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GRUSS’ TYPE INEQUALITIES FOR FUNCTIONS OF
SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

ABSTRACT. Some inequalities of Griiss’ type for functions of selfadjoint oper-
ators in Hilbert spaces, under suitable assumptions for the involved operators,
are given.

1. INTRODUCTION

In 1935, G. Griiss [19] proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows:

b b b
(1) o [ f@a@de— 2 [ @ i [y
< @97,

where f, g : [a,b] — R are integrable on [a,b] and satisfy the condition
(1.2) p<flr) <P, y<g(x)<T

for each = € [a,b], where ¢, ®,~,T" are given real constants.

Moreover, the constant % is sharp in the sense that it cannot be replaced by a
smaller one.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [22 Chapter X] estab-
lished the following discrete version of Griiss’ inequality:

Let a = (a1,...,an), b= (b1,...,b,) be two n—tuples of real numbers such that
r<a; <Rand s <b; < S fori=1,...,n. Then one has

(1.3) ;iaibi—iiariibi < % {g} (1—711 {Z}) (R=7)(S—s),

i=1
where [z] denotes the integer part of z, z € R.

For a simple proof of as well as for some other integral inequalities of Griiss
type, see Chapter X of the recent book [22]. For other related results see the papers
-3, [4-[6], [7-[9], [10]-[16], [18], [25], [27] and the references therein.
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2 S.S. DRAGOMIR

2. OPERATOR INEQUALITIES

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)).
The Gelfand map establishes a *-isometrically isomorphism ® between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A),
an the C*-algebra C* (A) generated by A and the identity operator 1y on H as
follows (see for instance [20] p. 3]):

For any f,g € C (Sp(4)) and any «, 8 € C we have

() @ (af +8g) = a® (f) + 4P (g):;

(i) ®(fg)=® (/)@ (g) and @ (f) = & (f)";

(i) 1 (F)] = 1] == supresyoa 1f (O]

(iv) @ (fo) =1g and ® (f1) = A, where fo (t) = 1and f; (t) = ¢, fort € Sp(A).

With this notation we define

f(A) = (f) forall f e C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp (A4),
then f(t) > 0 for any ¢ € Sp(A) implies that f(A) > 0, i.e. f(A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A4) then
the following important property holds:

(P) f(t) > g(t) for any t € Sp(A) implies that f (4) > g (A)

in the operator order of B (H).

For a recent monograph devoted to various inequalities for functions of selfadjoint
operators, see [20] and the references therein. For other results, see [24], [2I] and
[26].

The following operator version of the Griiss inequality was obtained by Mond &
Pecarié in [23]:

Theorem 1 (Mond-Pecari¢, 1993, [23]). Let C;, j € {1,...,n} be selfadjoint op-
erators on the Hilbert space (H,(.,.)) and such that m; - 1y < C; < M; - 1y
for j € {1,...,n}, where 1y is the identity operator on H. Further, let g;, h; :
[mj, Mjl — R, j€{1,...,n} be functions such that

(2.1) 01y <g;(C;)<®-1g andy-1yg < h;(Cj) <T -1y
for each j € {1,...,n}.
Ifx; € H,j€{1,..,n} are such that 3_7_, | z;]|> =1, then
(22) D {9 (C i (Ch) gy = (g (Ch)ag,ay) - > (hy (Cy) wy, ;)
j=1 j=1 j=1

<= (2-9) (' =9).

| =

If Cj,j € {1,...,n} are selfadjoint operators such that Sp(C;) C [m,M] for
j €{1,...,n} and for some scalars m < M and if g, h : [m, M] — R are continuous
then by the Mond-Pecari¢ inequality we deduce the following version of the Griiss
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inequality for operators

(2.3) Z (9(Cj) h(Cj) zj,x5) Z NEZTED) Z EIIE)
j=1 Jj=1 j=1

i(cb )T~ ),

wherez; € H, j € {1,...,n} are such that 2?21 ||£L']||2 = land ¢ = mingepm a9 (t) s
® = maxie(m,m 9 (t) , ¥ = mingefm ar) b (t) and T = max;e(m ar b (1) -

In particular, if the selfadjoint operator C satisfy the condition Sp (C) C [m, M]
for some scalars m < M, then

(2.4) (g (C)n(C)x,2) = (g (C) ;) - (h(C) ;)| <

for any x € H with ||z| = 1.
We say that the functions f,g : [a,b] — R are synchronous (asynchronous) on
the interval [a, b] if they satisfy the following condition:

(f () = £ () (9(t) = g (s)) = ()0 for each t,s € [a,b].

