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INEQUALITIES FOR THE µCEBY�EV FUNCTIONAL OF TWO
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT

SPACES

S.S. DRAGOMIR

Abstract. Some new inequalities for the µCeby�ev functional of two functions
of selfadjoint linear operators in Hilbert spaces, under suitable assumptions
for the involved functions and operators, are given.

1. Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H; h:; :i) :
The Gelfand map establishes a �-isometrically isomorphism � between the set
C (Sp (A)) of all continuous functions de�ned on the spectrum of A; denoted Sp (A) ;
an the C�-algebra C� (A) generated by A and the identity operator 1H on H as
follows (see for instance [6, p. 3]):
For any f; g 2 C (Sp (A)) and any �; � 2 C we have
(i) � (�f + �g) = �� (f) + �� (g) ;
(ii) � (fg) = � (f) � (g) and �

�
�f
�
= �(f)

�
;

(iii) k� (f)k = kfk := supt2Sp(A) jf (t)j ;
(iv) � (f0) = 1H and � (f1) = A; where f0 (t) = 1 and f1 (t) = t; for t 2 Sp (A) :
With this notation we de�ne

f (A) := � (f) for all f 2 C (Sp (A))
and we call it the continuous functional calculus for a selfadjoint operator A:
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) � 0 for any t 2 Sp (A) implies that f (A) � 0; i:e: f (A) is a positive
operator on H: Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) � g (t) for any t 2 Sp (A) implies that f (A) � g (A)
in the operator order of B (H) :
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [6] and the references therein.
For other results see [8], [10], [11] and [12].
We say that the functions f; g : [a; b] �! R are synchronous (asynchronous) on

the interval [a; b] if they satisfy the following condition:

(f (t)� f (s)) (g (t)� g (s)) � (�) 0 for each t; s 2 [a; b] :
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It is obvious that, if f; g are monotonic and have the same monotonicity on
the interval [a; b] ; then they are synchronous on [a; b] while if they have opposite
monotonicity, they are asynchronous.
For some extensions of the discrete µCeby�ev inequality for synchronous (asyn-

chronous) sequences of vectors in an inner product space, see [4] and [5].
For a selfadjoint operator A on the Hilbert space A with Sp (A) � [m;M ] for

some real numbersm < M and for f; g : [m;M ] �! R that are continuous functions
on [m;M ] ; we can de�ne the following µCeby�ev functional

C (f; g;A;x) := hf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xi
where x 2 H with kxk = 1:
The following result provides an inequality of µCeby�ev type for functions of

selfadjoint operators, see [2]:

Theorem 1 (Dragomir, 2008, [2]). Let A be a selfadjoint operator with Sp (A) �
[m;M ] for some real numbers m < M: If f; g : [m;M ] �! R are continuous and
synchronous (asynchronous) on [m;M ] ; then

(1.1) C (f; g;A;x) � (�) 0;
for any x 2 H with kxk = 1:

The following result of Grüss�type can be stated as well, see [3]:

Theorem 2 (Dragomir, 2008, [3]). Let A be a selfadjoint operator on the Hilbert
space (H; h:; :i) and assume that Sp (A) � [m;M ] for some scalars m < M: If f and
g are continuous on [m;M ] and  := mint2[m;M ] f (t) and � := maxt2[m;M ] f (t)
then

(1.2) jC (f; g;A;x)j � 1

2
� (�� ) [C (g; g;A;x)]1=2

�
� 1

4
(�� ) (�� �)

�
;

for each x 2 H with kxk = 1; where � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :

The main aim of this paper is to provide other inequalities for the µCeby�ev
functional. Applications for particular functions of interest are also given.

