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APPROXIMATING THE STIELTJES INTEGRAL OF BOUNDED
FUNCTIONS AND APPLICATIONS FOR THREE POINT

QUADRATURE RULES

S.S. DRAGOMIR

Abstract. Sharp error estimates in approximating the Stieltjes integral with

bounded integrands and bounded integrators respectively, are given. Applica-
tions for three point quadrature rules of n−time differentiable functions are

also provided.

1. Introduction

In order to approximate the Stieltjes integral
∫ b

a
f (t) du (t) with the simpler

expression

(1.1)
1

b− a
[u (b)− u (a)] ·

∫ b

a

f (t) dt,

S.S. Dragomir and I. Fedotov [8] introduced in 1998 the following error functional

(1.2) D (f, u; a, b) :=
∫ b

a

f (t) du (t)− 1
b− a

[u (b)− u (a)] ·
∫ b

a

f (t) dt,

provided that both the Stieltjes integral
∫ b

a
f (t) du (t) and the Riemann integral∫ b

a
f (t) dt exist.
If the integrand f is Riemann integrable on [a, b] and the integrator u : [a, b] → R

is L−Lipschitzian, i.e.,

(1.3) |u (t)− u (s)| ≤ L |t− s| for each t, s ∈ [a, b] ,

then the Stieltjes integral
∫ b

a
f (t) du (t) exists and, as pointed out in [8],

(1.4) |D (f, u; a, b)| ≤ L

∫ b

a

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣ dt.

The inequality (1.4) is sharp in the sense that the multiplicative constant C = 1
in front of L cannot be replaced by a smaller quantity. Moreover, if there exist the
constants m,M ∈ R such that

(1.5) m ≤ f (t) ≤ M for a.e. t ∈ [a, b] ,

then [8]

(1.6) |D (f, u; a, b)| ≤ 1
2
L (M −m) (b− a) .
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2 S.S. DRAGOMIR

The constant 1
2 is best possible in (1.6).

A different approach in the case of integrands of bounded variation were consid-
ered by the same authors in 2001, see [9], where they proved that

(1.7) |D (f, u; a, b)| ≤ max
t∈[a,b]

∣∣∣∣∣f (t)− 1
b− a

∫ b

a

f (s) ds

∣∣∣∣∣
b∨
a

(u) ,

provided that f is continuous and u is of bounded variation. Here
∨b

a (u) denotes
the total variation of u on [a, b] . The inequality (1.7) is also sharp.

If we assume that f is K−Lipschitzian, then [9]

(1.8) |D (f, u; a, b)| ≤ 1
2
K (b− a)

b∨
a

(u) ,

with 1
2 the best possible constant in (1.8).

For various bounds on the error functional D (f, u; a, b) where f and u belong
to different classes of functions for which the Stieltjes integral exists, see [2], [5], [6]
and [7] and the references therein.

The main aim of the present paper is to estimate the error of approximating the
Stieltjes integral

∫ b

a
f (t) du (t) with the simpler expression

(1.9)
m + M

2
· [u (b)− u (a)]

provided the integrand f is bounded below by m and above by M.
In the dual case, i.e., when n ≤ u (t) ≤ M on [a, b] , the problem under consid-

eration consists of approximating the same Stieltjes integral
∫ b

a
f (t) du (t) with the

quantity

(1.10)
[
u (b)− n + N

2

]
f (b) +

[
n + N

2
− u (a)

]
f (a) .

Applications for the three point quadrature rule of n−differentiable functions are
also given.

2. Inequalities for the Stieltjes Integral

The following result may be stated.

Theorem 1. Let u : [a, b] → R be a function of bounded variation and f : [a, b] → R
a function such that there exists the constants m,M ∈ R with

(2.1) m ≤ f (t) ≤ M for each t ∈ [a, b] ,

and the Stieltjes integral
∫ b

a
f (t) du (t) exists. Then, by defining the error functional

∆ (f, u,m,M ; a, b) :=
∫ b

a

f (t) du (t)− m + M

2
[u (b)− u (a)] ,

we have the bound

(2.2) |∆ (f, u, m,M ; a, b)| ≤ 1
2

(M −m)
b∨
a

(u) .