It is obvious that, if f,¢ are monotonic and have the same monotonicity on
the interval [a,b], then they are synchronous on [a,b] while if they have opposite
monotonicity, they are asynchronous.

In the recent paper [I7] the following Cebysev type inequality for operators has
been obtained:

i@ @) (L' —=7),

Theorem 2 (Dragomir, 2008, [I7]). Let A be a selfadjoint operator on the Hilbert
space (H,(.,.)) with the spectrum Sp (A) C [m, M] for some real numbers m < M.
If f,g : [m, M] — R are continuous and synchronous (asynchronous) on [m, M],
then

(2.5) (F(A)g(A)z,z) = () (f (A)z,z) - (9 (A) z, )
for any x € H with ||z| = 1.
This can be generalised for n operators as follows:

Theorem 3 (Dragomir, 2008, [17]). Let A; be selfadjoint operators with Sp (A;) C
[m, M] for j € {1,...,n} and for some scalars m < M. If f,g : [m, M] — R are
continuous and synchronous (asynchronous) on [m, M|, then

n

(2.6) Z i)z ai) > ( Z ) Tj, ;) Z<9(Aj)zjaxj>a

j=1 j=1 j=1
for each x; € H,j € {1,...,n} with 377, [EA
Another version for n operators is incorporated in:

Theorem 4 (Dragomir, 2008, [I7]). Let A; be selfadjoint operators with Sp (A;) C
[m, M] for j € {1,...,n} and for some scalars m < M. If f,g : [m,M] — R are
continuous and synchronous (asynchronous) on [m, M|, then

) <ijf(Aj)g(Aj)x7x> > (<) <ijf(z4j)x7x> : <ijg(z4j)w,w>7
o i=1 i=1

for any p; > 0,5 € {1,...,n} with 3°7_, p; = 1 and x € H with ||z| = 1.
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Motivated by the above results we investigate in this paper other Griiss’ type
inequalities for selfadjoint operators in Hilbert spaces. Some of the obtained results
improve the inequalities (2.3) and derived from the Mond-Pecarié¢ inequality.
Others provide different operator versions for the celebrated Griiss’ inequality men-
tioned above. Examples for power functions and the logarithmic function are given
as well.

3. AN INEQUALITY OF GRUSS’ TYPE FOR ONE OPERATOR

The following result may be stated:

Theorem 5. Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) and
assume that Sp (A) C [m, M] for some scalars m < M. If f and g are continuous
on [m, M] and v := minge(m,ar) f (t) and T' := max,e(m,ar [ (t) then

B Kf(A)gA)y,y) —(f(A)y,y) - (g(A)z,x)

I g (A) o) — by (A) )

1/2

<5 @ =) [lg Wyl + (g () z,2) = 2(g (A) 2,2) (9 (4) y,)

for any x,y € H with ||z|| = |ly|] = 1.

DN =

Proof. First of all, observe that, for each A € R and z,y € H, ||z|| = |ly|| = 1 we

have the identity

(32) {(f(A)=A-1u)(9(A) —(g(A)z,2) - 1u)y,y)

= (f(A)g(A)y,y) —A-Ug(A)yy) —(g(A)z,2)] - (g(A)z,z) (f(A)y,9)
Taking the modulus in we have

(3-3) [(f(A)g(A)y,y) —A-[g(A)y,y) — (g (A)z,2)]
—(g(A)z,z) (f (A)y,y)|
= (g (A) = (g (A)z,z) - 1u)y, (f (A) = A-1x) y)|
<llg(A)y—(g(A)z,z)ylllf (A)y — Myl

