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A SHARP BOUND OF THE ČEBYŠEV FUNCTIONAL FOR THE
RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS

S.S. DRAGOMIR

Abstract. A new sharp bound of the Čebyšev functional for the Riemann-

Stieltjes integral is obtained. Applications for quadrature rules including the
trapezoid and mid-point rule are given.

1. Introduction

In order the generalise the classical Čebyšev functional, namely,

T (f, g) :=
1

b− a

∫ b

a

f (x) g (x) dx− 1
b− a

∫ b

a

f (x) dx · 1
b− a

∫ b

a

g (x) dx,

where f, g, fg are integrable on [a, b] , which has been extensively studied in the
literature, see for instance the book [6], the author has introduced in [3] the following
functional for Riemann-Stieltjes integrals:

(1.1) T (f, g;u) :=
1

u (b)− u (a)

∫ b

a

f (t) g (t) du (t)

− 1
u (b)− u (a)

∫ b

a

f (t) du (t) · 1
u (b)− u (a)

∫ b

a

g (t) du (t) ,

provided the involved integrals exist and u (b) 6= u (a) .
It has been shown in [3] that

(1.2) |T (f, g;u)|

≤ 1
2

(M −m) · 1
|u (b)− u (a)|

∥∥∥∥∥g − 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∥∥∥∥∥
∞

b∨
a

(u) ,

provided that f, g are continuous, m ≤ f (t) ≤ M for each t ∈ [a, b] and u is of
bounded variation on [a, b] with the total variation

∨b
a (u) . The constant 1

2 is sharp
in (1.2) in the sense that it cannot be replaced by a smaller quantity.

In the case that u is monotonic nondecreasing then also [3]

(1.3) |T (f, g;u)|

≤ 1
2

(M −m) · 1
|u (b)− u (a)|

∫ b

a

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ du (t) ,

for which the constant 1
2 is best possible.
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2 S.S. DRAGOMIR

Finally, in the case where u is Lipschitzian with the constant L, and in this case
we can have f and g Riemann integrable on [a, b] , the following result has been
obtained as well [3]

(1.4) |T (f, g;u)|

≤ 1
2
L (M −m) · 1

|u (b)− u (a)|

∫ b

a

∣∣∣∣∣g (t)− 1
u (b)− u (a)

∫ b

a

g (s) du (s)

∣∣∣∣∣ dt.

Here 1
2 is also sharp.

For other results, see [4] and [5].
The aim of the present paper is to establish a new sharp bound for the absolute

value of the Čebyšev functional (1.1). Applications for the trapezoid and mid-point
inequality are pointed out. A general perturbed quadrature rule and error estimates
are obtained as well.

2. The Results

The following result concerning a sharp bound for the absolute value of the
Čebyšev functional T (f, g;h) can be stated.

Theorem 1. Let f : [a, b] → R be a function of bounded variation and g, h :
[a, b] → R are bounded functions with h (a) 6= h (b) such that the Stieltjes integrals∫ b

a
f (t) g (t) dh (t) and

∫ b

a
g (t) dh (t) exist. Then:

(2.1) |T (f, g;h)|

≤ 1
|h (b)− h (a)|

b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

g (t) dh (t)− h (x)− h (a)
h (b)− h (a)

∫ b

a

g (s) dh (s)

∣∣∣∣∣ .
The constant C = 1 in the right hand side of (2.1) cannot be replaced by a smaller
quantity.

Proof. We use the following result for the Riemann-Stieltjes integral obtained in [6,
p. 337].

Let u, v, w : [a, b] → R such that u is of bounded variation on [a, b] and v, w are
bounded functions with the property that the Riemann-Stieltjes integrals

∫ b

a
v (t) dw (t)

and
∫ b

a
u (t) v (t) dw (t) exist. Then

(2.2)

∣∣∣∣∣
∫ b

a

u (t) v (t) dw (t)

∣∣∣∣∣ ≤
[
|u (b)|+

b∨
a

(u)

]
sup

x∈[a,b]

∣∣∣∣∫ x

a

v (t) dw (t)
∣∣∣∣ .

