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SOME SLATER’S TYPE INEQUALITIES FOR CONVEX
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT

SPACES

S.S. DRAGOMIR

Abstract. Some inequalities of the Slater type for convex functions of selfad-
joint operators in Hilbert spaces under suitable assumptions for the involved

operators are given. Applications for particular cases of interest are also pro-

vided.

1. Introduction

Suppose that I is an interval of real numbers with interior I̊ and f : I → R
is a convex function on I. Then f is continuous on I̊ and has finite left and right
derivatives at each point of I̊. Moreover, if x, y ∈̊I and x < y, then f ′− (x) ≤ f ′+ (x) ≤
f ′− (y) ≤ f ′+ (y) which shows that both f ′− and f ′+ are nondecreasing function on I̊.
It is also known that a convex function must be differentiable except for at most
countably many points.

For a convex function f : I → R, the subdifferential of f denoted by ∂f is the
set of all functions ϕ : I → [−∞,∞] such that ϕ

(̊
I
)
⊂ R and

f (x) ≥ f (a) + (x− a)ϕ (a) for any x, a ∈ I.

It is also well known that if f is convex on I, then ∂f is nonempty, f ′−, f ′+ ∈ ∂f
and if ϕ ∈ ∂f , then

f ′− (x) ≤ ϕ (x) ≤ f ′+ (x) for any x ∈ I̊.

In particular, ϕ is a nondecreasing function.
If f is differentiable and convex on I̊, then ∂f = {f ′} .
The following result is well known in the literature as the Slater inequality:

Theorem 1 (Slater, 1981, [15]). If f : I → R is a nonincreasing (nondecreasing)
convex function, xi ∈ I, pi ≥ 0 with Pn :=

∑n
i=1 pi > 0 and

∑n
i=1 piϕ (xi) 6= 0,

where ϕ ∈ ∂f, then

(1.1)
1

Pn

n∑
i=1

pif (xi) ≤ f

(∑n
i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

)
.

Date: September 20, 2008.

1991 Mathematics Subject Classification. 47A63; 47A99.
Key words and phrases. Selfadjoint operators, Positive operators, Slater’s inequality, Convex

functions, Functions of selfadjoint operators.

1



2 S.S. DRAGOMIR

As pointed out in [1, p. 208], the monotonicity assumption for the derivative ϕ
can be replaced with the condition

(1.2)
∑n

i=1 pixiϕ (xi)∑n
i=1 piϕ (xi)

∈ I,

which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.

2. Some Operator Inequalities for Convex Functions

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈., .〉) .
The Gelfand map establishes a ∗-isometrically isomorphism Φ between the set
C (Sp (A)) of all continuous functions defined on the spectrum of A, denoted Sp (A) ,
an the C∗-algebra C∗ (A) generated by A and the identity operator 1H on H as
follows (see for instance [7, p. 3]):

For any f, g ∈ C (Sp (A)) and any α, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) and Φ

(
f̄
)

= Φ(f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H and Φ (f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),

then f (t) ≥ 0 for any t ∈ Sp (A) implies that f (A) ≥ 0, i.e. f (A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then
the following important property holds:

(P) f (t) ≥ g (t) for any t ∈ Sp (A) implies that f (A) ≥ g (A)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfadjoint

operators, see [7] and the references therein. For other results, see [14], [8] and [10].
The following result that provides an operator version for the Jensen inequality

is due to Mond & Pečarić [12] (see also [7, p. 5]):

Theorem 2 (Mond-Pečarić, 1993, [12]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) ⊆ [m,M ] for some scalars m,M with
m < M. If f is a convex function on [m,M ] , then

(MP) f (〈Ax, x〉) ≤ 〈f (A)x, x〉 ,
for each x ∈ H with ‖x‖ = 1.

