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A REFINEMENT OF JENSEN’S INEQUALITY WITH
APPLICATIONS FOR f-DIVERGENCE MEASURES

S.S. DRAGOMIR

ABSTRACT. A refinement of the discrete Jensen’s inequality for convex func-
tions defined on a convex subset in linear spaces is given. Application for
f-divergence measures including the Kullback-Leibler and Jeffreys divergences
are provided as well.

1. INTRODUCTION

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Holder and Minkowski inequalities, Ky Fan’s inequality
etc. can be obtained as particular cases of it.

Let C be a convex subset of the linear space X and f a convex set on C. If
p = (p1,-.-,pn) is a probability sequence and x = (z1,...,xz,) € C", then

(1.1) f <Z]h$1> < ZPJ(M%

is well known in the literature as Jensen’s inequality.
In 1989, J. Pecari¢ and the author obtained the following refinement of (1.1):

n n Ty 4+ Xy
(1.2) f <Zpi$i> < Y vt (ijleM)
i=1

015eslk41=1

- iy +
CF ()
i 1

11,0t =

§~--§Zpif($i)7
i=1

for £ > 1 and p,x as above.
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2 S.S. DRAGOMIR

If g1,...,qx > 0 with Z?:l g; = 1, then the following refinement obtained in
1994 by the author [6] also holds:

e <ZP> <X e ()

i1y =1
n
< Z Piy - --Pirf (@i, + - + qrwi,)

VLyeeny ’ikzl
n
<Y pif (@),
i=1

where 1 < k < n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the arith-
metic mean-geometric mean inequality, the generalised triangle inequality etc., see
[3]-[8].

The main aim of the present paper is to establish a different refinement of the
Jensen inequality for convex functions defined on linear spaces. Natural applica-
tions for the generalised triangle inequality in normed spaces and for the arith-
metic mean-geometric mean inequality for positive numbers are given. Further
applications for f-divergence measures of Csiszar with particular instances for the
total variation distance, x2-divergence, Kullback-Leibler and Jeffreys divergences
are provided as well.

2. GENERAL RESULTS

The following result may be stated.

Theorem 1. Let f : C — R be a convez function on the convex subset C of the
linear space X, x; € C, p; > 0,1 € {1,...,n} with Y., p; =1. Then

(2.1) f ijwj < min l(l—pk)f<zj_1pjxj_pkxk> -‘rpkf(wk)]

ke{1,...,n} 1 —pg

< % [Z (I—pr) f (Zj_lpjxj _pkxk> + Zpkf(zk)]

k=1 L —ps Pt
D=1 DjTj — Pk
< 1— J=
< hax [( pr) f < = + i f ()

IN

ijf(wj)~

In particular,

A

(2.2) f zj | < 1 min l(n -1 f (W) + f(xk)]

n ke{l,...,n}

> [(n -~ (Zﬂ'—; - ‘”’“) 3 <xk>]
k=1

k=1
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Proof. For any k € {1,...,n}, we have

ij N
ijz] PrTr = Zp]z] L ijxj =(1—px)

jTj
J#k = pﬂ J;ék = pJ J#k
s £k
which implies that
DI DTy — PRk R
23 =1 - Shmec
— Pk Z
bj 3 J#k
J#k
for each k € {1,...,n}, since the right side of (2.3) is a convex combination of the

elements x; € C, j € {1,...,n}\{k}.
Taking the function f on (2.3) and applying the Jensen inequality, we get suc-
cessively

/ (Z?—l DjT; —pk$k> g

n 1 n
ijﬂ?j < ijf(xj)
Z pj 2k Z pj 2k

J#k J#k

1—px

> pif (@) = pf (xx)
j=1
for any k € {1,...,n}, which implies

(2.4) (L—pr) f (Zj_lpjzj k—mm) + i f (k) Zpg (z5)

1-p

for each k € {1,...,n}.
Utilising the convexity of f, we also have

(2.5) a—mw<2ﬂ””;”“>+mﬂm>

1-p

> Pt — PRk n
- ¢la-p B A
j=1

1—px

for each k € {1,...,n}.
Taking the minimum over k in (2.5) utilising the fact that

min ak< ap < max o

ke{l,...n} k 1 ke{l,...n}
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and then taking the maximum in (2.4), we deduce the desired inequality (2.1). I

The following corollary may be stated as well.

Corollary 1. Let f: C — R be a conver function on the convex subset C, 0 € C,
yj € X and ¢; >0, €{1,...,n} with 37, q; = 1. If y; — 31—, quyr € C for any
je{l,...,n}, then

(2.6) f(0)

< }ce%nl,i.?n} {(1 — qk) [ . (Z ayr — yk)
Si{Z(l_Qk f[ (me—m)

<  max { (1—q) f [ lyl_yk>
ke{1,...,n}

<§n:q; <yg me)

+arf (yk - me) }
=1

+ anf (Z/k - ZQZ?JZ> }
=1 =1

+arf (yk - me) }
=1

In particular, if y; — 23"y € C for any j € {1,...,n}, then
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The above results can be applied for various convex functions related to cele-
brated inequalities as mentioned in the introduction.