We also use the representation (see also [3]):

(2.3) T (f, g;h) =
1

h (b)− h (a)

∫ b

a

[f (t)− γ]

×

[
g (t)− 1

h (b)− h (a)

∫ b

a

g (s) dh (s)

]
dh (t) ,

which holds for any γ ∈ R.
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Now, if we choose γ = f (b) , u (t) = f (t)− f (b) ,

v (t) = g (t)− 1
h (b)− h (a)

∫ b

a

g (s) dh (s)

and w (t) = h (t) , t ∈ [a, b] , then we get

|[h (b)− h (a)]T (f, g;h)|

≤
b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

g (t) dh (t)− h (x)− h (a)
h (b)− h (a)

∫ b

a

g (s) dh (s)

∣∣∣∣∣
and the inequality (2.1) is proved.

For the sharpness of the inequality, assume that h (t) = t and g (t) = sgn
(
t− a+b

2

)
,

t ∈ [a, b] . Then (2.1) becomes

(2.4)

∣∣∣∣∣
∫ b

a

f (t) sgn
(

t− a + b

2

)
dt

∣∣∣∣∣ ≤
b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∫ x

a

sgn
(

t− a + b

2

)
dt

∣∣∣∣ ,
provided f is of bounded variation on [a, b] .

Notice that, if we consider λ (x) defined by

λ (x) :=
∫ x

a

sgn
(

t− a + b

2

)
dt =

 a− x if x ∈
[
a, a+b

2

]
;

x− b if x ∈
(

a+b
2 , b

]
then

sup
x∈[a,b]

|λ (x)| = b− a

2
.

Therefore, (2.4) becomes

(2.5)

∣∣∣∣∣
∫ b

a

f (t) sgn
(

t− a + b

2

)
dt

∣∣∣∣∣ ≤ b− a

2
·

b∨
a

(f) .

Now, if in (2.5) we choose f (t) = sgn
(
t− a+b

2

)
, then

∨b
a (f) = 2,∫ b

a

f (t) sgn
(

t− a + b

2

)
dt = b− a

and in both sides of (2.5) we get the same quantity (b− a) .

Remark 1. We observe that∫ x

a

g (t) dh (t)− h (x)− h (a)
h (b)− h (a)

∫ b

a

g (s) dh (s)

=
∫ x

a

g (t) dh (t)− h (x)− h (a)
h (b)− h (a)

[∫ x

a

g (s) dh (s) +
∫ b

x

g (s) dh (s)

]

=
h (b)− h (x)
h (b)− h (a)

·
∫ x

a

g (s) dh (s)− h (x)− h (a)
h (b)− h (a)

·
∫ b

x

g (s) dh (s)

=
[h (b)− h (x)] [h (x)− h (a)]

h (b)− h (a)
∆ (g, h;x, a, b) ,
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where ∆ (g, h;x, a, b) is defined by

∆ (g, h;x, a, b) =
1

h (x)− h (a)

∫ x

a

g (s) dh (s)− 1
h (b)− h (x)

∫ b

x

g (s) dh (s) ,

provided h (x) 6= h (a) , h (b) for x ∈ (a, b) .
With this notation, the inequality (2.1) becomes

|T (f, g;h)|(2.6)

≤ 1
|h (b)− h (a)|

b∨
a

(f)

× sup
x∈[a,b]

{∣∣∣∣ [h (b)− h (x)] [h (x)− h (a)]
h (b)− h (a)

∣∣∣∣ · |∆ (g, h;x, a, b)|
}

≤ 1
|h (b)− h (a)|

b∨
a

(f)

× sup
x∈[a,b]

∣∣∣∣ [h (b)− h (x)] [h (x)− h (a)]
h (b)− h (a)

∣∣∣∣ sup
x∈[a,b]

|∆ (g, h;x, a, b)| .