As a special case of Theorem 2 we have the following Hölder-McCarthy inequal-
ity:

Theorem 3 (Hölder-McCarthy, 1967, [9]). Let A be a selfadjoint positive operator
on a Hilbert space H. Then

(i) 〈Arx, x〉 ≥ 〈Ax, x〉r for all r > 1 and x ∈ H with ‖x‖ = 1;
(ii) 〈Arx, x〉 ≤ 〈Ax, x〉r for all 0 < r < 1 and x ∈ H with ‖x‖ = 1;
(iii) If A is invertible, then 〈Arx, x〉 ≥ 〈Ax, x〉r for all r < 0 and x ∈ H with

‖x‖ = 1.
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The following result that provides a reverse of the Mond & Pečarić has been
obtained in [4]:

Theorem 4 (Dragomir, 2008, [4]). Let I be an interval and f : I → R be a convex
and differentiable function on I̊ (the interior of I) whose derivative f ′ is continuous
on I̊ . If A is a selfadjoint operators on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I,
then

(2.1) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉) ≤ 〈f ′ (A)Ax, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉 ,
for any x ∈ H with ‖x‖ = 1.

Perhaps more convenient reverses of the Mond & Pečarić result are the following
inequalities that have been obtained in the same paper [4]:

Theorem 5 (Dragomir, 2008, [4]). Let I be an interval and f : I → R be a convex
and differentiable function on I̊ (the interior of I) whose derivative f ′ is continuous
on I̊ . If A is a selfadjoint operators on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I,
then

(2.2) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉)

≤


1
2 · (M −m)

[
‖f ′ (A)x‖2 − 〈f ′ (A)x, x〉2

]1/2

1
2 · (f

′ (M)− f ′ (m))
[
‖Ax‖2 − 〈Ax, x〉2

]1/2

≤ 1
4

(M −m) (f ′ (M)− f ′ (m)) ,

for any x ∈ H with ‖x‖ = 1.
We also have the inequality

(2.3) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉) ≤ 1
4

(M −m) (f ′ (M)− f ′ (m))

−


[〈Mx−Ax, Ax−mx〉 〈f ′ (M) x− f ′ (A) x, f ′ (A)x− f ′ (m) x〉]

1
2 ,∣∣〈Ax, x〉 − M+m

2

∣∣ ∣∣∣〈f ′ (A) x, x〉 − f ′(M)+f ′(m)
2

∣∣∣
≤ 1

4
(M −m) (f ′ (M)− f ′ (m)) ,

for any x ∈ H with ‖x‖ = 1.
Moreover, if m > 0 and f ′ (m) > 0, then we also have

(2.4) (0 ≤) 〈f (A) x, x〉 − f (〈Ax, x〉)

≤


1
4 ·

(M−m)(f ′(M)−f ′(m))√
Mmf ′(M)f ′(m)

〈Ax, x〉 〈f ′ (A)x, x〉 ,

(√
M −

√
m
)(√

f ′ (M)−
√

f ′ (m)
)

[〈Ax, x〉 〈f ′ (A) x, x〉]
1
2 ,

for any x ∈ H with ‖x‖ = 1.

For generalisations to n-tuples of operators as well as for some particular cases
of interest, see [4].
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The main aim of the present paper is to provide some Slater’s type vector in-
equalities for convex functions whose derivatives are continuous.

3. Some Slater’s Type Inequalities

The following result holds:

Theorem 6. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If A is a
selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I and f ′ (A) is
a positive definite operator on H then

(3.1) 0 ≤ f

(
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)
− 〈f (A) x, x〉

≤ f ′
(
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)[
〈Af ′ (A) x, x〉 − 〈Ax, x〉 〈f ′ (A)x, x〉

〈f ′ (A)x, x〉

]
,

for any x ∈ H with ‖x‖ = 1.

