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INEQUALITIES FOR THE p-ANGULAR DISTANCE IN NORMED
LINEAR SPACES

SEVER S. DRAGOMIR

ABSTRACT. New upper and lower bounds for the p-angular distance in normed
linear spaces are given. Some of the obtained upper bounds are better than the
corresponding results due to L. Maligranda recently established in the paper
[Simple norm inequalities, Amer. Math. Monthly, 113(2006), 256-260)].

1. INTRODUCTION

In the recent paper [5], L. Maligranda has considered the p-angular distance

—1 -1
aylay] = el & =yl o

between the vectors z and y in the normed linear space (X, ||.||) over the real or
complex number field K and showed that

(L1 apla,y] < llz—y]
o py mexllelP vl e (Zoo,0) and 2,y £ O;
@ =) sty 1P € (700,0) and 2,y #0;

_ A S : .
9 @0 gaqerpnrr P €01 and 2,y £ 0;

p - [max ||z, lyl}]"~" if pe(1,00).

The constants 2—p and p in (1.1) are best possible in the sense that they cannot
be replaced by smaller quantities. As pointed out in [5], the inequality (1.1) for
p € [1,00) is better than the Bourbaki inequality obtained in 1965, [1, p. 257] (see
also [6, p. 516]):

-1
(1.2) ap [z, y] < 3plle —yll [zl + lyl]"~, =ye€X.

The following result which provides a lower bound for the p-angular distance was
stated without a proof by Guraril in [3] (see also [6, p. 516]):

(1.3) 27 |lz = yl|” < oy [, 9]

where p € [1,00) and z,y € X.
Finally, we recall the results of G.N. Hile from [3]:

]” = llyll”

4 o 3] < Ty

e =yl
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2 SEVER S. DRAGOMIR

for p € [1,00) and z,y € X with ||z|| # ||y|| , and

Il —Nlyll® e —yll
=zl =Nl 1=l Iy [P
for p € [1,00) and z,y € X \ {0} with |z| # ||yl .
The main aim of the present paper is to provide other upper and lower bounds
for the p-angular distance. Some of the obtained upper bounds are better than the
corresponding results due to Maligranda from [5].

(15) P

2. UPPER BOUNDS

We start with a lemma that provides upper bounds for the norm of the linear
combination ax + fy where «, 3 are scalars while x,y are vectors in the normed
linear space (X, ||.||) -

Lemma 1. For any o, € K and x,y € X we have

(2.1) o + Byl < [|= £ y|| max {[al, 5]} + [a — B[ min {[|z]], [[y[|}
and

(2.2) lox & By < ||l & y[ min {|a], B} + |a — B[ max {|[=]|, [ly[}
respectively.

Proof. By the triangle inequality we have
lex + Byl < laf |z +yll + |a = Bl |yl

and
o + Byll < 8] |z + yll + oo = Bl ||z
which implies the following inequality that is of interest in itself
(2.3) oz £ Byl
< min{lo| |z £yl + o= Bl yll, 18] |z £yl + [ = Bl |||} = L.

However

(2.4) I <min{||z £ yl|max{[al|, |8]} + |a = G [yl
o+ y[| max {|al, [B[} + o = B [l«]|}
= [lz £ yllmax {|af, 5]} + [ = B min {[l], [[y[[}
and the inequality (2.1) is proved.
Similarly,
(2.5) I <min{|z £y laf+|a = flmax{|], [y},
[+ yl[ 5] + |a — Bl max {[|z|, [ly[|}}
= [l £yl min {|af, 6]} + [a — Bl max {||z]|, ly[l}

and the proof is complete. |
By adding the above inequalities one can obtain the following result:

Corollary 1. For any o, € K and x,y € X we have
o] + 18]

2]l + [lyll
. :

(26) o & By < %y - .

