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SUMS OF SERIES OF ROGERS DILOGARITHM FUNCTIONS

ABDOLHOSSEIN HOORFAR AND FENG QI

Abstract. Some sums of series of Rogers dilogarithm functions are estab-

lished by Abel’s functional equation.

1. Introduction

The dilogarithm is defined [2, p.102] by the series

Li2(x) =
∞∑

n=1

xn

n2
(1)

for −1 ≤ x ≤ 1. The Rogers dilogarithm function LR(x) is defined in [8] and [13,

p. 287] for 0 ≤ x ≤ 1 by

LR(x) =





Li2(x) +
1
2

ln x ln(1− x), 0 < x < 1,

0, x = 0,

π2

6
, x = 1.

(2)

The function LR(x) satisfies the concise identity

LR(x) + LR(1− x) =
π2

6
(3)

for 0 ≤ x ≤ 1, see [7, pp. 110–113], and Abel’s functional equation

LR(x) + LR(y) = LR(xy) + LR

(
x(1− y)
1− xy

)
+ LR

(
y(1− x)
1− xy

)
(4)

for 0 < x, y < 1, see [1, pp. 189–192] and [5]. The duplication formula for LR(x)

follows from Abel’s functional equation (4) and is given for 0 ≤ x ≤ 1 by

LR(x) =
1
2
LR

(
x2

)
+ LR

(
x

1 + x

)
. (5)
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The function LR(x) satisfies also the following identities:

LR

(
1
2

)
=

π2

12
, LR(ρ) =

π2

10
, LR

(
ρ2

)
= LR(1− ρ) =

π2

15
, (6)

where ρ =
√

5−1
2 , and has the nice infinite series

∞∑
n=2

LR

(
1
n2

)
=

π2

6
(7)

obtained in [13, p. 298] and [14].

It is remarked that the formulas from (1) to (7) can be looked up at [18, 19].

For more information on its history, properties, identities, generalizations, ap-

plications and recent developments of the dilogarithms and Rogers dilogarithm

functions, please refer to [1, pp. 189–192], [2, pp.102–107], [4, pp. 323–326], [7,

pp. 110–113], [3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and the

references therein.

The main aim of this paper is to generalize the series (7).

Our main results are the following four theorems.

Theorem 1. For p, q ∈ N and α ≥ 0,

∞∑
n=0

LR

(
pq

(n + p + α)(n + q + α)

)

=
q−1∑
n=0

LR

(
p

n + p + α

)
+

p−1∑
n=0

LR

(
q

n + q + α

)
. (8)

Remark 1. The series (7) is a special case of (8) for p = q = α = 1.

Theorem 2. For p, q ∈ N and 0 < θ, β < 1,

∞∑
n=0

LR

(
β(1− θp)(1− θq)θn

(1− βθn+p)(1− βθn+q)

)

=
q−1∑
n=0

LR

(
β(1− θp)θn

1− βθn+p

)
+

p−1∑
n=0

LR

(
1− θq

1− βθn+q

)
− pLR(1− θq). (9)

Theorem 3. For p, q ∈ N, 0 < β ≤ 1 and 0 < θ < 1,

∞∑
n=0

LR

(
β(1− θp)(1− θq)θn

(1 + βθn)(1 + βθn+p+q)

)

=
q−1∑
n=0

LR

(
θp(1 + βθn)
1 + βθn+p

)
+

p−1∑
n=0

LR

(
β(1− θq)θn

1 + βθn

)
− qLR(θp). (10)
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Theorem 4. For r > 1,
∞∑

n=0

1
2n

LR

(
1

r2n + 1

)
= LR

(
1
r

)
. (11)

As straightforward consequences of above theorems, some sums of series of special

Rogers dilogarithm functions are deduced as follows.

