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A GENERALIZATION OF VAN DER CORPUT’S INEQUALITY

FENG QI, JIAN CAO, AND DA-WEI NIU

ABSTRACT. In this article, van der Corput’s inequality is generalized by using
the well known Euler-Maclaurin sum formula and other analytic techniques.

1. INTRODUCTION

Let S, =Y ,_, + and a, > 0 for n € N such that 0 < Y7, a,, < co. The van

der Corput’s inequality [32] reads that

[ee) n 1/S"‘ o0
> ( I’ ’“) < e (n+ an, (1)
n=1 k=1 n=1

where v = 0.57721566 - - - stands for Euler-Mascheroni’s constant. The constant
el™ in (1) is the best possible.
Two refinements of (1) were given in [16, 19] respectively as

i(ﬁaw)“" <3 (nm ), @

n=1 k=1 n=1
and
Z ( H a}g/k) < et Z e—1/(4n) (n _ %)an_ (3)
n=1 k=1 n=1 n

A relation between Carleman’s inequality

) 1/n )
Z ( ai> <e Z Qn, (4)
n=1 i=1 n=1

see [3, 5, 12] and the references therein, where a,, > 0 for n € N such that 0 <
>0 a, < oo and the constant e in the right hand side of inequality (4) is the
best possible, and van der Corput’s inequality (1) was established in [35] and it was
presented that

n

oo n 1/8n(a) oo
> ( @ ) <eY eI, (5)
n=1 \ k=1 n=1
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for a € [0, 1] and

)T L& L
S(far) <oyl e o

n=1 n=1

for e € [0,1), where Sp(a) =Y 7.
Another extension of (1) was obtained in [37] as follows:

I/Tn(ﬁ) o] 1
Z ( H al/(k+,3 ) < eltm(B) Z <n + 3 + B) G, (7)

n=1 n=1

where 3 € (—1,00), T,,(8) = Y., 5 and

Applying =0 in (7) leads to

Z ( 11 al/k> USn <elt g:l (n + %) n, 9)

n=1

which improved inequality (1) clearly.
In [4], the following extension and refinement of van der Corput’s inequality (1)
were obtained as follows: Let a,, > 0 for n € N such that 0 < 220:1 an < 00. Then

i[ - RYVEEEY
k

n=1

] 1/Un(N)

= In(n + 1)
1+(14+X/3)y 1 }\/3 1
< z::’” [ 4(n+1+A/2)}“”’ (10)

where X € [0,00), Upn(A) = > 5, \/m and

o Vi +Vn+ A
v(A) = nILH;o Un(N) — QIHﬁ . (11)

In particular,

Z (H al/k> 1/Sn < eI+ in<1 _ hlin)a (12)
3n—1/4)"

n=1 n=1

It is easy to see that inequality (12) refines inequalities (1), (2), (3) and (9).
In [21], inequality (12) was refined as

1/Sn
1/k el (si(f?)ﬁz):wi)n 1— ln—n 1
Z<H“ ) Ze "\ v a1

n=1
where a, >0 for n € N such that 0 < 3 >°, n(1— Mﬁ)an < 0.
In [20], inequalities (1), (2), (3), (9), (12) and (13) were further refined as

1/Sn o
1/k T4 ~s2an (1 Inn 1
S (M) <o Se (i) a0
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where a, > 0 such that 0 < 3207, n(1 — gt ) an < 0.
The aim of this paper is to generalize and refine van der Corput’s inequality
further by using Euler-Maclaurin sum formula and other analytic techniques.

Our main results are the following two theorems.

Theorem 1. Let a, > 0 for n € N such that 0 < Ezozl an < 00. Then

o [ REAE

T

n=1 Lk=1
) i (1Lt N = ) Sa 0\ 15)
Bl 2(n+n+ DASpa1(n, ) "

where Sp(n,\) = > p_; m and Tpan = [(n +n+ D> = (n 4+ n) N Sn(n, \) for
n € (—1,00) and X € [0,1].

