
Integral Inequalities and Applications for Bounding 
the Čebyšev Functional

This is the Published version of the following publication

Cerone, Pietro and Dragomir, Sever S (2007) Integral Inequalities and 
Applications for Bounding the Čebyšev Functional. Research report collection, 
10 (Supp).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/18003/ 



INTEGRAL INEQUALITIES AND APPLICATIONS FOR
BOUNDING THE µCEBY�EV FUNCTIONAL

P. CERONE AND S.S. DRAGOMIR

Abstract. Some inequalities related to the Hölder integral inequality and
applications for bounding the µCeby�ev functional are given.

1. Introduction

The integral Hölder inequality, namely

(1.1)

�����
Z b

a

f (t) g (t) dt

����� �
 Z b

a

jf (t)jp dt
! 1

p
 Z b

a

jg (t)jq dt
! 1

q

;

plays an important role in Mathematical Analysis and its applications. Here the
complex-valued functions f; g : [a; b] ! C are p and q�integrable respectively on
[a; b] ; where p; q > 1 and 1

p +
1
q = 1:

In order to provide sharper bounds for the Hölder inequality, Abramovich, Mond
and Peµcaríc considered in [1] the function � : [a; b]! R given by

(1.2) � (x) :=

����Z x

a

f (t) g (t) dt

����+
 Z b

x

jf (t)jp dt
! 1

p
 Z b

x

jg (t)jq dt
! 1

q

and proved that � (�) is nondecreasing on [a; b] : As a consequence we can observe
that

inf
x2[a;b]

� (x) =

�����
Z b

a

f (t) g (t) dt

�����
and

sup
x2[a;b]

� (x) =

 Z b

a

jf (t)jp dt
! 1

p
 Z b

a

jg (t)jq dt
! 1

q

:

Using geometrical arguments, G.S. Mahajani [8] obtained the following results
for the absolute value of the integral

R x
a
f (t) dt :

1. If f has a bounded derivative on [a; b] ; namely jf 0 (t)j � M (M > 0) and ifR b
a
f (t) dt = 0; then ����Z x

a

f (t) dt

���� � 1

8
�M � (b� a)2 ;

for any x 2 [a; b] :
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2 P. CERONE AND S.S. DRAGOMIR

2. If, additional to the conditions given above, f (a) = f (b) = 0; then����Z x

a

f (t) dt

���� � 1

16
�M � (b� a)2 :

Analytic proofs of these results were given by P.R. Beesack, [9, p. 474]. For other
results related to the Mahajani inequality see Chapter XV of [9].
In this paper some similar results are obtained and applied in obtaining bounds

for the quantities
��R x
a
f (t) dt

�� ;Z b

a

�����
Z x

a

f (t) dt� x� a
b� a

Z b

a

f (t) dt

�����
r

dx; r 2 [1;1)

and

sup
x2[a;b]

�����
Z x

a

f (t) dt� x� a
b� a

Z b

a

f (t) dt

����� ;
under various assumptions for the function f : [a; b]! R:
These results are also utilized to provide bounds for the µCeby�ev functional

T (f; g) :=
1

b� a

Z b

a

f (x) g (x) dx� 1

b� a

Z b

a

f (x) dx � 1

b� a

Z b

a

g (x) dx;

where f; g : [a; b] ! C are Lebesgue integrable functions, in terms of the shifted
integral means:

1

b� a

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt

with r 2 [1;1): This is possible due to the following representation result obtained
in [2]:

T (f; g) = � 1

b� a

Z b

a

 Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

!
f 0 (x) dx;

that holds for g Lebesgue integrable and f absolutely continuous on [a; b] :
For recent results on bounding the µCeby�ev functional T (�; �) see [2], [3] and [5]

where further references are provided.

2. The Results

The following result may be stated:

Theorem 1. Let f : [a; b]! C be a Lebesgue measurable function and p : [a; b]!
[0;1) a Lebesgue integrable weight with

R b
a
p (t) dt = 1: For any r > 1 and x 2 [a; b] ;

we have the inequality:

(2.1)
Z x

a

p (t) jf (t)jr dt+

���R ba p (t) f (t) dt� R xa p (t) f (t) dt���r�
1�

R x
a
p (t) dt

�r�1 �
Z b

a

p (t) jf (t)jr dt:

In particular,

(2.2)
Z x

a

jf (t)jr dt+

���R ba f (t) dt� R xa f (t) dt���r
(b� x)r�1

�
Z b

a

jf (t)jr dt:
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Proof. Obviously,

