〉

≥

 n∑
j=1

〈
Aq

jxj , xj

〉
−

 n∑
j=1

〈Ajxj , xj〉

q
·

 n∑
j=1

〈
Ap

jxj , xj

〉
−

 n∑
j=1

〈Ajxj , xj〉

p ≥ 0

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.
b. Assume that Aj are positive definite and p > 1. Then

(6.6)
n∑

j=1

〈
Ap

j log Axj , xj

〉
−

n∑
j=1

〈
Ap

jxj , xj

〉
·

n∑
j=1

〈log Ajxj , xj〉

≥

 n∑
j=1

〈
Ap

jxj , xj

〉
−

 n∑
j=1

〈Ajxj , xj〉

p
·

 n∑
j=1

log 〈Ajxj , xj〉 − log

 n∑
j=1

〈Ajxj , xj〉

 ≥ 0

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

The following result may be stated as well:

Theorem 6. Let Aj be selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M.
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(i) If f, g : [m,M ] −→ R are continuous and synchronous on [m,M ] , then

(6.7)

〈
n∑

j=1

pjf (Aj) g (Aj) x, x

〉
−

〈
n∑

j=1

pjf (Aj) x, x

〉
·

〈
n∑

j=1

pjg (Aj) x, x

〉

≥

f

〈
n∑

j=1

pjAjx, x

〉−

〈
n∑

j=1

pjf (Aj) x, x

〉
·

〈
n∑

j=1

pjg (Aj) x, x

〉
− g

〈
n∑

j=1

pjAjx, x

〉
for any pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and x ∈ H with ‖x‖ = 1. Moreover,

if one is convex while the other is concave on [m,M ] , then the right hand side of
(6.7) is nonnegative.

(ii) If f, g are asynchronous on [m,M ] , then

(6.8)

〈
n∑

j=1

pjf (Aj) x, x

〉
·

〈
n∑

j=1

pjg (Aj) x, x

〉
−

〈
n∑

j=1

pjf (Aj) g (Aj)x, x

〉

≥

〈
n∑

j=1

pjf (Aj) x, x

〉
− f

〈
n∑

j=1

pjAjx, x

〉
·

〈
n∑

j=1

pjg (Aj) x, x

〉
− g

〈
n∑

j=1

pjAjx, x

〉
for any pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and x ∈ H with ‖x‖ = 1. Moreover,

if either both of them are convex or both of them are concave on [m,M ], then the
right hand side of (6.8) is nonnegative as well.

Proof. Follows from Theorem 5 on choosing xj = √
pj · x, j ∈ {1, ..., n} , where

pj ≥ 0, j ∈ {1, ..., n} ,
∑n

j=1 pj = 1 and x ∈ H, with ‖x‖ = 1.

Also, the positivity of the right hand term in (6.7) follows by the Jensen’s type
inequality from the inequality (6.3) for the same choices, namely xj = √

pj · x,

j ∈ {1, ..., n} , where pj ≥ 0, j ∈ {1, ..., n} ,
∑n

j=1 pj = 1 and x ∈ H, with ‖x‖ = 1.
The details are omitted.

Finally, we can list some particular inequalities that may be of interest for ap-
plications. They improve some result obtained above:

Example 13. a. Assume that Aj , j ∈ {1, ..., n} are positive operators on the Hilbert
space H and pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1. If p ∈ (0, 1) and q ∈ (1,∞) ,
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then for each x ∈ H with ‖x‖ = 1 we have the inequality

(6.9)

〈
n∑

j=1

pjA
p+q
j x, x

〉
−

〈
n∑

j=1

pjA
p
jx, x

〉
·

〈
n∑

j=1

pjA
q
jx, x

〉

≥

〈
n∑

j=1

pjA
q
jx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉q


·

〈
n∑

j=1

pjAjx, x

〉p

−

〈
n∑

j=1

pjA
p
jx, x

〉 ≥ 0.

If Aj , j ∈ {1, ..., n} are positive definite and p > 1, q < 0, then

(6.10)

〈
n∑

j=1

pjA
p
jx, x

〉
·

〈
n∑

j=1

pjA
q
jx, x

〉
−

〈
n∑

j=1

pjA
p+q
j x, x

〉

≥

〈
n∑

j=1

pjA
q
jx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉q


·

〈
n∑

j=1

pjA
p
jx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉p
 ≥ 0

for each x ∈ H with ‖x‖ = 1.
b. Assume that Aj, j ∈ {1, ..., n} are positive definite and p > 1. Then

(6.11)

〈
n∑

j=1

pjA
p
j log Ajx, x

〉
−

〈
n∑

j=1

pjA
p
jx, x

〉
·

〈
n∑

j=1

pj log Ajx, x

〉

≥

〈
n∑

j=1

pjA
p
jx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉p


·

log

〈
n∑

j=1

pjAjx, x

〉
−

〈
n∑

j=1

pj log Ajx, x

〉 ≥ 0

for each x ∈ H with ‖x‖ = 1.
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[17] D.S. Mitrinović and J.E. Pečarić, History, variations and generalizations of the Čebyšev
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