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SOME NEW GRUSS’ TYPE INEQUALITIES FOR FUNCTIONS
OF SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

ABSTRACT. Some new inequalities of Griiss’ type for functions of selfadjoint
operators in Hilbert spaces, under suitable assumptions for the involved op-
erators, are given. Several examples for particular functions of interest are
provided as well.

1. INTRODUCTION

In 1935, G. Griiss [I3] proved the following integral inequality which gives an
approximation of the integral of the product in terms of the product of the integrals
as follows

(1.1) !

b—a/abf(x)g(x)dx_b_la/abf(x)dl"b_la/abg(:c)dz

1
< (@9,
where f, g : [a,b] — R are integrable on [a,b] and satisfy the condition

(1.2) 6<f(2) <y <g(s)<T

for each = € [a,b], where ¢, ®,v,T" are given real constants.

Moreover, the constant i is sharp in the sense that it cannot be replaced by a
smaller quantity.

For a simple proof of as well as for some other integral inequalities of Griiss
type, see Chapter X of the book [I5] and the papers [1]-[7] and [11].

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [I5, Chapter X] estab-
lished the following discrete version of Griiss’ inequality:

Theorem 1. Let a = (a1, ...,a,), b= (b1,...,b,) be two n—tuples of real numbers
such that r < a; < R and s <b; < S fori=1,....,n. Then one has

(1.3) %iab—%ia%ib g%[g} (1—711[’;])(3—@(5—5),
=1 =1 =1

where [x] denotes the integer part of x, x € R.

A weighted version of the discrete Griiss inequality was proved by J. E. Pecari¢
in 1979 [15, Chapter X]:
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2 S.S. DRAGOMIR

Theorem 2. Let a and b be two monotonic n—tuples and p a positive one. Then

1 1 1 <
(1.4) B, Zpiaibi B Zpiai "B Zpibi
=1 =1 =1
PPy
< _ _
< an — arf|bn b1|1§1g1§a§_1[ Pz |

where P, := """ | p;, and Pyy1 = P, — Piy1.

In 1981, A. Lupas, [I5, Chapter X] proved some similar results for the first
difference of a as follows.

Theorem 3. Let a,b be two monotonic n—tuples in the same sense and p a positive
n-tuple. Then

2
: : IR 1 -,
(1.5) 135‘217?—1|Aai| | Jnin |Ab| P—nz_:ll ;i — (Pn ;zm)
n

1 & 1 & 1
B, ;piaibz‘ B ;piai o ;pibi

IA

1< 1< ’
.2 .
< ISI?SEE(*JAQA 15?571 |Ab;| | =— > 1“p; — (Pn ZHH) )

=1 i=1

where Aa; := a;41 — a; is the forward first difference. If there exist the numbers
a,ap,r,ry (rry > 0) such that ar, = a + kr and b, = @, + krq, then equality holds

m .

Similar integral inequalities can be stated, however they will not be presented
here.

2. OPERATOR VERSIONS OF THE GRUSS INEQUALITY

In order to state the operator version of the Griiss inequality we recall briefly in
the following the Gelfand functional calculus.

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)).
The Gelfand map establishes a *-isometrically isomorphism ® between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A),
an the C*-algebra C* (A) generated by A and the identity operator 1; on H as
follows (see for instance [12), p. 3]):

For any f,g € C (Sp(A)) and any «, 8 € C we have

() ®(af+089) = ad (f) + O (g);

(i) ®(fg) =@ (f)®(g) and & (f) = @ ()"

(i) 1® ()]l = I1F] i= supsespcay 1F (O

(iv) @ (fo) =1g and ® (f1) = A, where fo (t) = 1and f; (t) = ¢, fort € Sp(A).

With this notation we define

f(A):=d(f) forall feC(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A4),
then f(t) > 0 for any ¢ € Sp(A) implies that f(A) > 0, i.e. f(A) is a positive
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operator on H. Moreover, if both f and g are real valued functions on Sp (A4) then
the following important property holds:

(P) f(t) > g(t) for any t € Sp(A) implies that f (4) > g (A)

in the operator order of B (H).

