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Bounds for the Normalised Jensen Functional

Sever S. Dragomir

Abstract. New inequalities for the general case of convex functions defined
on linear spaces which improve the famous Jensen’s inequality are established.
Particular instances in the case of normed spaces and for complex and real
n-tuples are given. Refinements of Shannon’s inequality and the positivity of

Kullback-Leibler divergence are obtained.

1. Introduction

Jensen’s inequality for convex function is one of the most known and exten-
sively used inequality in various filed of Modern Mathematics. It is a source of
many classical inequalities including the generalised triangle inequality, the arith-
metic mean-geometric mean-harmonic mean inequality, the positivity of relative
entropy in Information Theory, Schannon’s inequality, Ky Fan’s inequality, Levin-
son’s inequality and other results. For classical and contemporary developments
related to the Jensen inequality, see [6], [7] and [3] where further references are
provided.

To be more specific, we recall that, if X is a linear space and C ⊆ X a convex
subset in X, then for any convex function f : C → R and any zi ∈ C, ri ≥ 0
for i ∈ {1, ..., k} , k ≥ 2 with

∑k
i=1 ri = Rk > 0 one has the weighted Jensen’s

inequality:

(J)
1

Rk

k∑
i=1

rif (zi) ≥ f

(
1

Rk

k∑
i=1

rizi

)
.

If f : f : C → R is strictly convex and ri > 0 for i ∈ {1, ..., k} then the equality
case hods in (J) if and only if z1 = ... = zn.

The main aim of the present note is to provide an elementary refinement of
this classical inequality and point out a few applications in relation with some
fundamental inequalities in various fields of Mathematics.
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2. Bounds for the Normalised Jensen Functional

By Pn we denote the set of all nonnegative n-tuples (p1, ..., pn) with the prop-
erty that

∑n
i=1 pi = 1. Consider the normalised Jensen functional

Jn (f,x,p) =
n∑

i=1

pif (xi)− f

(
n∑

i=1

pixi

)
≥ 0

where f : C → R be a convex function on the convex set C and x = (x1, ..., xn) ∈ Cn

and p ∈Pn.
The following result holds.

Theorem 1. If p,q ∈Pn, qi > 0 for each i ∈ {1, ..., n} then

(2.1) max
1≤i≤n

{
pi

qi

}
Jn (f,x,q) ≥ Jn (f,x,p) ≥ min

1≤i≤n

{
pi

qi

}
Jn (f,x,q) (≥ 0) .

Proof. We give here a direct proof based on the Jensen inequality for appro-
priate choices of the elements in (J). The reader is invited to try to find other
proofs, eventually simpler than this one.

Denote m := min1≤i≤n

{
pi

qi

}
and observe that 0 ≤ m ≤ 1.

If we apply Jensen’s inequality (J) for k = n + 1,

z1 =
n∑

i=1

qixi, zj+1 = xj ∈ C, j ∈ {1, ..., n} ;

r1 = m, rj+1 =
(

pj

qj
−m

)
qj ≥ 0, j ∈ {1, ..., n}

for which
n+1∑
j=1

rj = m +
n∑

j=1

(
pj

qj
−m

)
qj = 1

then we have

mf

(
n∑

i=1

qixi

)
+

n∑
j=1

(
pj

qj
−m

)
qjf (xj)(2.2)

≥ f

m

(
n∑

i=1

qixi

)
+

n∑
j=1

(
pj

qj
−m

)
qjxj

 .

Since

mf

(
n∑

i=1

qixi

)
+

n∑
j=1

(
pj

qj
−m

)
qjf (xj)

=
n∑

j=1

pjf (xj)−m

 n∑
j=1

qjf (xj)− f

 n∑
j=1

qjxj


and

f

m

(
n∑

i=1

qixi

)
+

n∑
j=1

(
pj

qj
−m

)
qj (xj)

 = f

 n∑
j=1

pjxj


hence by (2.2) we get the second inequality in (2.1).
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Now, let M := max1≤i≤n

{
pi

qi

}
and observe that M ≥ 1.

If we apply Jensen’s inequality (J) for k = n + 1,

zj = xj , zn+1 =
n∑

i=1

pixi, j ∈ {1, ..., n} ,

rj =
1
M

(
M − pj

qj

)
qj , rn+1 =

1
M

, j ∈ {1, ..., n}

for which
n+1∑
j=1

rj =
1
M

n∑
j=1

(
M − pj

qj

)
qj +

1
M

= 1,

then we have

1
M

n∑
j=1

(
M − pj

qj

)
qjf (xj) +

1
M

f

(
n∑

i=1

pixi

)
(2.3)

≥ f

 1
M

n∑
j=1

(
M − pj

qj

)
qjxj +

1
M

n∑
i=1

pixi

 .

Since

1
M

n∑
j=1

(
M − pj

qj

)
qjf (xj) +

1
M

f

(
n∑

i=1

pixi

)

=
n∑

j=1

qjf (xj)−
1
M

 n∑
j=1

pjf (xj)−

(
n∑

i=1

pixi

)
and

f

 1
M

n∑
j=1

(
M − pj

qj

)
qjxj +

1
M

n∑
i=1

pixi

 = f

 n∑
j=1

pjxj

 ,

hence by (2.3) we deduce the first part of (2.1) and the proof is complete.

