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Refinements of the Cauchy-Bunyakovsky-Schwarz Inequality
for Functions of Selfadjoint Operators in Hilbert Spaces

S.S. Dragomir

Abstract. Some inequalities for continuous functions of selfadjoint operators
in Hilbert spaces that improve the Cauchy-Bunyakovsky-Schwarz inequality,
are given.

1. Introduction

In [1], Daykin, Elizer and Carlitz obtained the following refinement of the
Cauchy-Bunyakovsky-Schwarz inequality, which, in the version from [5, p. 87], can
be stated as:

(DEC)

(
n∑

i=1

aibi

)2

≤
n∑

i=1

ϕ (ai, bi)
n∑

i=1

ψ (ai, bi) ≤
n∑

i=1

a2
i

n∑
i=1

b2i ,

where and ai, bi ∈ [0,∞) for each i ∈ {1, ..., n} and (ϕ,ψ) is a pair of functions
defined on [0,∞)× [0,∞) and satisfying the conditions

(i) ϕ (a, b)ψ (a, b) = a2b2 for any a, b ∈ [0,∞) ;
(ii) ϕ (ka, kb) = k2ϕ (a, b) for any a, b, k ∈ [0,∞) ;
(iii) bϕ(a,1)

aϕ(b,1) + aϕ(b,1)
bϕ(a,1) ≤

a
b + b

a for any a, b ∈ (0,∞) .
As examples of such pairs of functions, which will be called for simplicity

(DEC)-pairs, we can indicate the following functions: ϕ (a, b) = a2 + b2, ψ (a, b) =
a2b2

a2+b2 and ϕ (a, b) = a1+αb1−α, ψ (a, b) = a1−αb1+α with α ∈ [0, 1] . The first pair
generates the famous Milne’s inequality:

(1.1)

(
n∑

i=1

aibi

)2

≤
n∑

i=1

(
a2

i + b2i
) n∑

i=1

a2
i b

2
i

a2
i + b2i

≤
n∑

i=1

a2
i

n∑
i=1

b2i ,

while the second generates the Callebaut’s inequality:

(1.2)

(
n∑

i=1

aibi

)2

≤
n∑

i=1

a1+α
i b1−α

i

n∑
i=1

a1−α
i b1+α

i ≤
n∑

i=1

a2
i

n∑
i=1

b2i .

It is an open problem for the author to find other nice and simple examples of
such pair of functions.
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In order to state the operator version of this result we recall the Gelfand func-
tional calculus.

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈., .〉) .
The Gelfand map establishes a ∗-isometrically isomorphism Φ between the set
C (Sp (A)) of all continuous functions defined on the spectrum ofA, denoted Sp (A) ,
an the C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as
follows (see for instance [4, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ (f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for

t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on

Sp (A), then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a
positive operator on H. Moreover, if both f and g are real valued functions on
Sp (A) then the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfad-

joint operators, see [4] and the references therein.
For other results conserning functions of selfadjoint operators, see [2], [3], [7],

[6] and [8].

2. A Two Operators Version

The following result may be stated:

Theorem 1. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞) ×
[0,∞) . If A,B are selfadjoint operators on the Hilbert space (H; 〈., .〉) with Sp (A) ,
Sp (B) ⊆ [m,M ] for some scalars m < M and if f and g are continuous on [m,M ]
and with values in [0,∞) , then we have the inequality

(2.1) 2 〈f (A) g (A)x, x〉 〈f (B) g (B) y, y〉
≤ 〈ϕ (f (A) , g (A))x, x〉 〈ψ (f (B) , g (B)) y, y〉
+ 〈ψ (f (A) , g (A))x, x〉 〈ϕ (f (B) , g (B)) y, y〉

≤
〈
f2 (A)x, x

〉 〈
g2 (B) y, y

〉
+
〈
g2 (A)x, x

〉 〈
f2 (B) y, y

〉
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. We observe that from the property (iii) we have the inequality

2 ≤ bϕ (a, 1)
aϕ (b, 1)

+
aϕ (b, 1)
bϕ (a, 1)

≤ a

b
+
b

a
,

for any a, b > 0.
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If in this inequality we choose a = u
v and b = z

w , then we get

(2.2) 2 ≤
zvϕ

(
u
v , 1
)

uwϕ
(

z
w , 1

) +
uwϕ

(
z
w , 1

)
zvϕ

(
u
v , 1
) ≤ uw

vz
+
vz

uw
.

