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ON SOME INEQUALITIES IN NORMED LINEAR SPACES

S.S. DRAGOMIR

ABSTRACT. Upper and lower bounds for the norm of a linear combination of
vectors are given. Applications in obtaining various inequalities for the quan-
tities |12/ |lzll —y/ lyllll and |l2/ llyl — y/ llzllll, where @ and y are nonzero
vectors, that are related to the Massera-Schaiffer and the Dunkl-Williams
inequalities are also provided. Some bounds for the unweighted Cebysev func-
tional are given as well.

1. INTRODUCTION

In [9], L. Maligranda has obtained the following interesting inequality for two
nonzero vectors z,y in a real or complex normed linear space (X, |-]|) :

A | et 162 111
el Myl max {[z]|, [[y][}

Notice that, this inequality provides a refinement for the celebrated Massera-Schaffer
inequality [10]:

(1.1)

x oy 2]z —yll
(12) I~ il = e
el Myl — max {{l]l, [lyll}
which, in its turn, is a refinement of the Dunkl- Williams inequality [7)
A4l —
(1.3) Ty ’ < A=yl
el Ayl Nzl +

More recently, in order to provide a lower bound for the quantity ||/ ||z| — v/ |lyll|l s
P.R. Mercer obtained in [11] the following result as well:

e = yll = lllz]l =yl
(1.4) : <z v
min (2] |y} Toll ~ Tl

In an effort to generalise the above results for n—vectors, J. Pecari¢ and R. Rajié
have obtained in [13] the following double inequality:

1l

1 " n
1.5 max Tl — il = |z
(L5) L B Tl ; j ;IH il = Tl

n n

T, 1
< E —J_|l<  min L E z
sl || 7 rettn | okl

j=1

AN

n
= > sl = llwll| ¢
j=1
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2 S.S. DRAGOMIR

for any z; € X\ {0}, where j € {1,...,n} and observed that, for n = 2, ; =
x and x9 = —y, (1.5) reduces to the Maligranda & Mercer inequalities outlined
above. They also remarked that, the following refinement of the generalised triangle
inequality obtained by M. Kato et al. in [8]

ke{l,...,n ]H

. N

(1.6) min {[|lz]} {n— D L
} =l

<Y gl = |
j=1 j=1

o
< _ J
< e Allzel} n >t

can be deduced from (1.5) as well.
We should remark that (1.6) can be also obtained as a particular case from the
author’s recent result established in [1]

Lj

25l

-1
(1) (el |3l - |5
J= J=

p
n

n
> P =0t >
j=1 j=1

p
n

n
_ T
= min (g} |3l = |3
> min (el | 2 el = 3 ,

25l

where p > 1 and n > 2.

Notice that, in [1], a more general result for convex functions has been obtained
as well.

Motivated by the above results, we establish in this paper some upper and lower
bounds for the more general quantity szzl ozjxjH where o, j € {1,...,n} are
scalars in K (K=C,R) and z;, j € {1,...,n} are vectors in the normed linear
space . For a; = ||z;|| with z; € X\ {0}, j € {1,...,n} we obtain a result which
is similar to (1.5). For the case of two vectors we recapture Maligranda’s result
(1.1) and provide various inequalities for the dual expression ||z/||y|l —y/ ||z||]]
with z,y € X\ {0} . Some bounds for the unweighted Cebysev functional are given
as well.

2. INEQUALITIES FOR n— VECTORS

The following result may be stated.
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Theorem 1. Ifx, € X and o €K, k € {1,...,n}, then
(2.1) pemax gzl =D lagl ok — ;) p <[> ey
ot =1 j=1 j=1

n n
SRR I EARS SIS
< omin SIS el + 3 lagl o —
Jj=1 Jj=1

Proof. For any k € {1,...,n}, we have

(2.2) Z ;= Zaj Tr + Z a; (z; —xg) .
j=1 j=1 j=1

Taking the norm in (2.2) and using the triangle inequality we have successively:

n n
<D aj lzkl + > lag] e — a4l
j=1 j=1

for any k€ {1,...,n}.
Taking the minimum over % in (2.3) we deduce the second inequality in (2.1).
From (2.2) we also have

n n n
E a2 = E aj; | @, — E aj (zp — ;).
=1 =1 =1

Taking in this equality the norm and using the continuity property of the norm, we
have