The constant 1
2 is best possible in (2.2) in the sense that it cannot be replaced by a

smaller quantity.
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Proof. Since, obviously, the function f − m+M
2 satisfies the inequality∣∣∣∣f (t)− m + M

2

∣∣∣∣ ≤ 1
2

(M −m) for any t ∈ [a, b]

and the Stieltjes integral
∫ b

a

(
f (t)− m+M

2

)
du (t) exists, then∣∣∣∣∣

∫ b

a

(
f (t)− m + M

2

)
du (t)

∣∣∣∣∣ ≤ sup
t∈[a,b]

∣∣∣∣f (t)− m + M

2

∣∣∣∣ b∨
a

(u)

≤ 1
2

(M −m)
b∨
a

(u)

and the inequality (2.2) is proved.
Now, assume that (2.2) holds with a positive constant C, i.e.,

(2.3) |∆ (f, u,m,M ; a, b)| ≤ C (M −m)
b∨
a

(u) ,

provided u is of bounded variation on [a, b] and f satisfies (2.1).
If we consider the function f0 (t) := sgn

(
t− a+b

2

)
and u0 (t) = 1

2

(
t− a+b

2

)2
,

then we observe that the Stieltjes integral
∫ b

a
f0 (t) du0 (t) exists, f0 is bounded

above by M0 = 1 and below by m0 = −1, u0 is of bounded variation and
b∨
a

(u0) =
∫ b

a

|u′0 (t)| dt =
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt =
(b− a)2

4
.

Also ∫ b

a

f0 (t) du0 (t) =
∫ b

a

sgn
(

t− a + b

2

) (
t− a + b

2

)
dt

=
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt =
(b− a)2

4

and replacing f0 and u0 in (2.3) produces the inequality

(b− a)2

4
≤ 2C · (b− a)2

4
which implies that C ≥ 1

2 .

The following corollary provides a natural example of functions f that can be
chosen to fulfill the conditions in the above theorem.

Corollary 1. Let u : [a, b] → R be a function of bounded variation on [a, b] and f
a continuous function on [a, b] . Then

(2.4)
∣∣∣∆̃ (f, u; a, b)

∣∣∣ ≤ 1
2

[
max
t∈[a,b]

f (t)− min
t∈[a,b]

f (t)
] b∨

a

(u) ,

where

∆̃ (f, u; a, b) :=
∫ b

a

f (t) du (t)−
min

t∈[a,b]
f (t) + max

t∈[a,b]
f (t)

2
[u (b)− u (a)] .

The constant 1
2 is best possible.
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Proof. For the sharpness of the constant, we cannot use the above example since
f0 was not continuous on [a, b] .

Let us now consider u0 (t) = sgn
(
t− a+b

2

)
and f0 (t) =

∣∣t− a+b
2

∣∣ . The Stieltjes
integral

∫ b

a
f0 (t) du0 (t) exists and∫ b

a

f0 (t) du0 (t)

= f0 (t)u0 (t)
∣∣∣b
a
−

∫ b

a

u0 (t) df0 (t)

=
b− a

2
+

b− a

2
−

[∫ a+b
2

a

(−1) d

(
a + b

2
− t

)
+

∫ b

a+b
2

(1) d

(
t− a + b

2

)]
= 0

we have then ∣∣∣∆̃ (f0, u0; a, b)
∣∣∣ =

b− a

2
.

Also
1
2

[
max
t∈[a,b]

f0 (t)− min
t∈[a,b]

f0 (t)
] b∨

a

(u0) =
b− a

2
,

which shows that the equality case holds in (2.4).