Now, if we assume that h (a) < h (x) < h (b) for any x ∈ (a, b) then, on utilising
the elementary inequality αβ ≤ 1

4 (α + β)2 , α, β ∈ [0,∞), we have

[h (b)− h (x)] [h (x)− h (a)] ≤ 1
4

[h (b)− h (a)]2 ,

and from (2.5), we deduce the following simpler inequality:

(2.7) |T (f, g;h)| ≤ 1
4
·

b∨
a

(f) sup
x∈[a,b]

|∆ (g, h;x, a, b)| .

The constant 1
4 is best possible in (2.7).

A sufficient condition for h such that h (a) < h (x) < h (b) for any x ∈ (a, b) is
that h is strictly increasing on [a, b] . The sharpness of the constant will follow from
a particular case considered in Corollary 2 below.

Corollary 1. Let f, g, w : [a, b] → R be such that f is of bounded variation
and the Riemann integrals

∫ b

a
f (t) w (t) dt,

∫ b

a
g (t)w (t) dt,

∫ b

a
f (t) g (t) w (t) dt and∫ b

a
w (t) dt exist and

∫ b

a
w (t) dt 6= 0. Then we have the inequality

(2.8)

∣∣∣∣∣ 1∫ b

a
w (t) dt

∫ b

a

f (t) g (t)w (t) dt

− 1∫ b

a
w (t) dt

∫ b

a

f (t) w (t) dt · 1∫ b

a
w (t) dt

∫ b

a

g (t) w (t) dt

∣∣∣∣∣
≤ 1∣∣∣∫ b

a
w (t) dt

∣∣∣
b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣
∫ b

a

g (t) w (t) dt−
∫ x

a
w (t) dt∫ b

a
w (t) dt

∫ b

a

g (t)w (t) dt

∣∣∣∣∣ .
The inequality is sharp.

The proof follows by Theorem 1 on choosing h (x) =
∫ x

a
w (s) ds.
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Remark 2. In particular, if w (s) > 0 for s ∈ [a, b] , then h (x) =
∫ x

a
w (s) ds is

strictly decreasing on [a, b] and by (2.7) we deduce the inequality:∣∣∣∣∣ 1∫ b

a
w (t) dt

∫ b

a

f (t) g (t) w (t) dt(2.9)

− 1∫ b

a
w (t) dt

∫ b

a

f (t) w (t) dt · 1∫ b

a
w (t) dt

∫ b

a

g (t) w (t) dt

∣∣∣∣∣
≤ 1∫ b

a
w (s) ds

b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

g (s)w (s) ds−
∫ x

a
w (s) ds∫ b

a
w (s) ds

∫ b

a

g (s) w (s) ds

∣∣∣∣∣
≤ 1

4
·

b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣ 1∫ x

a
w (s) ds

∫ x

a

g (s) w (s) ds

− 1∫ b

x
w (s) ds

∫ b

a

g (s) w (s) ds

∣∣∣∣∣ .
The constant 1

4 is best possible.

Corollary 2. Let f, g : [a, b] → R be such that f is of bounded variation and the
Riemann integrals

∫ b

a
g (t) dt and

∫ b

a
f (t) g (t) dt exist. Then∣∣∣∣∣ 1

b− a

∫ b

a

f (t) g (t) dt− 1
b− a

∫ b

a

f (t) dt · 1
b− a

∫ b

a

g (t) dt

∣∣∣∣∣(2.10)

≤ 1
b− a

b∨
a

(f) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

g (t) dt− x− a

b− a

∫ b

a

g (t) dt

∣∣∣∣∣
≤ 1

4
·

b∨
a

(f) sup
x∈(a,b)

∣∣∣∣∣ 1
x− a

∫ x

a

g (s) ds− 1
b− x

∫ b

x

g (s) ds

∣∣∣∣∣ .
The constant 1

4 is best possible in (2.10).