(2.3)
Z b

a

p (t) f (t) dt�
Z x

a

p (t) f (t) dt =

Z b

x

p (t) f (t) dt

for any x 2 [a; b] :
Utilising the Hölder inequality, we have for r > 1; 1r +

1
q = 1 that�����

Z b

x

p (t) f (t) dt

�����(2.4)

�
 Z b

x

p (t) dt

! 1
q
 Z b

x

p (t) jf (t)jr dt
! 1

r

=

 Z b

a

p (t) dt�
Z x

a

p (t) dt

! 1
q
 Z b

a

p (t) jf (t)jr dt�
Z x

a

p (t) jf (t)jr dt
! 1

r

=

�
1�

Z x

a

p (t) dt

� 1
q

 Z b

a

p (t) jf (t)jr dt�
Z x

a

p (t) jf (t)jr dt
! 1

r

for each x 2 [a; b] :
Utilising (2.3) and (2.4) and taking the power r; we get�����
Z b

a

p (t) f (t) dt�
Z x

a

p (t) f (t) dt

�����
r

�
�
1�

Z x

a

p (t) dt

� r
q

 Z b

a

p (t) jf (t)jr dt�
Z x

a

p (t) jf (t)jr dt
!
;

which gives the desired inequality (2.1). �

Corollary 1. With the assumptions of Theorem 1 and if
R b
a
p (t) f (t) dt = 0; then

(2.5)
1 +

�R x
a
p (t) dt

�1�r �
1�

R x
a
p (t) dt

�r�1�
1�

R x
a
p (t) dt

�r�1 �
����Z x

a

p (t) f (t) dt

����r
�
Z b

a

p (t) jf (t)jr dt

for any x 2 [a; b] :

Proof. Since
R b
a
p (t) f (t) dt = 0; then, by (2.1), we have

(2.6)
Z x

a

p (t) jf (t)jr dt+
��R x
a
p (t) f (t) dt

��r�
1�

R x
a
p (t) dt

�r�1 � Z b

a

p (t) jf (t)jr dt

for any x 2 [a; b] :
Utilising Hölder�s inequality for r > 1; 1r +

1
q = 1; we have����Z x

a

p (t) f (t) dt

����r � �Z x

a

p (t) dt

� r
q
Z x

a

p (t) jf (t)jr dt(2.7)

=

�Z x

a

p (t) dt

�r�1 Z x

a

p (t) jf (t)jr dt:



4 P. CERONE AND S.S. DRAGOMIR

Combining (2.6) with (2.7), we get the desired result (2.5). �

Remark 1. If
R b
a
f (t) dt = 0; then from inequality (2.2) we get the following result

as well:

(2.8)
1 + (x� a)1�r (b� x)r�1

(b� x)r�1
�
����Z x

a

f (t) dt

����r � Z b

a

jf (t)jr dt;

or, equivalently

(2.9)

����Z x

a

f (t) dt

���� �
 

(b� x)r�1

1 + (x� a)1�r (b� x)r�1

!1=r
�
 Z b

a

jf (t)jr dt
!1=r

;

which is a Mahajani type result.

The following result is of interest:

Corollary 2. Let g : [a; b] ! C be a Lebesgue integrable function and p : [a; b] !
[0;1) an integrable weight with

R b
a
p (t) dt = 1: Then

(2.10)
1 +

�R x
a
p (t) dt

�1�r �
1�

R x
a
p (t) dt

�r�1�
1�

R x
a
p (t) dt

�r�1
�
�����
Z x

a

p (t) g (t) dt�
Z x

a

p (t) dt �
Z b

x

p (t) g (t) dt

�����
r

�
Z b

a

p (t)

�����g (t)�
Z b

a

p (s) g (s) ds

�����
r

dt;

for any x 2 [a; b] :
In particular,

(2.11)
1 + (x� a)1�r (b� x)r�1

(b� x)r�1
�
�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
r

�
Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt;

for each x 2 [a; b] :

The proof is by Corollary 1 applied for f (t) = g (t)�
R b
a
p (s) g (s) ds ; t 2 [a; b] :

Then inequality (2.11) follows by (2.8) on choosing f (t) = g (t)� 1
b�a

R b
a
g (s) ds:

A similar result concerning the supremum of the weight can be stated as well:

Proposition 1. Let p; f be as in Theorem 1. Then we have the inequality

(2.12)
Z x

a

jf (t)j dt+

���R ba p (t) f (t) dt� R xa p (t) f (t) dt���
sup
t2[x;b]

p (t)
�
Z b

a

jf (t)j dt

for any x 2 [a; b] :
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Proof. We have�����
Z b

a

p (t) f (t) dt�
Z x

a

p (t) f (t) dt

����� =
�����
Z b

x

p (t) f (t) dt

�����
� sup

t2[x;b]
p (t)