+la—pl-
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The following result concerning upper bounds for the p-angular distance holds:

Theorem 1. For any two nonzero vectors x,y in the normed linear space (X, ||.]|)
we have

(2.7) ap[z,y]

—1 —1 —1 .
|z =yl [max {||z, [lyll}]" + ‘lellp — lyll” (mln{\lxll Ayl
if p € (1,00);
llo—yll 1=p _ qyonl=p| . { l=” _llyll” }
< (el w7 T ‘qu lyll™" | min | im=s o=
- if pe[0,1];
==yl i [ i 1
min{[lL 1M " max{ el =7 [yl* =7, Iyl =7 ll=[*—7}
ifp S (700’0) 5
and
(2.8) aylz,y
. —1 —1 —1
| =yl [min { |||, [yl }]"~ + ‘lell” — Iyl )max{\lxll Ayl
if p € (1,00);
llo—yll 1=p 1 1=p { l=” llyll” }
< a7 ‘Hx” lyll™" | max | 5=, o=
- if pe[0,1];
l—y] [l =7 — Iyl 7|
max ([l [y 3™7 " min{ (=l =7 [yl llyl 7 ll=[ "7 }
ifp S (700’0) 5
respectively.

Proof. We use the inequality (2.1) in which we choose a = [|z[[P~" and 3 = ||y||” "
to get
(2.9) oplz,y
. -1 -1 —1 —1
< e — g min {lP P+ e e ] )
It is well known that, for a,b > 0 and ¢ € R, we have
[min (max) {a,b}]? if ¢ > 0;

(2.10) min (max) {a?, b7} =
if g <0.

[max(min){a,b}] "9

The case when p € (1,00) in (2.7) is obvious from (2.9).
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Now, if we assume that p < 1, then by (2.10) we can state that
. -1 -1 -1 -1
(211)  [lo =yl min {2l gl § 4 2177 = yl” | max ()l i}

1— 1—
e =yl [l = iyl
= gy e el

(max {|[z]|, [yl } [
=" llyll”
max - —p
gl [l

= — yll ‘ 1-p 1-p
= = (el =yl
1
max {{l]] , [ly [}~
which together with (2.9) produces the second and the third part of (2.7).
The proof of (2.8) can be done in a similar way by utilising (2.2) and the details
are omitted. |

The following coarser but perhaps more useful result can be stated as well:

Corollary 2. For any two nonzero vectors x,y in the normed linear space (X, ||.]|)
we have

(2.12) ay [z,

P—1+ p—1 —1 —1 +
2 —yl| - [l]] 2Hy\| Pt = |yl ‘ . H/IHQII?/H

ifp € [LOO);

IN

SOOI 3 1 ‘ 1-p _ 1—p‘, [ESES]
Iz =yl == + [l Iyl 2l TPy
if p€ (—o0,1) .

3. LOoWER BOUNDS

The following lemma may be stated as well:

Lemma 2. For any two vectors x,y € X and two scalars o, € K we have the
inequalities

(3.1) | £ y||min {|af, |8} — o — Blmin {[lz], [ylI} < oz £ By|
and

(3.2) [l + yllmax {|al, [B]} — |a — Blmax {|[z[], [lyl|} < [laz + By],
respectively.

Proof. Utilising the triangle inequality we obviously have

laf |z + yll — [a = Bl lyll < [laz + Byl
and

1Bz + yll = la = Bl lz]| < [lez + By|l
which implies the following inequality that is of interest in itself

(3.3)  max{lallz £yl —la =Byl 6]z £yl — la = 6]z} < llax+ Byl

and holds for any two vectors x,y € X and two scalars o, § € K.
Now the proof goes like in the Lemma 1 and the details are omitted. I



INEQUALITIES FOR THE p-ANGULAR DISTANCE 5

By adding the above two inequalities we can get the following lower bound that
might be more convenient for some applications:

Corollary 3. For any two vectors x,y € X and two scalars a, 8 € K we have

Aol 418l

| el + Nyl
2

(3.4) e+l :

— B < oz £ Byl -

The following result providing lower bounds for the p-angular distance may be
stated as well:

Theorem 2. For any two nonzero vectors x,y € X we have the lower bounds for
the p-angular distance:

(3:5) ap[z,y]

. —1 —1 -1 .
o =yl i ] gl = [l = gl min {2l )}
if p € (1, 00);
levl gl — (P i { 7 Ll
> a2y "x”f |[|y”] ’mm{uyuw’nwlw}
- if p€ (0,1];
lo—oll [
max {2l w7~ max{ el 7wl o] }
ipr(—O0,0);
and
(3.6) aplz,y]
-1 -1 -1
o =yl fma ] g~ = [l = P~ maox el i}
if p € (1,00);
el a7 = e { ey, 42
> fmin{Jl2 g T ‘”x”_ Iyl ’max Tyl =2 Tzl =7
if pel0,1];
lz—yl| B [llz]I* == llylI* 7]
min{ll2 w37~ min{ el 2l w7 }
if p € (—0,0).