2. A Refinement and Some Related Results

The following result can be stated:

Theorem 3. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If f; g : [m;M ] �! R are continuous with � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) ; then

(2.1) jC (f; g;A;x)j � 1

2
(�� �) hjf (A)� hf (A)x; xi � 1H jx; xi

� 1

2
(�� �)C1=2 (f; f ;A;x) ;

for any x 2 H with kxk = 1:

Proof. Since � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; we have

(2.2)

����g (t)� �+ �2
���� � 1

2
(�� �) ;

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
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If we multiply the inequality (2.2) with jf (t)� hf (A)x; xij we get����f (t) g (t)� hf (A)x; xi g (t)� �+ �2 f (t) +
� + �

2
hf (A)x; xi

����(2.3)

� 1

2
(�� �) jf (t)� hf (A)x; xij ;

for any t 2 [m;M ] and for any x 2 H with kxk = 1:
Now, if we apply the property (P) for the inequality (2.3) and a selfadjoint

operator B with Sp (B) � [m;M ] ; then we get the following inequality of interest
in itself:

jhf (B) g (B) y; yi � hf (A)x; xi hg (B) y; yi(2.4)

��+ �
2

hf (B) y; yi+ �+ �
2

hf (A)x; xi
����

� 1

2
(�� �) hjf (B)� hf (A)x; xi � 1H j y; yi ;

for any x; y 2 H with kxk = kyk = 1:
If we choose in (2.4) y = x and B = A; then we deduce the �rst inequality in

(2.1).
Now, by the Schwarz inequality in H we have

hjf (A)� hf (A)x; xi � 1H jx; xi � kjf (A)� hf (A)x; xi � 1H jxk
= kf (A)x� hf (A)x; xi � xk

=
h
kf (A)xk2 � hf (A)x; xi2

i1=2
= C1=2 (f; f ;A;x) ;

for any x 2 H with kxk = 1; and the second part of (2.1) is also proved. �

Let U be a selfadjoint operator on the Hilbert space (H; h:; :i) with the spectrum
Sp (U) included in the interval [m;M ] for some real numbers m < M and let
fE�g�2R be its spectral family. Then for any continuous function f : [m;M ]! R,
it is well known that we have the following representation in terms of the Riemann-
Stieltjes integral:

(2.5) hf (U)x; xi =
Z M

m�0
f (�) d (hE�x; xi) ;

for any x 2 H with kxk = 1: The function gx (�) := hE�x; xi is monotonic nonde-
creasing on the interval [m;M ] and

(2.6) gx (m� 0) = 0 and gx (M) = 1

for any x 2 H with kxk = 1:
The following result is of interest:

Theorem 4. Let A and B be selfadjoint operators with Sp (A) ; Sp (B) � [m;M ]
for some real numbers m < M: If f : [m;M ] �! R is of r � L�Hölder type, i.e.,
for a given r 2 (0; 1] and L > 0 we have

jf (s)� f (t)j � L js� tjr for any s; t 2 [m;M ] ;
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then we have the Ostrowski type inequality for selfadjoint operators:

(2.7) jf (s)� hf (A)x; xij � L
�
1

2
(M �m) +

����s� m+M2
�����r ;

for any s 2 [m;M ] and any x 2 H with kxk = 1.
Moreover, we have

(2.8) jhf (B) y; yi � hf (A)x; xij � hjf (B)� hf (A)x; xi � 1H j y; yi

� L
�
1

2
(M �m) +

�����B � m+M2 � 1H
���� y; y��r ;

for any x; y 2 H with kxk = kyk = 1:

Proof. We use the following Ostrowski type inequality for the Riemann-Stieltjes
integral obtained by the author in [1]:

(2.9)

�����f (s) [u (b)� u (a)]�
Z b

a

f (t) du (t)

�����
� L

�
1

2
(b� a) +

����s� a+ b2
�����r b_

a

(u)

for any s 2 [a; b] ; provided that f is of r�L�Hölder type on [a; b] ; u is of bounded
variation on [a; b] and

_b

a
(u) denotes the total variation of u on [a; b] :

Now, applying this inequality for u (�) = gx (�) := hE�x; xi where x 2 H with
kxk = 1 we get

(2.10)

�����f (s)�
Z M

m�0
f (�) d (hE�x; xi)