(2.4) Zajwj > Zaj g — Zaj (xr — ;)
j=1 j=1

Y

n n
Zaj || — Zaj (xr — ;)
j=1

j=1
> 1> e lwll = 3l lla — 511
j=1 j=1
for each k € {1,...,n}.
Taking the maximum in (2.4) we deduce the first part of (2.1). I

Remark 1. If there exists an r > 0 such that ||z; — x| < 7| zk|| for each j,k €
{1,...,n}, then we get from the second inequality in (2.1) that

n n n
(2.5) Dol < ke{ﬂlﬁn " el | [D s+ oyl
j=1 j=1 j=1
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Moreover, if aj € K, j € {1,...,n} are such that

n n
D[z oyl
j=1 j=1

(and in this case r should be in (0,1)) then the opposite inequality

(2.6) max |xk|| Zaj +r2|aj| < Zajmj
j=1

also holds.

Corollary 1. For any nonzero vectors xx € X, k € {1,...,n}, we have the in-
equalities:
[l — 2| -
(2.7) max |EAA <
ke{l,...n} Z II%II Z [25]] ; |~%||

25l

n
< min |xk||z +Z et
e min E ]|| T

and

n
(2.8) | max IIwkIIZII%II ZH%HII%—%II <D llasl e
o

j=1

n n
< min il llzsll + 3 gl llzs — 2
ey g ol 2l + 2 bl ey —

3. INEQUALITIES FOR TwO VECTORS

The case for two vectors is of interest due to the fact that some similar inequalities
obtained in the past by several authors have been applied in investigating various
problems in the Geometry of Banach spaces, including the characterization problem
of strict convexity and the characterization of inner product spaces in the larger
class of normed spaces.

Lemma 1. For any o, 0 € K and z,y € X we have

B0 S [zl + [yl le+ B8] = (el + 18] |z = w]l]

1
+ 5 lla+ Bzl = iyl + (el = 16]) llz = yll
< |laz + By||

[l + BIlz ]l + 11yl + (laf + 181) lz = ]l
- 5 llae+ BI (]l = [lyl]) = (el = 18] lz = ylII -

N |

l\.’)M—l
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Proof. If we choose in Theorem 1, a3 = a1, as = 8, x1 = = and 2 = y, then we
get

(3.2)  max{[lz||a+ 5] = 8]z =yl lyll |-+ B8] — [l lz — ]I}
< |laz + By||
< min {|[z]| |+ 8] + 8] |z =yl [yl |+ 5] + |af [z = y]]}-

Utilising the properties for real numbers

1 1
max{a,b} ==[a+b+]a—b]] and max{a,b}==[a+b—|a—0b|],a,bER
2 2

we have:

max {[|z|l |o + 8] = 8] [l =yl , [yl la + B] = |e [l =y}
1
= 5 [l + Nyl o+ 81 = (el +16]) [lz = ]I

1
+ 5 lla+ Bzl = llyl) + (laf = 18]) |z -yl

and

min {|[zf| e + B[ + [B] [z = yll, [yl | + Bl + |af = — I}
1
= 5 lla+ Bzl + llyl) + (ol + 160) llz = yll]

1
= 5 lla+ 81zl = llyll) = (ol = 18] [l= = Il

which, by (3.2) produces the desired result (3.1). i

The following particular cases are of interest:

Corollary 2. If a, 8 € K with |o| = |3| = 1, then

1 1
(3:3)  llaz + Byl = 5 (lzll + Iyl lee + Bl < llz = yll = 5 la+ Bl 2] = llylll,

for any x,y € X.

Corollary 3. If x,y € X with ||z|| = |ly|| = 1, then

(3.4) e + Byll — e + Bl| < max{lal, [B]} [l —yll,
for any o, B € K.

Corollary 4. For any two nonzero vectors z,y € X we have:

%‘_yH<

]l Iyl

lz = yll + [ll=]| — Iyl

(3.5) ‘ max {[z[|, [[y][}
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Proof. We choose in the second inequality from (3.2) o = i and § = then

llll B Hyll’
we get

x Yy
(3.6) —‘
B
Smm{WﬂHﬂllym+HthmmmwIWH+|xy?
B Wl Tl o Tl
Uz — oll + ] m1'{ ! 1}
=z —y z|| = |ly||]] min § —, —
R

_ Nz =yl + [l = [yl
max {[|z|, [lyl[}

and the inequality (3.5) is proved. I

Remark 2. The inequality (5.5) has been firstly obtained by L. Maligranda in [9]
on utilising a different approach.