For a recent monograph devoted to various inequalities for functions of selfadjoint
operators, see [I2] and the references therein. For other results, see [I7], [14] and
[18].

The following operator version of the Griiss inequality was obtained by Mond &
Pecarié in [16]:

Theorem 4 (Mond-Pecari¢, 1993, [16]). Let C;, j € {1,...,n} be selfadjoint op-
erators on the Hilbert space (H,(.,.)) and such that m; - 1g < C; < M; - 1y
for j € {1,..,n}, where 1y is the identity operator on H. Further, let g;, h; :
[mj, Mjl =R, je{l,...,n} be functions such that

(2.1) - 1g <g;j(C;) <®-1g and -1y < h;j (C;) <T -1y
for each j € {1,...,n}.
Ifx; € H, j € {1,...,n} are such that 3°7_, |;||* =1, then

n

(22) D> (g5 (Cy) hj (Cy)ajyay) =Y (g5 (C) wj, ;) -

Jj=1 Jj=1 J

IV

Il
—

(hj (Cy)zj,25)

<7 (@—9)('—7).

If C;,j € {1,...,n} are selfadjoint operators such that Sp(C;) C [m,M] for
j €{1,...,n} and for some scalars m < M and if g, h : [m, M] — R are continuous
then by the Mond-Pecari¢ inequality we deduce the following version of the Griiss
inequality for operators

>~ =

n

(2.3) ) (g (CHR(Cy w5y =D {g(C)ag,z) - > (h(Ch)aj,x))

Jj=1 Jj=1 Jj=1

<7 (@-9)([T=9),

>~

wherez; € H, j € {1,...,n} aresuch that >37_, ||xj||2 = land ¢ = mingepm, a9 (t)
o= maXie(m,M] 9 (t) ) V= minte[m,M] h (t> ,and I'= maX¢e(m, M| h (t) :

In particular, if the selfadjoint operator C' satisfy the condition Sp (C) C [m, M]
for some scalars m < M, then

24) g (O h(C)z,x) = (9 (C)a,x) - (R (C)z,2)| < 7 (D= 9) (T =),

| =

for any x € H with ||z| = 1.
In the recent paper [9] the following refinement of ([2.4]) has been obtained:

Theorem 5 (Dragomir, 2008, [9]). Let A be a selfadjoint operator on the Hilbert
space (H;(.,.)) and assume that Sp(A) C [m, M] for some scalars m < M. If f
and g are continuous on [m, M] and vy := minge(m an f (1), T = maxyepm, m f (),
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0 = mingepm, a9 () and A := maxieim g (t) then

(2.5) [f(A)g(A)zx

~

— (f(A)z,z) (g (A) z,2)|

(=) |lg(z]® ~(g(A) z,2)*

l\D\H

for each x € H with ||z| = 1.

A version of n operators that generalise this result and improves (2.3)) is incor-
porated in:

Theorem 6 (Dragomir, 2008, [9]). Let A; be selfadjoint operators with Sp (A;) C
[m, M] for j € {1,...,n} and for some scalars m < M. If f,g : [m, M] — R are as
in Theorem [d then

(2.6) Z<f(Aj)g i) Tj,Tj) Z x]vxj>'z<g(Aj)xjaxj>

Jj=1 Jj=1 Jj=1

—_
3

<= (T=~) ZIIg D)y — > g (A)) zj, 7))

\V]

for each x; € H,j € {1,...,n} with 37, ll;]|* =

Motivated by the above results we investigate in this paper other Griiss’ type
inequalities for selfadjoint operators in Hilbert spaces. Some of the obtained results
improve the inequalities and derived from the Mond-Pecarié¢ inequality.
Others provide different operator versions for the celebrated Griiss’ inequality men-
tioned above. Examples for power functions and the logarithmic function are given
as well.