[lg (AP + (9 ()2 2)* ~ 249 (A) 2.2 (9 (A) . 9)]
1f (A)y = My

g (A)ylI* + (g (A) 2,2)° = 2(g (A) 2,) (g (A) y, )
x|If (A) = A- 14|
for any z,y € H, ||lz|| = [jy[| = 1.
Now, since v = minge[m, a1 f (t) and I' = max;epm, a1 f () , then by the property

we have that v < (f (A) y,y) < T for each y € H with ||y|| = 1 which is clearly
equivalent with

X

IN

}1/2

<5 -)

(s =25 1) )| < 50

G @ - 5T Ll

or with
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for each y € H with [ly|| = 1.
Taking the supremum in this inequality we get

=255 | < g,

which together with the inequality 1) applied for \ = % produces the desired
result (3.1)). b

As a particular case of interest we can derive from the above theorem the fol-
lowing result of Griiss’ type that improves (2.4)):

Corollary 1. With the assumptions in Theorem[5 we have
34) [(f(A)g(A)z,z) = (f(A)z,z) - (9(A)z,z)]
2 2]1/2 1
(=) [lg (A)al® = (g (4) 2, 2)7] (s 7T =7 (A= 6))

<

for each x € H with ||z|| = 1, where § := minge[m, a1 9 (1) and A := maxie(m a9 (L) -

Proof. The first inequality follows from (3.1) by putting y = x.
Now, if we write the first inequality in (3.4) for f = g we get

0< llg (Al = (g (A)2,2)* = (4* (A) 2,2) — (g (A) 2, 0)?
<2 @0 [lo@=l ~ (g (4)e.2?]
which implies that
2 212 1
[llg ()l (g () a,a)?] <5 (a-9)

for each x € H with |z|| = 1.
This together with the first part of (3.4) proves the desired bound. I

The following particular cases that hold for power function are of interest:

Example 1. Let A be a selfadjoint operator with Sp (A) C [m, M] for some scalars
m < M.
If A is positive (m > 0) and p,q > 0, then

(35) (0 <) (APTIz, z) — (AP, ) - (A%, 2)

< 5O =) [laal? - (ae?]  |< L 00 ) o7 - )]

N =

for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p,q < 0, then

(3.6) (0 <) (APHIg, o) — (AP, x) - (A2, 2)
1 MP—m™> ) V2 1 M~ —m P M9 —
<= 2T a2 — (Al <.
=2 TMormr [”A 2" - (A%, ) } { 4 Mrmr M-ama }

for each x € H with ||z| = 1.
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If A is positive definite (m > 0) and p <0, ¢ > 0 then

3.7 (0<) <A”m x) (A7, z) — (APT9g, )
1 MP V2] 1 M —mP
< - M)A A <2 BT T e e
s e [laval® = areat] " [< A g )
for each x € H with ||z| = 1.
If A is positive definite (m > 0) andp > 0, ¢ <0 then

(3.8) (0 <) (APx,z) - (A2, z) — (APT92, )

(M7 )

(M7 — ) [ || A%z - <Aqx,x>2r/2 [g M_q—m_q}

1 1
< = z
-2 4 M—=9m—4

for each x € H with ||z| = 1.

We notice that the positivity of the quantities in the left hand side of the above
inequalities — follows from the Theorem

The following particular cases when one function is a power while the second is
the logarithm are of interest as well:

Example 2. Let A be a positive definite operator with Sp (A) C [m, M| for some
scalars 0 < m < M.
If p > 0 then

(3.9) (0<)(APIn Az, z) — (APz,z) - (In Az, )

IA

1/2
L (MP — ) [||lnAx||2 - (1nAx,x>2} [

ln\/> {HAPxH (Apaj,$>2} i

for each x € H with ||z| = 1.
If p < 0 then

(3.10) (0 <)(APz,z) - (In Az, z) — (AP In Az, z)

N[

M—Pm~—P

ln\/i [”APQJH <Apx,x>2} v

for each x € H with ||z| = 1.