Z b

x

jf (t)j dt

= sup
t2[x;b]

p (t)

"Z b

a

jf (t)j dt�
Z x

a

jf (t)j dt
#
;

which easily implies (2.12). �

Corollary 3. If p and f are as in Corollary 1, then we have

(2.13)

sup
t2[a;x]

p (t) + sup
t2[x;b]

p (t)

sup
t2[x;b]

p (t)

����Z x

a

p (t) f (t) dt

���� � Z b

a

jf (t)j dt;

for each x 2 [a; b] :

Proof. Since

(2.14)

����Z x

a

p (t) f (t) dt

���� � sup
t2[a;x]

p (t)

Z x

a

jf (t)j dt

for any x 2 [a; b] and (2.12) becomes, under the assumption that
R b
a
p (t) f (t) dt = 0;

(2.15)
Z x

a

jf (t)j dt+
��R x
a
p (t) f (t) dt

��
sup
t2[x;b]

p (t)
�
Z b

a

jf (t)j dt;

hence by (2.14) and (2.4) we deduce the desired result (2.13). �

Corollary 4. If p; g are as in Corollary 2, then

(2.16)

sup
t2[a;x]

p (t) + sup
t2[x;b]

p (t)

sup
t2[x;b]

p (t)

�����
Z x

a

p (t) g (t) dt�
Z x

a

p (t) dt �
Z b

x

p (t) g (t) dt

�����
�
Z b

a

�����g (t)�
Z b

a

p (s) g (s) ds

����� dt;
for any x 2 [a; b] :

The following result holds as well.

Proposition 2. With the above assumptions for f and p we have

(2.17)
Z x

a

p (t) jf (t)j dt+
�����
Z b

a

p (t) f (t) dt�
Z x

a

p (t) f (t) dt

����� �
Z b

a

p (t) jf (t)j dt

for any x 2 [a; b] :
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Proof. We have�����
Z b

a

p (t) f (t) dt�
Z x

a

p (t) f (t) dt

����� =
�����
Z b

x

p (t) f (t) dt

�����
�
Z b

x

p (t) jf (t)j dt

=

Z b

a

p (t) jf (t)j dt�
Z x

a

p (t) jf (t)j dt;

which is clearly equivalent to (2.17). �

Corollary 5. If p and f are as in Corollary 1, then

(2.18) 2

����Z x

a

p (t) f (t) dt

���� � Z b

a

p (t) jf (t)j dt

for any x 2 [a; b] :

Corollary 6. If p; g are as in Corollary 2, then

(2.19)

�����
Z x

a

p (t) g (t) dt�
Z x

a

p (t) dt �
Z b

x

p (t) g (t) dt

�����
� 1

2

Z b

a

p (t)

�����g (t)�
Z b

a

p (s) g (s) ds

����� dt:
Remark 2. If in Corollary 6 we choose the uniform weight p (t) = 1

b�a ; t 2 [a; b] ;
then (2.19) becomes:

(2.20)

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

����� � 1

2

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

����� dt;
for each x 2 [a; b] :

The inequality (2.20) can be seen as the limiting case of (2.11) where r ! 1;
r > 1:

Remark 3. We observe that (2.20) produces the following Mahajani type inequality,
which is, in a sense, the limiting case of (2.9) for r ! 1; r > 1 :

(2.21)

����Z x

a

f (t) dt

���� � 1

2

Z b

a

jf (t)j dt;

provided
R b
a
f (t) dt = 0:

3. Applications for Grüss Type Inequalities

For two Lebesgue integrable functions f; g : [a; b] ! R consider the µCeby�ev
functional:

(3.1) T (f; g) :=
1

b� a

Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt � 1

b� a

Z b

a

g (t) dt:

In 1934, G. Grüss [6] showed that

(3.2) jT (f; g)j � 1

4
(M �m) (N � n) ;
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provided m;M;n;N are real numbers with the property

(3.3) �1 < m � f �M <1; �1 < n � g � N <1 a.e. on [a; b] :

The constant 1
4 is best possible in (3.2) in the sense that it cannot be replaced

by a smaller one.
Another lesser known inequality for T (f; g) was derived in 1882 by µCeby�ev [4]

under the assumption that f 0; g0 exist and are continuous on [a; b] ; and is given by

