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INEQUALITIES FOR THE NUMERICAL RADIUS IN UNITAL
NORMED ALGEBRAS

S.S. DRAGOMIR

Abstract. In this paper, some inequalities between the numerical radius of
an element from a unital normed algebra and certain semi-inner products in-
volving that element and the unity are given.

1. Introduction

Let A be a unital normed algebra over the complex number �eld C and let a 2 A:
Recall that the numerical radius of a is given by (see [2, p. 15])

(1.1) v (a) = sup fjf (a)j ; f 2 A0; kfk � 1 and f (1) = 1g ;
where A0 denotes the dual space of A; i.e., the Banach space of all continuous linear
functionals on A:
It is known that v (�) is a norm on A that is equivalent to the given norm k�k :

More precisely, the following double inequality holds true:

(1.2)
1

e
kak � v (a) � kak

for any a 2 A:
Following [2], we notice that this crucial result appears slightly hidden in Bohnen-

blust and Karlin [1, Theorem 1] together with the inequality kxk � e� (x) ; which
occurs on page 219. A simpler proof was given by Lumer [5], though with the
constant 14 in place of

1
e : For a simple proof of (1.2) that borrows ideas from Lumer

and from Glickfeld [6], see [2, p. 34].
A generalisation of (1.2) for powers has been obtained by M.J. Crabb [3] which

proved that

(1.3) kank � n!
� e
n

�n
[v (a)]

n
; n = 1; 2; : : :

for any a 2 A:
In this paper, some inequalities between the numerical radius of an element and

the superior semi-inner product of that element and the unity in the normed algebra
A are given via the celebrated representation result of Lumer from [5].

2. Some Subsets in A

Let D (1) := ff 2 A0j kfk � 1 and f (1) = 1g : For � 2 C and r > 0; we de�ne
the subset of A by

�� (�; r) := fa 2 Aj jf (a)� �j � r for each f 2 D (1)g :
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The following result holds.

Proposition 1. Let � 2 C and r > 0: Then �� (�; r) is a closed convex subset of A
and

(2.1) �B (�; r) � �� (�; r) ;

where �B (�; r) := fa 2 Aj ka� �k � rg :

Now, for 
;� 2 C, de�ne the set

�U (
;�) :=
n
a 2 AjRe

h
(�� f (a))

�
f (a)� 


�i
� 0 for each f 2 D (1)

o
:

The following representation result may be stated.

Proposition 2. For any 
;� 2 C, 
 6= �; we have:

(2.2) �U (
;�) = ��

�

 + �

2
;
1

2
j�� 
j

�
:

Proof. We observe that for any z 2 C we have the equivalence����z � 
 + �2
���� � 1

2
j�� 
j

if and only if

Re [(�� z) (�z � �
)] � 0:
This follows by the equality

1

4
j�� 
j2 �

����z � 
 + �2
����2 = Re [(�� z) (�z � �
)]

that holds for any z 2 C.
The equality (2.2) is thus a simple conclusion of this fact. �

Making use of some obvious properties in C and for continuous linear functionals,
we can state the following corollary as well.

Corollary 1. For any 
;� 2 C, we have

�U (
;�) =
n
a 2 A j Re

h
f (�� a) f (a� 
)

i
� 0 for each f 2 D (1)

o
(2.3)

= fa 2 A j (Re�� Re f (a)) (Re f (a)� Re 
)
+ (Im�� Im f (a)) (Im f (a)� Im 
) � 0 for each f 2 D (1)g :

Now, if we assume that Re (�) � Re (
) and Im (�) � Im (
) ; then we can de�ne
the following subset of A :

(2.4) �S (
;�) := fa 2 A j Re (�) � Re f (a) � Re (
) and

Im (�) � Im f (a) � Im (
) for each f 2 D (1)g :

One can easily observe that �S (
;�) is closed, convex and

(2.5) �S (
;�) � �U (
;�) :
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3. Semi-Inner Products and Lumer�s Theorem

Let (X; k�k) be a normed linear space over the real of complex number �eld K.
The mapping f : X ! R, f (x) = 1