If we consider for the uniform distribution u =
(

1
n , ..., 1

n

)
the unweighted Jensen

functional

Jn (f,x) := Jn (f,x,u) =
1
n

n∑
i=1

f (xi)− f

(
1
n

n∑
i=1

xi

)

then we can state the following particular case of interest as well:

Corollary 1. If p ∈Pn, then

(2.4) n max
1≤i≤n

{pi}Jn (f,x) ≥ Jn (f,x,p) ≥ n min
1≤i≤n

{pi}Jn (f,x) (≥ 0) .
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3. Applications in Normed Spaces

Let (X, ‖·‖) be a real or complex normed linear space. It is well known that
the function fp : X → R, fp (x) = ‖x‖p

, p ≥ 1 is convex on X. Applying the results
obtained above one may easily state the following inequalities:

max
1≤i≤n

{
pi

qi

} n∑
j=1

qj ‖xj‖p −

∥∥∥∥∥∥
n∑

j=1

qjxj

∥∥∥∥∥∥
p(3.1)

≥
n∑

j=1

pj ‖xj‖p −

∥∥∥∥∥∥
n∑

j=1

pjxj

∥∥∥∥∥∥
p

≥ min
1≤i≤n

{
pi

qi

} n∑
j=1

qj ‖xj‖p −

∥∥∥∥∥∥
n∑

j=1

qjxj

∥∥∥∥∥∥
p (≥ 0)

and

max
1≤i≤n

{pi}

 n∑
j=1

‖xj‖p − n1−p

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
p ≥ n∑

j=1

pj ‖xj‖p −

∥∥∥∥∥∥
n∑

j=1

pjxj

∥∥∥∥∥∥
p

(3.2)

≥ min
1≤i≤n

{pi}

 n∑
j=1

‖xj‖p − n1−p

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
p (≥ 0)

for all p ≥ 1.
If in (3.2) we choose pj := 1

‖xj‖ , where xj ∈ X� {0} , j ∈ {1, ..., n} , then we
get

max
1≤j≤n

{‖xj‖}

 n∑
j=1

‖xj‖p−1 −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
p(3.3)

≥
n∑

j=1

‖xj‖p − n1−p

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
p

≥ min
1≤j≤n

{‖xj‖}

 n∑
j=1

‖xj‖p−1 −

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
p .

We remark that, for p = 1 one may get out of the previous results the following
inequalities that are intimately related with the generalised triangle inequality in
normed spaces:

max
1≤i≤n

{
pi

qi

} n∑
j=1

qj ‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

qjxj

∥∥∥∥∥∥
 ≥ n∑

j=1

pj ‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

pjxj

∥∥∥∥∥∥(3.4)

≥ min
1≤i≤n

{
pi

qi

} n∑
j=1

qj ‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

qjxj

∥∥∥∥∥∥
 (≥ 0) ,
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max
1≤i≤n

{pi}

 n∑
j=1

‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
 ≥ n∑

j=1

pj ‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

pjxj

∥∥∥∥∥∥(3.5)

≥ min
1≤i≤n

{pi}

 n∑
j=1

‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥
 (≥ 0)

and

max
1≤j≤n

{‖xj‖}

n−

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
 ≥ n∑

j=1

‖xj‖ −

∥∥∥∥∥∥
n∑

j=1

xj

∥∥∥∥∥∥(3.6)

≥ min
1≤j≤n

{‖xj‖}

n−

∥∥∥∥∥∥
n∑

j=1

xj

‖xj‖

∥∥∥∥∥∥
 .

We note that the inequality (3.6) has been obtained in a different way by M.
Kato. K.-S. Saito & T. Tamura in [4] where an analysis of the equality case for
strictly convex spaces has been performed as well.

Remark 1. Let C be the field of complex numbers. If z = Re z + i Im z, then
by |·|p : C → [0,∞), p ∈ [1,∞] we define the p−modulus of z as

|z|p :=


max {|Re z| , |Im z|} if p = ∞,

(|Re z|p + |Im z|p)
1
p if p ∈ [1,∞),

where |a| , a ∈ R is the usual modulus of the real number a.
For p = 2, we recapture the usual modulus of a complex number, i.e.,

|z|2 =
√
|Re z|2 + |Im z|2 = |z| , z ∈ C.

It is well known that
(
C, |·|p

)
, p ∈ [1,∞] is a Banach space over the real number

field R.
It is obvious that all above inequalities hold for |·|p, the nonnegative n-tuples

p,q and the complex numbers z1, ..., zn. The details are omitted.

4. The Geometric Mean-Arithmetic Mean Inequality

Although the inequality between the arithmetic and geometric means

a + b

2
≥
√

ab, a, b ≥ 0;

was probably known in antiquity, the general result for weighted means seems to
have first appeared in print in the nineteenth century, in the notes of Cauchy’s
course given at the École Royale in 1821, page 315.