From the property (ii) we have

zvϕ
(u
v
, 1
)

=
z

v
ϕ (u, v) and uwϕ

( z
w
, 1
)

=
u

w
ϕ (z, w)

which give from (2.2) that

(2.3) 2 ≤ zwϕ (u, v)
uvϕ (z, w)

+
uvϕ (z, w)
zwϕ (u, v)

≤ uw

vz
+
vz

uw
,

for any u, v, z, w > 0.
Utilising the property (i) we have

ϕ (z, w) =
z2w2

ψ (z, w)
and ϕ (u, v) =

u2v2

ψ (u, v)
,

which, from (2.3), produces the inequality

2 ≤ ϕ (u, v)ψ (z, w)
zwuv

+
ϕ (z, w)ψ (u, v)

uvzw
≤ uw

vz
+
vz

uw
,

i.e., the inequality

(2.4) 2uvzw ≤ ϕ (u, v)ψ (z, w) + ϕ (z, w)ψ (u, v) ≤ u2w2 + v2z2,

for any u, v, z, w ≥ 0.
Now, if we choose u = f (s) , v = g (s) , z = f (t) and w = g (t) in (2.4) then we

get

(2.5) 2f (s) g (s) f (t) g (t)

≤ ϕ (f (s) , g (s))ψ (f (t) , g (t)) + ϕ (f (t) , g (t))ψ (f (s) , g (s))

≤ f2 (s) g2 (t) + g2 (s) f2 (t)

for any s, t ∈ [m,M ] .
Further, if we fix t ∈ [m,M ] and apply the property (P) for the operator A,

then we get the inequality

(2.6) 2f (t) g (t) 〈f (A) g (A)x, x〉
≤ ψ (f (t) , g (t)) 〈ϕ (f (A) , g (A))x, x〉+ ϕ (f (t) , g (t)) 〈ψ (f (A) , g (A))x, x〉

≤ g2 (t)
〈
f2 (A)x, x

〉
+ f2 (t)

〈
g2 (A)x, x

〉
for any x ∈ H with ‖x‖ = 1.

Now, if we fix x ∈ H with ‖x‖ = 1 and apply the same property (P) for the
inequality (2.6) and the operator B, then we get the desired inequality (2.1).

The following particular case is of interest:

Corollary 1. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If A is a selfadjoint operator on the Hilbert space (H; 〈., .〉) with Sp (A) ⊆
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[m,M ] for some scalars m < M and if f and g are continuous on [m,M ] and with
values in [0,∞) , then we have the inequality

(2.7) 〈f (A) g (A)x, x〉2

≤ 〈ϕ (f (A) , g (A))x, x〉 〈ψ (f (A) , g (A))x, x〉 ≤
〈
f2 (A)x, x

〉 〈
g2 (A)x, x

〉
for any x ∈ H, ‖x‖ = 1.

Remark 1. a. If A is a selfadjoint operator on the Hilbert space (H; 〈., .〉) with
Sp (A) ⊆ [m,M ] for some scalars m < M and if f and g are continuous on [m,M ]
and with values in [0,∞) , then we have the inequality

(2.8) 〈f (A) g (A)x, x〉2

≤
〈[
f1+α (A) g1−α (A)

]
x, x

〉 〈[
f1−α (A) g1+α (A)

]
x, x

〉
≤
〈
f2 (A)x, x

〉 〈
g2 (A)x, x

〉
for any x ∈ H with ‖x‖ = 1, where α ∈ [0, 1] .

b. If A is a selfadjoint operator with Sp (A) ⊆ [m,M ] for some scalars m <
M and if f and g are continuous on [m,M ] with values in [0,∞) and such that
f2 (A) + g2 (A) is invertible, then we have the inequality

(2.9) 〈f (A) g (A)x, x〉2

≤
〈[
f2 (A) + g2 (A)

]
x, x

〉 〈[[
f2 (A) g2 (A)

] [
f2 (A) + g2 (A)

]−1
]
x, x

〉
≤
〈
f2 (A)x, x

〉 〈
g2 (A)x, x

〉
for any x ∈ H, ‖x‖ = 1.