2 kxk
2 is obviously convex and then there exists

the following limits:

hx; yii = lim
t!0�

ky + txk2 � kyk2

2t
;

hx; yi s = lim
t!0+

ky + txk2 � kyk2

2t

for every two elements x; y 2 X: The mapping h�; �is (h�; �ii) will be called the
superior semi-inner product (the interior semi-inner product) associated to the
norm k�k :
We list some properties of these semi-inner products that can be easily derived

from the de�nition (see for instance [4]):

(i) hx; xip = kxk
2
; hix; xip = hx; ixip = 0; x 2 X;

(ii) h�x; yip = � hx; yip ; hx; �yip = � hx; yip for � � 0; x; y 2 X;
(iii) h�x; yip = � hx; yiq; hx; �yip = � hx; yiq for � < 0; x; y 2 X;
(iv) hix; yip = �hx; iyip ; h�x; �yi = �� hx; yi if �� � 0; x; y 2 X;
(v) h�x; yip = hx;�yip = �hx; yiq ; x; y 2 X;
(vi)

���hx; yip��� � kxk kyk ; x; y 2 X;
(vii) hx1 + x2; yis(i) � (�) hx1; yis(i) + hx2; yis(i) for x1; x2; y 2 X;
(ix) h�x+ y; xip = � kxk

2
+ hy; xip ; � 2 R, x; y 2 X;

(x)
���hy + z; xip � hz; xip��� � kyk kxk ; x; y; z 2 X;

(xi) The mapping h�; xip is continuous on (X; k�k) for each x 2 X; where p; q 2
fs; ig and p 6= q:

The following result essentially due to Lumer [5] (see [2, p. 17]) can be stated.

Theorem 1. Let A be a unital normed algebra over K (K = C;R) : For each a 2 A;

(3.1) max fRe�j� 2 V (a) jg = inf
�>0

1

�
[k1 + �ak � 1] = lim

�!0+

1

�
[k1 + �ak � 1] ;

where V (a) is the numerical range of a (see for instance [2, p. 15]).

Remark 1. In terms of semi-inner products, the above identity can be stated as:

(3.2) max fRe f (a) jf 2 D (1)g = ha; 1is :

The following result that provides more information may be stated.

Theorem 2. For any a 2 A; we have:

(3.3) ha; 1iv;s = ha; 1is ;

where

ha; biv;s := lim
t!0+

v2 (b+ ta)� v2 (b)
2t

is the superior semi-inner product associated with the numerical radius.
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Proof. Since v (a) � kak ; we have:

ha; 1iv;s = lim
t!0+

v2 (1 + ta)� v2 (1)
2t

= lim
t!0+

v2 (1 + ta)� 1
2t

� lim
t!0+

k1 + tak2 � 1
2t

= ha; 1is :

Now, let f 2 D (1) : Then, for each � > 0;

f (a) =
1

�
[f (1 + �a)� f (1)] = 1

�
[f (1 + �a)� 1] ;

giving

Re f (a) =
1

�
[Re f (1 + �a)� f (1)] � 1

�
[jf (1 + �a)j � 1]

� 1

�
[v (1 + �a)� 1] :

Taking the in�mum over � > 0; we deduce

Re f (a) � inf
�>0

�
1

�
[v (1 + �a)� 1]

�
= lim

�!0+

�
v2 (1 + �a)� 1

2�

�
(3.4)

= lim
�!0+

v (1 + �a)� 1
�

= ha; 1iv;s :

If we now take the supremum over f 2 D (1) in (3.4), we obtain:

sup fRe f (a) jf 2 D (1)g � ha; 1iv;s
which gives, by Lumer�s identity that ha; 1is � ha; 1iv;s : �

Corollary 2. We have the inequality

(3.5) jha; 1isj � v (a) (� kak) :

Proof. Schwarz�s inequality for the norm v (:) gives that���ha; 1iv;s��� � v (a) v (1) = v (a) ;
and by (3.3), the inequality (3.5) is proved. �

4. Reverse Inequalities for the Numerical Radius

Utilising the inequality (3.5) we observe that for any complex number � located
in the closed disc centered in 0 and with radius 1 we have jh�a; 1isj as a lower
bound for the numerical radius v (a) : Therefore, it is a natural question to ask how
far these quantities are from each other under various assumptions for the element
a in the unital normed algebra A and the scalar �: A number of results answering
this question are incorporated in the following theorems.