If p ∈Pn,a ≥ 0 and

Gn (p,a) :=
n∏

i=1

api

i , An (p,a) :=
n∑

i=1

piai
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then

(4.1) An (p,a) ≥ Gn (p,a) .

If all pi > 0, then the equality case holds in (4.1) if and only if a is constant, i.e.,
all the components are equal to a constant k ∈ R .

For classical and recent results related to the GA-inequality, see Chapter II of
the book [1].

Applying the inequality (2.1) for the choices f : (0,∞) → R, f (x) = − lnx one
can state the following inequality

(4.2)
(

An (q,a)
Gn (q,a)

)max1≤i≤n

{
pi
qi

}
≥ An (p,a)

Gn (p,a)
≥
(

An (q,a)
Gn (q,a)

)min1≤i≤n

{
pi
qi

}
.

If, for the uniform distribution u =
(

1
n , ..., 1

n

)
, we consider

An (a) = An (u,a) , Gn (a) = Gn (u,a) ,

then we have

(4.3)
(

An (a)
Gn (a)

)n max1≤i≤n{pi}

≥ An (p,a)
Gn (p,a)

≥
(

An (a)
Gn (a)

)n min1≤i≤n{pi}

.

Since there is the obvious relation between the arithmetic mean and the harmonic
mean

Hn (p,a) :=
1∑n

i=1
pi

ai

= An

(
p,

1
a

)−1

where 1
a :=

(
1
a1

, ..., 1
an

)
and ai are all positive, one can derive a similar inequality

between the harmonic and geometric means. The details are omitted.

5. Inequalities for Shannon’s Entropy

Let X be a random variable with the range R = {x1, ..., xn} and the probability
distribution p1, ..., pn (pi > 0, i = 1, ..., n) . Define the Shannon entropy by

H (X) := −
n∑

i=1

pi ln pi.

The following theorem is well known in the literature and concerns the maxi-
mum possible value of H (X) in terms of the size of R [5, p. 27].

Theorem 2. Let X be defined as above. Then

(5.1) 0 ≤ H (X) ≤ lnn.

Furthermore, H (X) = 0 iff pi = 1 for some i and H (X) = lnn iff pi = 1
n for all

i ∈ {1, ..., n} .

This fundamental result may be improved as follows:
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Proposition 1. Let X be defined as above. If pi > 0 for each i ∈ {1, ..., n} ,
then

0 ≤ n min
1≤i≤n

{pi} ln

An

(
1
p

)
Gn

(
1
p

)
(5.2)

≤ lnn−H (X) ≤ n max
1≤i≤n

{pi} ln

An

(
1
p

)
Gn

(
1
p

)
 .

Proof. It follows from Corollary 1 for the choices f (t) = − ln t, xi = 1/pi and
appropriate elementary calculations. The details are omitted.

6. Inequalities for the Relative Entropy

The relative entropy is a measure of the distance between two distributions. In
statistics, it arises as an expected logarithm of the likelihood ratio. The relative
entropy D(p‖q) is a measure of the inefficiency of assuming that the distribution
is q when the true distribution is p. For example, if we knew the true distribution
of the random variable, then we could construct a code with average description
length H(p). If, instead, we used the code for a distribution q, we would need
H(p) + D(p‖q) bits on the average to describe the random variable [2, p. 18].

Definition 1. The relative entropy or Kullback-Leibler distance between two
probability distributions p and q is defined by

D(p‖q) :=
n∑

i=1

pi ln
(

pi

qi

)
= Ep ln

(
p(X)
q(X)

)
.

In the above definition, we use the convention (based on continuity arguments)
that 0 ln

(
0
q

)
= 0 and p ln

(
p
0

)
= ∞.

It is well-known that relative entropy is always non-negative and is zero if and
only if p = q. However, it is not a true distance between distributions since it is
not symmetric and does not satisfy the triangle inequality.

The following theorem is of fundamental importance [2, p. 26].

Theorem 3. (Information Inequality) Let p,q, be two probability distributions.
Then

(6.1) D(p‖q) ≥ 0

with equality if and only if

(6.2) pi = qi for all x ∈ {1, ..., n}.

This fundamental result may be improved as follows.

Proposition 2. Let p,q, be two probability distributions. Define the χ2 di-
vergence of p,q by the quantity

χ2 (p,q) :=
n∑

i=1

pi

(
qi

pi
− 1
)2

=
n∑

i=1

q2
i

pi
− 1.
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If pi, qi > 0 for all x ∈ {1, ..., n}, then

max
1≤i≤n

{
pi

qi

}[
D(q‖p)− ln

(
χ2 (p,q) + 1

)]
≥ D(p‖q)

≥ min
1≤i≤n

{
pi

qi

}[
D(q‖p)− ln

(
χ2 (p,q) + 1

)]
(≥ 0) .

Proof. The proof follows by Theorem 1 on choosing f (t) = − ln t, xi = qi

pi

and performing appropriate elementary calculations. The details are omitted.
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