Proof. For the sharpness of the constant, consider g (t) = sgn
(
t− a+b

2

)
, t ∈ [a, b] .

If we denote

µ (x) :=
1

x− a

∫ x

a

sgn
(

t− a + b

2

)
dt

− 1
b− x

∫ b

x

sgn
(

t− a + b

2

)
dt, x ∈ (a, b) ,

then

µ (x) =
1

x− a

∫ x

a

sgn
(

t− a + b

2

)
dt

− 1
b− x

(∫ b

a

sgn
(

t− a + b

2

)
dt−

∫ x

a

sgn
(

t− a + b

2

)
dt

)

=
b− a

(x− a) (b− x)

∫ x

a

sgn
(

t− a + b

2

)
dt =

b− a

(x− a) (b− x)
· λ (x) ,

where λ has been defined in the proof of Theorem 1.
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Therefore,

sup
x∈[a,b]

|µ (x)| = (b− a) sup
x∈[a,b]

δ (x)

where

δ (x) =


1

b−x if x ∈
[
a, a+b

2

)
;

1
x−a if x ∈

(
a+b
2 , b

]
.

Since sup
x∈[a,b]

δ (x) = 2, the inequality (2.10) becomes, for g given above,

(2.11)

∣∣∣∣∣
∫ b

a

f (t) sgn
(

t− a + b

2

)
dt

∣∣∣∣∣ ≤ 1
2

b∨
a

(f) ,

for any function f of bounded variation on [a, b] .
If in this inequality we choose f (t) = sgn

(
t− a+b

2

)
, then we obtain in both sides

of (2.11) the same quantity (b− a) .

3. Applications for the Trapezoid Rule

The following result concerning the error estimate for the trapezoid rule can be
stated:

Proposition 1. Assume that f : [a, b] → R is absolutely continuous and has the
derivative f ′ : [a, b] → R of bounded variation on [a, b] . Then

(3.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f (a) + f (b)
2

∣∣∣∣∣ ≤ 1
8

(b− a)
b∨
a

(f ′) .

The constant 1
8 is best possible.

Proof. We use the identity (see for instance [1])

(3.2)
f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

(
t− a + b

2

)
f ′ (t) dt.

If we apply the inequality (2.10), then we can write that

(3.3)

∣∣∣∣∣ 1
b− a

∫ b

a

f ′ (t)
(

t− a + b

2

)
dt

− 1
b− a

∫ b

a

f ′ (t) dt · 1
b− a

∫ b

a

(
t− a + b

2

)
dt

∣∣∣∣∣
≤ 1

b− a

b∨
a

(f ′) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

(
t− a + b

2

)
dt− x− a

b− a

∫ b

a

(
t− a + b

2

)
dt

∣∣∣∣∣ .
Since∫ b

a

(
t− a + b

2

)
dt = 0,

∫ x

a

(
t− a + b

2

)
dt =

1
2

[(
x− a + b

2

)2

−
(

b− a

2

)2
]
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and

sup
x∈[a,b]

∣∣∣∣∫ x

a

(
t− a + b

2

)
dt

∣∣∣∣ = 1
2

sup
x∈[a,b]

∣∣∣∣∣
(

x− a + b

2

)2

−
(

b− a

2

)2
∣∣∣∣∣

=
(b− a)2

8
,

hence, by (3.2) and (3.3) we deduce (3.1).
For the sharpness of the constant we choose f (t) =

∣∣t− a+b
2

∣∣ . For this function,
we have

1
b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ dt =
b− a

4
,

f (a) + f (b)
2

=
b− a

2
,

f ′ (t) =

 −1 if x ∈
[
a, a+b

2

)
;

1 if x ∈
(

a+b
2 , b

]
and

∨b
a (f ′) = 2.

If we replace the above quantities in (3.1), we get the same result b−a
4 in both

sides.

The following result can be stated as well.