The following result providing bounds for the Lipshitzain integrators may be
stated as well:

Theorem 2. If u : [a, b] → R is L−Lipschitzian and f : [a, b] → R is Riemann
integrable and satisfies the condition (2.1), then

(2.5) |∆ (f, u,m,M ; a, b)| ≤ 1
2

(M −m) L (b− a) .

The constant 1
2 is best possible.

Proof. It is well known that if p is Riemann integrable on [a, b] and v is L−Lipschitzian
on [a, b] , then the Stieltjes integral

∫ b

a
p (t) dv (t) exists and

(2.6)

∣∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.

Now, taking into account that f − m+M
2 is Riemann integrable, by making use

of (2.6) we have∣∣∣∣∣
∫ b

a

(
f (t)− m + M

2

)
du (t)

∣∣∣∣∣ ≤ L

∫ b

a

∣∣∣∣f (t)− m + M

2

∣∣∣∣ dt

≤ 1
2

(M −m)L (b− a)

and the desired inequality (2.5) is obtained.
To prove the sharpness of the constant 1

2 , assume that the inequality (2.5) holds
with a positive constant D, i.e.,

(2.7) |∆ (f, u,m,M ; a, b)| ≤ D (M −m)L (b− a) ,



STIELTJES INTEGRAL OF BOUNDED FUNCTIONS 5

provided f is Riemann integrable and satisfies (2.1) while u is Lipschitz continuous
with the constant L > 0.

Consider the functions f0 (t) = sgn
(
t− a+b

2

)
and u0 (t) =

∣∣t− a+b
2

∣∣ . It is obvious
that f0 is Riemann integrable and M0 = 1, m0 = −1. Since, by the triangle
inequality we have

|u0 (t)− u0 (s)| =
∣∣∣∣∣∣∣∣t− a + b

2

∣∣∣∣− ∣∣∣∣s− a + b

2

∣∣∣∣∣∣∣∣ ≤ |t− s| ,

for any t, s ∈ [a, b] , hence u0 is Lipschitzian with the constant L = 1. Now, observe
that ∫ b

a

f0 (t) du0 (t) =
∫ b

a

sgn
(

t− a + b

2

)
d

(∣∣∣∣t− a + b

2

∣∣∣∣)
=

∫ a+b
2

a

(−1) d

(
a + b

2
− t

)
+

∫ b

a+b
2

(1) d

(
t− a + b

2

)
= b− a,

and introducing the above values in (2.7) we deduce

b− a ≤ 2D (b− a) ,

which implies that D ≥ 1
2 .

Corollary 2. If f is continuous on [a, b] and u is L−Lipschitzian, then:

(2.8)
∣∣∣∆̃ (f, u; a, b)

∣∣∣ ≤ 1
2

[
max
t∈[a,b]

f (t)− min
t∈[a,b]

f (t)
]

L (b− a) .

The constant 1
2 is best possible.

Proof. In order to prove the sharpness of the constant, we cannot use the example
from Theorem 2 since f0 was not continuous.

If u0 (t) =
∣∣t− a+b

2

∣∣ and f0 is continuous, then∫ b

a

f0 (t) d

∣∣∣∣t− a + b

2

∣∣∣∣ =
∫ b

a

sgn
(

t− a + b

2

)
f0 (t) dt.

Consider now the sequence of continuous functions

f0,n (t) =


−1 if t ∈

[
a, a+b

2 − 1
n

]
;

−1 + n
(
t− a+b

2 + 1
n

)
if t ∈

(
a+b
2 − 1

n , a+b
2 + 1

n

)
;