Theorem 3. Let � 2 Cn f0g and r > 0: If a 2 �� (�; r) ; then

(4.1) v (a) �
� ��

j�ja; 1
�
s

+
1

2
� r

2

j�j :
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Proof. Since a 2 �� (�; 1) ; then jf (a)� �j2 � r2; for each f 2 D (1) ; giving that
(4.2) jf (a)j2 + j�j2 � 2Re

�
f
�
��a
��
+ r2

for each f 2 D (1) :
Taking the supremum of f 2 D (1) in (4.2) and utilising the representation (3.2),

we deduce

(4.3) v2 (a) + j�j2 � 2


��a; 1

�
s
+ r2

which is an inequality of interest in itself.
On the other hand, we have the elementary inequality

(4.4) 2v (a) j�j � v2 (a) + j�j2 ;
which, together with (4.3) implies the desired result (4.1). �
Remark 2. Notice that, by the inclusion (2.1) a su¢ cient condition for (4.1) to
holds is that a 2 �B (�; r) :

Corollary 3. Let 
;� 2 C with � 6= �
: If a 2 �U (
;�) ; then

(4.5) v (a) �
� �� + �


j� + 
ja; 1
�
s

+
1

4
� j�� 
j

2

j� + 
j :

Remark 3. If M > m � 0 and a 2 �U (m;M) ; then

(4.6) (0 �) v (a)� ha; 1is �
1

4
� (M �m)2

m+M
:

Observe that, due to the inclusion (2.5), a su¢ cient condition for (4.6) to holds is
that M � Re f (a) ; Im f (a) � m for any f 2 D (1) :
The following result may be stated as well.

Theorem 4. Let � 2 C and r > 0 with j�j > r: If a 2 �� (�; r) ; then

(4.7) v (a) �
*

��q
j�j2 � r2

a; 1

+
s

and, equivalently,

(4.8) v2 (a) �
� ��

j�ja; 1
�2
s

+
r2

j�j2
� v2 (a) :

Proof. Since j�j > r; hence by (4.3) we have, on dividing by
q
j�j2 � r2 > 0; that

(4.9)
v2 (a)q
j�j2 � r2

+

q
j�j2 � r2 � 2q

j�j2 � r2


��a; 1

�
s
:

On the other hand, we also have

2v (a) � v2 (a)q
j�j2 � r2

+

q
j�j2 � r2

which, together with (4.9), gives

(4.10) v (a) � 1q
j�j2 � r2



��a; 1

�
s
:
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Taking the square in (4.10), we have

v2 (a)
�
j�j2 � r2

�
�


��a; 1

�2
s
;

which is clearly equivalent to (4.7). �

Corollary 4. Let 
;� 2 C with Re (��
) > 0: If a 2 �U (
;�) ; then,

(4.11) v (a) �
*

�� + �


2
p
Re (��
)

a; 1

+
s

:

Remark 4. If M � m > 0 and a 2 �U (m;M) ; then

(4.12) v (a) � M +m

2
p
mM

ha; 1is ;

or, equivalently,

(0 �) v (a)� ha; 1is �

�p
M �

p
m
�2

2
p
mM

ha; 1is

0B@�
�p
M �

p
m
�2

2
p
mM

kak

1CA :
The following result may be stated as well.