IN

—p —p 1/2
Mrom o [HlnAxHQ - <1nAx,z>2] l

4. AN INEQUALITY OF GRUSS’ TYPE FOR n OPERATORS

The following multiple operator version of Theorem [5 holds:

Theorem 6. Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f,g : [m,M] — R are continuous
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and 7y 1= mingep, v f (t) and T := maxepm v f (t) then

(4.1) Z<f (A;) 9 (A5) Y, y5) Z i) Y5> Yi) Z j) T, ;)
j=1 j=1 j=1
o [Z< 3) Y5 Y5) Z xmm]]l
j=1 j=1
1
< 2 (T—
<5T=7)

1/2
n

2
Z”g )yl + (Z (9 (4;) 5, z; ) QZ J) T, Z i) YirYi)
Jj=1 j=1 j=1

. . n 2 n 2
for each wj,y; € H,j € {1,...n} with 375, |l;||" = >25_ lly;[I” = 1.
Proof. As in [20] p. 6], if we put

A . . .0 T1 Y1
A= . . and T = U=
o . . A, :v.n yn
then we have Sp (A) 17 = (17 = 1
(r(A)g(2)7.9)= _n ( <Aj>g<Aj>yj,yj>,<g (4)#7) = _n (9 (A7) @j,;).
<f (ﬁ) 7, 17> = Zi: (f (A3) yj» ) » <g (ﬁ) 7. §> = Zj: (9(Aj) yj,u;)

and

o (5] = S toapnr® (a (1) 73)" - ( )

Applying Theorem |5| for A7 z and y we deduce the desired result 1) ]

The following particular case provides a refinement of the Mond- Pecari¢ result

from (|2.3).

Corollary 2. With the assumptions of Theorem[f] we have

n n n
(4.2) ) Tj, L) E : ) @5, 25) E , ) Tj, )
i=1 =1 =1
1/2
2

<.
Il
i

<Ly an Yl —(Z<g<Aj>xj7xj>> (s10-na-0)
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for each x; € H,j € {1,...,n} with Z;”Zl ||1:]||2 = 1 where 6 := minyepy, 211 9 (t) and
A :=maxye(m, v 9 (t).

Example 3. Let A;, j € {1,...,n} be a selfadjoint operators with Sp(A;) C

[m, M],j €{1,....n} for some scalars m < M.
If Aj; are positive (m > 0) and p,q > 0, then

n n

Jj=1 7 1

for each x; € H,j € {1,....,n} with Y7, ||a;]|* = 1.
If A; are positive definite (m > 0) and p,q <0, then

n

< xj,ac] Z A xj,acj Z<Ag‘xj’xj>
Jj=1

j=1

(44) (0<)

'M:

Il
N

J

1 M- n , n
SY TMermer EM?%'” - ;(Aﬁjvﬂ@

<i

for each x; € H,j € {1,...,;n} with 337, lla;|)* = 1.
If A; are positive definite (m > 0) and p <0, ¢ > 0 then

97 1/2

M —m M9 —ma
M—Pm—>p M—a9m—1

Sl

(4.5) (0<) Z(A zj,Tj) - Z (A? a:],xj Z<A§+qzj,xj>

Jj=1

1 M™P—_m™P n n
<5 ;HA?%HQ— j§:jl<A3xj,xj>

< 1 M7 —m™"
—4 M—PmTP

97 1/2

(17 = )

for each x; € H,j € {1,...,n} with 37, ll;]|* =
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If A; are positive definite (m > 0) and p > 0, ¢ < 0 then

3

n

(4.6) (0 §)Z<A§xj7xj>~z (Alwj,x;) Z RRETRE)

Jj=1 j=1 j=1
97 1/2
1 n n
<5 ST (JA%]” - | S (A, 2)
j=1 j=1
1 M1 —m™1
<o

for each x; € H,j € {1,...,n} with 2?21 ||£E]||2 =1

We notice that the positivity of the quantities in the left hand side of the above

inequalities (4.3)-(4.6) follows from the Theorem
The following particular cases when one function is a power while the second is

the logarithm are of interest as well:

Example 4. Let A; be positive definite operators with Sp(A;) C [m,M], j €
{1,...,n} for some scalars 0 < m < M.
If p > 0 then

(4.7 (0<) Z(AplnA Tj,Tj) — Z(A T, T5) - Z (InAjz;, ;)

971/2
b0 =) | Ay = (S5 (n Az |

IN

3 [ s~ (5 (45,2,

géme—mmmv@ﬂ

for each x; € H,j € {1,...,n} with 337, |l ])* =
If p < 0 then

(4.8) (0<) Z<A T, Tj) Z (InAjz;,x;) Z<A§lnijj,xj>
j=1

1/2
e {E?—l in Az 1* — (Z?:l (hlAjl“jvﬂUﬁ) }

971/2
/3 S 5 (S5 ()|

[ 1 MP—m> M]
<5 =

IN

n
M—Pm=pP m

for each x; € H,j € {1,...,n} with 337, lla;))* =
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5. ANOTHER INEQUALITY OF GRUSS’ TYPE FOR n OPERATORS

The following different result for n operators can be stated as well:

Theorem 7. Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f and g are continuous on [m,M] and
v 1= mingepm,a f (t) and T' := maxcpm v f (t) then for any p; > 0,5 € {1,...,n}
with Y75, pj = 1 we have

<Zpkf (Ar) g (Ax) v, y>
- V;F <Zpkg (Ak) v, y> <ijg >

k=1

— <Zpkf(z4k)y,y> : <ij9 (4;) xa:>
k=1 j=1

k=1 k=1

&

97 1/2

+ <ijg (Aj)x,x> ,
j=1

Proof. Follows from Theorem@on choosing x; = \/pj-x, y; = \/Pjy, J € {1,...,n},
where p; > 0,5 € {1,...,n}, > 7_ p; = 1 and z,y € H, with |lz|| = ||ly|| = 1. The
details are omitted. N

for each x,y € H with ||z|| = ||y|| = 1.

Remark 1. The case n = 1 (therefore p = 1) in provides the result from
Theorem [4.

As a particular case of interest we can derive from the above theorem the fol-
lowing result of Griiss’ type:

Corollary 3. With the assumptions of Theorem[7] we have

<Zpkf (Ag) g (Ak) JJ> <Zpkf (Ag) >'<Xn:pkg(Ak)$,x>‘

1/2

2
F—fy n n
< —5 > Dk ||9(Ak)$|2—<§ pkg(Ak)$»$>
k=1 k=1

1
< C-@-9)
for each x € H with ||z| = 1, where § := minyepy, a1 g (t) and A 1= maxyepm, pm 9 (1) -

Proof. 1t is similar with the proof from Corollary [1] and the details are omitted. I
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The following particular cases that hold for power function are of interest:

Example 5. Let A;, j € {1,...,n} be a selfadjoint operators with Sp(A;) C
[m,M],j € {1,...,n} for some scalars m < M and p; > 0,5 € {1,...,n} with
Z?:l p; = 1.

If A;, j€{l,...,n} are positive (m > 0) and p,q > 0, then

(5.3) (0<) <ZpkAi+qz7x> — <ZpkAZx,:p> <ZpkAk$ I>
k=1 k=1
07 1/2

1 n
< 5 - (M7 —m?) ZpkllAkxll <ZpkAZx,m>

<
for each x € H with ||z| = 1.
If Aj, je{l,..,n} are positive definite (m > 0) and p,q < 0, then

M =) (17 = )

»-lkﬁ—‘

(54) (0<) <ZpkA£+qz,:r> — <ZpkAZx,x> . <ZpkAZ:c,x>
k=1 k=1 k=1
071/2

1 M—P n
q
= 2 M-Pm—P Zpk HAk:x” <kzlpkz4kx,x>

< 1 MP—mPM9-—m1
—4 M-Pm—P M-Im—4

for each x € H with ||z| = 1.
If A;, j€{l,...,n} are positive definite (m > 0) and p <0, ¢ > 0 then

k=1 k=1 k=1
071/2

1 M™P "
q
<§ B Zpk”Akx” <kz peAjr, T
1

M—P —m™P
,7Mq_q
< 1 M =)

for each x € H with ||z| = 1.
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If A;, j€{l,...,n} are positive definite (m > 0) and p > 0, ¢ <0 then