. T U T
3. SOME VECTORIAL GRUSS’ TYPE INEQUALITIES

The following lemmas, that are of interest in their own right, collect some Griiss
type inequalities for vectors in inner product spaces obtained earlier by the author:

Lemma 1. Let (H, (-,-)) be an inner product space over the real or complex number
field K, u,v,e € H, |le]| =1, and «, 8,7,9 € K such that

(3.1) Re (Be — u,u — ae) > 0,Re (de —v,v —ve) >0

or equivalently,

(3.2) s1B—-al, 16 =71

s
.

’y+5 H
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Then

(3:3)  [{w,0) = (u,e) e, )|
[Re (Be — u,u — ae) Re (0e — v, v —76)]% ,

<7 1B—alld =7l -

N

(u,e) — %ﬂ’ ‘(v,e) —VTM‘.

The first inequality has been obtained in [2] (see also [8, p. 44]) while the second
result was established in [3] (see also [8, p. 90]). They provide refinements of the
earlier result from [I] where only the first part of the bound, i.e., 1 |3 —a|[d — 7|
has been given. Notice that, as pointed out in [3], the upper bounds for the Griiss
functional incorporated in cannot be compared in general, meaning that one
is better than the other depending on appropriate choices of the vectors and scalars
involved.

Another result of this type is the following one:

Lemma 2. With the assumptions in Lemma |1| and if Re(fa) > 0,Re(67) > 0
then

(34)  [(u,v) = (u,e) (e, v)]

1. _18=alls—|
T et repyt 9 (0

<

1
2

[(Ja+ 81— 2 [Re (8@)* ) (10 + 7] - 2 [Re (67)]* ) |
1
[l(u, €) {e, ) []> .
The first inequality has been established in [4] (see [8, p. 62]) while the second one
can be obtained in a canonical manner from the reverse of the Schwarz inequality
given in [5]. The details are omitted.

Finally, another inequality of Griiss type that has been obtained in [6] (see also
[8, p. 65]) can be stated as:

Lemma 3. With the assumptions in Lemma[l] and if 8 # —«, § # —v then

(3'5) |<ua U> - <u7 6> <€, U>|
_1 1B8—allb=1)

1
L s+alls+?

[(lll + ¢, €)1) (ol + (v, )] -

4. SOME INEQUALITIES OF GRUSS’ TYPE FOR ONE OPERATOR

The following results incorporates some new inequalities of Griiss’ type for two
functions of a selfadjoint operator.

Theorem 7. Let A be a selfadjoint operator on the Hilbert space (H;(.,.)) and
assume that Sp (A) C [m, M] for some scalars m < M. If f and g are continuous

on [m, M] and v := miny e[, 1 f@), T = MaXye[m, M) f@),d:= minte[m,M]g(t)
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and A := maXie(m, ) g (t) then

(T —7) (A=)

e

(4.1)  [{f(A)g(A)z,z) = (f (A)z,z) (g (A) z,z)| <
[Tz — f(A)x, f (A)z —2) (Az — g (A) 7,9 (A) & — 62)]* ,

(S (A)w,2) = B (g (A) w,0) - 25

for each x € H with ||z| = 1.
Moreover if v and & are positive, then we also have

(4.2)  [(f(A)g(A)z,z) = (f(A)z,x) (g (A) z,2)|

P RS (W) (g (A) 2, a),

IA

(VI =) (VA = V8) [(f (A) .2} (g (A) )]
while for T +~v, A+ # 0 we have
(4.3) [(f(A)g(A)z,z) = (f(A)z,2) (g (A)z,z)|

L DB 1 ()l 4 (0f (4) ) g () 2]+ g (A) 2,
[+ 18+ 8]

N|=

IN

for each x € H with ||z| = 1.