Proof. Since f is convex and differentiable on I̊, then we have that

(3.2) f ′ (s) · (t− s) ≤ f (t)− f (s) ≤ f ′ (t) · (t− s)

for any t, s ∈ [m,M ] .
Now, if we fix t ∈ [m,M ] and apply the property (P) for the operator A, then

for any x ∈ H with ‖x‖ = 1 we have

(3.3) 〈f ′ (A) · (t · 1H −A) x, x〉 ≤ 〈[f (t) · 1H − f (A)]x, x〉
≤ 〈f ′ (t) · (t · 1H −A) x, x〉

for any t ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.
The inequality (3.3) is equivalent with

(3.4) t 〈f ′ (A) x, x〉 − 〈f ′ (A) Ax, x〉 ≤ f (t)− 〈f (A) x, x〉 ≤ f ′ (t) t− f ′ (t) 〈Ax, x〉

for any t ∈ [m,M ] any x ∈ H with ‖x‖ = 1.
Now, since A is selfadjoint with mI ≤ A ≤ MI and f ′ (A) is positive defi-

nite, then mf ′ (A) ≤ Af ′ (A) ≤ Mf ′ (A) , i.e., m 〈f ′ (A) x, x〉 ≤ 〈Af ′ (A) x, x〉 ≤
M 〈f ′ (A) x, x〉 for any x ∈ H with ‖x‖ = 1, which shows that

t0 :=
〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

∈ [m,M ] for any x ∈ H with ‖x‖ = 1.

Finally, if we put t = t0 in the equation (3.4), then we get the desired result (3.1).

Remark 1. It is important to observe that, the condition that f ′ (A) is a positive
definite operator on H can be replaced with the more general assumption that

(3.5)
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

∈ I̊ for any x ∈ H with ‖x‖ = 1,

which may be easily verified for particular convex functions f.
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Remark 2. Now, if the functions is concave on I̊ and the condition (3.5) holds,
then we have the inequality

(3.6) 0 ≤ 〈f (A) x, x〉 − f

(
〈Af ′ (A)x, x〉
〈f ′ (A) x, x〉

)
≤ f ′

(
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)[
〈Ax, x〉 〈f ′ (A) x, x〉 − 〈Af ′ (A)x, x〉

〈f ′ (A)x, x〉

]
,

for any x ∈ H with ‖x‖ = 1.

The following examples are of interest:

Example 1. If A is a positive definite operator on H, then

(3.7) (0 ≤) 〈lnAx, x〉 − ln
(〈

A−1x, x
〉−1
)
≤ 〈Ax, x〉 ·

〈
A−1x, x

〉
− 1,

for any x ∈ H with ‖x‖ = 1.

Indeed, we observe that if we consider the concave function f : (0,∞) → R,
f (t) = ln t, then

〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

=
1

〈A−1x, x〉
∈ (0,∞) , for any x ∈ H with ‖x‖ = 1

and by the inequality (3.6) we deduce the desired result (3.7).
The following example concerning powers of operators is of interest as well:

Example 2. If A is a positive definite operator on H, then for any x ∈ H with
‖x‖ = 1 we have

(3.8) 0 ≤ 〈Apx, x〉p−1 −
〈
Ap−1x, x

〉p
≤ p 〈Apx, x〉p−2 [〈Apx, x〉 − 〈Ax, x〉

〈
Ap−1x, x

〉]
for p ≥ 1,

(3.9) 0 ≤
〈
Ap−1x, x

〉p − 〈Apx, x〉p−1

≤ p 〈Apx, x〉p−2 [〈Ax, x〉
〈
Ap−1x, x

〉
− 〈Apx, x〉

]
for 0 < p < 1, and

(3.10) 0 ≤ 〈Apx, x〉p−1 −
〈
Ap−1x, x

〉p
≤ (−p) 〈Apx, x〉p−2 [〈Ax, x〉

〈
Ap−1x, x

〉
− 〈Apx, x〉

]
for p < 0.

The proof follows from the inequalities (3.1) and (3.6) for the convex (concave)
function f (t) = tp, p ∈ (−∞, 0) ∪ [1,∞) (p ∈ (0, 1)) by performing the required
calculation. The details are omitted.