The above two inequalities provide various particular cases that are of interest.
We give here some examples as follows:

Example 1. a. Assume that A is a positive operator on the Hilbert space H
and p, q > 0. Then for each x ∈ H with ‖x‖ = 1 we have the inequality

(2.10)
〈
Ap+qx, x

〉2 ≤ 〈Ap+q+α(p−q)x, x
〉〈

Ap+q−α(p−q)x, x
〉

≤
〈
A2px, x

〉 〈
A2qx, x

〉
where α ∈ [0, 1] .

If A is positive definite then the inequality (2.10) also holds for p, q < 0, p >
0, q < 0 or p < 0, q > 0.

b. Assume that A is a selfadjoint operator and n, r ∈ R. Then for each x ∈ H
with ‖x‖ = 1 we have the inequality

(2.11) 〈exp [(n+ r)A]x, x〉2

≤ 〈exp [n+ r + α (n− r)]Ax, x〉 〈exp [n+ r − α (n− r)]Ax, x〉
≤ 〈exp (2nA)x, x〉 〈exp (2rA)x, x〉

where α ∈ [0, 1] .

Another example conserning the thrigonometric operators sin (A) and cos (A)
is as follows:
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Example 2. Let A be a selfadjoint operator with Sp (A) ⊆
[
0, π

2

]
. Then we

have the inequality

(2.12) 〈sin (A) cos (A)x, x〉2 ≤
〈[

sin2 (A) cos2 (A)
]
x, x

〉
≤
〈
sin2 (A)x, x

〉 〈
cos2 (A)x, x

〉
for any x ∈ H, ‖x‖ = 1.

3. Some Versions for 2n Operators

The following multiple operator version of Theorem 1 holds:

Theorem 2. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞) ×
[0,∞) . If Aj, Bj are selfadjoint operators with Sp (Aj) , Sp (Bj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M and if f and g are continuous on [m,M ]
and with values in [0,∞) , then we have the inequality

(3.1) 2
n∑

j=1

〈f (Aj) g (Aj)xj , xj〉
n∑

j=1

〈f (Bj) g (Bj) yj , yj〉

≤
n∑

j=1

〈ϕ (f (Aj) , g (Aj))xj , xj〉
n∑

j=1

〈ψ (f (Bj) , g (Bj)) yj , yj〉

+
n∑

j=1

〈ψ (f (Aj) , g (Aj))xj , xj〉
n∑

j=1

〈ϕ (f (Bj) , g (Bj)) yj , yj〉

≤
n∑

j=1

〈
f2 (Aj)xj , xj

〉 n∑
j=1

〈
g2 (Bj) yj , yj

〉
+

n∑
j=1

〈
g2 (Aj)xj , xj

〉 n∑
j=1

〈
f2 (Bj) yj , yj

〉
for each xj , yj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 =

∑n
j=1 ‖yj‖2 = 1.

Proof. As in [4, p. 6], if we put

Ã : =


A1 . . . 0

.
.
.

0 . . . An

 , B̃ :=


B1 . . . 0

.
.
.

0 . . . Bn



x̃ =


x1

.

.

.
xn

 and ỹ =


y1
.
.
.
yn


then we have Sp

(
Ã
)
, Sp

(
B̃
)
⊆ [m,M ] , ‖x̃‖ = ‖ỹ‖ = 1,〈

f
(
Ã
)
g
(
Ã
)
x̃, x̃

〉
=

n∑
j=1

〈f (Aj) g (Aj)xj , xj〉 ,

〈
f
(
Ã
)
g
(
Ã
)
ỹ, ỹ
〉

=
n∑

j=1

〈f (Aj) g (Aj) yj , yj〉

and so on.
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Applying Theorem 1 for Ã, B̃, x̃ and ỹ we deduce the desired result (3.1).