Proof. Since 7y := minge(m ar) f (t), I' := max;epm,p f (£), 6 := minyepy, a1 g (¢) and
A = maxX;e[m,n 9 (t), the by the property @ we have that

ylg<f(A)<T-lgandé-1yp <g(A) <A-ly
in the operator order, which imply that
(44) [f(A) =~y 1[-1g = f(A)] 2 0and [A-1pg —g(A)][g(A) =6-14] 20

in the operator order.
We then have from (4.4])

([f(A) =~y-1[-1g — f(A)]z,2) >0
and
([A-1g—g(A)][g(A) —d-1g|z,z) >0,

for each € H with ||z| = 1, which, by the fact that the involved operators are
selfadjoint, are equivalent with the inequalities

(45) {Tz—fA)x, f(A)xz—vz) >0and (Ax—g(A)z,g(A)xz —dox) >0,

for each x € H with ||z| = 1.
Now, if we apply Lemma [l| for u = f(A)z, v = g(A)x, e = z, and the real
scalars I', v, A and ¢ defined in the statement of the theorem, then we can state the
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inequality

(4.6) |(f (A)a,g(A)z) — (f (A)z,2) (x,9(A) z)| < 7 - (T =) (A~ 3)
[Re Tz — f (A) z, f (A)z — vz) Re (Az — g (A) z, g (A) & — 52)]? ,

=

[ (W,2) = 52| (g (4) v, ) — 242

)

for each z € H with ||z|| = 1, which is clearly equivalent with the inequality (4.1).
The inequalities (4.2)) and (4.3]) follow by Lemma [2] and Lemma [3| respectively
and the details are omitted. J

Remark 1. The first inequality in can be written in a more convenient way

(fAgAazz) | _1 (=9 (A=9)
o P e R
for each x € H with ||z|| = 1, while the second inequality has the following equivalent
form
(f(A)g(A)z, z) 1/2
4.8 5~ fA)x, x Ax,x
(4.8) ’[(f(A)x,x)(g(A)x,x)]/ [(f (A)z,z) (g (A) , )]

< (VT 7) (V5 )

for each x € H with ||z| = 1.
We know, from [10] that if f, g are synchronous (asynchronous) functions on the
interval [m, M|, i.e., we recall that

[f @) = F()lg () =g (s)] (=) <O for each t,s € [m, M],

then we have the inequality

(4.9) (f(A)g(A)a,z) = (<) (f(A)z,2) (9 (A) z, )
for each x € H with ||z|| = 1,provided f,g are continuous on [m,M] and A is a
selfadjoint operator with Sp (A) C [m, M].

Therefore, if f,g are synchronous then we have from and from (@ the

following results:

PR RUEDIEED)

1
(4.10) S @@z 51 yha

and

—[(f (A)z,2) (g (A) z, 2]/

(- 7) (V59

for each x € H with ||x|| = 1, respectively.
If f, g are asynchronous then

(f (A) g (A)z,x)
(f(A)z,z)(g(A)z,z)

(4.12) 0<1—

IN
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and

L13) 0< [(F(A)ae) (g (A w2 A g(A)a2)
413 02 [ (Waa)gWwa)] /=T T

< (VI -v3) (VA -V5)
for each x € H with ||x|| = 1, respectively.

It is obvious that all the inequalities from Theorem [7] can be used to obtain
reverse inequalities of Griiss’ type for various particular instances of operator func-
tlons see for 1nstance [9]. However we give here only a few provided by the inequal-

ities and (| above.

Example 1. Let A be a selfadjoint operator with Sp (A) C [m, M| for some scalars
m < M.
If A is positive (m > 0) and p,q > 0, then

(AP*ig, ) 1 (MP —mP) (M9 —m)
414 < 1<
(4.14) 0= (APz, ) - (Adz, ) 4 M By e
and
p+q
(4.15) 0< (APTz, o) — [(APz,z) - (A%, 2)]/?

[(APx,x) - (A, m>]1/2

[SIS)
\
3
[N
N—

< ()
for each x € H with ||z| = 1.

If A is positive definite (m > 0) and p,q <0, then

(APTag, 1) 1 (M™P—m™P)(M~9—m™9)

4.1 < 1< Z.

(4.16) 0= (Arx,x) - (Adz, x) 4 M~5tm—

and

ApPTa

(4.17) 0< o <x> <j;2>x>]”2 — [(APz, ) - (Alz, 2)]?
< ( -5 _ mfg) Mfg—m %)
o M5yt

for each x € H with ||z| = 1.