�����
� L

�
1

2
(M �m) +

����s� m+M2
�����r M_

m�0
(gx)

which, by (2.5) and (2.6) is equivalent with (2.7).
By applying the property (P) for the inequality (2.7) and the operator B we

have

hjf (B)� hf (A)x; xi � 1H j y; yi � L
��
1

2
(M �m) +

����B � m+M2 � 1H
�����r y; y�

� L
��
1

2
(M �m) +

����B � m+M2
���� � 1H� y; y�r

= L

�
1

2
(M �m) +

�����B � m+M2 � 1H
���� y; y��r

for any x; y 2 H with kxk = kyk = 1; which proves the second inequality in (2.8).
Further, by the Jensen inequality for convex functions of selfadjoint operators

(see for instance [6, p. 5]) applied for the modulus, we can state that

(M) jhh (A)x; xij � hjh (A)jx; xi

for any x 2 H with kxk = 1; where h is a continuous function on [m;M ] :
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Now, if we apply the inequality (M), then we have

jh[f (B)� hf (A)x; xi � 1H ] y; yij � hjf (B)� hf (A)x; xi � 1H j y; yi

which shows the �rst part of (2.8), and the proof is complete. �

Remark 1. With the above assumptions for f;A and B we have the following
particular inequalities of interest:

(2.11)

����f �m+M2
�
� hf (A)x; xi

���� � 1

2r
L (M �m)r

and

(2.12) jf (hAx; xi)� hf (A)x; xij � L
�
1

2
(M �m) +

����hAx; xi � m+M2
�����r ;

for any x 2 H with kxk = 1.
We also have the inequalities:

(2.13) jhf (A) y; yi � hf (A)x; xij � hjf (A)� hf (A)x; xi � 1H j y; yi

� L
�
1

2
(M �m) +

�����A� m+M2 � 1H
���� y; y��r ;

for any x; y 2 H with kxk = kyk = 1;

(2.14) jh[f (B)� f (A)]x; xij � hjf (B)� hf (A)x; xi � 1H jx; xi

� L
�
1

2
(M �m) +

�����B � m+M2 � 1H
����x; x��r

and, more particularly,

(2.15) hjf (A)� hf (A)x; xi � 1H jx; xi

� L
�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

for any x 2 H with kxk = 1:
We also have the norm inequality

(2.16) kf (B)� f (A)k � L
�
1

2
(M �m) +

B � m+M2 � 1H
�r :

The following corollary of the above Theorem 4 can be useful for applications:

Corollary 1. Let A and B be selfadjoint operators with Sp (A) ; Sp (B) � [m;M ]
for some real numbers m < M: If f : [m;M ] �! R is absolutely continuous then
we have the Ostrowski type inequality for selfadjoint operators:

(2.17) jf (s)� hf (A)x; xij

�

8>><>>:
�
1
2 (M �m) +

��s� m+M
2

��� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +

��s� m+M
2

���1=q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1;



6 S.S. DRAGOMIR

for any s 2 [m;M ] and any x 2 H with kxk = 1, where k�kp;[m;M ] are the Lebesgue
norms, i.e.,

khk1;[m;M ] := ess sup
t2[m;M ]

kh (t)k

and

khkp;[m;M ] :=

 Z M

m

jh (t)jp
!1=p

; p � 1:

Moreover, we have

(2.18) jhf (B) y; yi � hf (A)x; xij � hjf (B)� hf (A)x; xi � 1H j y; yi

�

8>><>>:
�
1
2 (M �m) +


��B � m+M
2 � 1H

�� y; y�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +


��B � m+M
2 � 1H

�� y; y��1=q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1;

for any x; y 2 H with kxk = kyk = 1:

Now, on utilising Theorem 3 we can provide the following upper bound for the
µCeby�ev functional that may be more useful in applications:

Corollary 2. Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real
numbers m < M: If g : [m;M ] �! R is continuous with � := mint2[m;M ] g (t) and
� := maxt2[m;M ] g (t) ; then for any f : [m;M ] �! R of r � L�Hölder type we
have the inequality:

(2.19) jC (f; g;A;x)j � 1

2
(�� �)L

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

for any x 2 H with kxk = 1:

Remark 2. With the assumptions from Corollary 2 for g and A and if f is ab-
solutely continuos on [m;M ] ; then we have the inequalities:

(2.20) jC (f; g;A;x)j � 1

2
(�� �)

�

8>><>>:
�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x��1=q kf 0kp;[m;M ]

if f 0 2 L1 [m;M ] ;
p; q > 1; 1p +

1
q = 1

for any x 2 H with kxk = 1:

3. Some Inequalities for Sequences of Operators

Consider the sequence of selfadjoint operators A = (A1; :::; An) with Sp (Aj) �
[m;M ] for j 2 f1; :::; ng and for some scalars m < M: If x = (x1; :::; xn) 2 Hn

are such that
Pn

j=1 kxjk
2
= 1; then we can consider the following µCeby�ev type

functional

C (f; g;A;x) :=
nX
j=1

hf (Aj) g (Aj)xj ; xji �
nX
j=1

hf (Aj)xj ; xji �
nX
j=1

hg (Aj)xj ; xji :
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As a particular case of the above functional and for a probability sequence p =(p1; :::; pn) ;
i.e., pj � 0 for j 2 f1; :::; ng and

Pn
j=1 pj = 1; we can also consider the functional

C (f; g;A;p;x) :=

*
nX
j=1

pjf (Aj) g (Aj)x; x

+

�
*

nX
j=1

pjf (Aj)x; x

+
�
*

nX
j=1

pjg (Aj)x; x

+
where x 2 H; kxk = 1:
We know, from [2] that for the sequence of selfadjoint operators A = (A1; :::; An)

with Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for the synchronous (asynchronous)
functions f; g : [m;M ] �! R we have the inequality

(3.1) C (f; g;A;x) � (�) 0

for any x = (x1; :::; xn) 2 Hn with
Pn

j=1 kxjk
2
= 1: Also, for any probability

distribution p =(p1; :::; pn) and any x 2 H; kxk = 1 we have
(3.2) C (f; g;A;p;x) � (�) 0:
On the other hand, the following Grüss�type inequality is valid as well [3]:

(3.3) jC (f; g;A;x)j � 1

2
� (�� ) [C (g; g;A;x)]1=2

�
� 1

4
(�� ) (�� �)

�
for any x = (x1; :::; xn) 2 Hn with

Pn
j=1 kxjk

2
= 1; where f and g are continuous

on [m;M ] and  := mint2[m;M ] f (t), � := maxt2[m;M ] f (t), � := mint2[m;M ] g (t)
and � := maxt2[m;M ] g (t) :
Similarly, for any probability distribution p =(p1; :::; pn) and any x 2 H; kxk = 1

we also have the inequality:

(3.4) jC (f; g;A;p;x)j � 1

2
� (�� ) [C (g; g;A;p;x)]1=2

�
� 1

4
(�� ) (�� �)

�
:

We can state now the following new result:

Theorem 5. Consider the sequence of selfadjoint operators A = (A1; :::; An) with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalarsm < M: If f; g : [m;M ] �!
R are continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then

(3.5) jC (f; g;A;x)j � 1

2
(�� �)

nX
j=1

*�����f (Aj)�
nX
k=1

hf (Ak)xk; xki � 1H

�����xj ; xj
+

� 1

2
(�� �)C1=2 (f; f ;A;x) ;

for any x = (x1; :::; xn) 2 Hn such that
Pn

j=1 kxjk
2
= 1:

Proof. As in [6, p. 6], if we put

eA :=
0BBBB@
A1 : : : 0

:
:
:

0 : : : An

1CCCCA and ex =
0BBBB@
x1
:
:
:
xn

1CCCCA
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then we have Sp
� eA� � [m;M ] ; kexk = 1;D
f
� eA� g � eA� ex; exE = nX

j=1

hf (Aj) g (Aj)xj ; xji ;