(3.4) jT (f; g)j � 1

12
kf 0k1 kg

0k1 (b� a)
2
;

where kf 0k1 := supt2[a;b] jf 0 (t)j <1:
The constant 1

12 cannot be improved in general.
µCeby�ev�s inequality (3.4) also holds if f; g : [a; b] ! R are assumed to be ab-

solutely continuous and f 0; g0 2 L1 [a; b] :
In 1970, A.M. Ostrowski [11] proved, amongst others, the following result that

is in a sense a combination of the µCeby�ev and Grüss results:

(3.5) jT (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided f is Lebesgue integrable on [a; b] and satisfying (3.3) while g : [a; b] ! R
is absolutely continuous and g0 2 L1 [a; b] : Here the constant 18 is also sharp.
In 1973, A. Lupaş [7] (see also [10, p. 210]) obtained the following result as well:

(3.6) jT (f; g)j � 1

�2
kf 0k2 kg

0k2 (b� a) ;

provided f; g are absolutely continuous and f 0; g0 2 L2 [a; b] :
Here the constant 1

�2 is the best possible as well.
In [2], P. Cerone and S.S. Dragomir proved the following inequalities:

(3.7) jT (f; g)j �

8>>>>><>>>>>:

inf

2R

kg � 
k1 � 1
b�a

R b
a

�� �f (t)�� dt
inf

2R

kg � 
kq � 1
b�a

�R b
a

�� �f (t)��p dt� 1
p

where p > 1; 1
p +

1
q = 1;

where

�f (t) := f (t)� 1

b� a

Z b

a

f (s) ds; t 2 [a; b] :

For 
 = 0; we get from the �rst inequality

(3.8) jT (f; g)j � kgk1 � 1

b� a

Z b

a

�� �f (t)�� dt
for which the constant 1 cannot be replaced by a smaller constant.
If m � g � M for a.e. x 2 [a; b] ; then



g � m+M
2




1 � 1

2 (M �m) and by the
�rst inequality in (3.7) we can deduce the following result obtained by Cheng and
Sun [5]

(3.9) jT (f; g)j � 1

2
(M �m) � 1

b� a

Z b

a

�� �f (t)�� dt:
The constant 12 is best in (3.9) as shown by Cerone and Dragomir in [3].
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For r > 1; we de�ne

I (r) :=

Z b

a

[(b� x) (x� a)]r�1

(b� x)r�1 + (x� a)r�1
dx:

For r = 2; we have

(3.10) I (2) =
1

b� a

Z b

a

(b� x) (x� a) dx = (b� a)2

6
:

For r > 2; since the inequality

(b� x)r�1 + (x� a)r�1

2
�
�
(b� x) + (x� a)

2

�r�1
=

1

2r�1
(b� a)r�1

holds, then

(b� x)r�1 + (x� a)r�1 � 22�r (b� a)r�1 ; x 2 [a; b] ;

and so

I (r)(3.11)

� 2r�2

(b� a)r�1
Z b

a

[(b� x) (x� a)]r�1 dx

� 2r�2

(b� a)r�1
Z 1

0

(b� (1� t) a� tb)r�1 ((1� t) a+ tb� a)r�1 (b� a) dt

=
2r�2

(b� a)r�1
Z 1

0

(b� a)r�1 (1� t)r�1 (b� a)r�1 tr�1 (b� a) dt

= 2r�2 (b� a)r B (r; r) ; r � 2;

where B (:; :) is the well known Euler beta function.
A di¤erent possibility to bound I (r) is by utilising the inequality between the

harmonic and geometric means, namely

2��

�+ �
�
p
��; �; � > 0:

Therefore

(b� x)r�1 (x� a)r�1

(b� x)r�1 + (x� a)r�1
� 1

2

q
(b� x)r�1 (x� a)r�1; r > 1

for x 2 [a; b] ; which gives by integration

I (r) � 1

2

Z b

a

(b� x)
r�1
2 (x� a)

r�1
2 dx(3.12)

=
1

2
(b� a)r

Z 1

0

t
r�1
2 (1� t)

r�1
2 dt

=
1

2
(b� a)r B

�
r + 1

2
;
r + 1

2

�
for r > 1:
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Figure 1. The plot of 2r�2B (r; r) and 1
2B
�
r+1
2 ;

r+1
2

�
for r � 2:

Remark 4. If we compare 2r�2B (r; r) with 1
2B
�
r+1
2 ;

r+1
2

�
for r � 2; using the

Maple computer package, we observe that the bound provided by (3.11) for I (r) is
better than the one provided for (3.12). However, the second one is also valid for
r 2 (0; 1) : The plot concerning the variations of 2r�2B (r; r) and 1

2B
�
r+1
2 ;

r+1
2

�
on

[2;1) is depicted in Figure 1. However, we do not have an analytic proof to show
that

2r�2B (r; r) � 1

2
B

�
r + 1

2
;
r + 1

2

�
for any r 2 [2;1):

The following lemma may be stated.