Similar inequalities may be stated for either p > 0,¢g < 0 or p < 0,¢ > 0. The
details are omitted.

Example 2. Let A be a positive definite operator with Sp (A) C [m, M| for some
scalars 1 <m < M. If p > 0 then

(4.18) o< Adzz) 1 (MP — m?) In )
’ = (Arz z) - (In Az, ) ~4 MimivVInM -Inm
and
p
(4.19) 0< (A7In Az, ) — [(APz,2) - (In Az, z)]*/?

[(APz,z) - (In Az, z)]"/?
< (M’ fm%> [W—M} ,
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for each x € H with ||z| = 1.

5. SOME INEQUALITIES OF GRUSS’ TYPE FOR n OPERATORS

The following extension for sequences of operators can be stated:

Theorem 8. Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f and g are continuous on [m,M]
and v := Minye ar) f (), T 1= maxepm, ) f (1), 0 := mingepm a9 (t) and A :=
maxyefm,ar g (t) then

(5.1) Z<f (4;) g (A;) zj, ;) Z ) T, ;) Z i) %5, 25)

j=1 Jj=1 j=1

-7 (A=9)

N
~

Nl=

(Y0 (T = £ (A, £ (A g =) Yy (A — g (4)) 59 (A7) 2 — b))

)

r
(S (A ) = T [0y (g (Ag) o) — 22

for each xz; € H,j € {1,...,n} wzthz 1||IJ|| =1.
Moreover if v and & are positive, then we also have

M:

(5:2) D _(f(A)) g (A)) zj,2;)

j=1 J
Y(A—§ n
LR S (A w5) - iy (9 (4g) 2, 05),

l‘J,J?j

(9 (Aj) zj,25)

n n

—

j=1

IN

N

(VI = vA) (VA= V) [y (F (A gmg) - Sy o (Ay) )]
while for T+ ~v, A+ # 0 we have

(5.3) Z<f(AJ) J) 5, 2;5) Z §) T, %) Z(g(Aj)xj,xj>
Jj=1 j=1 j=1
_1 (T-y(a-9)
A D +ola )
1/2
(Zu( )x]n) ) TIERENS

1/2
n

E .%']7.%'j

. 1/2
(E_j )l )

for each x; € H,j € {1,...,;n} with 37, lla;|)* = 1.
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Proof. Asin [12] p. 6], if we put

o . . . A, T,

/N

then we have Sp g) Cm,M], |Z||=1

j=1

r(A)a] an )’

<.
Il
—_

and
o (2) 3] Zug )

Applying Theorem [7] for A and 7 we deduce the desired results. The details are
omitted.

Remark 2. The first inequality in can be written in a more convenient way
as

] T (F(Ay) g (Aj) mj, ;)
ZJ 1 (A)) g, 25) - 22:1 (9 (Aj) zj,zj)

for each xj € H,j € {1,....,n} with 37, ;]| = 1, while the second inequality has
the following equivalent form

-1

S (F(A)) g (Ag) zj,5)
[Z?:l (f (Aj)aj,@5) - 375 (9 (4)) %'ﬁfgﬂm

. . 1/2
- [Z< i) TjsT5) Z j) Tj, T, }

(5.5)

< (VI -3) (VA -V5)

for each x; € H,j € {1,...,n} with Z?Zl ||1:J||2 =1
We know, from [10] that if f,g are synchronous (asynchronous) functions on the
interval [m, M|, then we have the inequality

n n

(5.6) Z (f(A;) g(Aj) x5, 25) Z ) Tj> Tj) Z (9(Aj)xj, ;)

j=1 j=1 j=1

for each xj € H,j € {1,....n} with 337_, ||;10J||2 = 1,provided f, g are continuous on
[m, M] and A; are selfadjoint operators with Sp (4;) C [m, M], j € {1,...,n}.
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Therefore, if f,g are synchronous then we have from and from the
following results:
doia (F(Ay) g (A))aj,x;)
i (A g, ag) - 00 (g (A)) @y, 25)

(57) 0< 1

1 T=9(A-9)
4 VIVAS
and
(5.8) 0< Doioa (f (A7) g (Ay) 5, 25)

S A e S e (A ]