4. Further Reverses

The following results that provide perhaps more useful upper bounds for the
nonnegative quantity

f

(
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)
− 〈f (A) x, x〉 for x ∈ H with ‖x‖ = 1,

can be stated:
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Theorem 7. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. Assume
that A is a selfadjoint operator on the Hilbert space H with Sp (A) ⊆ [m,M ] ⊂̊I
and f ′ (A) is a positive definite operator on H. If we define

B (f ′, A;x) :=
1

〈f ′ (A) x, x〉
.f ′
(
〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)
then

(4.1) (0 ≤) f

(
〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)
− 〈f (A) x, x〉

≤ B (f ′, A;x)×


1
2 · (M −m)

[
‖f ′ (A) x‖2 − 〈f ′ (A) x, x〉2

]1/2

1
2 · (f

′ (M)− f ′ (m))
[
‖Ax‖2 − 〈Ax, x〉2

]1/2

≤ 1
4

(M −m) (f ′ (M)− f ′ (m))B (f ′, A;x)

and

(4.2) (0 ≤) f

(
〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)
− 〈f (A) x, x〉

≤ B (f ′, A;x)×
[
1
4

(M −m) (f ′ (M)− f ′ (m))

−


[〈Mx−Ax, Ax−mx〉 〈f ′ (M)x− f ′ (A)x, f ′ (A) x− f ′ (m) x〉]

1
2 ,∣∣〈Ax, x〉 − M+m

2

∣∣ ∣∣∣〈f ′ (A) x, x〉 − f ′(M)+f ′(m)
2

∣∣∣


≤ 1
4

(M −m) (f ′ (M)− f ′ (m))B (f ′, A;x) ,

for any x ∈ H with ‖x‖ = 1, respectively.
Moreover, if A is a positive definite operator, then

(4.3) (0 ≤) f

(
〈Af ′ (A) x, x〉
〈f ′ (A)x, x〉

)
− 〈f (A) x, x〉

≤ B (f ′, A;x)×


1
4 ·

(M−m)(f ′(M)−f ′(m))√
Mmf ′(M)f ′(m)

〈Ax, x〉 〈f ′ (A) x, x〉 ,

(√
M −

√
m
)(√

f ′ (M)−
√

f ′ (m)
)

[〈Ax, x〉 〈f ′ (A) x, x〉]
1
2 ,

for any x ∈ H with ‖x‖ = 1.

Proof. We use the following Grüss’ type result we obtained in [2]:
Let A be a selfadjoint operator on the Hilbert space (H; 〈., .〉) and assume that

Sp (A) ⊆ [m,M ] for some scalars m < M. If h and g are continuous on [m,M ] and
γ := mint∈[m,M ] h (t) and Γ := maxt∈[m,M ] h (t) , then

(4.4) |〈h (A) g (A)x, x〉 − 〈h (A) x, x〉 · 〈g (A) x, x〉|

≤ 1
2
· (Γ− γ)

[
‖g (A) x‖2 − 〈g (A) x, x〉2

]1/2
(
≤ 1

4
(Γ− γ) (∆− δ)

)
,
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for each x ∈ H with ‖x‖ = 1, where δ := mint∈[m,M ] g (t) and ∆ := maxt∈[m,M ] g (t) .
Therefore, we can state that

(4.5) 〈Af ′ (A) x, x〉 − 〈Ax, x〉 · 〈f ′ (A) x, x〉

≤ 1
2
· (M −m)

[
‖f ′ (A) x‖2 − 〈f ′ (A) x, x〉2

]1/2

≤ 1
4

(M −m) (f ′ (M)− f ′ (m))

and

(4.6) 〈Af ′ (A) x, x〉 − 〈Ax, x〉 · 〈f ′ (A) x, x〉

≤ 1
2
· (f ′ (M)− f ′ (m))

[
‖Ax‖2 − 〈Ax, x〉2

]1/2

≤ 1
4

(M −m) (f ′ (M)− f ′ (m)) ,

for each x ∈ H with ‖x‖ = 1, which together with (3.1) provide the desired result
(4.1).