As a particular case of interest we can state the following corollary:

Corollary 2. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and
for some scalars m < M and if f and g are continuous on [m,M ] and with values
in [0,∞) , then we have the inequality

(3.2)

 n∑
j=1

〈f (Aj) g (Aj)xj , xj〉

2

≤
n∑

j=1

〈ϕ (f (Aj) , g (Aj))xj , xj〉
n∑

j=1

〈ψ (f (Aj) , g (Aj))xj , xj〉

≤
n∑

j=1

〈
f2 (Aj)xj , xj

〉 n∑
j=1

〈
g2 (Aj)xj , xj

〉

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

Remark 2. a. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and
for some scalars m < M and if f and g are continuous on [m,M ] and with values
in [0,∞) , then we have the inequality

(3.3)

 n∑
j=1

〈f (Aj) g (Aj)xj , xj〉

2

≤
n∑

j=1

〈[
f1+α (Aj) g1−α (Aj)

]
xj , xj

〉 n∑
j=1

〈[
f1−α (Aj) g1+α (Aj)

]
xj , xj

〉
≤

n∑
j=1

〈
f2 (Aj)xj , xj

〉 n∑
j=1

〈
g2 (Aj)xj , xj

〉

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1, where α ∈ [0, 1] .
b. If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and

for some scalars m < M and if f and g are continuous on [m,M ] with values in
[0,∞) and such that f2 (Aj)+ g2 (Aj) are invertible for each, j ∈ {1, ..., n} then we
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have the inequality

(3.4)

 n∑
j=1

〈f (Aj) g (Aj)xj , xj〉

2

≤
n∑

j=1

〈[
f2 (Aj) + g2 (Aj)

]
xj , xj

〉
×

n∑
j=1

〈[[
f2 (Aj) g2 (Aj)

] [
f2 (Aj) + g2 (Aj)

]−1
]
xj , xj

〉
≤

n∑
j=1

〈
f2 (A)xj , xj

〉 n∑
j=1

〈
g2 (A)xj , xj

〉
for each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1.

Some particular inequalitties similar to those from Example 1 and Example 2
may be stated, however we do not mention them in here.

Another version for n operators is the following one:

Theorem 3. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞) ×
[0,∞) . If Aj, Bj are selfadjoint operators with Sp (Aj) , Sp (Bj) ⊆ [m,M ] for j ∈
{1, ..., n} and for some scalars m < M, pj ≥ 0, qj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj =∑n

j=1 qj = 1 and if f and g are continuous on [m,M ] with values in [0,∞) , then
we have the inequality

(3.5) 2

〈
n∑

j=1

pjf (Aj) g (Aj)x, x

〉〈
n∑

j=1

qjf (Bj) g (Bj) y, y

〉

≤

〈
n∑

j=1

pjϕ (f (Aj) , g (Aj))x, x

〉〈
n∑

j=1

qjψ (f (Bj) , g (Bj)) y, y

〉

+

〈
n∑

j=1

pjψ (f (Aj) , g (Aj))x, x

〉〈
n∑

j=1

qjϕ (f (Bj) , g (Bj)) y, y

〉

≤

〈
n∑

j=1

pjf
2 (Aj)x, x

〉〈
n∑

j=1

qjg
2 (Bj) y, y

〉

+

〈
n∑

j=1

pjg
2 (Aj)x, x

〉〈
n∑

j=1

qjf
2 (Bj) y, y

〉
for each x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. Follows from Theorem 2 on choosing xj = √
pj · x, yj = √

qj · y, j ∈
{1, ..., n} , where pj ≥ 0, qj ≥ 0, j ∈ {1, ..., n} ,

∑n
j=1 pj =

∑n
j=1 qj = 1 and x, y ∈ H

with ‖x‖ = ‖y‖ = 1.

Corollary 3. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and
for some scalars m < M, pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and if f and g are
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continuous on [m,M ] with values in [0,∞) , then we have the inequality

(3.6)

〈
n∑

j=1

pjf (Aj) g (Aj)x, x

〉2

≤

〈
n∑

j=1

pjϕ (f (Aj) , g (Aj))x, x

〉〈
n∑

j=1

pjψ (f (Aj) , g (Aj))x, x

〉

≤

〈
n∑

j=1

pjf
2 (Aj)x, x

〉〈
n∑

j=1

pjg
2 (Aj)x, x

〉
,

for each x ∈ H,with ‖x‖ = 1.