- ;< 3) %5, T5) il i) T, %)
< (VI-A) (VA-V5)

1/2

for each x; € H,j € {1,...,n} with 337, ||91:J||2 =1, respectively.
If f, g are asynchronous then

S (F(A)) g (Ag) zj,25)

(5:9) O L= ) S 0 (Ay) ay,25)
1 C-y(A-d)
SV . v}
and
n n 1/2
(5.10) 0< Z(f (Aj)zj,x5) - ‘ (9 (Aj)xj,25)

1
Do (F(Ay) g (Aj)aj, @)
(S0 (A apmy) Sy o () )]
< (Vi -\A) (Va-v5)

for each x; € H,j € {1,...,n} with Z?Zl ||alc]||2 = 1, respectively.

It is obvious that all the inequalities from Theorem [8] can be used to obtain
reverse inequalities of Griiss’ type for various particular instances of operator func-
tions see for 1nstance [9]. However we give here only a few provided by the inequal-

ities ) and (| above.

Example 3. Let A; j € {1,...,n} be selfadjoint operators with Sp (A;) C [m, M],
je{l,...,n} for some scalars m < M.
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If A; are positive (m > 0) and p,q > 0, then

(5.11) 0< o (AT e )
a Z] 1<A i, ;) - Z?:l <A§xj,xj>

1 (MP —mP)(M?—m9)
S e pt+q p+q
4 M= m=
and
n +
(512) 0< e (AT i)

[ijl (Afzj,az) - 370 (Afzj, ffjﬂ

1/2

> (A gy Y (Alwy,a;)
=1 =1
()

for each x; € H,j € {1,...,n} with 337, lla;||* = 1.
If A is positive definite (m > 0) and p,q < 0, then

[SIIS)
I
3
(SIS
N——

(5.13) 0< S (AT 5 25) 1
EJ 1<A xj,x]> Zj:l <Aja:j,a:j>
e )
M= m =
and
1/2

514 O Z A»l’j,(L’j>‘Z<A§SUj,£L‘j>
j=1 J=1

Z?:l <A§+qx’ x>
n n 1/2
[Zj:l (Afzj,a;) - 375 (Afzj, %‘ﬂ
m

(M=% —m~%) (M~% —m~%)
S _pta _pta
M—"=2 m =2

for each x; € H,j € {1,...,n} with 337, |l ))* =

Similar inequalities may be stated for either p > 0,¢g < 0 or p < 0,¢ > 0. The
details are omitted.

Example 4. Let A be a positive definite operator with Sp (A) C [m, M] for some
scalars 1 <m < M. If p > 0 then

S (A In Ay, ay)

(5.15) 0< _1
Z] 1<A w],xj> ZJ 1 (InAjz;, ;)
< 1 (MP—mP)ln 4
“4 MimEVInM -Inm
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and

>y (A In Ay, a;)

(5.16) 0< Yz
[ (AT as) S (A, )]

1/2

— D (AP, ay) -y (In Ay, )
j=1 j=1
< (M% —m%> [\/lnM— vlnm] ,

for each x; € H,j € {1,...,n} with E?Zl ||33J||2 =1.

Similar inequalities may be stated for p < 0. The details are omitted.
The following result for n operators can be stated as well:

Corollary 1. Let A; be selfadjoint operators with Sp(A;) C [m,M] for j €
{1,...,n} and for some scalars m < M. If f and g are continuous on [m, M]
and v := Minyep ar) f (), T = maxem, ) f (1), 0 := mingepm a9 () and A :=
maxyem, a9 (t) then for any p; > 0,5 € {1,...,n} with Z;;l pj =1 we have

n

(5.17) <ijf(Aj)9(Aj)177$> - <ijf(z4j)l”7$> : <ijg (Aj)33756>

)
|5 ps (Do = £ (A5) @, f (Aj) = ya) Sy g (Aw = g (Ag) @, 9 (A;) @ — 6w)]

(Sypif (A5)22) = B[y pig (Ag) ) — 252

for each x € H, with ||z|* = 1.
Moreover if v and § are positive, then we also have

(5.18) <ijf(Aj)9(Aj)$,$> - <ijf(f4j)$7$> ' <ijg (Aj)93733>

—v)(A—§ n n
LR (S pf (A ey - (Ciypig (A @),

IN

() (VB8 (S ) (125
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while for T+ ~v, A+ # 0 we have

(5.19) <ijf(Aj)9(Aj)%$> - <ijf(f4j)$79€> : <ijg (Aj)$79€>
j=1 j=1 j=1

PERNETIET)

40 +4]|A+0])?