Corollary 5. For any two nonzero vectors x,y € X we have the reverse of the
triangle inequality

(3.7) m<>ww+mr—x+m<\””—”memmﬂ|ym

Proof. If we write the first inequality in (3.2) for —y and for a = %, B =,
then we get

aX{ ]l (lll + 1yl N+l lyll Al + 1yl ||z+y||}
[l i Iyl el llyl [l]
<

Remark 3. In [9], P.R. Mercer has obtained the following lower bound for the
quantity ‘

]|

which is clearly equivalent to (3.7). I

z _ Yy |l.
lzll flwll]] -

lz =yl — [l = llwlll _
(3.8) .
min { ||z, [[y[|}

<5 -l
for any x,y € X\ {0}.

In order to compare the lower bounds provided by (3.7) and (3.8) consider By, By :
X2 >R

By (z,y) = [zl + [lyll = llz + vl
and
By (z,y) = = = yll = [llzll = llylll -
Now, we observe that
By (z,y) = Bi (z,y) = llz =yl + llz + yll = [l + Iyl + [zl = [ll]
= [lz =yl + llz + yl — 2min {|[=[|, [lyl|} >0

for any x,y € X. Therefore the Mercer result is better than (3.7) in providing a

lower bound for the quantity ‘

z Y
=zl Myl
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In the following we consider the dual problem, namely the problem of finding
upper and lower bounds for the quantity

where z,y € X\ {0} .
The first result that provides a lower bound is incorporated in

€ Y

Iyl =l

Theorem 2. For any two nonzero vectors x,y € X we have:

z Y

(3.9) 0< Tl Tel

e+l e+l <’
min {{|z[, [yl[}  max {[lz], [ly[[} ~

] ‘

Proof. Taking o = ﬁ and = H%II in the left side of the inequality (3.2) we have

)

rnax{lﬂvll Ul + Nyl Nl =yl [yl Clzll +lyl) Iw—yll}

ENr Wl Tl Tl
1 [(Hxn R e y||>}
2 ENr el Tl
L |Gl D) (el = ), iz — ) (el ~ ||y||>‘
2 ENr Tl T
1 (el el Qe+ D) 1= gl el + )
2 ENr 2 el Tl
1 el =yl L el = lwll
S e 7 gl 7 Y
2 Tl Tyl 2 TelTol
1l +
B el ] R T R T
2 TallTol
1 Jz—y
_L el + gl = Nl = )
2 Tl Tl
1 1 1 1
=<||x||+|y||>max{,}—nx—ynmin{,}
ERE ERE
lafl + lls] o -yl

min {[|lz], [y} max {2, [lyl}
Then, by the first inequality in (3.2) we get

T
N yH
ol Tyl

el +llyll [z =yl <’
min {|[z]|, ly[}  max{[l], [[yl} —

which clearly implies (3.9). I

Theorem 3. For any two nonzero vectors x,y € X we have

£ Y

Iyl [l

(3.10) ’

‘< [zl = [yl lz =yl
— min{|lz]|, |lyll}  max{[l]l, [[y]}
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Proof. Taking o = ﬁ and 3 = Hlll in the right side of (3.2) we have successively
Ml = Jiwlll - 1 Wl = [yl
min 4 ||z lz =yl lyll - ;o |z —yll
{ Tl Twl Tl |l |yl [yl
1 {(lle gDl = fiylll e =yl Al + IIyI)]
2 !l [yl |l |yl
1 ’ (Ul = MylD) Ml = Myl [z =yl (=] = ||y||)‘
2 |l |yl ]| Iyl
_ Ll + ylD [l =yl 10z =yl Azl + [lyl)
2 ]| [yl 2 ]| [yl
L[] — llyll]
= s o =yl =zl = llylll]
2 [lzlHyll
_ Ll Ny D Ml =Myl 2l =yl - [l =yl
2 | [yl 2 [l 1yl
4 Lz =yl il + Nyl _ 1l =yl il = lyll
2 ]| Iyl 2 [l Iyl
L[] — llyll]
=5 Ul + i+ ] = llyll]]
2 |yl
1|z —yl
+5 el + lyll = [zl = 1yll]
2l lyll
el = Iyl mas{ o o b+ e = i { 72 o
= |||z|| = |ly||| max —y|| min ¢ —, —
(1 Tyl ] Iy
]l = [yl = —yll