On making use of the inequality obtained in [3]

(4.7) |〈h (A) g (A) x, x〉 − 〈h (A) x, x〉 〈g (A) x, x〉| ≤ 1
4
· (Γ− γ) (∆− δ)

−


[〈Γx− h (A) x, f (A) x− γx〉 〈∆x− g (A)x, g (A) x− δx〉]

1
2 ,∣∣∣〈h (A) x, x〉 − Γ+γ

2

∣∣∣ ∣∣〈g (A) x, x〉 − ∆+δ
2

∣∣ ,
for each x ∈ H with ‖x‖ = 1, we can state that

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉 ≤ 1
4

(M −m) (f ′ (M)− f ′ (m))

−


[〈Mx−Ax,Ax−mx〉 〈f ′ (M) x− f ′ (A) x, f ′ (A) x− f ′ (m)x〉]

1
2 ,∣∣〈Ax, x〉 − M+m

2

∣∣ ∣∣∣〈f ′ (A)x, x〉 − f ′(M)+f ′(m)
2

∣∣∣ ,
for each x ∈ H with ‖x‖ = 1, which together with (3.1) provide the desired result
(4.2).

Further, in order to proof the third inequality, we make use of the following
result of Grüss’ type we obtained in [3]:

If γ and δ are positive, then

(4.8) |〈h (A) g (A) x, x〉 − 〈h (A) x, x〉 〈g (A) x, x〉|

≤


1
4 ·

(Γ−γ)(∆−δ)√
Γγ∆δ

〈h (A) x, x〉 〈g (A) x, x〉 ,(√
Γ−√

γ
)(√

∆−
√

δ
)

[〈h (A) x, x〉 〈g (A)x, x〉]
1
2 ,

for each x ∈ H with ‖x‖ = 1.
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Now, on making use of (4.8) we can state that

〈Af ′ (A)x, x〉 − 〈Ax, x〉 · 〈f ′ (A)x, x〉

≤


1
4 ·

(M−m)(f ′(M)−f ′(m))√
Mmf ′(M)f ′(m)

〈Ax, x〉 〈f ′ (A)x, x〉 ,

(√
M −

√
m
)(√

f ′ (M)−
√

f ′ (m)
)

[〈Ax, x〉 〈f ′ (A) x, x〉]
1
2 ,

for each x ∈ H with ‖x‖ = 1, which together with (3.1) provide the desired result
(4.3).

Remark 3. We observe, from the first inequality in (4.3), that

(1 ≤)
〈Af ′ (A) x, x〉

〈Ax, x〉 〈f ′ (A) x, x〉
≤ 1

4
· (M −m) (f ′ (M)− f ′ (m))√

Mmf ′ (M) f ′ (m)
+ 1

which implies that

f ′
(
〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)
≤ f ′

([
1
4
· (M −m) (f ′ (M)− f ′ (m))√

Mmf ′ (M) f ′ (m)
+ 1

]
〈Ax, x〉

)
,

for each x ∈ H with ‖x‖ = 1, since f ′ is monotonic nondecreasing and A is positive
definite.

Now, the first inequality in (4.3) implies the following result

(4.9) (0 ≤) f

(
〈Af ′ (A)x, x〉
〈f ′ (A)x, x〉

)
− 〈f (A) x, x〉

≤ 1
4
· (M −m) (f ′ (M)− f ′ (m))√

Mmf ′ (M) f ′ (m)

× f ′

([
1
4
· (M −m) (f ′ (M)− f ′ (m))√

Mmf ′ (M) f ′ (m)
+ 1

]
〈Ax, x〉

)
〈Ax, x〉 ,

for each x ∈ H with ‖x‖ = 1.
From the second inequality in (4.3) we also have

(4.10) (0 ≤) f

(
〈Af ′ (A) x, x〉
〈f ′ (A) x, x〉

)
− 〈f (A) x, x〉

≤
(√

M −
√

m
)(√

f ′ (M)−
√

f ′ (m)
)

× f ′

([
1
4
· (M −m) (f ′ (M)− f ′ (m))√

Mmf ′ (M) f ′ (m)
+ 1

]
〈Ax, x〉

)[
〈Ax, x〉

〈f ′ (A)x, x〉

] 1
2

,

for each x ∈ H with ‖x‖ = 1.

Remark 4. If the condition that f ′ (A) is a positive definite operator on H from the
Theorem 7 is replaced by the condition (3.5), then the inequalities (4.1) and (4.4)
will still hold. Similar inequalities for concave functions can be stated. However,
the details are not provided here.
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5. Multivariate Versions

The following result for sequences of operators can be stated.

