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SOME INEQUALITIES FOR (α, β)-NORMAL OPERATORS IN
HILBERT SPACES

SEVER S. DRAGOMIR1 AND MOHAMMAD SAL MOSLEHIAN2

Abstract. An operator T is called (α, β)-normal (0 ≤ α ≤ 1 ≤ β) if

α2T ∗T ≤ TT ∗ ≤ β2T ∗T.

In this paper, we establish various inequalities between the operator norm and

its numerical radius of (α, β)-normal operators in Hilbert spaces. For this

purpose, we employ some classical inequalities for vectors in inner product

spaces.

1. Introduction

An operator T acting on a Hilbert space (H; 〈·, ·〉) is called (α, β)-normal (0 ≤
α ≤ 1 ≤ β) if

α2T ∗T ≤ TT ∗ ≤ β2T ∗T.

Then

α2〈T ∗Tx, x〉 ≤ 〈TT ∗x, x〉 ≤ β2〈T ∗Tx, x〉 ,

whence

(1.1) α‖Tx‖ ≤ ‖T ∗x‖ ≤ β‖Tx‖,

for all x ∈ H. If T is invertible, then so is the bounded operator T ∗T−1. Hence

T ∗T−1 is bounded below and so T is (α, β)-normal for some α and β.

Normal and hyponormal operators are trivially (α, β)-normal for some appropriate

values of α and β. There are however operators which are neither normal nor

hyponormal. The following example of an (α, β)-normal with α =
√

3−
√

5
2 and

β =
√

3+
√

5
2 is due to M. Mirzavaziri[

1 0

1 1

]
∈ B(C2).
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Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical radius w(T ) of an operator

T on H is given by

(1.2) w(T ) = sup{|〈Tx, x〉|, ‖x‖ = 1}.

Obviously, by (1.2), for any x ∈ H one has

(1.3) |〈Tx, x〉| ≤ w(T )‖x‖2.

It is well known that w(·) is a norm on the Banach algebra B(H) of all bounded

linear operators. Moreover, we have

w(T ) ≤ ‖T‖ ≤ 2w(T ) (T ∈ B(H)).

For other results and historical comments on the numerical radius see [10].

In this paper, we establish various inequalities between the operator norm and its

numerical radius of (α, β)-normal operators in Hilbert spaces. For this purpose, we

employ some classical inequalities for vectors in inner product spaces due to Buzano,

Dunkl–Williams, Dragomir–Sándor, Goldstein–Ryff–Clarke and Dragomir.

2. Inequalities Involving Numerical Radius

In this section we study some inequalities concerning the numerical radius and

norm of (α, β)-normal operators. Our first result reads as follows, see also [6]:

Theorem 2.1. Let T ∈ B(H) be an (α, β)-normal operator. Then

(2.1) (α2r + β2r)‖T‖2 ≤


2βrw(T 2) + r2β2r−2‖βT − T ∗‖2, if r ≥ 1,

2βrw(T 2) + ‖βT − T ∗‖2, if r < 1.

Proof. We use the following inequality for vectors in inner product spaces due to

Goldstein, Ryff and Clarke [9]:

(2.2) ‖a‖2r + ‖b‖2r − 2‖a‖r‖b‖r · Re〈a, b〉
‖a‖ ‖b‖

≤


r2‖a‖2r−2‖a− b‖2 if r ≥ 1,

‖b‖2r−2‖a− b‖2 if r < 1,

provided r ∈ R and a, b ∈ H with ‖a‖ ≥ ‖b‖.
Suppose that r ≥ 1. Let x ∈ H with ‖x‖ = 1. Noting to (1.1) and applying

(2.2) for the choices a = βTx, b = T ∗x we get

(2.3) ‖βTx‖2r + ‖T ∗x‖2r − 2‖βTx‖r−1‖ ‖T ∗x‖r−1 Re〈βTx, T ∗x〉

≤ r2‖βTx‖2r−2‖βTx− T ∗x‖2
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for any x ∈ H, ‖x‖ = 1 and r ≥ 1. Using (1.1) and (2.3) we get

(2.4) (α2r + β2r)‖Tx‖2r

≤ 2βr‖Tx‖r−1‖T ∗x‖r−1|〈T 2x, x〉|+ r2β2r−2‖Tx‖2r−2‖βTx− T ∗x‖2.

Taking the supremum in (2.4) over x ∈ H, ‖x‖ = 1, we deduce

(α2r + β2r)‖T‖2r ≤ 2βr‖T‖2r−2‖T ∗‖r−1w(T 2) + r2β2r−2‖T‖2r−2‖βT − T ∗‖2,

which is the first inequality in (2.1). If r < 1, then one can similarly prove the

second inequality in (2.1).