Corollary 1. Let t > 0 and φ =
√

5 +1
2 , then the following identities are valid:

∞∑
n=2

LR

(
2

n(n + 1)

)
=

π2

4
, (12)

∞∑
n=0

1
2n

LR

(
1

22n + 1

)
=

π2

12
, (13)

∞∑
n=1

LR

(
2

n2 +
√

5 n + 1

)
=

π2

6
+ LR

(
3−

√
5

)
, (14)

∞∑
n=1

LR

(
2

(n +
√

2 )(n + 1 +
√

2 )

)
=

π2

6
+ LR

(
1

2 +
√

2

)
, (15)

∞∑
n=1

LR

(
4(

2n− 1 +
√

5
)2

)
=

π2

5
, (16)

∞∑
n=2

(−1)nLR

(
4
n2

)
=

π2

3
− 2LR

(
2
3

)
, (17)

∞∑
n=1

LR

(
2n

(2n+1 − 1)2

)
=

π2

12
, (18)

∞∑
n=1

LR

(
φn−2

(φn+1 − 1)2

)
=

π2

10
, (19)

∞∑
n=1

LR

(
2n−1

(2n−1 + 1)(2n+1 + 1)

)
=

3
2
LR

(
1
4

)
, (20)

∞∑
n=1

LR

(
223n−1

(3n−1 + 1)(3n+1 + 1)

)
=

π2

12
, (21)

∞∑
n=2

LR

(
sinh2 t

sinh2(nt)

)
= LR

(
e−2t

)
, (22)

and

∞∑
n=1

LR

(
sinh2 t

cosh[(n− 1)t] cosh[(n + 1)t]

)

= LR

(
e−t

cosh t

)
+ LR

(
e−t sinh t

)− LR

(
e−2t

)
. (23)
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2. Proofs of theorems and corollary

Proof of Theorem 1. Let

xn =
p

n + p + α
and yn =

q

n + q + α

for n = 0, 1, 2, . . . . It is clear that

xn(1− yn)
1− xnyn

=
p

(n + q) + p + α
= xn+q,

and
yn(1− xn)
1− xnyn

=
q

(n + p) + q + α
= yn+p.

Taking x = xn and y = yn in (4) leads to

LR(xn) + LR(yn) = LR

(
pq

(n + p + α)(n + q + α)

)
+ LR

(
xn+q

)
+ LR

(
yn+p

)

for n = 0, 1, 2, . . . . Summing up on both sides of above equality for n from 0 to

N ≥ max{p, q} gives

q−1∑
n=0

LR(xn) +
p−1∑
n=0

LR(yn) =
N∑

n=0

LR

(
pq

(n + p + α)(n + q + α)

)

+
N∑

n=N+1−q

LR

(
xn+q

)
+

N∑

n=N+1−p

LR

(
yn+p

)
.

Letting N →∞ yields

lim
N→∞

N∑

n=N+1−q

LR

(
xn+q

)
= lim

N→∞

N∑

n=N+1−p

LR

(
yn+p

)
= 0.

The proof of Theorem 1 is complete. ¤

Proof of Theorem 2. Now let us consider the sequences

xn =
β(1− θp)θn

1− βθn+p
and yn =

1− θq

1− βθn+q

for n = 0, 1, 2, . . . . It is obvious that 0 < xn < 1 and 0 < yn < 1. Straightforward

computation gives
xn(1− yn)
1− xnyn

=
β(1− θp)θn+q

1− βθ(n+q)+p
= xn+q

and
yn(1− xn)
1− xnyn

=
1− θq

1− βθ(n+p)+q
= yn+p.
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Using identity (4) again gives

LR(xn) + LR(yn) = LR(xnyn) + LR

(
xn+q

)
+ LR

(
yn+p

)
.

Summing up for n from 0 to N ≥ max{p, q} leads to

q−1∑
n=0

LR(xn) +
p−1∑
n=0

LR(yn) =
N∑

n=0

LR(xnyn)

+
N∑

n=N+1−q

LR

(
xn+q

)
+

N∑

n=N+1−p

LR

(
yn+p

)
.

Since limn→∞ LR(xn) = 0 and limn→∞ LR(yn) = LR(1− θq), if taking N →∞ in

above identity, then formula (9) follows. The proof of Theorem 3 is finished. ¤

Proof of Theorem 3. Let

xn =
θp(1 + βθn)
1 + βθn+p

and yn =
β(1− θq)θn

1 + βθn

for n = 0, 1, 2, . . . . It is apparent that 0 < xn, yn < 1. Direct calculation reveals

xnyn =
β(1− θq)θn+p

1 + βθn+p
= yn+p

and
xn(1− yn)
1− xnyn

=
θp(1 + βθn+q)
1 + βθ(n+q)+p

= xn+q

with
yn(1− xn)
1− xnyn

=
β(1− θp)(1− θq)θn

(1 + θn)(1 + θn+p+q)
, zn.