1/2
(ij ||f(Aj)x||2) + <ijf(Aj)x,af>
j=1 j=1
1/2 1/2

(ij lg (4;) |® + <ZP;’9 (Aj)l“»x>
j=1 j=1

for each x € H, with ||z|* = 1.

Proof. Follows from Theorem [8 on choosing z; = /p; - @, j € {1,...,n}, where
p; > 0,5 € {1,...,n}, Z;;lpj =1 and x € H, with ||z]| = 1. The details are
omitted. 1

Remark 3. The first inequality in can be written in a more convenient way

diapif (A) g (A x,x _ _
(5.20) < ) —1|< i : W

<Z?:1 pif (Aj)$7$> : <Z?:1 ;g (4;) $$>

for each x € H, with Hac||2 =1, while the second inequality has the following equiv-
alent form

<Z;'L:1 pif (A;) g9 (A)), gc>
[<Z?:1 p;f (Aj) m,a:> . <Z;.L:1pjg (Aj):mxﬂ 2

- <ipjf<Aj>x,x> - <ipjg<Aj>x,x>
< (VI -A) (VA-V5)

(5.21)

1/2

for each x € H, with ||z|* = 1.
We know, from [10] that if f, g are synchronous (asynchronous) functions on the
interval [m, M|, then we have the inequality

(5.22) <ijf(Aj)g(Aj)x,x> > (<) <ijf(Aj)xvx> : <ijg (Aj)xv$>
Jj=1 Jj=1 j=1

for each x € H, with ||1:H2 =1, provided f,g are continuous on [m, M| and A; are
selfadjoint operators with Sp (A;) C [m, M], j € {1,...,n}.
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Therefore, if f,g are synchronous then we have from ( and from ( the

following results:

<Z] mf(AJ) (4))2,)

(5.23) 0< .
(Sl ey (Siima (472
N e N )
4 TvAd
and
(5.24) 0< <Z?=1pjf(Aj)9(Aj)$,x>

(it () a2 - (Simig (A wa)]

1/2
<ijf(14j)l‘7l‘> . <ijg (Aj)x,x>
< (VI-A) (VA-V5)

for each x € H, with Hx||2 = 1, respectively.
If f, g are asynchronous then

<zj \pif (4;) 9 (Aj) )

(5.25) 0<1-—
<Z?:1pj )T, T < j=1Pi9 (4j)z x>
_1 T-(A-9)
S1T A
and
1/2

(5.26) 0< <ijf(Aj)x,x> . <ijg (A]-);v,x>
Jj=1 j=1

(S0 oy f (A g (4)) 2.2
[<Z?:1 pif (Aj) $> . <E?:1 P9 (A)) x, x>] 2
< (Vi-A) (VA-V5)

for each x € H, with H:E||2 = 1, respectively.

The above inequalities (5.23]) - (5.26) can be used to state various particular
inequalities as in the previous examples, however the details are left to the interested
reader.

REFERENCES

[1] S.S. Dragomir, A generalisation of Griiss’ inequality in inner product spaces and applications,
J. Mathematical Analysis and Applications, 237 (1999), 74-82.

[2] S.S. Dragomir, Some Griss type inequalities in inner product spaces, J. Inequal. Pure &
Appl. Math., 4(2) (2003), Article 42. (Online http://jipam.vu.edu.au/article.php?sid=280).



16

S.S. DRAGOMIR

[3] S.S. Dragomir, On Bessel and Griiss inequalities for orthornormal families in inner product

spaces, Bull. Austral. Math. Soc., 69(2) (2004), 327-340.