Theorem 8. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If Aj , j ∈
{1, ..., n} are selfadjoint operators on the Hilbert space H with Sp (Aj) ⊆ [m,M ] ⊂̊I
and

(5.1)

∑n
j=1 〈Ajf

′ (Aj)xj , xj〉∑n
j=1 〈f ′ (Aj) xj , xj〉

∈ I̊

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1, then

(5.2) 0 ≤ f

(∑n
j=1 〈Ajf

′ (Aj) xj , xj〉∑n
j=1 〈f ′ (Aj) xj , xj〉

)
−

n∑
j=1

〈f (Aj) xj , xj〉

≤ f ′

(∑n
j=1 〈Ajf

′ (Aj) xj , xj〉∑n
j=1 〈f ′ (Aj) xj , xj〉

)

×

[∑n
j=1 〈Ajf

′ (Aj) xj , xj〉 −
∑n

j=1 〈Ajxj , xj〉
∑n

j=1 〈f ′ (Aj)xj , xj〉∑n
j=1 〈f ′ (Aj)xj , xj〉

]
,

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

Proof. As in [7, p. 6], if we put

Ã :=


A1 . . . 0

.
.

.
0 . . . An

 and x̃ =


x1

.

.

.
xn

 ,

then we have Sp
(
Ã
)
⊆ [m,M ] , ‖x̃‖ = 1

〈
f
(
Ã
)

x̃, x̃
〉

=
n∑

j=1

〈f (Aj) gxj , xj〉 ,
〈
f ′
(
Ã
)

x̃, x̃
〉

=
n∑

j=1

〈f ′ (Aj) xj , xj〉 ,

〈
Ãf ′

(
Ã
)

x̃, x̃
〉

=
n∑

j=1

〈Ajf
′ (Aj) xj , xj〉

and so on.
Applying Theorem 6 under the condition (3.5) for Ã and x̃ we deduce the desired

result. The details are omitted.

The following particular case is of interest

Corollary 1. Let I be an interval and f : I → R be a convex and differentiable
function on I̊ (the interior of I) whose derivative f ′ is continuous on I̊. If Aj , j ∈
{1, ..., n} are selfadjoint operators on the Hilbert space H with Sp (Aj) ⊆ [m,M ] ⊂̊I
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and for pj ≥ 0 with
∑n

j=1 pj = 1 if we also assume that

(5.3)

〈∑n
j=1 pjAjf

′ (Aj)x, x
〉

〈∑n
j=1 pjf ′ (Aj)x, x

〉 ∈ I̊

for each x ∈ H with ‖x‖ = 1, then

(5.4) 0 ≤ f


〈∑n

j=1 pjAjf
′ (Aj) x, x

〉
〈∑n

j=1 pjf ′ (Aj)x, x
〉
−

〈
n∑

j=1

pjf (Aj) x, x

〉

≤ f ′


〈∑n

j=1 pjAjf
′ (Aj) x, x

〉
〈∑n

j=1 pjf ′ (Aj) x, x
〉


×


〈∑n

j=1 pjAjf
′ (Aj) x, x

〉
−
〈∑n

j=1 pjAjx, x
〉〈∑n

j=1 pjf
′ (Aj) x, x

〉
〈∑n

j=1 pjf ′ (Aj)x, x
〉

 ,

for each x ∈ H with ‖x‖ = 1.

Proof. Follows from Theorem 8 on choosing xj = √
pj · x, j ∈ {1, ..., n} , where

pj ≥ 0, j ∈ {1, ..., n} ,
∑n

j=1 pj = 1 and x ∈ H, with ‖x‖ = 1. The details are
omitted.

The following examples are interesting in themselves:

Example 3. If Aj, j ∈ {1, ..., n} are positive definite operators on H, then

(5.5) (0 ≤)
n∑

j=1

〈lnAjxj , xj〉 − ln


 n∑

j=1

〈
A−1

j xj , xj

〉−1


≤
n∑

j=1

〈Ajxj , xj〉 ·
n∑

j=1

〈
A−1

j xj , xj

〉
− 1,

for each xj ∈ H, j ∈ {1, ..., n} with
∑n

j=1 ‖xj‖2 = 1.