1 if t ∈
[

a+b
2 + 1

n , b
]
,

which coincides with u0 (t) = sgn
(
t− a+b

2

)
on

[
a, a+b

2 − 1
n

]
∪

[
a+b
2 + 1

n , b
]

and con-
nects the end segments of this function on

[
a+b
2 − 1

n , a+b
2 + 1

n

]
respectively. Obvi-

ously ∫ b

a

sgn
(

t− a + b

2

)
f0,n (t) dt

=
∫ a+b

2 − 1
n

a

dt +
∫ a+b

2 + 1
n

a+b
2 − 1

n

sgn
(

t− a + b

2

)
f0,n (t) dt +

∫ b

a+b
2 + 1

n

dt

= b− a + xn,
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where

|xn| =

∣∣∣∣∣
∫ a+b

2 + 1
n

a+b
2 − 1

n

sgn
(

t− a + b

2

)
f0,n (t) dt

∣∣∣∣∣ ≤ 2
n

.

Now, if (2.8) holds with a constant E > 0, i.e.,∣∣∣∆̃ (f, u; a, b)
∣∣∣ ≤ E

[
max
t∈[a,b]

f (t)− min
t∈[a,b]

f (t)
]

L (b− a) ,

then on choosing f0,n and u0 as above, we get

b− a + xn ≤ 2E (b− a)

for each n ∈ N. Letting n → ∞ and taking into account that lim
n→∞

xn = 0, we

deduce E ≥ 1
2 , and the corollary is proved.

Corollary 3. Let f, h : [a, b] → R be Riemann integrable functions, f satisfies
(2.1) and |h (t)| ≤ N for a.e. t ∈ [a, b] . Then

(2.9)

∣∣∣∣∣
∫ b

a

f (t) h (t) dt− m + M

2

∫ b

a

h (t) dt

∣∣∣∣∣ ≤ 1
2

(M −m) N (b− a) .

The constant 1
2 is best possible.

The proof follows by (2.5) on choosing u (t) =
∫ t

a
h (s) ds. The details are omitted.

Finally, we can state the following result as well.

Theorem 3. Let u : [a, b] → R be a monotonic nondecreasing function on [a, b]
and f : [a, b] → R a bounded function satisfying (2.1) and such that

∫ b

a
f (t) du (t)

exists. Then

|∆ (f, u, m,M ; a, b)| ≤
∫ b

a

∣∣∣∣f (t)− m + M

2

∣∣∣∣ du (t)(2.10)

≤ 1
2

(M −m) [u (b)− u (a)] .

The first inequality in (2.10) is sharp. The constant 1
2 is best possible.

Proof. The inequality∣∣∣∣∣
∫ b

a

(
f (t)− m + M

2

)
du (t)

∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (t)− m + M

2

∣∣∣∣ du (t)

follows by the definition of Stieltjes integrals.
Since ∣∣∣∣f (t)− m + M

2

∣∣∣∣ ≤ 1
2

(M −m) for each t ∈ [a, b] ,

we also have that∫ b

a

∣∣∣∣f (t)− m + M

2

∣∣∣∣ du (t) ≤ 1
2

(M −m)
∫ b

a

du (t)

=
1
2

(M −m) [u (b)− u (a)]

and the inequality (2.10) is thus proved.
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Now, assume that f0 (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] . Then for any continuous and

monotonic nondecreasing function u0 : [a, b] → R we can state that

∆ (f0, u0,m0,M0; a, b)

=
∫ a+b

2

a

(−1) du0 (t) +
∫ b

a+b
2

(1) du0 (t)

= u0 (a) + u0 (b)− 2u0

(
a + b

2

)
.

Also, ∫ b

a

∣∣∣∣f0 (t)− m0 + M0

2

∣∣∣∣ du0 (t) = u0 (b)− u0 (a)

and
1
2

(M0 −m0) [u0 (b)− u0 (a)] = u0 (b)− u0 (a) ,

which shows that the last inequality holds with equality in (1.9).
Finally, to have equality in the first part of (2.10) it is sufficient selecting u0 to

vanish in
[
a, a+b

2

]
and being continuous and monotonic nondecreasing on

[
a+b
2 , b

]
.