D
f
� eA� ex; exE = nX

j=1

hf (Aj)xj ; xji ,
D
g
� eA� ex; exE = nX

j=1

hg (Aj)xj ; xji ;

and so on.
Applying Theorem 3 for eA and ex we deduce the desired result (3.5). �

The following particular results is of interest for applications:

Corollary 3. Consider the sequence of selfadjoint operators A = (A1; :::; An) with
Sp (Aj) � [m;M ] for j 2 f1; :::; ng and for some scalarsm < M: If f; g : [m;M ] �!
R are continuous with � := mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) ; then for
any pj � 0; j 2 f1; :::; ng with

Pn
j=1 pj = 1 and x 2 H with kxk = 1 we have

(3.6) jC (f; g;A;p;x)j

� 1

2
(�� �)

*
nX
j=1

pj

�����f (Aj)�
*

nX
k=1

pkf (Ak)x; x

+
� 1H

�����x; x
+

� 1

2
(�� �)C1=2 (f; f ;A;p;x) :

Proof. In we choose in Theorem 5 xj =
p
pj � x; j 2 f1; :::; ng ; where pj � 0; j 2

f1; :::; ng ;
Pn

j=1 pj = 1 and x 2 H; with kxk = 1 then a simple calculation shows
that the inequality (3.5) becomes (3.6). The details are omitted. �

In a similar manner we can prove the following result as well:

Theorem 6. Consider the sequences of selfadjoint operators A = (A1; :::; An) ;
B = (B1; :::; Bn) with Sp (Aj) ; Sp (Bj) � [m;M ] for j 2 f1; :::; ng and for some
scalars m < M: If f : [m;M ] �! R is of r � L�Hölder type, then we have the
Ostrowski type inequality for sequences of selfadjoint operators:

(3.7)

������f (s)�
nX
j=1

hf (Aj)xj ; xji

������ � L
�
1

2
(M �m) +

����s� m+M2
�����r ;

for any s 2 [m;M ] and any x = (x1; :::; xn) 2 Hn such that
Pn

j=1 kxjk
2
= 1.

Moreover, we have

(3.8)

������
nX
j=1

hf (Bj) yj ; yji �
nX
k=1

hf (Ak)xk; xki

������
�

nX
j=1

*�����f (Bj)�
nX
k=1

hf (Ak)xk; xki � 1H

����� yj ; yj
+

� L

241
2
(M �m) +

nX
j=1

�����Bj � m+M2 � 1H
���� yj ; yj�

35r ;
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for any x = (x1; :::; xn) ;y = (y1; :::; yn) 2 Hn such that
Pn

j=1 kxjk
2
=
Pn

j=1 kyjk
2
=

1:

Corollary 4. Consider the sequences of selfadjoint operators A = (A1; :::; An) ;
B = (B1; :::; Bn) with Sp (Aj) ; Sp (Bj) � [m;M ] for j 2 f1; :::; ng and for some
scalars m < M: If f : [m;M ] �! R is of r � L�Hölder type, then for any pj �
0; j 2 f1; :::; ng with

Pn
j=1 pj = 1 and x 2 H with kxk = 1 we have the weighted

Ostrowski type inequality for sequences of selfadjoint operators:

(3.9)

������f (s)�
*

nX
j=1

pjf (Aj)x; x

+������ � L
�
1

2
(M �m) +

����s� m+M2
�����r ;

for any s 2 [m;M ].
Moreover, we have

(3.10)

������
*

nX
j=1

qjf (Bj) y; y

+
�
*

nX
k=1

pkf (Ak)x; x

+������
�
*

nX
j=1

qj

�����f (Bj)�
*

nX
k=1

pkf (Ak)x; x

+
� 1H

����� y; y
+

� L

241
2
(M �m) +

*
nX
j=1

qj

����Bj � m+M2 � 1H
���� y; y

+35r ;
for any qk � 0; k 2 f1; :::; ng with

Pn
k=1 qk = 1 and x; y 2 H with kxk = kyk = 1:

4. Some Reverses of Jensen�s Inequality

It is clear that all the above inequalities can be applied for various particular
instances of functions f and g: However, in the following we only consider the
inequalities

(4.1) jf (hAx; xi)� hf (A)x; xij � L
�
1

2
(M �m) +

����hAx; xi � m+M2
�����r

for any x 2 H withkxk = 1; where the function f : [m;M ]! R is of r�L�Hölder
type, and

(4.2) jf (hAx; xi)� hf (A)x; xij

�

8>><>>:
�
1
2 (M �m) +

��hAx; xi � m+M
2

��� kf 0k1;[m;M ] ; if f 0 2 L1 [m;M ]

�
1
2 (M �m) +

��hAx; xi � m+M
2

���q kf 0kp;[m;M ] ;
if f 0 2 Lp [m;M ] ;
p > 1; 1p +

1
q = 1

for any x 2 H with kxk = 1; where the function f : [m;M ] ! R is absolutely
continuous on [m;M ] ; which are related to the Jensen�s inequality for convex func-
tions.
1. Now, if we consider the concave function f : [m;M ] � [0;1)! R, f (t) = tr

with r 2 (0; 1) and take into account that it is of r � L�Hölder type with the
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constant L = 1; then from (4.1) we derive the following reverse for the Hölder-
McCarthy inequality [9]

(4.3) 0 � hArx; xi � hAx; xir �
�
1

2
(M �m) +

����hAx; xi � m+M2
�����r

for any x 2 H with kxk = 1:
2. Now, if we consider the functions f : [m;M ] � (0;1) ! R with f (t) = ts

and s 2 (�1; 0) [ (0;1) ; then they are absolutely continuous and

kf 0k1;[m;M ] =

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

If p � 1; then

kf 0kp;[m;M ] = jsj
 Z M

m

tp(s�1)dt

!1=p

= jsj �

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p :

On making use of the �rst inequality from (4.2) we deduce for a given s 2
(�1; 0) [ (0;1) that

(4.4) jhAx; xis � hAsx; xij

�
�
1

2
(M �m) +

����hAx; xi � m+M2
�����

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

for any x 2 H with kxk = 1:
The second part of (4.2) will produce the following reverse of theHölder-McCarthy

inequality as well:

(4.5) jhAx; xis � hAsx; xij

� jsj
�
1

2
(M �m) +

����hAx; xi � m+M2
�����q

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p

for any x 2 H with kxk = 1; where s 2 (�1; 0) [ (0;1) ; p > 1 and 1
p +

1
q = 1:
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3. Now, if we consider the function f (t) = ln t de�ned on the interval [m;M ] �
(0;1) ; then f is also absolutely continuous and

kf 0kp;[m;M ] =

8>>>>><>>>>>:

m�1 for p =1;

�
Mp�1�mp�1

(p�1)Mp�1mp�1

�1=p
for p > 1;

ln
�
M
m

�
for p = 1:

Making use of the �rst inequality in (4.2) we deduce

(4.6) 0 � ln (hAx; xi)� hln (A)x; xi �
�
1

2
(M �m) +

����hAx; xi � m+M2
�����m�1

and

(4.7) 0 � ln (hAx; xi)� hln (A)x; xi

�
�
1

2
(M �m) +

����hAx; xi � m+M2
�����q � Mp�1 �mp�1

(p� 1)Mp�1mp�1

�1=p
for any x 2 H with kxk = 1; where p > 1 and 1

p +
1
q = 1:

Similar results can be stated for sequences of operators, however the details are
left to the interested reader.