Proof. Writing the inequality (3.1) for v = [|z||”~" and g = ||y||”~" we get

37 ||l e =yl y|

. —1 —1 -1 —1 .
> Jlz = yllmin { o~ P~ = [lal” ™ = gl min {2l )}

which easily implies (3.5).
The second part follows from (3.2) and the details are omitted. I
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Corollary 4. For any two nonzero vectors x,y in the normed linear space (X, ||.]|)
we have

(38) Qp [l',y]
e ] -1 -1 +
o — y)| - Ll P — )P ‘M
ifp € [1,00);
2
17p+ 1-p 1— 1— "
e = vl - b=y el — ol - s

if pe (—o0,1).
4. FURTHER NORM INEQUALITIES

Firstly, we observe that the Corollaries 1 and 3 can be encompassed in the
following result:

Proposition 1. For any two vectors x,y € X and two scalars o, f € K we have

o -QF Iﬁl‘ < lll + NIyl

(4.1) o £ Byl — [l + y] - <la=fl- =

Also the results for the p-angular distance from Corollaries 2 and 4 can be em-
bodied in:

Proposition 2. For any two nonzero wectors x,y in the normed linear space
(X, |II) we have

-1 -1
]~ + lyll”

(4.2) oy [z,y] = llz —yll-

2
Ty a1
S P
if p€[1,00) and
Jall' ™7 + iyl
(43) oy lwo) = llo — gl - T
2o iyl
o _yies] . Nzl + Dl
[ R

- —
2|zl Myl
if p € (—o0, 1), respectively.

Now, for s € [—o00,00] and a,b > 0,a # b, by following [2, p. 385], we can
introduce the s-generalised logarithmic means by

s+1 s4+1 1/s .
(m) if 5 £ —1,0, +00;
“ lngjlﬁ/l(% ) if s = —1;
L¥ (a,b) := b —a
(a,) % (37) 5 =0;
max {a, b} s = 00;
min {a, b} § = —00.

The mapping R 3 s — LI*! (a,b) is strictly increasing and (see [2, p. 386))
(4.4) min {a,b} < L (a,b) < max {a, b}
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for any s € R and a,b > 0, with a # b.
The following lemma holds:

Lemma 3. For any two nonzero vectors x,y € X we have

(4.5)  (p— 1) [min ][l [y 11"~ Il = iyl
< =l =yl < (0 = D [zl =yl max {2yl 17~

if p € (2,00),

(4.6) (p—1)

1
e (el o

. . 1
< P75 = MylP™ ] < (o= 1) ]l = [yl

[min {[|z]], |y[|}]*~

ifpe[l,2], and

1— 1—
]yl

el o7

1— 1—
<=7 = lwll- ™| < @ =p) ll=]l = llylll

4.7) (1-p)

1— 1—
" llyll ™

[min {Jl[], [y ]}]* "

if p € (—o0, 1), respectively.

Proof. If z,y € X \ {0} with ||z|| = |ly|| then the equality case is realised in all
inequalities.
If ||z|| # |ly||, then by (4.4) we have
-1 ~1
)™ — Nyl
(= 1) ([l = llyll

for p # 1,2. Observe also that

/(p—2)
min {||z]|, |y[|} < ( )> < max {{|z], [[y[|}

—1 -1
1™~ = llyl”

-1 -1
=l = llyl”

(P = 1) ([l = llyl)

(@ = 1) ([l = llylD

and the above inequality can be written as

1/(p—2)

[ 1
< maX{HﬂUH ) ||?J||}

(=) (=l = Iyl

If p > 2, then taking the power p — 2 in (4.8) produces the desired inequality
(4.5). The inequality (4.5) remains also valid for p = 2.

If p < 2 and p # 1, then on taking the power p — 2 in (4.8) we get the other two
inequalities. The details are omitted. i

(4.8) min {[|z], ly[|} <

In the following, we discuss some upper bounds for the p-angular distance that
contain as a multiplicative term the quantity |z — y||. The obtained results are
compared with the inequalities of Maligranda mentioned in the introduction.