Finally for the section, we can state the following particular inequalities of
interest:

Remark 3. a. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and
for some scalars m < M and if f and g are continuous on [m,M ] and with values
in [0,∞) , then we have the inequality

(3.7)

〈
n∑

j=1

pjf (Aj) g (Aj)x, x

〉2

≤

〈
n∑

j=1

pj

[
f1+α (Aj) g1−α (Aj)

]
x, x

〉〈
n∑

j=1

pj

[
f1−α (Aj) g1+α (Aj)

]
x, x

〉

≤

〈
n∑

j=1

pjf
2 (Aj)x, x

〉〈
n∑

j=1

pjg
2 (Aj)x, x

〉
for each pj ≥ 0, j ∈ {1, ..., n} with

∑n
j=1 pj = 1 and x ∈ H with ‖x‖ = 1 where

α ∈ [0, 1] .
b. If Aj are selfadjoint operators with Sp (Aj) ⊆ [m,M ] for j ∈ {1, ..., n} and

for some scalars m < M and if f and g are continuous on [m,M ] with values in
[0,∞) and such that f2 (Aj) + g2 (Aj) are invertible for each j ∈ {1, ..., n} then we
have the inequality

(3.8)

〈
n∑

j=1

pjf (Aj) g (Aj)x, x

〉2

≤

〈
n∑

j=1

pj

[
f2 (Aj) + g2 (Aj)

]
x, x

〉

×

〈
n∑

j=1

pj

[[
f2 (Aj) g2 (Aj)

] [
f2 (Aj) + g2 (Aj)

]−1
]
x, x

〉

≤

〈
n∑

j=1

pjf
2 (Aj)x, x

〉〈
n∑

j=1

pjg
2 (Aj)x, x

〉
,

for each pj ≥ 0, j ∈ {1, ..., n} with
∑n

j=1 pj = 1 and x ∈ H with ‖x‖ = 1.
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4. Related Results for Two Operators

The following result that provides another refinement for the Cauchy-Bunyakovsky-
Schwarz inequality may be stated as well:

Theorem 4. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞) ×
[0,∞) . If A,B are selfadjoint operators on the Hilbert space (H; 〈., .〉) with Sp (A) ,
Sp (B) ⊆ [m,M ] for some scalars m < M and if f and g are continuous on [m,M ]
and with values in [0,∞) , then we have the inequality

(4.1) 2 〈f (A) g (A)x, x〉 〈f (B) g (B) y, y〉
≤ 〈Γ1 (B) (A, x) y, y〉+ 〈Γ2 (B) (A, x) y, y〉

≤
〈
f2 (A) g2 (A)x, x

〉
+
〈
f2 (B) g2 (B) y, y

〉
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 where

Γ1 (t) (A, x) := 〈ϕ (f (A) , g (t))ψ (f (t) , g (A))x, x〉
and

Γ2 (t) (A, x) := 〈ϕ (f (t) , g (A))ψ (f (A) , g (t))x, x〉
for t ∈ [m,M ] .

Proof. We know that the following inequality holds

(4.2) 2uvzw ≤ ϕ (u, v)ψ (z, w) + ϕ (z, w)ψ (u, v) ≤ u2w2 + v2z2

for any u, v, z, w ≥ 0.
Now, if we choose u = f (s) , v = g (t) , z = f (t) and w = g (s) in (4.2) then we

get

(4.3) 2f (s) g (s) f (t) g (t)

≤ ϕ (f (s) , g (t))ψ (f (t) , g (s)) + ϕ (f (t) , g (s))ψ (f (s) , g (t))

≤ f2 (s) g2 (s) + g2 (t) f2 (t)

for any s, t ∈ [m,M ] .
Further, if we fix t ∈ [m,M ] and apply the property (P) for the operator A,

then we get the inequality

(4.4) 2f (t) g (t) 〈f (A) g (A)x, x〉
≤ 〈ϕ (f (A) , g (t))ψ (f (t) , g (A))x, x〉+ 〈ϕ (f (t) , g (A))ψ (f (A) , g (t))x, x〉

≤
〈
f2 (A) g2 (A)x, x

〉
+ g2 (t) f2 (t)

for any x ∈ H with ‖x‖ = 1. This inequality can be written in terms of the functions
Γ1 (.) (A, x) and Γ1 (.) (A, x) as

(4.5) 2f (t) g (t) 〈f (A) g (A)x, x〉
≤ Γ1 (t) (A, x) + Γ2 (t) (A, x)

≤
〈
f2 (A) g2 (A)x, x

〉
+ g2 (t) f2 (t)

for any t ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.
Now, if we fix x ∈ H with ‖x‖ = 1 and apply the same property (P) for the

inequality (4.5) for the operator B then we get the desired inequality (4.1).