[4] S.S. Dragomir, Reverses of Schwarz, triangle and Bessel inequalities in inner prod-

uct spaces, J. Inequal. Pure & Appl. Math., 5(3) (2004), Article 76. (Online
http://jipam.vu.edu.au/article.php?sid=432).

[5] S.S. Dragomir, Reverses of the Schwarz inequality in inner product spaces generalising a

Klamkin-McLenaghan result, Bull. Austral. Math. Soc. 73(1)(2006), 69-78.

[6] S.S. Dragomir, New reverses of Schwarz, triangle and Bessel inequalities in inner

product spaces, Austral. J. Math. Anal. & Applics., 1(1) (2004), Article 1. (Online:
http://ajmaa.org/cgi-bin/paper.pl?string=nrstbiips.tex ).

[7] S.S. Dragomir, Reverse inequalities for the numerical radius of linear operators in Hilbert

spaces, Bull. Austral. Math. Soc., 73(2006), 255-262.

[8] S.S. Dragomir, Advances in Inequalities of the Schwarz, Griss and Bessel Type in Inner

Product Spaces, Nova Science Publishers Inc, New York, 2005, x+249 p.

[9] S.S. Dragomir, Griiss’ type inequalities for functions of selfadjoint operators in Hilbert spaces,

Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://www.staff.vu.
edu.au/RGMIA/v11(E) .asp|

[10] S.S. Dragomir, Cebysev’s type inequalities for functions of selfadjoint operators in Hilbert

spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 9. [ONLINE: http://www.staff.
vu.edu.au/RGMIA/v11(E) .asp|

[11] A.M. Fink, A treatise on Griiss’ inequality, Analytic and Geometric Inequalities, 93-113,

Math. Appl. 478, Kluwer Academic Publ., 1999.

[12] T. Furuta, J. Miéi¢ Hot, J. Pecari¢ and Y. Seo, Mond-Pecari¢ Method in Operator Inequal-

ities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb,
2005.

.. = . b
[13] G. Griiss, Uber das Maximum des absoluten Betrages von ﬁfa f@)g(z)dx —

ﬁ I f(z)da [P g(z)dz , Math. Z. , 39(1935), 215-226.

[14] A. Matkovié, J. Pecari¢ and I. Peri¢, A variant of Jensen’s inequality of Mercer’s type for

operators with applications. Linear Algebra Appl. 418 (2006), no. 2-3, 551-564.

[15] D.S. Mitrinovié¢, J.E. Pecari¢ and A.M. Fink, Classical and New Inequalities in Analysis,

Kluwer Academic Publishers, Dordrecht, 1993.

[16] B. Mond and J. Pecari¢, On some operator inequalities, Indian J. Math., 35(1993), 221-232.
[17] B. Mond and J. Pecarié¢, Classical inequalities for matrix functions, Utilitas Math., 46(1994),

(18]

155-166.
J. Pecari¢, J. Mié¢i¢ and Y. Seo, Inequalities between operator means based on the Mond-
Pecari¢ method. Houston J. Math. 30 (2004), no. 1, 191-207.

RESEARCH GROUP IN MATHEMATICAL INEQUALITIES & APPLICATIONS, SCHOOL OF ENGINEERING

& SCIENCE, VICTORIA UNIVERSITY, PO Box 14428, MELBOURNE CiTY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au
URL: http://www.staff.vu.edu.au/rgmia/dragomir/


http://www.staff.vu.edu.au/RGMIA/v11(E).asp
http://www.staff.vu.edu.au/RGMIA/v11(E).asp
http://www.staff.vu.edu.au/RGMIA/v11(E).asp
http://www.staff.vu.edu.au/RGMIA/v11(E).asp

	1. Introduction
	2. Operator Versions of the Grüss Inequality
	3. Some Vectorial Grüss' Type Inequalities
	4. Some Inequalities of Grüss' Type for One Operator
	5. Some Inequalities of Grüss' Type for n Operators
	References