(5.6) (0<) <ZpkAzx,x> . <ZpkAZx,x> — <ZpkA§+qx,m>
k=1 =1 k=1
7172

1 n 5 n
<3 O =) |3 i 4fal —<k§_jlpkz42x7w>

We notice that the positivity of the quantities in the left hand side of the above
inequalities (5.3])-(5.6) follows from the Theorem

The following particular cases when one function is a power while the second is
the logarithm are of interest as well:

IN
N

(MF =)

M~ — m—4
M—am—9 }

for each x € H with ||z| = 1.

Example 6. Let A;, j € {1,...,n} be positive definite operators with Sp(A;) C
[m, M], j € {1,...,n} for some scalars 0 < m < M and p; > 0,j € {1,...,n} with

2?21 pj = 1
If p > 0 then
(5.7) (0<) <ZpkA’l; lnAkx,x> - <ZpkA§x,x> . <Zpk lnAkx,x>
k=1 k=1 k=1

1 n 2 n 2]1/2
Lo (P —mp) - [ e gl = (S pidn Aa, 2)°)

IN

n ) n 2 1/2
In /30 (S50, o Al = (S5 prdfe, @)

[g % - (MP —mP)1n Aﬂf]

for each x € H with ||z|| = 1.
If p <0 then

(5.8) (0<) <ZpkAZx,:c> . <Zpk lnAkx,x> - <ZpkAZ 111Akx,x>
k=1 k=1 k=1
I M~P—m~P [{n 2 n 211/2
2 TMPm-P [Ek:l pr |0 Ap]|” = (324 peIn Agz, ) }

IN

n 2 n 2 1/2
In /2 [0 [l — (S, peAfe, 2)’]

l 1 MP—m>» M]
Si.il -

M—Pm~—p . m
for each x € H with ||z| = 1.

The following norm inequalities may be stated as well:
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Corollary 4. Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f,g : [m, M] — R are continuous,
then for each p; > 0,7 € {1,...,n} with Z;;lpj =1 we have the norm inequality:

5:9) 1S pif ()9 ()| < | S psf ()| - S pag ()| + 7 (0 =) (8- 9),

where y := minyep, ar) f (2), T i= maxyep ar f (£), 6 := mingep, an g (t) and A =
maxe(m, ) g (t) -

Proof. Utilising the inequality (5.2)) we deduce the inequality

n n n
‘<Zpkf(Ak)g(Ak)xvx> < <Zpkf(f4k)$,$> : <Zpk9 (Ak)$79€>|
k=1 k=1 k=1
1
F1 (0= (A-d)
for each z € H with ||z|| = 1. Taking the supremum over ||z| = 1 we deduce the

desired inequality (5.9). B

Example 7. a. Let Aj, j € {1,...,n} be a selfadjoint operators with Sp (A;) C
[m,M],j € {1,..,n} for some scalars m < M and p; > 0,7 € {1,...,n} with

Z?:l pj = 1.
If A;, j€{l,...,n} are positive (m > 0) and p,q > 0, then
n n n 1
(510) | Y peAP < |3 prAR|| | D o prAL|| + 5 - (MP —m?) (M7 —m).
k=1 k=1 k=1

If Aj, je{l,..,n} are positive definite (m > 0) and p,q <0, then

n

ZpkAZ];+q

k=1

n

Z prAj,

k=1

n
ZPkAZ
k=1

b. Let A;, j € {1,...,n} be positive definite operators with Sp (A;) C [m,M], j €
{1,...,n} for some scalars 0 < m < M and p; > 0,7 € {1,...,n} with 2?21 pj = 1.

M7P—-—mPM9-—m™1

<5'11) M-—pPm—P M—-am—1

<

1
4

If p > 0 then
(5.12) kz_lpkAﬁlnAk < I;pkAﬁ . ;pklnAk +§~(Mp—mp)ln\/ﬁ.
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