Lemma 1. For r > 1 we have the inequality

(3.13)
Z b

a

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
r

dt

� I (r)
Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt:

In particular:

(3.14)
Z b

a

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
2

dt

� (b� a)2

6

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt:
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The proof follows by the inequality (2.17) which is equivalent with

(3.15)
Z b

a

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
r

dx

� (b� x)r�1 (x� a)r�1

(b� x)r�1 + (x� a)r�1
Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt

for any x 2 [a; b] :
Also, if we take the supremum over x 2 [a; b] in (3.15) for r = 2; then we get

(3.16) sup
x2[a;b]

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
2

� b� a
4

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt:

Therefore the following lemma may be stated:

Lemma 2. With the above assumptions, we have

(3.17) sup
x2[a;b]

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

�����
� (b� a)

1
2

2

0@Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt

1A 1
2

:

Also, on utilising the inequality (2.20), we get the following result as well:

Lemma 3. With the above assumptions, we have

(3.18)
Z b

a

�����
Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt

����� dx
� 1

2
(b� a)

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

����� dt:
We can now state the following result that provides upper bounds for the absolute

value of the µCeby�ev functional T (f; g) :
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Theorem 2. Let f : [a; b]! C be an absolutely continuous function and g : [a; b]!
C a Lebesgue integrable function on [a; b] : Then:

(3.19) jT (f; g)j �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

1
2

R b
a
jf 0 (x)j dx

�
1
b�a

R b
a

���g (t)� 1
b�a

R b
a
g (s) ds

���2 dt� 1
2

1
2 � sup

x2[a;b]
jf 0 (x)j

R b
a

���g (t)� 1
b�a

R b
a
g (s) ds

��� dt
[I (r)]

1
r

�
1
b�a

R b
a

���g (t)� 1
b�a

R b
a
g (s) ds

���r dt� 1
r

�
�

1
b�a

R b
a
jf 0 (x)jq dx

� 1
q

where r > 1; 1
r +

1
q = 1:

In particular, for r = 2; we have

(3.20) jT (f; g)j �
p
6

6
(b� a)

0@ 1

b� a

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt

1A 1
2

�
 

1

b� a

Z b

a

jf 0 (x)j2 dx
! 1

2

:

Proof. Utilising the identity (2.13) from [2], namely,

T (f; g) = � 1

b� a

Z b

a

�G (x) f 0 (x) dx;

where

�G (x) =

Z x

a

g (t) dt� x� a
b� a

Z b

a

g (t) dt; x 2 [a; b] ;

we have

jT (f; g)j � 1

b� a

Z b

a

�� �G (x)�� jf 0 (x)j dx =: T:
Using Lemma 2, we have

T � sup
x2[a;b]

�� �G (x)�� � 1

b� a

Z b

a

jf 0 (x)j dx

� (b� a)
1
2

2
� jf 0 (x)j dx

0@ 1

b� a

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt

1A 1
2

=
1

2
�
Z b

a

jf 0 (x)j dx

0@ 1

b� a

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
2

dt

1A 1
2

;

and the �rst inequality in (3.19) is proved.
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Utilising Lemma 3, we have

T � sup
x2[a;b]

jf 0 (x)j � 1

b� a

Z b

a

�� �G (x)�� dx
� 1

2
sup
x2[a;b]

jf 0 (x)j
Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

����� dt;
which proves the second inequality in (3.19).
Now, from Hölder�s inequality and Lemma 1, we also have

T � 1

b� a

 Z b

a

�� �G (x)��r dx! 1
r
 Z b

a

jf 0 (x)jq dx
! 1

q

� 1

b� a

"
I (r) �

Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt

# 1
r
 Z b

a

jf 0 (x)jq dx
! 1

q

=
1

b� a [I (r)]
1
r

"Z b

a

�����g (t)� 1

b� a

Z b

a

g (s) ds

�����
r

dt

# 1
r
 Z b

a

jf 0 (x)jq dx
! 1

q

and the last part of (3.19) is also proved. �

Remark 5. It is an open question whether or not the constants 1
2 in (3.19) andp

6
6 in (3.20) are best possible.
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