Theorem 2.2. Let T ∈ B(H) be an (α, β)-normal operator. Then

(2.5) w(T )2 ≤ 1
2

[
β‖T‖2 + w(T 2)

]
.

Proof. The following inequality is known in the literature as the Buzano inequality

[1]:

(2.6) |〈a, e〉〈e, b〉| ≤ 1
2
(‖a‖ ‖b‖+ |〈a, b〉|),

for any a, b, e in H with ‖e‖ = 1.

Let x ∈ H with ‖x|| = 1. Put e = x, a = Tx, b = T ∗x in (2.6) to get

|〈Tx, x〉〈x, T ∗x〉| ≤ 1
2
(‖Tx‖ ‖T ∗x‖+ |〈Tx, T ∗x〉|)

≤ 1
2
(β‖Tx‖2 + |〈T 2x, x〉|).

Taking the supremum over x ∈ H, ‖x‖ = 1, we obtain (2.5).

Theorem 2.3. Let T ∈ B(H) be an (α, β)-normal operator and λ ∈ C. Then

(2.7) α‖T‖2 ≤ w(T 2) +
2β‖T − λT ∗‖2

(1 + |λ|α)2
.

Proof. Using the Dunkl–Williams inequality [8]

1
2
(‖a‖+ ‖b‖)

∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥ ≤ ‖a− b‖ (a, b ∈ H \ {0})

we get

2− 2 · Re〈a, b〉
‖a‖‖b‖

=
∥∥∥∥ a

‖a‖
− b

‖b‖

∥∥∥∥2

≤ 4‖a− b‖2

(‖a||+ ‖b‖)2
(a, b ∈ H \ {0})

whence

‖a‖‖b‖ ≤ 2‖a‖ ‖b‖ ‖a− b‖2

(‖a||+ ‖b‖)2
+ |〈a, b〉| (a, b ∈ H \ {0}).

Put a = Tx and b = λT ∗ to get

‖Tx‖ ‖T ∗x‖ ≤ |〈T 2x, x〉|+ 2‖Tx‖ ‖T ∗x‖ ‖Tx− λT ∗x‖2

(‖Tx‖+ |λ| ‖T ∗x‖)2
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so that

(2.8) α‖Tx‖2 ≤ |〈T 2x, x〉|+ 2β‖Tx‖2‖Tx− λT ∗x‖2

(‖Tx‖+ |λ|α ‖Tx‖)2

≤ |〈T 2x, x〉|+ 2β‖(T − λT ∗)x‖2

(1 + |λ|α)2
.

Taking the supremum in (2.8) over x ∈ H, ‖x‖ = 1, we get the desired result

(2.7).

Theorem 2.4. Let T ∈ B(H) be an (α, β)-normal operator and λ ∈ C\{0}. Then

(2.9)

[
α2 −

(
1
|λ|

+ β

)2
]
‖T‖4 ≤ w(T 2).

Proof. We apply the following reverse of the quadratic Schwarz inequality obtained

by Dragomir in [5]

(2.10) (0 ≤)‖a‖2‖b‖2 − |〈a, b〉|2 ≤ 1
|λ|2

‖a‖2‖a− λb‖2

provided a, b ∈ H and λ ∈ C\{0}.
Set a = Tx, b = T ∗x in (2.10), to get

α2‖Tx‖4 ≤ |〈Tx, T ∗x〉|2 +
1
|λ|2

‖Tx‖2‖Tx− λT ∗x‖2

≤ |〈T 2x, x〉|2 +
1
|λ|2

‖Tx‖2(1 + |λ|β)2‖Tx‖2

whence

(2.11)

[
α2 −

(
1
|λ|

+ β

)2
]
‖Tx‖4 ≤ |〈T 2x, x〉|2.

Taking the supremum in (2.11) over x ∈ H, ‖x‖ = 1, we get the desired result

(2.9).

Theorem 2.5. Let T ∈ B(H) be an (α, β)-normal operator, r ≥ 0 and λ ∈ C� {0}.
If ‖λT ∗ − T‖ ≤ r and r

|λ| ≤ inf{‖T ∗x‖ : ‖x‖ = 1}, then

(2.12) α2‖T‖4 ≤ w(T 2)2 +
r2

|λ|2
‖T‖2.