The following particular case is of interest
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Corollary 4. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If A is a selfadjoint operator on the Hilbert space (H; 〈., .〉) with Sp (A) ⊆
[m,M ] for some scalars m < M and if f and g are continuous on [m,M ] and with
values in [0,∞) , then we have the inequality

(4.6) 〈f (A) g (A)x, x〉2 ≤ 〈Γ (B) (A, x)x, x〉 ≤
〈
f2 (A) g2 (A)x, x

〉
for any x ∈ H with ‖x‖ = 1 where

Γ (t) (A, x) := 〈ϕ (f (A) , g (t))ψ (f (t) , g (A))x, x〉
for t ∈ [m,M ] .

Remark 4. If ϕ (a, b) = a1+αb1−α, ψ (a, b) = a1−αb1+α with α ∈ [0, 1] then

Γ1 (t) (A, x) = f1−α (t) g1−α (t)
〈
f1+α (A) g1+α (A)x, x

〉
and

Γ2 (t) (A, x) := f1+α (t) g1+α (t)
〈
f1−α (A) g1−α (A)x, x

〉
and from (4.1) we get the inequality

(4.7) 2 〈f (A) g (A)x, x〉 〈f (B) g (B) y, y〉
≤
〈
f1+α (A) g1+α (A)x, x

〉 〈
f1−α (B) g1−α (B) y, y

〉
+
〈
f1−α (A) g1−α (A)x, x

〉 〈
f1+α (B) g1+α (B) y, y

〉
≤
〈
f2 (A) g2 (A)x, x

〉
+
〈
f2 (B) g2 (B) y, y

〉
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1 provided that A is a selfadjoint operator on
the Hilbert space (H; 〈., .〉) with Sp (A) ⊆ [m,M ] for some scalars m < M and if f
and g are continuous on [m,M ] and with values in [0,∞) .

In particular we have the inequality

(4.8) 〈f (A) g (A)x, x〉2 ≤
〈
f1+α (A) g1+α (A)x, x

〉 〈
f1−α (A) g1−α (A)x, x

〉
≤
〈
f2 (A) g2 (A)x, x

〉
for any x ∈ H with ‖x‖ = 1.

The above two inequalities provide various particular cases that are of interest.
We give here some examples as follows:

Example 3. a. Assume that A is a positive operator on the Hilbert space H
and p > 0. Then for each x ∈ H with ‖x‖ = 1 we have the inequality

(4.9) 〈Apx, x〉2 ≤
〈
A(1+α)px, x

〉〈
A(1−α)px, x

〉
≤
〈
A2px, x

〉
where α ∈ [0, 1] .

If A is positive definite then the inequality (4.9) also holds for p < 0.
b. Assume that A is a selfadjoint operator and r ∈ R. Then for each x ∈ H

with ‖x‖ = 1 we have the inequality

(4.10) 〈exp (rA)x, x〉2 ≤ 〈exp [(1 + α) rA]x, x〉 〈exp [(1− α) rA]x, x〉
≤ 〈exp (2rA)x, x〉

where α ∈ [0, 1] .