From identity (4), it follows that

LR(xn) + LR(yn) = LR

(
yn+p

)
+ LR

(
xn+q

)
+ LR(zn).

Therefore, for N ≥ max{p, q},

q−1∑
n=0

LR(xn) +
p−1∑
n=0

LR(yn) =
N∑

n=0

LR(zn)

+
N∑

n=N+1−q

LR(xn+q) +
N∑

n=N+1−p

LR(yn+p).

Since limn→∞ LR(xn) = LR(θp) and limn→∞ LR(yn) = 0, then formula (10) is

deduced by taking N →∞. Theorem 3 is proved. ¤
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Proof of Theorem 4. Applying (5) to x = xn = 1
r2n+1

for n = 0, 1, 2, . . . gives

LR(xn) =
1
2
LR(xn+1) + LR

(
1

r2n + 1

)

and
1
2n

LR(xn) =
1

2n+1
LR(xn+1) +

1
2n

LR

(
1

r2n + 1

)

for n = 0, 1, 2, . . . . Summing up for n from 0 to ∞ yields
∞∑

n=0

1
2n

LR

(
1

r2n + 1

)
= LR(x0) = LR

(
1
r

)
.

The proof of Theorem 4 is complete. ¤

Proof of Corollary 1. Taking p = 2, q = 1 and α = 1,
√

5−1
2 ,

√
2 in (8) and simplify-

ing by employing (3) and (6) leads to the identities (12), (14) and (15) respectively.

Identity (13) is a direct consequence of (11) for r = 2.

Letting p = q = 1 and α =
√

5−1
2 in (8) yields (16).

It is easy to see that
∞∑

n=2

(−1)nLR

(
4
n2

)
=

∞∑
n=1

LR

(
1
n2

)
−

∞∑
n=1

LR

(
1

(n + 1/2)2

)
.

Combining this with (8) for p = q = 1 and α = 1
2 leads to (17).

Identities (18) and (19) are special cases of (9) for p = q = 1, β = θ = 1
2 and

β = θ = 1
φ =

√
5−1
2 , respectively.

Applying p = q = β = 1 and θ = 1
2 in (10) gives

∞∑
n=1

LR

(
2n−1

(2n−1 + 1)(2n+1 + 1)

)
= LR

(
2
3

)
+ LR

(
1
4

)
− LR

(
1
2

)
.

Taking x = 1
2 in identity (5) yields

LR

(
2
3

)
− LR

(
1
2

)
=

1
2
LR

(
1
4

)
.

Thus, identity (20) is obtained.

Identity (21) is a direct consequence of (10) for p = q = β = 1 and θ = 1
3 .

Taking θ = e−2t and β = e−2b in (9) and (10) and simplifying gives

∞∑
n=0

LR

(
sinh(pt) sinh(qt)

sinh((n + p)t + b) sinh((n + q)t + b)

)
=

q−1∑
n=0

LR

(
e−(nt+b) sinh(pt)
sinh((n + p)t + b)

)

+
p−1∑
n=0

LR

(
e(nt+b) sinh(qt)

sinh((n + q)t + b)

)
− pLR

(
1− e2qt

)
(24)
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for t > 0 and b > 0 and

∞∑
n=0

LR

(
sinh(pt) sinh(qt)

cosh(nt + b) cosh((n + p + q)t + b)

)
=

q−1∑
n=0

LR

(
e−pt cosh(nt + b)
cosh((n + p)t + b)

)

+
p−1∑
n=0

LR

(
e−(n+q)t−b sinh(qt)

cosh(nt + b)

)
− qLR

(
e−2t

)
(25)

for t > 0 and b ≥ 0. Identities (22) and (23) are special cases of (24) and (25) for

p = q = 1, b = t and b = 0, respectively. ¤
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