Proposition 2. If f : [a, b] → R is absolutely continuous on [a, b] , then∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f (a) + f (b)
2

∣∣∣∣∣(3.4)

≤ sup
x∈[a,b]

∣∣∣∣f (x)− f (a)− (x− a) · f (b)− f (a)
b− a

∣∣∣∣
≤ 1

4
(b− a) · sup

x∈(a,b)

∣∣∣∣f (x)− f (a)
x− a

− f (b)− f (x)
b− x

∣∣∣∣ .
Proof. Applying the inequality (2.10), we can also write that∣∣∣∣∣ 1

b− a

∫ b

a

f ′ (t)
(

t− a + b

2

)
dt(3.5)

− 1
b− a

∫ b

a

f ′ (t) dt · 1
b− a

∫ b

a

(
t− a + b

2

)
dt

∣∣∣∣∣
≤ 1

b− a

b∨
a

(
· − a + b

2

)
· sup

x∈[a,b]

∣∣∣∣∣
∫ x

a

f ′ (t) dt− x− a

b− a

∫ b

a

f ′ (t) dt

∣∣∣∣∣
≤ 1

4

b∨
a

(
· − a + b

2

)
· sup

x∈[a,b]

∣∣∣∣∣
∫ x

a
f ′ (t) dt

x− a
−
∫ b

x
f ′ (t) dt

b− x

∣∣∣∣∣ ,
which, together with the identity (3.2) produces the desired inequality (3.4).

For other results on the trapezoid rule, see [1].
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4. Applications for the Midpoint Rule

The following result concerning the error estimates for the midpoint rule can be
stated.

Proposition 3. Assume that f : [a, b] → R is absolutely continuous and has the
derivative f ′ : [a, b] → R of bounded variation on [a, b] . Then

(4.1)

∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f

(
a + b

2

)∣∣∣∣∣ ≤ 1
8

(b− a)
b∨
a

(f ′) .

The constant 1
8 is best possible.

Proof. We use the identity (see for instance [2]):

(4.2) f

(
a + b

2

)
− 1

b− a

∫ b

a

f (t) dt =
1

b− a

∫ b

a

p (t) f ′ (t) dt

where p : [a, b] → R is given by

p (t) =

 t− a, if t ∈
[
a, a+b

2

]
;

t− b, if t ∈
(

a+b
2 , b

]
.

If we apply the inequality (2.10), we can write that

(4.3)

∣∣∣∣∣ 1
b− a

∫ b

a

f ′ (t) p (t) dt− 1
b− a

∫ b

a

f ′ (t) dt · 1
b− a

∫ b

a

p (t) dt

∣∣∣∣∣
≤ 1

b− a

b∨
a

(f ′) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

p (t) dt− x− a

b− a

∫ b

a

p (t) dt

∣∣∣∣∣ .
We notice that ∫ b

a

p (t) dt = 0

and

δ (x) :=
∫ x

a

p (t) dt

=


∫ x

a
(t− a) dt if t ∈

[
a, a+b

2

]
;

∫ a+b
2

a
(t− a) dt +

∫ x
a+b
2

(t− b) dt if t ∈
(

a+b
2 , b

]
;

=


1
2 (x− a)2 if t ∈

[
a, a+b

2

]
;

1
2 (b− x)2 if t ∈

(
a+b
2 , b

]
;

for x ∈ [a, b] .
Since

sup
x∈[a,b]

|δ (x)| = 1
8

(b− a)2 ,

then by (4.2) and (4.3), we deduce (4.1).
For the sharpness of the constant 1

8 , observe that for the absolutely continuous
function f (t) =

∣∣t− a+b
2

∣∣ , we get in both sides of (4.1) the same quantity b−a
4 .
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The following result can be stated as well.