5. Some Particular Grüss�Type Inequalities

In this last section we provide some particular cases that can be obtained via
the Grüss�type inequalities established before. For this purpose we select only two
examples as follows.
Let A be a selfadjoint operator with Sp (A) � [m;M ] for some real numbers

m < M: If g : [m;M ] �! R is continuous with � := mint2[m;M ] g (t) and � :=
maxt2[m;M ] g (t) ; then for any f : [m;M ] �! R of r � L�Hölder type we have the
inequality:

(5.1) jhf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xij

� 1

2
(�� �)L

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

for any x 2 H with kxk = 1:
Moreover, if f is absolutely continuos on [m;M ] ; then we have the inequalities:

(5.2) jhf (A) g (A)x; xi � hf (A)x; xi � hg (A)x; xij � 1

2
(�� �)

�

8>><>>:
�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x�� kf 0k1;[m;M ] if f 0 2 L1 [m;M ] ;

�
1
2 (M �m) +


��A� m+M
2 � 1H

��x; x��1=q kf 0kp;[m;M ]

if f 0 2 Lp [m;M ] ;
p; q > 1; 1p +

1
q = 1

for any x 2 H with kxk = 1:
1. If we consider the concave function f : [m;M ] � [0;1)! R, f (t) = tr with

r 2 (0; 1) and take into account that it is of r � L�Hölder type with the constant
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L = 1; then from (5.1) we derive the following result:

(5.3) jhArg (A)x; xi � hArx; xi � hg (A)x; xij

� 1

2
(�� �)

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

for any x 2 H with kxk = 1; where g : [m;M ] �! R is continuous with � :=
mint2[m;M ] g (t) and � := maxt2[m;M ] g (t) :
Now, consider the function g : [m;M ] � (0;1) ! R, g (t) = tp with p 2

(�1; 0) [ (0;1). Obviously,

�� � =

8<:
Mp �mp if p > 0;

M�p�m�p

M�pm�p if p < 0;

and by (5.3) we get for any x 2 H with kxk = 1 that

(5.4) 0 �


Ar+px; x

�
� hArx; xi � hApx; xi

� 1

2
(Mp �mp)

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

when p > 0 and

(5.5) 0 � hArx; xi � hApx; xi �


Ar+px; x

�
� 1

2
� M

�p �m�p

M�pm�p

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

when p < 0:
If g : [m;M ] � (0;1)! R, g (t) = ln t; then by (5.3) we also get the inequality

for logarithm:

(5.6) 0 � hAr lnAx; xi � hArx; xi � hlnAx; xi

� ln
r
M

m
�
�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��r ;

for any x 2 H with kxk = 1:
2. Now consider the functions f; g : [m;M ] � (0;1) ! R, with f (t) = ts and

g (t) = tw with s; w 2 (�1; 0) [ (0;1) : We have

kf 0k1;[m;M ] =

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :

and, for p � 1;

kf 0kp;[m;M ] = jsj �

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p :



µCEBY�EV FUNCTIONAL 13

If w > 0; then by the �rst inequality in (5.2) we have

(5.7)
��
As+wx; x�� hAsx; xi � hAwx; xi��

� 1

2
(Mw �mw)

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) :
for any x 2 H with kxk = 1:
If w < 0; then by the same inequality we also have

(5.8)
��
As+wx; x�� hAsx; xi � hAwx; xi��
� 1

2
� M

�w �m�w

M�wm�w

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��

�

8<: sMs�1 for s 2 [1;1);

jsjms�1 for s 2 (�1; 0) [ (0; 1) ;
for any x 2 H with kxk = 1:
Finally, if we assume that p > 1 and w > 0; then by the second inequality in

(5.2) we have

(5.9)
��
As+wx; x�� hAsx; xi � hAwx; xi��
� 1

2
jsj (Mw �mw)

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��1=q

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p ;

while for w < 0; we also have

(5.10)
��
As+wx; x�� hAsx; xi � hAwx; xi��
� 1

2
jsj � M

�w �m�w

M�wm�w

�
1

2
(M �m) +

�����A� m+M2 � 1H
����x; x��1=q

�

8>><>>:
�
Mp(s�1)+1�mp(s�1)+1

p(s�1)+1

�1=p
if s 6= 1� 1

p�
ln
�
M
m

��1=p
if s = 1� 1

p ;

where q > 1 with 1
p +

1
q = 1 and x 2 H with kxk = 1:
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