If pj ≥ 0, j ∈ {1, ..., n} with
∑n

j=1 pj = 1, then we also have the inequality

(5.6) (0 ≤)

〈
n∑

j=1

pj lnAjx, x

〉
− ln


〈 n∑

j=1

pjA
−1
j x, x

〉−1


≤

〈
n∑

j=1

pjAjx, x

〉
·

〈
n∑

j=1

pjA
−1
j x, x

〉
− 1,

for each x ∈ H with ‖x‖ = 1.

The following inequalities for powers also hold:
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Example 4. If Aj, j ∈ {1, ..., n} are positive definite operators on H, then for
each xj ∈ H, j ∈ {1, ..., n} with

∑n
j=1 ‖xj‖2 = 1 we have

(5.7) 0 ≤

 n∑
j=1

〈
Ap

jxj , xj

〉p−1

−

 n∑
j=1

〈
Ap−1

j xj , xj

〉p

≤ p

 n∑
j=1

〈
Ap

jxj , xj

〉p−2

×

 n∑
j=1

〈
Ap

jxj , xj

〉
−

n∑
j=1

〈Ajxj , xj〉
n∑

j=1

〈
Ap−1

j xj , xj

〉

for p ≥ 1,

(5.8) 0 ≤

 n∑
j=1

〈
Ap−1

j xj , xj

〉p

−

 n∑
j=1

〈
Ap

jxj , xj

〉p−1

≤ p

 n∑
j=1

〈
Ap

jxj , xj

〉p−2

×

 n∑
j=1

〈Ajxj , xj〉
n∑

j=1

〈
Ap−1

j xj , xj

〉
−

n∑
j=1

〈
Ap

jxj , xj

〉

for 0 < p < 1, and

(5.9) 0 ≤

 n∑
j=1

〈
Ap

jxj , xj

〉p−1

−

 n∑
j=1

〈
Ap−1

j xj , xj

〉p

≤ (−p)

 n∑
j=1

〈
Ap

jxj , xj

〉p−2

×

 n∑
j=1

〈Ajxj , xj〉
n∑

j=1

〈
Ap−1

j xj , xj

〉
−

n∑
j=1

〈
Ap

jxj , xj

〉

for p < 0.
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Now, for any pj ≥ 0 with
∑n

j=1 pj = 1 and for any x ∈ H with ‖x‖ = 1 we also
have the inequalities

(5.10) 0 ≤

〈
n∑

j=1

pjA
p
jx, x

〉p−1

−

〈
n∑

j=1

pjA
p−1
j x, x

〉p

≤ p

〈
n∑

j=1

pjA
p
jx, x

〉p−2

×

〈 n∑
j=1

pjA
p
jx, x

〉
−

〈
n∑

j=1

pjAjx, x

〉〈
n∑

j=1

pjA
p−1
j x, x

〉
for p ≥ 1,

(5.11) 0 ≤

〈
n∑

j=1

pjA
p−1
j x, x

〉p

−

〈
n∑

j=1

pjA
p
jx, x

〉p−1

≤ p

〈
n∑

j=1

pjA
p
jx, x

〉p−2

×

〈 n∑
j=1

pjAjx, x

〉〈
n∑

j=1

pjA
p−1
j x, x

〉
−

〈
n∑

j=1

pjA
p
jx, x

〉
for 0 < p < 1, and

(5.12) 0 ≤

〈
n∑

j=1

pjA
p
jx, x

〉p−1

−

〈
n∑

j=1

pjA
p−1
j x, x

〉p

≤ (−p)

〈
n∑

j=1

pjA
p
jx, x

〉p−2

×

〈 n∑
j=1

pjAjx, x

〉〈
n∑

j=1

pjA
p−1
j x, x

〉
−

〈
n∑

j=1

pjA
p
jx, x

〉
for p < 0.
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