Proposition 4. If f : [a, b] → R is absolutely continuous on [a, b] , then:∣∣∣∣∣ 1
b− a

∫ b

a

f (t) dt− f

(
a + b

2

)∣∣∣∣∣(4.4)

≤ sup
x∈[a,b]

∣∣∣∣f (x)− f (a)− (x− a) · f (b)− f (a)
b− a

∣∣∣∣
≤ 1

4
(b− a) · sup

x∈(a,b)

∣∣∣∣f (x)− f (a)
x− a

− f (b)− f (x)
b− x

∣∣∣∣ .
Proof. Applying the inequailty (2.10), we can write:∣∣∣∣∣ 1

b− a

∫ b

a

p (t) f ′ (t) dt− 1
b− a

∫ b

a

p (t) dt · 1
b− a

∫ b

a

f ′ (t) dt

∣∣∣∣∣(4.5)

≤ 1
b− a

b∨
a

(p) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a

f ′ (t) dt− x− a

b− a

∫ b

a

f ′ (t) dt

∣∣∣∣∣
≤ 1

4

b∨
a

(p) sup
x∈[a,b]

∣∣∣∣∣
∫ x

a
f ′ (t) dt

x− a
−
∫ b

x
f ′ (t) dt

b− x

∣∣∣∣∣ ,
and since

∨b
a (p) = b− a, we deduce from (4.5) the desired inequality (4.4).

For other results on the midpoint rule, see [2].

5. Applications for General Quadrature Rules

Let h : [a, b] → R be a Riemann integrable function. Suppose that h is n−time
differentiable and that there exists the division a = x0 < x1 < · · · < xn−1 < xn = b
and the weights α0, . . . , αn such that

(5.1)
∫ b

a

h (t) dt =
n∑

i=0

αih (xi) +
∫ b

a

Kn (t) h(n) (t) dt,

where Kn : [a, b] → R is the Peano kernel associated with the quadrature rule
A (h) :=

∑n
i=0 αih (xi) .

Utilising the inequality (2.10), we can produce a “perturbed quadrature rule”
by approximating the error terms

∫ b

a
Kn (t)h(n) (t) dt as follows.

Proposition 5. With the above assumptions and if h(n) is of bounded variation,
then

(5.2)
∫ b

a

h (t) dt =
n∑

i=0

αih (xi) +
h(n−1) (b)− h(n−1) (a)

b− a
·
∫ b

a

Kn (t) dt + En (h)

and the error term En (h) satisfies the bound

|En (h)| ≤
b∨
a

(
h(n)

)
sup

x∈[a,b]

∣∣∣∣∣
∫ x

a

Kn (t) dt− x− a

b− a

∫ b

a

Kn (t) dt

∣∣∣∣∣(5.3)

≤ 1
4
· (b− a)

b∨
a

(
h(n)

)
sup

x∈(a,b)

∣∣∣∣∣
∫ x

a
Kn (t) dt

x− a
−
∫ b

x
Kn (t) dt

b− x

∣∣∣∣∣ .
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The proof is obvious by (2.5) on choosing f = h(n) and g = Kn.
The second natural possibility is incorporated in

Proposition 6. With the above assumption and if Kn is of bounded variation on
[a, b] , then the representation (5.2) holds and the error term En (h) satisfies the
bounds

|En (h)|(5.4)

≤
b∨
a

(Kn) sup
x∈[a,b]

∣∣∣∣h(n−1) (x)− h(n−1) (a)− (x− a) · h(n−1) (b)− h(n−1) (a)
b− a

∣∣∣∣
≤ 1

4
·

b∨
a

(Kn) sup
x∈(a,b)

∣∣∣∣h(n−1) (x)− h(n−1) (a)
x− a

− h(n−1) (b)− h(n−1) (x)
b− x

∣∣∣∣ .
The proof follows by the inequality (2.10) on choosing f = Kn and g = h(n).

Remark 3. As noted in the previous section, in practical applications and for a
large number of quadrature rules, the Peano kernel Kn is available and the involved
quantities in the error estimates (5.3) and (5.4) can be completely specified. In some
cases, the new perturbed rules provide a better approximation than the original one.
The details are left to the interested reader.
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