Proof. We use the following reverse of the Schwarz inequality obtained by Dragomir

in [3] (see also [4, p. 20]):

(2.13) (0 ≤) ‖y‖2 ‖a‖2 − [Re〈y, a〉]2 ≤ r2‖y‖2,

provided ‖y − a‖ ≤ r ≤ ‖a‖.
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By the assumption of theorem ‖Tx − λT ∗x‖ ≤ r ≤ ‖λT ∗x‖. Setting a = λT ∗x

and y = Tx, with ‖x‖ = 1 in (2.13) we get

‖Tx‖2 ‖λT ∗x‖2 ≤ [Re〈Tx, λT ∗x〉]2 + r2‖Tx‖2

whence

(2.14) α2|λ|2‖Tx‖4 ≤ |λ|2|〈T 2x, x〉|2 + r2‖Tx‖2.

Taking the supremum in (2.14) over x ∈ H, ‖x‖ = 1, we get the desired result

(2.12).

Finally, the following result that is less restrictive for the involved parameters r

and λ (from the above theorem) may be stated as well:

Theorem 2.6. Let T ∈ B(H) be an (α, β)-normal operator, r ≥ 0 and λ ∈ C� {0}.
If ‖λT ∗ − T‖ ≤ r, then

(2.15) α‖T‖2 ≤ w(T 2) +
r2

2|λ|
.

Proof. We use the following reverse of the Schwarz inequality obtained by Dragomir

in [2] (see also [4, p. 27]):

(2.16) (0 ≤) ‖y‖ ‖a‖ − Re〈y, a〉 ≤ 1
2
r2,

provided ‖y − a‖ ≤ r.

Setting a = λT ∗x and y = Tx, with ‖x‖ = 1 in (2.16) we get

‖Tx‖ ‖λT ∗x‖ ≤ |〈Tx, λT ∗x〉|+ 1
2
r2

which gives

α‖Tx‖2 ≤ |〈T 2x, x〉|+ 1
2
r2.

Now, taking the supremum over ‖x‖ = 1 in this inequality, we get the desired result

(2.15)

3. Inequalities Involving Norms

Our first result in this section reads as follows.

Theorem 3.1. Let T ∈ B(H) be an (α, β)-normal operator. If p ≥ 2, then

(3.1) 2(1 + αp)‖T‖p ≤ 1
2
(‖T + T ∗‖p + ‖T − T ∗‖p).

In general, for each T ∈ B(H) and p ≥ 2 we have

(3.2)
∥∥∥∥T ∗T + TT ∗

2

∥∥∥∥p/2

≤ 1
4
(‖T + T ∗‖p + ‖T − T ∗‖p).
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Proof. We use the following inequality obtained by Dragomir and Sándor in [7] (see

also [11, p. 544]):

(3.3) ‖a + b‖p + ‖a− b‖p ≥ 2(‖a‖p + ‖b‖p)

for any a, b ∈ H and p ≥ 2.

Now, if we choose a = Tx, b = T ∗x in (3.3), then we get

(3.4) ‖Tx + T ∗x‖p + ‖Tx− T ∗x‖p ≥ 2(‖Tx‖p + ‖T ∗x‖p),

whence

(3.5) ‖Tx + T ∗x‖p + ‖Tx− T ∗x‖p ≥ 2(‖Tx‖p + αp‖Tx‖p),

for any x ∈ H, ‖x‖ = 1.

Taking the supremum in (3.5) over x ∈ H, ‖x‖ = 1, we get the desired result

(3.1).

Now for the general case T ∈ B(H), observe that

(3.6) ‖Tx‖p + ‖T ∗x‖p = (‖Tx‖2)
p
2 + (‖T ∗x‖2)

p
2

and by applying the elementary inequality:

aq + bq

2
≥

(
a + b

2

)q

, a, b ≥ 0 and q ≥ 1

we have

(3.7) (‖Tx‖2)
p
2 + (‖T ∗x‖2)

p
2 ≥ 21− p

2 (‖Tx‖2 + ‖T ∗x‖2)
p
2

= 21− p
2 [〈Tx, Tx〉+ 〈T ∗x, T ∗x〉]

p
2

= 21− p
2 [〈(T ∗T + TT ∗)x, x〉]

p
2 .

Combining (3.4) with (3.7) and (3.6) we get

(3.8)
1
4
[‖Tx− T ∗x‖p + ‖Tx + T ∗x‖p] ≥

∣∣∣∣〈(
T ∗T + TT ∗

2

)
x, x

〉∣∣∣∣p/2

for any x ∈ H, ‖x‖ = 1. Taking the supremum over x ∈ H, ‖x‖ = 1, and taking

into account that

w

(
T ∗T + TT ∗

2

)
=

∥∥∥∥T ∗T + TT ∗

2

∥∥∥∥ ,

we deduce the desired result (3.2).