8 SEVER S. DRAGOMIR

Case 1. For p € [2,00), we get from Lemma 3 that

—1 -1 -2
2”7 = llwl" | < (p = 1) [l — gl [max {[|[|, [ly[|}]"

for any x,y € X.
Utilising the first branch of the inequalities (2.7) and (2.8) we can state that

(4.9) a2,y < [lz -yl
e {[], 137~ [max {Jlz[|, [y} + (o — 1) min {||]|, [ly]}]

min (2] [y} + (o — 1) fmax (] 17"
(< plle =yl foa {lle] w117

for any x,y € X.
We observe that both inequalities in (4.9) are better than Maligranda’s result in
(1.1) forp € [2,00).

Case 2. Forp € [1,2), we get from Lemma 3 that
b ==yl
[min {lz||, [ly[|}

)P~ = yl” ] < (- 7
for any z,y € X \ {0}.
Utilising the first branch of the inequalities (2.7) and (2.8) we can state that

(4.10) ap [z, y] < |lz -y
max { |||, [yl + (p = 1) [min {[|z]], [ly]}}"~"

: Pl (1) mexdlizlulyl}
[in iz I3 + (0= D) G e

for any z,y € X \ {0}.

Due to the fact that the second term in the first branch of (4.10) is smaller than
(p — 1) [max {|||| , |y||}]P~"it follows that the first inequality in (4.10) is better than
Maligranda’s result in (1.1) for p € [1,2).

Now, let us denote

) —max dllll, Nyl

e e U e e e IE

and
By (w,y) := p- [max{||z|, |ly|}}"~
with x,y € X \ {0} and p € [1,2).
If we consider the difference A, (x,y) = Bq(x,y) — Bz (z,y) and plot it for
p = 3/2 and (z,y) pairs of real numbers in the box [0.2,1.5] x [0.2,1.5] (see Fig-
ure 1), then we can conclude that neither of the bounds ||x —y|| By (z,y) and

|z —y|| Bz (z,y) for ay[z,y] is always better.
Case 3. Forp € [0,1), we get from Lemma 3 that

1- 1-
" Iyl

)7 =yl P < (1= p) llz =yl — 5
[min {[|z{|, [lyl[}]""

for any z,y € X \ {0}.
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FIGURE 1. Plot of A, (z,y) for p = 3/2.

Utilising the second branch of the inequalities (2.7) and (2.8), and performing
the necessary calculations, we get that

2—p .
[min{|[z|,[ly[}]* 72’

1 +(1—p) max{|z||[yll} .

(max{[jz], Iy} 7 [min{|z|,lylI1}]>~>

(411)  aplz,y] < flo -yl x

for any x,y € X \ {0}.
We notice that Maligranda’s result from the second branch of (1.1) is better than
the both inequalities in (4.11).

Case 4. For p € (—0,0), we get from Lemma 3 that

1- 1-
"yl

[min {|z]], ly[I}]*~

1- 1-
Iz =yl | < A =p) [lz -yl

for any z,y € X \ {0}.
Utilising the third branch of the inequalities (2.7) and (2.8) and performing the
necessary calculations we get that

2—p .
[min{||z|,|ly}]* =7’
(412)  aple.y) < o — il x _—
1 . max{ ||z|],||y .
[max{||z|l,[ly[I}]* 7 +(1-p) [min{]|z|,[|y]}]*>~P°

for any x,y € X \ {0}.
Now, observe that Maligranda’s first inequality in (1.1) can be written as
2—=p)llz—yl
max { ||, ly[|} [min {[|z]], [y}
for any x,y € X \ {0}, and is better than the first inequality in (4.12).

(4.13) ap x,y] < rp,
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Finally, consider

1 max {[|z|, [[y]l}
Cl xZ, = 1— 1-— N 2_
) (max {{[z[], [|y[|}] Pt (min {[J[|, [[y[}]"7"

and 5
Cy (z,y) = ( p) —

max {[z|, [ly[|} [min {||z]], [[y/[}]
where z,y € X \ {0} and p € (—00,0). If Ty, (x,y) = Cy (z,y) — Ca(z,y) then
several numerical experiments conducted for (z,y) € R? and p € (—o0,0) have lead
us to conjecture that Maligranda’s first inequality in (1.1) is better than the second
inequality in (4.12). However, we do not have an analytic proof even in the case
of real numbers. The plot depicted in Figure 2 shows the behavior of T') (x,y) for
p=—3 and (z,y) € [0.5,1.5] x [0.5,1.5].

FIGURE 2. Plot of T, (x,y) for p = —3.
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