In this situation we get in all terms of (2.10) the same quantity u0 (b) .

Corollary 4. If f is continuous on [a, b] and u is monotonic nondecreasing, then

∣∣∣∆̃ (f, u; a, b)
∣∣∣ ≤ ∫ b

a

∣∣∣∣∣∣f (t)−
min

t∈[a,b]
f (t) + max

t∈[a,b]
f (t)

2

∣∣∣∣∣∣ du (t)(2.11)

≤ 1
2

[
max
t∈[a,b]

f (t)− min
t∈[a,b]

f (t)
]

[u (b)− u (a)] .

To prove the sharpness of the inequality we use the functions f0 (t) =
∣∣t− a+b

2

∣∣
and u0 (t) = sgn

(
t− a+b

2

)
which produce in all terms of (2.11) the quantity b−a

2 .

Corollary 5. If f, w are Riemann integrable on [a, b] and f satisfies (2.1) while w
is nonnegative, then∣∣∣∣∣

∫ b

a

f (t) w (t) dt− m + M

2

∫ b

a

w (t) dt

∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣f (t)− m + M

2

∣∣∣∣ w (t) dt(2.12)

≤ 1
2

(M −m)
∫ b

a

w (t) dt.

The dual case, i.e., when the integrator is bounded below and above, is incorpo-
rated in the following result.

Theorem 4. Assume that u is Riemann integrable on [a, b] and

(2.13) −∞ < n ≤ u (t) ≤ N < ∞ for a.e. t ∈ [a, b] .

Define the error functional of generalised trapezoid type

5 (f, u, n, N ; a, b) :=
[
u (b)− n + N

2

]
f (b)+

[
n + N

2
− u (a)

]
f (a)−

∫ b

a

f (t) du (t) .
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(i) If f is of bounded variation and such that the Stieltjes integral
∫ b

a
f (t) du (t)

exists, then

(2.14) |5 (f, u, n, N ; a, b)| ≤ 1
2

(N − n)
b∨
a

(f) .

The constant 1
2 is best possible in (2.14).

(ii) If f is K−Lipschitzian on [a, b] , then

(2.15) |5 (f, u, n, N ; a, b)| ≤ 1
2

(N − n) K (b− a) .

The constant 1
2 is best possible in (2.15).

(iii) If f is monotonic nondecreasing on [a, b] such that the Stieltjes integrals,∫ b

a
f (t) du (t) ,

∫ b

a

∣∣u (t)− n+N
2

∣∣ df (t) exist, then

|5 (f, u, n, N ; a, b)| ≤
∫ b

a

∣∣∣∣u (t)− n + N

2

∣∣∣∣ df (t)(2.16)

≤ 1
2

(N − n) [f (b)− f (a)] .

The first inequality is sharp and the constant 1
2 is best possible in (2.16).

Proof. The proof follows by Theorems 1 – 3 on utilising the integral identity:[
u (b)− n + N

2

]
f (b) +

[
n + N

2
− u (a)

]
f (a)−

∫ b

a

f (t) du (t)

=
∫ b

a

[
u (t)− n + N

2

]
df (t)

and the details are omitted.

Remark 1. The above inequalities also hold for continuous functions u : [a, b] → R
when n is replaced by mint∈[a,b] u (t) and N is replaced by maxt∈[a,b] u (t) . The
details are left to the interested reader.

3. Applications for Three Point Quadrature Rules

In [1] (see also [10, p. 223]) P. Cerone and S.S. Dragomir established the following
three point quadrature rule for n−times differentiable functions:

(3.1)
∫ b

a

f (t) dt =
n∑

k=1

1
k!