Remark 1. If taking A = 0, n = 0 or A = 1 in inequality (15) respectively, then
refinements of inequalities (4), (5) or (7) are deduced respectively. This means that
Theorem 1 generalizes van der Corput’s inequality (1) and Carleman’s inequality

(4).

Corollary 1. Let a, >0 for n € N such that 0 < Y7 a, < oco. If n € (—1,0),
then

e’} n 1/Sn(n) 00
1/(k+n) 1+v(n) 1 3ln(n+n+1)
3 ] B . e R
n=1 Lk=1 n=1
where v(n) = v(n,1) and
v(n,A) = lim 2”: L —/n L dt (17)
O o= (k) S ()|
Theorem 2. Let a,, > 0 for n € N such that 0 <> | a, < oo. Ifn >0, then
o [ n R 1/Sn ()
Z [H ai/(lﬁn) ] an
n=1 Lk=1

LA (k477" Sk (n,)
an. (18)

fﬁﬁ(“ﬁ%n)

In particular, for n =0 and X € [0,1), inequality

n

0o e /SN o ) 1
;(Hak > <;{e(l—m)} an (19)

k=1

holds, where Sp(\) =Y _, kLA

Remark 2. Inequalities (18) and (19) improve inequalities (5) and (6), respectively.
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2. LEMMAS

To prove our main results, the following lemmas are necessary.
Recall [22, 28] that a function f is called completely monotonic on an interval I
if f has derivatives of all orders on I and (—1)* f(*)(z) > 0 for all k > 0 on I.

Lemma 1. Let n € (—1,00) and A € [0,00), the function f(z) = m is com-

pletely monotonic in [1,00) and lim,_,., %) () = 0 for nonnegative integer i.

Proof. Consecutive computation yields
(Mn

() = M
(1)) =

where (¢); = c(c+1)---(¢+ k — 1) is Pochhammer symbol.
By induction, it is easy to verify that lim,_,., f(?)(z) = 0 for any nonnegative
integer 7. The proof of Lemma 1 is complete. O

>0,

Lemma 2. Let r < 0 and n € N. For any given nonnegative integer m > 0,

1/r + . 1/r
:l i Sicm ¢ ] . (20)

n+m < M;nglzl(i'i_m)r

= ¥1 /.
nmtl T e i ()T

n+m-+1

1 7
T Ximm |

Proof. For our own convenience, let V,.(m,n) = S0 (i + m)" = 00" i". Then
inequality (20) is equivalent to
Vi.(m,n) n+m \
< . (21)
Vi(m,n + 1) n+m-+1
For r < —1, inequality (21) holds obviously.
For 0 > r > —1, inequality (21) can be rewritten as
n+m)™(n+m+1)"
(TL +m + 1)7‘+1 _ (TL + m)r+1 !
When n = 1, it is easy to check up that inequality (22) is true. Now assume that
inequality (22) is valid for some positive integer n > 1. By induction, it is sufficient
to show that inequality (22) validates for n + 1, that is,
n+m+1)" T n+m+2)"
(n+m+2)t — (n+m+1)r+1°
By inductive hypotheses and V,.(m,n + 1) = V.(m,n) + (n + m + 1)", we have
m+m)™ t(n+m+1)"
(n+m+ 1)+ — (n +m)r+!
_ (n+m +1)%r+t
C (n4+m+ D) — (n 4+ m)rHLT
Therefore, in order to prove inequality (23), it suffices to show the right term of

(23) is not less than the term in the second line of (24), that is,

(n+m+1)" (n+m+ 1) —(n+m)™ (n4+m+E)" (25)
m+m+2)" =~ (n+m+2)"*" —(n+m+1)+  (n+m+1+&)"
where & € (0,1) is deduced by using Cauchy’s mean value theorem in the second

term above, which sounds apparently. Thus, the proof of Lemma 2 is complete. O

Vi (m,n) <

(22)

Vi(m,n +1) < (23)

Ve(m,n+1) < +m+m+1)"

(24)
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Remark 3. Tt is remarked that some analogies of inequality (20) in Lemma 2 have
been investigated extensively in [1, 2, 6, 7, 8, 9, 10, 11, 13, 14, 15, 18, 23, 24, 25,
26, 27, 29, 30, 31, 33, 34, 39] and the reference therein.