Theorem 3.2. Let T ∈ B(H) be an (α, β)-normal operator. If p ∈ (1, 2) and

λ, µ ∈ C, then

(3.9) [(|λ|+ β|µ|)p + max{|λ| − |µ|β, α|µ| − |λ|}] ‖T‖p

≤ ‖λT + µT ∗‖p + ‖λT − µT ∗‖p.
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Proof. We use the following inequality obtained by Dragomir and Sándor in [7] (see

also [11, p. 544])

(3.10) (‖a‖+ ‖b‖)p + | ‖a‖ − ‖b‖ |p ≤ ||a + b‖p + ‖a− b‖p,

for any a, b ∈ H and p ∈ (1, 2).

Put a = λTx, b = µT ∗x in (3.10) to obtain

(‖λTx‖+ ‖µT ∗x‖)p + |‖λTx‖ − ‖µT ∗x‖|p

≤ ‖λTx + µT ∗x‖p + ‖λTx− µT ∗x‖p,

whence

(3.11) (|λ|+ |µ|α)p‖Tx‖p + (max{|λ| − |µ|β, α|µ| − |λ|}) ‖Tx‖p

≤ ‖λTx + µT ∗x‖p + ‖λTx− µT ∗x‖p,

for any x ∈ H, ‖x‖ = 1.

Taking the supremum in (3.11) over x ∈ H, ‖x‖ = 1, we get the desired result

(3.9).

4. Other Inequalities for General Operators

Finally, we present two results holding in the general case of bounded linear

operators in Hilbert spaces:

Theorem 4.1. Let T, S ∈ B(H). Then

(4.1) | ‖T ∗T + S∗S‖ − ‖T + S‖2| ≤ 2w(S∗T ),

in particular,

(4.2) | ‖T ∗T + |λ|TT ∗‖ − ‖T + λT ∗‖2| ≤ 2|λ|w(T 2).

Proof. We have

(4.3) ‖Tx± Sx‖2 = ‖Tx‖2 ± 2Re〈Tx, Sx〉+ ‖Sx‖2

for any x ∈ H. Hence

‖Tx + Sx‖2 ≤ 〈(T ∗T + S∗S)x, x〉+ 2|〈(S∗T )x, x〉|.

Taking the supremum over x ∈ H, ‖x‖ = 1, we get

‖T + S‖2 ≤ w(T ∗T + S∗S) + 2w(S∗T ) = ‖T ∗T + S∗S‖+ 2w(S∗T ),
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It follows from (4.3) that

〈(T ∗T + S∗S)x, x〉 = ‖Tx‖2 + ‖Sx‖2

= 2Re〈Tx, Sx〉+ ‖Tx− Sx‖2

≤ 2|〈Tx, Sx〉|+ ‖Tx− Sx‖2.

Replacing S by −S in the later equality and taking the supremum over x ∈ H,

‖x‖ = 1, we get

‖T ∗T + S∗S‖ = w(T ∗T + S∗S) ≤ 2w(S∗T ) + ‖T + S‖2
.

The desired inequality (4.1) follows from (1.2) and (1.3). The last inequality can

be obtained by putting S = λT ∗ in (4.1).

Theorem 4.2. Let T, S ∈ B(H), and p, q > 0. Then

(4.4) w(T + S) ≤
[
w

(
p + q

p
· T ∗T +

p + q

q
· S∗S

)]1/2

.

In particular,

w(T + λT ∗) ≤
[
w

(
p + q

p
· T ∗T +

p + q

q
|λ|2TT ∗

)]1/2

.

Proof. Utilizing the following elementary inequality

(a + b)2

p + q
≤ a2

p
+

b2

q
,

holding for any real numbers a, b and for the positive numbers p, q, we get

|〈(T + S)x, x〉|2 ≤ (p + q)
(|〈Tx, x〉|+ |〈Sx, x〉|)2

p + q

≤ (p + q)
(
|〈Tx, x〉|2

p
+
|〈Sx, x〉|2

q

)
≤ (p + q)

(
‖Tx‖2

p
+
‖Sx‖2

q

)
≤ (p + q)

(〈
T ∗T

p
x, x

〉
+

〈
S∗S

q
x, x

〉)
≤

〈(
p + q

p
T ∗T +

p + q

q
S∗S

)
x, x

〉
.

Putting S = λT ∗ in (4.4), we get the last desired inequality.
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