Application 1. If (X, ||-||) is a normed linear space and p > 1, then the function
f:X — R, f(x) = ||z]|” is convex on X. Now, on applying Theorem 1 and
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Corollary 1 for z; € X, p; > 0,1 € {1,...,n} with > | p; = 1, we get:

p p
n
(2.8) > pjzj| < ke{l?in ) (U=pe)' 7| > pjwj — prak|| + pr [l
; =
p
< = _ . —
<= D (-m) me prak|| + > pr okl
k=1 =1 k=1
p
< (1- b
= ke?ll,ax,n} pk ijxj DeTk|| + Pk ka”

IA

n
> il
=1

T — szwz

=1

)

(2.9) m?.)in} { [(1 - pk)l PP —i—pk}

Jj=1
In particular, we have the inequality:
P P
1 n 1 . 1 n .
(2.10) EZ% < Eke{r{unn} (n—1) ij —zg| + ||zl
=t || T =1

n

A
ol =
3
S
M=
filng
QH
|
=
+
M
]
=

p

n
~ max [(n—1)"7 g z; — x| + |lzel”
n ke{l,...,n} =

1 n
=3 el
j=1

IN

IN

and

p
n
1
Tj — — E X
J n
=1

(2.11) [(n —)P 4 1] max

p n
<2
j=1

1 n
T — — E L
n
=1

5

If we consider the function h, (t) := (1 — £ PP 4+, p>1,t€0,1), then we

observe that
—1 1— D
Wy () = 1 pt ™ (1) 7 (p— )P (L= 1) 7,

which shows that h, is strictly increasing on [0,1). Therefore,

min {(1 —pr) PP +pk} = P+ (1= pm) P P,
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where p,, := i %nin pr- By (2.9), we then obtain the following inequality:
€

1,...,n

P

212)  [pm + 1—m1"’-g] max
()p(p)pke{1 _____ "

n
Ty — me
=1
n n
< ij Tj— Zplﬂcz
j=1 1=1

Application 2. Let z;,p; > 0,7 € {1,...,n} with Y1 , p; = 1. The following
inequality is well known in the literature as the arithmetic mean-geometric mean
inequality:

(2.13) ijxj > Hx?j.
j=1 j=1

The equality case holds in (2.13) iff 1 = -+ = .

Applying the inequality (2.1) for the convex function f : (0,00) — R, f(z) =
—Inz and performing the necessary computations, we derive the following refine-
ment of (2.13):

n n 1-
Zj:] P;jTj — PkXk e Pr
(2.14) Zpixi > max - x)

p

= ke{l,...,n} 1—pi
n Zn . — T 1—pi n
> H j=1PjTj — PkTk 'l‘zk
i 1—px
Spapis - ) " g
. =155 — Pklk ) )
>  min J PR s > || 2P
ke{l,....n} ( 1 —p ) k E ‘
In particular, we have the inequality:
n n—1
RS P e AT
*in >  max _ cxy
n ke{l,...,n} n—1
n—1 -
n Z";’L:l x] xk; n 1
Z H n—1 Lk
k=1
n n—1 1
n n n
S X — Tk 1
. =17j
>  min == - - Lz > v
| (FE) = (1)

3. APPLICATIONS FOR f-DIVERGENCES

Given a convex function f : [0,00) — R, the f-divergence functional

(3.1) It (p,q) = g‘h‘f (pi) :

qi
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where p = (p1,.-.,Pn), 4 = (q1,--.,qn) are positive sequences was introduces by
Csiszdr in [1], as a generalised measure of information, a “distance function” on the
set of probability distributions P™. As in [1], we interpret undefined expressions by

o=t s, of(G)=o
Of(%): lim f(Z):ahm AU

q—0+ t—oo t
The following results were essentially given by Csiszar and Korner [2]:

(i) If f is convex, then Iy (p,q) is jointly convex in p and g;
(ii) For every p,q € R}, we have

- 21D
(3.2) Ir(pa) 2> ¢f | S— |
j=1 Zj:l q]
If f is strictly convex, equality holds in (3.2) iff
Pr_P2_ _Pn
0 q2 an
If f is normalised, i.e., f (1) =0, then for every p,q € R with Y. | p; =
>, G, we have the inequality

(3-3) Iy (p,q) 2 0.

In particular, if p,q € P, then (3.3) holds. This is the well-known positive
property of the f-divergence.
The following refinement of (3.3) may be stated.

Theorem 2. For any p,q € P*, we have the inequalities

(3.4) It (p,q) > max }[(1_%”(1_22) T (]r;:ﬂ

T ke{l,..n
1|« B 1—pg . Pk
- () s (2)

. 1—pg Pk
> 1- — =0,
- ke{rnl,l.{l,n} |:< Qk) ! (1 - Qk) + (qk>:| B

provided f : [0,00) — R is conver and normalised on [0, 00).