Lemma 3 ([17 35, 36]). Euler-Maclaurin’s formula states that

= [ @ D [ @p@an oo

where py (a:) =z — [z] + L is Bernoulli’s function and f € C'[1,00). Furthermore,

if (=1) fD(z) >0 for z € [n,00) and lim,_so fO(x) =0 fori=1,2,3, then
/OO pi(z)f (z)dz = —%f’(n)e, 0<e<1. (27)

Lemma 4. Forn e N, n € (=1,00) and X € [0,1),

n -\ _ 1—A
At D "0 2 ), (28)

where Sy, (n, X) and y(n, \) are defined in Theorem 1 and by (17) respectively. More-
over,

Sn(m,A) <

Sn(n,1) <In(n+n+1) —In(1+n) +~v(n,1). (29)
Proof. 1t is clear that Lemma 1 allows us to apply Euler-Maclaurin’s formula (26)

and formula (27) to f(z) = (z+n) . From this, if A € (0,1), it follows that

n+n+1) A= 14+t
1—)

1 1 1 " 1 '
+§|:(n+77)/\ + (1+n))\:| +/1 pl(x)[m] dz,

/noo i) {ﬁydx N _11_2 {(a: -1-177)*]16 T 12 ien)um

where 0 < € < 1, and

Sn(n,A) =

1 > 1 !
A)=—+ — | d.
Y = g | pl(m)hﬂn)*} g
Therefore,
_(n+ M= (1)t 1 pY
(m+n) =0+
< T—A T gy TN
and then
n+1
1 1
S’n 7>\ = -
() ,; (k+n)?> (n+n+1)*
(n+n+ 1) — (14> 1
< 1—X 2(n+n+1)*+7(n’>‘)

- (n+np+1D) A — 14>
1—A\

+v(n, ),



6 F. Ql, J. CAO, AND D.-W. NIU

Inequality (28) follows for A € (0,1).
For A\ = 0, inequality (28) holds apparently.
Since
P )t € )
A—1 1-A
and % < 21n(1 + %) with > 1, then

"1
n= —
k:1k+n

<In(n+mn)—In(l+n)+

=In(n+n) —In(l+n)

1
2t +v(m, 1)
<In(n+n+1)=In(1l+n)+~v(n,1).

The proof of Lemma 2 is complete. |
Lemma 5. For z € [0,00) and « € [0, 00),

{ 1 ] I+in(z+a+1) 1 3ln(z + a+1)
2(

- 1-— — . 30
z+14a) < 2(n+a+1) 16(x + 1+ «) (30)

Proof. By (1—%)_ >efort>1, et <1+t+L fort<0&ndm+a>1n(:n+a)
with a > 0, it follows that

In(z+a+1

1 1+In(z+a+1) 1 1 W
1-— < 1—7 -
2z + 1+ «) 2z +1+a)

i - lna:+a+1) In*(z + a + 1)
a:+1+a 2 +1+a) 8+ 1+ a)?

3In(z +a+1)
< |1- 1-
a:+1+a 8(x+a+1)
_3l(z+a+l)
<1-
2(:U+a+1) 16(x+a+1)"
The proof of Lemma 5 is complete. O

Lemma 6. For k € N, n € [0,00) and X € [0,1], we have

(k+n+1)*Siqa(n,
(k+n)* Sk(N)

(k+n)> Sk(X)
A

(31)
] LA (k+n) " Sk (n,))

< {6(1—2(k+711+n>)

