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THREE CLASSES OF LOGARITHMICALLY COMPLETELY
MONOTONIC FUNCTIONS INVOLVING GAMMA AND PSI

FUNCTIONS

FENG QI

Abstract. By a simple approach, two classes of functions involving Euler’s
gamma function and originating from certain problems of traffic flow are proved
to be logarithmically completely monotonic and a class of functions involving
the psi function is showed to be completely monotonic.

1. Introduction

Recall [12, 22, 23] that a function f is said to be completely monotonic on an
interval I if f has derivatives of all orders on I and 0 ≤ (−1)nf (n)(x) < ∞ for
x ∈ I and n ≥ 0. The set of the completely monotonic functions on I is denoted
by C[I]. The well known Bernstein’s Theorem [23, p. 161] states that f ∈ C[(0,∞)]
if and only if f(x) =

∫∞
0

e−xs dµ(s), where µ is a nonnegative measure on [0,∞)
such that the integral converges for all x > 0. This expresses that f ∈ C[(0,∞)] if
and only if f is a Laplace transform of the measure µ.

Recall [1, 6, 12, 15, 17, 19, 20] also that a positive function f is called loga-
rithmically completely monotonic on an interval I if f has derivatives of all orders
on I and its logarithm ln f satisfies 0 ≤ (−1)k[ln f(x)](k) < ∞ for all k ∈ N on
I. The set of the logarithmically completely monotonic functions on I is denoted
by L[I]. In [2, Theorem 1.1] and [6, 20] it is pointed out that the logarithmically
completely monotonic functions on (0,∞) can be characterized as the infinitely
divisible completely monotonic functions studied by Horn in [7, Theorem 4.4].

It was proved in [2, 12, 19, 20, 22] that L[I] ⊂ C[I], but not conversely. Stimulated
by the papers [17, 19], among other things, it was further revealed in [2] that
S \ {0} ⊂ L[(0,∞)] ⊂ C[(0,∞)], where S denotes the set of Stieltjes transforms.

The Kershaw’s inequality in [8] states that the double inequality

(
x +

s

2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

(
x− 1

2
+

√
s +

1
4

)1−s

(1)

holds for 0 < s < 1 and x ≥ 1, where Γ denotes the classical Euler’s gamma function
and ψ = Γ′

Γ , the logarithmic derivative of Γ, the psi function. If taking s = 1
2 in (1),
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then, for x > 1,
√

x +
1
4

<
Γ(x + 1)

Γ(x + 1/2)
<

√
x +

√
3 − 1
2

. (2)

Let s and t be nonnegative numbers and α = min{s, t}. For x ∈ (−α,∞), define

zs,t(x) =





[
Γ(x + t)
Γ(x + s)

]1/(t−s)

− x, s 6= t,

eψ(x+s) − x, s = t.

(3)

In order to establish the best bounds in Kershaw’s inequality (1), among other
things, the papers [3, 5, 13, 18] established the following monotonicity and convexity
property of zs,t(x): The function zs,t(x) is either convex and decreasing for |t− s| <
1 or concave and increasing for |t− s| > 1. This result was further generalized in
the papers [10, 11].

In [4, p. 123] and [9], while studying certain problems of traffic flow, a double
inequality below was obtained for n ∈ N:

2Γ
(

n +
1
2

)
≤ Γ

(
1
2

)
Γ(n + 1) ≤ 2nΓ

(
n +

1
2

)
, (4)

In [21], inequality (4) was extended and refined for x > 0 as

√
x ≤ Γ(x + 1)

Γ(x + 1/2)
≤

√
x +

1
2
. (5)

It is clear that the double inequality (5) is weaker than (2).
Observe that inequality (4) can be rearranged for n > 1 as

1 ≤
[
Γ(1/2)Γ(n + 1)

2Γ(n + 1/2)

]1/(n−1)

≤ 2. (6)

Hinted by this, the following function g(x) was defined in [14] for x ∈ (− 1
2 ,∞)

:

g(x) =





[
Γ(1/2)Γ(x + 1)

2Γ(x + 1/2)

]1/(x−1)

, x 6= 1,

exp
[
1− γ − ψ

(
3
2

)]
, x = 1,

(7)

where γ = 0.57721566 · · · is Euler-Mascheroni’s constant, and, among other things,
it was proved in [14] that the function g(x) is logarithmically complete monotonic
in

(− 1
2 ,∞)

: g(x) ∈ L[(− 1
2 ,∞)]

with limx→−1/2 g(x) = ∞ and limx→∞ g(x) = 1.
As consequences of this result, it is deduced that

2Γ
(

x +
1
2

)
≤ Γ

(
1
2

)
Γ(x + 1) ≤ 2Γ

(
x +

1
2

)
exp

{
(x− 1)

[
1− γ − ψ

(
3
2

)]}
(8)

for x ∈ [1,∞) and

2Γ
(

x +
1
2

)
≤ Γ

(
1
2

)
Γ(x + 1) ≤ 2xΓ

(
x +

1
2

)
(9)

for x ∈ (0,∞). It was remarked in [14] that inequalities (8) and (9) extend (4) and
(6), the right hand side inequality of (8) refines the right hand side inequality of
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(4) and (6), and the right hand side inequalities in (2) and (5) and the following
inequality

Γ(x + 1)
Γ(x + 1/2)

≤ 2
Γ(1/2)

exp
{

(x− 1)
[
1− γ − ψ

(
3
2

)]}
(10)

for x ∈ [1,∞), which is deduced from the right hand side inequality of (8), are not
included with each other respectively.