~ min {[lzf], Iy} max {[l2[], [ly[}’
and by the second part of (3.2) we get the desired result (3.10). I

4. BounDs FOR THE CEBYSEV FUNCTIONAL

For 8 = (B1,...,8,) € K*and y = (y1,...,yn) € X", we consider the un-
weighted Cebysev functional defined by

1 « 1 & 1 —
ZEZQJ'%'*%Z@]"EZ%'
Jj=1 j=1 j=1

We remark that this functional has been considered previously by the author and
some bounds have been established. We recall here some simple results.
With the above assumptions for X, a and y, we have

(4.1) 1Cn (2, y)l

& (n? — 1) maxjeqr, . 1y [Aoy|maxjeqr, o1y [|Ay;]l, [6];

n—1 n—1
3 (1= 2) 250 1Aay] 32771 1Ayl (3]s

IN

2_ n—1 1/p n—1 1/q
bt (st aag ) (S lAgl)

p>1,5+ ¢ =12,
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=

where Az; = zj41 — 2; is the forward difference. Here the constants &, 1 and
are best possible in the sense that they cannot be replaced by smaller quantities.
In [5] we also have established that

1Cn (¥

maxX;e(1,..,n—1}

j n n—1
det SO Ay
( i T )\ S 1 Ay

-1 J n N M 1 1/p
1 (Zy | det( i ar YT > ) ~(Zj=1 ||ij||p)

1,01 _ .
forp>1,5+a—1,

n

J
(e st )| e 180
=1 =1

-1
2=

and

(4.2)  [|Cp (e y)l

maXj;e{1,...

Ly o= e 05 1Ay

D SANTIRES 5 PHLL RANY 03 e BT 1 0W [ N

(=)

IN
S|

1 1 _
fOI'p>1,5+E—1

LY on = A o maxieqr, oy Ay

Y

Finally, we recall the following result from [4]:
If there exists the complex numbers a, A € C such that

Re[(A—a;) (@ —a)] >0 foreach je{l,...,n}

or, equivalently,

o B)

A 1
@t ’§2|A—a| for each j € {1,...,n},

then one has the inequality:

n

1 1 1 ¢
(43) ICa By <5 1A=al- >y =~ >,
Jj=1

j=1

The constant % in the right hand side of the inequality is best possible in the sense
that it cannot be replaced by a smaller constant.

For many other results that hold for n-tuples 3 and y of real numbers we rec-
ommend the chapters devoted to Griiss and Cebysev inequalities from the books
[12] and [14].

In the following we provide other upper and lower bounds for ||C,, (8,y)|:
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Proposition 1. For any B8 and y as above, we have:

(4.4) [Cn (B,y)l

1

5 ——Zﬁl

i }{ max {||yjyk||}}~i21 5 -
-7 =

ke{l,.. je{1,..

< min ly; — yxll

ke{1,..

IN

l n n q %
min Z Iijykllpl ll > 18— % 2B ]

ke{1,.. j=1

n
1
min - — . max
ke{l,.. ,n}{"jz_:l s yk”} je{l,u.,n}{

Proof. We observe that

n

=1

Jj=1

Now, on applying the second inequality in Theorem 1 for a; = 3; — % >, B, and
xj = y;, we deduce the first part of (4.4). The second part is obvious by the Holder
inequality. U

The following result can be stated as well:

Proposition 2. For any B = (B1,...,58,) € K" andy = (y1,...,yn) € X" we
have the double inequality:

(4.5) max % Z B; —
j=1

1 & 1 &
el LRI g 18, =] lys — v

< |[Cn (B: )l

. I
< min ﬁ,zlﬁj_é
=

ke{l,...,n}

1 n
Yk — n Zyl
=1

1 n
= 23710, - 01 s - el
j=1

Proof. Follows from Theorem 1 on noting that

Cn(ﬁ,y)=%zn:(ﬁ ~ 1) ( —Zw)

j=1

for any t € K. 1
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Remark 4. As a particular case of interest we can state the following result:

1 — 1 — 1 —
(4.6) pcnax E;ﬂj yrﬁ;yl *E;Wﬂ”%’*yk“

(4.7) < [|Cn (Bs ¥)l

n

S8 = Sl = =318, s — el
=1 j=1

Jj=1

(4.8)

IN

min
ke{l,...,n}

S|
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