Proof. For k € N,

A NS, (n, (k+m)* Se(n,))
Bk(n,A):{H +[(k+n&2n)xiay)] k(n A)} 2 oh),
where
B 1 7e® _ (k+m)* Sk(n,A)
G {1 * m] ’ 90 = 0w
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and
h(k,A) =1+ [(k+n+1)* = (k+n)*]Sk(n, A).
By Lemma 2, it is easy to see that

(k+n+1)*Sk1(n,N)

SN = T 0 — ke ISeln oy T 32
By
1\* 1
in [38] and inequality (32), it is deduced that
1 79w 1 1
=1+l <l mmn) ST @

For A € [0, 1], by using Bernoulli’s inequality, we have

A
h(k,\) < H(H")AKHk—in) —1]Sk(n,>\) < T+ ME+m)" Sk(n, N). (35)

Hence, from inequalities (34) and (35), it is showed that

Bi(n,\) < {6[1 _ m} }h(k,,\)

1 T (k+m) "1 S (,0)
<le|ll- —————
<{e|'- mrreal )

The proof of Lemma 6 is complete. d

3. PROOFS OF THEOREMS

Proof of Theorem 1. Setting ¢ > 0 for 1 < k < n and letting

lH Ci/(“w
k=1

1
(A +D)ASa (N

]—1/Sn(n7>\)

then

A
[(k +n+ 1)A5k+1 (777 /\)] (k4+1)* Sk (n,)\)

[(k + ) Sk(n, /\)] (k41> Sk—1(n,))

Cp = (36)

Using the discrete weighted arithmetic-geometric mean inequality and (36) and
interchanging the order of summation yields
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o [ n 1/8n(n,)
ZlH 1/(k+n)* ]
n=1 Lk=1
[e’e) n 1/5 ( ) n —1/Sn(777A)
= Z lH(ckak)l/(k+n)A] H Ci/(k+n))\‘|
n=1 Lk=1 k=1
< crpa
= ;; (b +m* Sn(m,2) " (B + 0+ DX Sy (0, V)
= 1 1
=2 T O 2 T DS VB
k=1 n=~k (37)
= cra -
,; (k+m> " k%[5n<n,x> S1 (7, 2)
- i LR
2 G ™ S 0
00 A
_ Z{(/H?H DS (, 1) ]
= kS 8
Applying (33) and the left side of inequality (32) in the final line of (37) gives
inequality (15). The proof of Theorem 1 is complete. O
Proof of Corollary 1.
(k+m) Sk(n)
(k +m) Sk(n)
{ 1 ] (k+m)Su (m)/ (Su(m)+1) }SM)H
(k+n Sk( )/ (Sk(n) +1)
() +1 Sk(n)+1
{ k+77+1)5k( )]} (38)
1+In(k+n+1)+(n)
{ 2(k +n+ 1)] }
1 1+In(k+n+1)
1+7(n) N1e ——
<Ok 4 )| 2(k+n+1)]
1 3ln(k+n+1)
1+7(n) Z_ 2T
<e [k +n+ 5 16 ]
Taking A =1 in inequality (37) yields
00 n 1/Sn(n) (k+n) Sk (n)
1/(k+n) (k+n+1)Sks1(n)
2 |\ 1= < Z (ke + 1) Se(n) (i
n=1 k=1 n k (39)

1 3ln(n+n+1)
1+v(n) [ SO
<Ze [n+n+2 16 ]an

n=1

The proof of Corollary 1 is complete. O
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Proof of Theorem 2. Applying Lemma 6 in (37) gives inequality (18) clearly.

For A\ = 0, since S,,(0) = n, inequality (19) is reduced to Carleman’s inequality

) n n ) 1
Z ap | < Ze{l — 7] .- (40)
n=1 \ k=1 n=1 2(1’L + 1)
For A € (0,1),
n
1 n 1 (,n + n)l—A ,,71—}\
Sn(n,\) = —< dt = - . 41
n(1:2) I;(k+n)>‘ /0 (t+n)* 1—A 1—A (41)
Taking n = 0 in (18) and (41) yields inequality (41). The proof of Theorem 2 is
complete. O
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