{
(1− γ)k

[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)

+ γk
[
(x− a)k

f (k−1) (a) + (−1)k−1 (b− x)k
f (k−1) (b)

]}
+ (−1)n

∫ b

a

Cn (x, t) f (n) (t) dt,

where

(3.2) Cn (x, t) =


[t−(γx+(1−γ)a)]n

n! if t ∈ [a, x] ;

[t−(γx+(1−γ)b)]n

n! if t ∈ (x, b],

and γ ∈ [0, 1] , x ∈ (a, b) .
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This representation comprises amongst others the interior point quadrature rule
obtained by Cerone et al. [3] in 1999 for γ = 0 and the trapezoid quadrature rule
obtained by Cerone et al. [4] in 2000 for γ = 1.

Consider the function:

(3.3) Kn (x, t) := (−1)n


[t−(γx+(1−γ)a)]n+1

(n+1)! if t ∈ [a, x] ;

[t−(γx+(1−γ)b)]n+1

(n+1)! if t ∈ (x, b].

The function Kn (x, ·) : [a, b] → R, for each fixed x ∈ [a, b] , is of bounded variation
and

b∨
a

(Kn (x, ·)) =
∫ x

a

∣∣∣∣dKn (x, t)
dt

∣∣∣∣ dt +
∫ b

x

∣∣∣∣dKn (x, t)
dt

∣∣∣∣ dt

=
∫ x

a

|t− (γx + (1− γ) a)|n

n!
dt +

∫ b

x

|γx + (1− γ) b− t|n

n!
dt.

We have

I1 =
∫ x

a

|t− (γx + (1− γ) a)|n

n!
dt

=
∫ γx+(1−γ)a

a

[γx + (1− γ) a− t]n

n!
dt +

∫ x

γx+(1−γ)a

[t− (γx + (1− γ) a)]n

n!
dt

= −

 [γx + (1− γ) a− t]n+1

(n + 1)!

∣∣∣∣∣
γx+(1−γ)a

a

 +
[t− (γx + (1− γ) a)]n+1

(n + 1)!

∣∣∣∣∣
x

γx+(1−γ)a

=
γn+1 (x− a)n+1

(n + 1)!
+

(1− γ)n+1 (x− a)n+1

(n + 1)!

=
1

(n + 1)!
(x− a)n+1

[
γn+1 + (1− γ)n+1

]
and

I2 =
∫ b

x

|γx + (1− γ) b− t|n

n!
dt

=
∫ γx+(1−γ)b

x

[γx + (1− γ) b− t]n

n!
dt +

∫ b

γx+(1−γ)b

[t− (γx + (1− γ) b)]n

n!
dt

= −

 [γx + (1− γ) b− t]n+1

(n + 1)!

∣∣∣∣∣
γx+(1−γ)b

x

 +
[t− (γx + (1− γ) b)]n+1

(n + 1)!

∣∣∣∣∣
b

γx+(1−γ)b

=
(1− γ)n+1 (b− x)n+1

(n + 1)!
+

γn+1 (b− x)n+1

(n + 1)!

=
1

(n + 1)!
(b− x)n+1

[
γn+1 + (1− γ)n+1

]
.

Therefore

(3.4)
b∨
a

(Kn (x, ·)) =
1

(n + 1)!

[
γn+1 + (1− γ)n+1

] [
(b− x)n+1 + (x− a)n+1

]
.
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We also have∫ b

a

f (n) (t) d (Kn (x, t)) =
∫ x

a

f (n) (t) d

[
(−1)n [t− (γx + (1− γ) a)]n+1

(n + 1)!

]
(3.5)

+
∫ b

x

f (n) (t) d

[
(−1)n [t− (γx + (1− γ) b)]n+1

(n + 1)!

]

= (−1)n
∫ b

a

Cn (t, x) f (n) (t) dt,

with Cn (t, x) defined by (3.2).
We can state the following result in approximating the Riemann integral

∫ b

a
f (x) dx

of n−times differentiable functions f in terms of three point quadrature rules.

Theorem 5. Let f : [a, b] → R be a function such that for n ≥ 1 the derivative
f (n−1) is absolutely continuous and there exists the real constants γn,Γn such that

(3.6) γn ≤ f (n) (t) ≤ Γn for a.e. t ∈ [a, b] .