Similar results can be stated for 2n operators, however the details are omitted.
The following different inequality may be stated as well:
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Theorem 5. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞) ×
[0,∞) . If A,B are selfadjoint operators on the Hilbert space (H; 〈., .〉) with Sp (A) ,
Sp (B) ⊆ [m,M ] for some scalars m < M and if f and g are continuous on [m,M ]
and with values in [0,∞) , then we have the inequality

(4.11) (2 〈f (A) g (A)x, x〉 〈f (B) g (B) y, y〉
≤) 〈ϕ (f (A) , g (A))x, x〉 〈ψ (f (B) , g (B)) y, y〉
+ 〈ψ (f (A) , g (A))x, x〉 〈ϕ (f (B) , g (B)) y, y〉

≤
〈
f2 (A)x, x

〉 〈
f2 (B) y, y

〉
+
〈
g2 (A)x, x

〉 〈
g2 (B) y, y

〉
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. We know that the following inequality holds

(4.12) 2uvzw ≤ ϕ (u, v)ψ (z, w) + ϕ (z, w)ψ (u, v) ≤ u2w2 + v2z2

for any u, v, z, w ≥ 0.
Further, if we choose u = f (s) , v = g (s) , z = g (t) and w = f (t) in (4.12) then

we get

(4.13) 2f (s) g (s) f (t) g (t)

≤ ϕ (f (s) , g (s))ψ (f (t) , g (t)) + ϕ (f (t) , g (t))ψ (f (s) , g (s))

≤ f2 (s) f2 (t) + g2 (s) g2 (t)

for any s, t ∈ [m,M ] .
Now, if we fix t ∈ [m,M ] and apply the property (P) for the operator A then

we get the inequality

(4.14) 2f (t) g (t) 〈f (A) g (A)x, x〉
≤ ψ (f (t) , g (t)) 〈ϕ (f (A) , g (A))x, x〉+ ϕ (f (t) , g (t)) 〈ψ (f (A) , g (A))x, x〉

≤ f2 (t)
〈
f2 (A)x, x

〉
+ g2 (t)

〈
g2 (A)x, x

〉
for any x ∈ H with ‖x‖ = 1.

Now, if we fix x ∈ H with ‖x‖ = 1 and apply the same property (P) for the
inequality (4.14) for the operator B then we get the desired inequality (4.11).

In particular, we have

Corollary 5. Let (ϕ,ψ) be a (DEC)-pair of continuous functions on [0,∞)×
[0,∞) . If A is a selfadjoint operators on the Hilbert space (H; 〈., .〉) with Sp (A) ⊆
[m,M ] for some scalars m < M and if f and g are continuous on [m,M ] and with
values in [0,∞) , then we have the inequality

(4.15)
(
2 〈f (A) g (A)x, x〉2 ≤

)
2 〈ϕ (f (A) , g (A))x, x〉 〈ψ (f (A) , g (A))x, x〉

≤
〈
f2 (A)x, x

〉2
+
〈
g2 (A)x, x

〉2
for any x ∈ H, ‖x‖ = 1.

Remark 5. We observe that the inequality (4.15) is not as good as the second
inequality in (2.7).
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Remark 6. Consider now the following two bounds

B2 :=
〈
f2 (A)x, x

〉 〈
f2 (B) y, y

〉
+
〈
g2 (A)x, x

〉 〈
g2 (B) y, y

〉
and

B1 :=
〈
f2 (A)x, x

〉 〈
g2 (B) y, y

〉
+
〈
g2 (A)x, x

〉 〈
f2 (B) y, y

〉
for the quntity

〈ϕ (f (A) , g (A))x, x〉 〈ψ (f (B) , g (B)) y, y〉
+ 〈ψ (f (A) , g (A))x, x〉 〈ϕ (f (B) , g (B)) y, y〉

that have been obtained in Theorem 5 and Theorem 1, respectively. We observe that

(4.16) B2 −B1 =
〈[
f2 (A)− g2 (A)

]
x, x

〉 (〈[
f2 (B)− g2 (B)

]
y, y
〉)
,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Utilising the equality (4.16) we can observe, for instance, that, if f2 (A) ≥

g2 (A) and f2 (B) ≥ g2 (B) in the operator order of B (H), then B1 is a better bound
than B2. The conclusion is the other way around if, for instance, f2 (A) ≥ g2 (A)
and g2 (B) ≥ f2 (B) in the operator order of B (H) .

Similar results can be stated for 2n operators, however the details are omitted.

Remark 7. One can choose the variables u, v, z, w ≥ 0 in other different ways
in the inequality

(4.17) 2uvzw ≤ ϕ (u, v)ψ (z, w) + ϕ (z, w)ψ (u, v) ≤ u2w2 + v2z2

to get similar results as those pointed out above. The details are left to the interested
reader.
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