The proof is obvious by Theorem 1 applied for the convex function f : [0,00) — R
and for the choice z; = %, i € {1,...,n} and the probabilities ¢;, ¢ € {1,...,n}.
If we consider a new divergence measure Ry (p,q) defined by

L Y
(3.5) Rf(p,ol)-—n_lkz::1(1 qk)f(l_qk>

and call it the reverse f—divergence, we observe that

(36) Rf (pa q) = If (I‘,t)
with

1-— 1—p, 1-— 1—gq,
r— P ZTPn) o @ -4 (n>2).
n—1 n—1 n—1 n—1

With this notation, we can state the following corollary of the above proposition.
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Corollary 2. For any p,q € P", we have

(3.7) Iy (p,q) > Ry (p,q) > 0.

The proof is obvious by the second inequality in (3.4) and the details are omitted.

In what follows, we point out some particular inequalities for various instances of
divergence measures such as: the total variation distance, x2-divergence, Kullback-
Leibler divergence, Jeffreys divergence.

The total variation distance is defined by the convex function f(t) = |t — 1],
t € R and given in:
(3.8) Vg =) ql|2- ’:Z|pj_Qj|-
j=1 4 j=1

The following improvement of the positivity inequality for the total variation
distance can be stated as follows.

Proposition 1. For any p,q € P*, we have the inequality:
(3.9) Vip,q) 22 max |py—q| (=0).
ke{l,...n}

yeeey

The proof follows by the first inequality in (3.7) for f (t) =t — 1|, ¢t € R,
The K. Pearson x2-divergence is obtained for the convex function f (t) = (1 —t)°,
t € R and given by

n ) 2 n 2
(3.10) X2 (pg) =) g (pjf ) ZZM-

J=1

Proposition 2. For any p,q € P,

(px — a)” 2
3.11 2 ,q) > max -3 >4 max — >0).
( ) X (prq) ke{l,...,n} {qk (1—qx) ke{l,...,n} (pr = )" (2 0)

Proof. On applying the first inequality in Theorem 2 for the function f(¢) =
(1—1)%, t e R, we get

1 Pk 2 Pk 2
2 >  max 1- 1) +q (= -1
X" (pq) = peliax {( ) (1 o %\ o

B (o — ax)’
= max -~ .
ke{l,.n} | @ (1 —qx)

Since 1 1
qe (1 —qr) < 1 [ + (1 —qp)) = 7
then )
(Pk - Qk) 2
——= >4 (pr — @&
qx (1 —qr) ( )

for each k € {1,...,n}, which proves the last part of (3.11). I

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) = R, f(t) =tlnt and is defined by

“~  pi, (P " D
o1 KLY 2 (2) = Son(2).
j=1 4q; j =1 q;

q
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Proposition 3. For any p,q € P, we have:

1_pk>1p1« (pk)m-,
3.13 KL (p,q) >1n max —_ N
( ) (p q) |f€€{1,...,n} { (1 — Qi Qi

(1 —qr) gk
max D) 2 ’
ke{ln}t | qp (1 —pr)” + (1 — qr) pi,

Proof. The first inequality is obvious by Theorem 2. Utilising the inequality be-
tween the geometric mean and the harmonic mean,

> 1In

zty' T > g+11—7a7 z,y >0, ac|0,1]
a Ty
we have
(l_pk>1_pk.<k>pk> 1
1—qi q _(1—pk)~(%§:)+pk-%
(1 — ax) i

(U —pe)’ (- a) P}
for any k € {1,...,n}, which implies the second part of (3.13). I

Another divergence measure that is of importance in Information Theory is the
Jeffreys divergence

(3.14) J(p,q) = ilqy' : <Z - ) In (Zj) = il (pj —¢;)In <Z> ;

which is an f-divergence for f (t) = (¢ — 1)Int, ¢t > 0.

Proposition 4. For any p,q € P”, we have:

(1_pk)Qk:|}
3.15 J(p,q) > max —pp)In | —— L EE
(3.15) o) > e (= pun [L2)0
2
ke{l,..n} | Pk + qr — 2Dkqk

Proof. Writing the first inequality in Theorem 2 for f (t) = (¢t — 1) Int, we have
)l (G ) (5))
J(p,q) > max 1-— —1)In + — —1)In{|=—
(P, q) ke{l,...,n}{( ar) [(1—% 1—gx o qk QK
L —pr Pk
— o)1 — (g —p)In [ £F
pemax {(Qk pr)In (1 — qk> (g1 —pr)In (qk)}

= max {(qk—pk)ln{(l_pk)qk}}

ke{l,...,n} (1 7qk)pk

proving the first inequality in (3.15).
Utilising the elementary inequality for positive numbers,
Inb—Ina 2

>

b>0
b—a “a+b’ @0 >
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we have

I (%) — (%) . [1—pk pk}

T—aq

(ar *pk)Q . In (i%:) —ln (ﬁ)

_ 1=pr _ Pr
K <1 Qk) 1—gx qk
(ax —pi)” 2 2 )’
= — 1—pr ~ pr — — =
Gk (1 —qr) 225 — P2 prp+ Gy — 2Pkk

for each k € {1,...,n}, giving the second inequality in (3.15). I

(1]
(2]
(3]
(4]
(5]
[6]
[7]
(8]

[9]
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