Then

(3.7)
∫ b

a

f (t) dt =
n∑

k=1

1
k!

{
(1− γ)k

[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)

+ γk
[
(x− a)k

f (k−1) (a) + (−1)k−1 (b− x)k
f (k−1) (b)

]}
+

γn + Γn

2

[
(−1)n (b− x)n+1 + (x− a)n+1

] γn+1

(n + 1)!
+ Rn,

and the error Rn satisfies the bound

(3.8) |Rn| ≤
1
2

(Γn − γn)
1

(n + 1)!

[
γn+1 + (1− γ)n+1

] [
(b− x)n+1 + (x− a)n+1

]
for γ ∈ [0, 1] and x ∈ [a, b] .

Proof. We apply Theorem 1 for the functions f (n) and K (x, ·) to get:∣∣∣∣∣
∫ b

a

f (n) (t) dKn (x, t)− γn + Γn

2
[Kn (x, b)−Kn (x, a)]

∣∣∣∣∣
≤ 1

2
(Γn − γn)

b∨
a

(Kn (x, ·))

for x ∈ [a, b] .
Since

Kn (x, b) = (−1)n [b− (γx + (1− γ) b)]n+1

(n + 1)!

= (−1)n γn+1 (b− x)n+1

(n + 1)!
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and

Kn (x, a) = (−1)n [a− (γx + (1− γ) a)]n+1

(n + 1)!

= (−1)n [γ (a− x)]n+1

(n + 1)!

= −γn+1 (x− a)n+1

(n + 1)!
,

hence by (3.4) and (3.5) we deduce:

(3.9)

∣∣∣∣∣(−1)n
∫ b

a

Cn (t, x) f (n) (t) dt

− γn + Γn

2

[
(−1)n γn+1 (b− x)n+1

(n + 1)!
+

γn+1 (x− a)n+1

(n + 1)!

]∣∣∣∣∣
≤ 1

2
(Γn − γn)

1
(n + 1)!

[
γn+1 + (1− γ)n+1

] [
(b− x)n+1 + (x− a)n+1

]
..

Finally, on utilising the identity (3.1) we deduce from (3.9) the representation (3.7)
and the estimate (3.8).

Remark 2. The above approximation of the integral
∫ b

a
f (t) dt contains some par-

ticular cases of interest.
If λ = 0, then we have

(3.10)
∫ b

a

f (t) dt =
n∑

k=1

1
k!

[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x) + Tn,

with
|Tn| ≤

1
2

(Γn − γn)
1

(n + 1)!

[
(b− x)n+1 + (x− a)n+1

]
.

If λ = 1
2 , then we have

(3.11)
∫ b

a

f (t) dt =
n∑

k=1

1
2kk!

{[
(b− x)k + (−1)k−1 (x− a)k

]
f (k−1) (x)

+
[
(x− a)k

f (k−1) (a) + (−1)k−1 (b− x)k
f (k−1) (b)

]}
+

γn + Γn

2n+2 (n + 1)!

[
(−1)n (b− x)n+1 + (x− a)n+1

]
+ Mn,

with
|Mn| ≤

1
2n+1 (n + 1)!

(Γn − γn)
[
(b− x)n+1 + (x− a)n+1

]
.

Finally, if λ = 1, then we have

(3.12)
∫ b

a

f (t) dt =
n∑

k=1

1
k!

[
(x− a)k

f (k−1) (a) + (−1)k−1 (b− x)k
f (k−1) (b)

]
+

γn + Γn

2 (n + 1)!

[
(−1)n (b− x)n+1 + (x− a)n+1

]
+ Qn,
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with
|Qn| ≤

1
2 (n + 1)!

(Γn − γn)
[
(b− x)n+1 + (x− a)n+1

]
.
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