Theorem 5. Let � 2 Cn f0g and r > 0 with j�j > r: If a 2 �� (�; r) ; then

(4.13) v2 (a) �
� ��

j�ja; 1
�2
s

+ 2

�
j�j �

q
j�j2 � r2

�� ��

j�ja; 1
�
s

:

Proof. Since (by (4.2)) Re
�
f
�
��a
��
> 0; then dividing by it in (4.2) gives:

jf (a)j2

Re
�
f
�
��a
�� + j�j2

Re
�
f
�
��a
�� � 2 + r2

Re
�
f
�
��a
�� ;

which is clearly equivalent to:

(4.14)
jf (a)j2

Re
�
f
�
��a
�� � Re �f ���a��

j�j2

� 2 + r2

Re
�
f
�
��a
�� � Re �f ���a��

j�j2
� j�j2

Re
�
f
�
��a
�� =: I:

Since

I = 2�
Re
�
f
�
��a
��

j�j2
�

�
j�j2 � r2

�
Re
�
f
�
��a
��(4.15)

= 2� 2

q
j�j2 � r2

j�j �

24
q
Re
�
f
�
��a
��

j�j �

q
j�j2 � r2q
Re
�
f
�
��a
��
352

� 2

0@1�
s
1�

�
r

j�j

�21A ;
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hence by (4.14) and (4.15) we have

(4.16) jf (a)j2 �
Re
�
f
�
��a
��

j�j2
+ 2

0@1�
s
1�

�
r

j�j

�21ARe �f ���a�� :
Taking the supremum in f 2 D (1) and utilising Lumer�s result, we deduce the
desired inequality (4.13). �

Corollary 5. Let 
;� 2 C with Re (��
) > 0: If a 2 �U (
;�) ; then,

v2 (a) �
� �� + �


j� + 
ja; 1
�2
s

+ 2

�����
 + �2
�����pRe (��
)�� �� + �


j� + 
ja; 1
�
s

:

Remark 5. If M > m � 0 and a 2 �U (m;M) ; then

(0 �) v2 (a)� ha; 1i2s �
�p
M �

p
m
�2
ha; 1is

�
�
�p
M �

p
m
�2
kak

�
:

Finally, the following result can be stated as well.

Theorem 6. Let � 2 C and r > 0 with j�j > r: If a 2 �� (�; r) ; then

(4.17) v (a) �
�
j�j+

q
j�j2 � r2

�� ��
r2
a; 1

�
s

+

j�j
�
j�j+

q
j�j2 � r2

��
j�j � 2

q
j�j2 � r2

�
2r2

:

Proof. From the proof of Theorem 3 above, we have

(4.18) jf (a)j2 + j�j2 � 2Re
�
f
�
��a
��
+ r2

which is equivalent with

jf (a)j2 +
�
j�j+

q
j�j2 � r2

�2
(4.19)

� 2Re
�
f
�
��a
��
+ r2 � j�j2 +

�
j�j �

q
j�j2 � r2

�2
= 2Re

�
f
�
��a
��
+ j�j2 � 2 j�j

q
j�j2 � r2:

Taking the supremum in (4.19) over f 2 D (1) and utilising Lumer�s representation
theorem, we get:

(4.20) v2 (a) +

�
j�j �

q
j�j2 � r2

�2
� 2



��a; 1

�
s
+ j�j

�
j�j � 2

q
j�j2 � r2

�
:

Since r 6= 0; then j�j �
q
j�j2 � r2 > 0; giving

(4.21) 2

�
j�j �

q
j�j2 � r2

�
v (a) � v2 (a) +

�
j�j �

q
j�j2 � r2

�2
:
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Now, utilising (4.20) and (4.21), we deduce

v (a) � 1

j�j �
q
j�j2 � r2



��a; 1

�
s
+

j�j
�
j�j � 2

q
j�j2 � r2

�
2

�
j�j �

q
j�j2 � r2

� ;

which is clearly equivalent with the desired result (4.17). �
Remark 6. If M > m � 0 and a 2 �U (m;M) ; then

v (a) � M +m�p
M �

p
m
�2 �ha; 1is + 12

�
m+M

2
� 2
p
mM

��
:

In particular, if a 2 �U (0; �) with � > 0; then we have the following reverse inequality
as well

(0 �) v (a)� ha; 1is �
1

4
�:
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