Now rewrite inequality (4) or (6) for n > 1 as

1 ≤
[
Γ(1 + 1/2)
Γ(1 + 1)

· Γ(n + 1)
Γ(n + 1/2)

]1/(n−1)

≤ 2. (11)

The definition (7) of g(x) and inequality (11) motivate us to introduce a new func-
tion hβ(x) as follows: Let s and t be nonnegative numbers with s 6= t, α = min{s, t}
and β > −α. For x ∈ (−α,∞), define

hβ(x) =





[
Γ(β + t)
Γ(β + s)

· Γ(x + s)
Γ(x + t)

]1/(x−β)

, x 6= β,

exp[ψ(β + s)− ψ(β + t)], x = β.

(12)

The first aim of this paper is to consider the logarithmically completely mono-
tonic property of hβ(x) by a simple approach. Our first main result is the following
Theorem 1.

Theorem 1. (1) If s > t, then hβ(x) ∈ L[(−α,∞)] with

lim
x→−α

hβ(x) = ∞ and lim
x→∞

hβ(x) = 1. (13)

(2) If s < t, then [hβ(x)]−1 ∈ L[(−α,∞)] with

lim
x→−α

hβ(x) = 0 and lim
x→∞

hβ(x) = 1. (14)

Remark 1. It is noted that taking s = 1, t = α = 1
2 and β = 1 in Theorem 1 can

deduce one of the results obtained in [14], the logarithmically complete monotonicity
of the function g(x) defined by (7).

Since hβ(x) is decreasing (or increasing) for s > t (or s < t), hβ(β) = exp[ψ(β +
s)−ψ(β + t)] and limx→∞ hβ(x) = 1, then the following double inequality (15), as
a direct consequence of Theorem 1, is established easily.

Corollary 1. Let s and t be nonnegative numbers, α = min{s, t} and β > −α. If
s > t, inequality

Γ(β + s)
Γ(β + t)

≤ Γ(x + s)
Γ(x + t)

≤ Γ(β + s)
Γ(β + t)

exp
{
(x− β)[ψ(β + s)]− ψ(β + t)

}
(15)

holds for x ∈ [β,∞). If s < t, inequality (15) reverses.

Remark 2. If taking β = 1, s = 1 and t = 1
2 in (15), then inequality (8) is deduced.

So, it can be said that inequality (15) is a generalization of (8).

In [16], it was showed that the function ln x− 1
2x −ψ(x) ∈ C[(0,∞)]. In order to

prove Theorem 3 below, this result need to be generalized. Our second main result
is the following Theorem 2.

Theorem 2. Let α ∈ R. Then ψ(x) − ln x + α
x ∈ C[(0,∞)] if and only if α ≥ 1

and ln x− α
x − ψ(x) ∈ C[(0,∞)] if and only if α ≤ 1

2 .
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For x ∈ (0,∞), define

p(x) =





[
xx

Γ(x + 1)

]1/(1−x)

, x 6= 1,

e−γ , x = 1.

(16)

In [14], among other things, the logarithmically complete monotonicity of p(x) was
proved: p(x) ∈ L[(0,∞)] with limx→0+ p(x) = 1 and limx→∞ p(x) = 1

e . Motivated
by inequality (11) and the definition of hβ(x) in (12), a more general function than
p(x) can be introduced: For x ∈ (0,∞) and α > 0, let

pα(x) =





[
Γ(α + 1)

αα
· xx

Γ(x + 1)

]1/(α−x)

, x 6= α,

exp[ψ(α + 1)− 1]
α

, x = α.

(17)

It is clear that p1(x) = p(x).
The third aim of this paper is to show the logarithmically completely monotonic-

ity of the function pα(x) for any fixed α > 0 by a simple approach. Our third main
result is the following Theorem 3.

Theorem 3. For any fixed α > 0, pα(x) ∈ L[(0,∞)] with

lim
x→0+

pα(x) =
α
√

Γ(α + 1)
α

and lim
x→∞

pα(x) =
1
e
. (18)

2. Proofs of theorems

It is well-known (see [12, 15, 17, 18, 19, 20]) that, for x > 0 and ω > 0,

1
xω

=
1

Γ(ω)

∫ ∞

0

tω−1e−xt d t, (19)

and that, for k ∈ N and x > 0,

ψ(x) = ln x +
∫ ∞

0

(
1
u
− 1

1− e−u

)
e−xu du, (20)

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t. (21)

Proof of Theorem 1. Without loss of generality, assume s > t. For x 6= β, taking
logarithm of the function hβ(x) gives

ln hβ(x) =
1

x− β

[
ln

Γ(x + s)
Γ(β + s)

− ln
Γ(x + t)
Γ(β + t)

]

=
lnΓ(x + s)− ln Γ(β + s)

x− β
− ln Γ(x + t)− ln Γ(β + t)

x− β

=
1

x− β

∫ x

β

ψ(u + s) du− 1
x− β

∫ x

β

ψ(u + t) du

=
1

x− β

∫ x

β

[ψ(u + s)− ψ(u + t)] du

=
1

x− β

∫ x

β

∫ s

t

ψ′(u + v) dv du
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, 1
x− β

∫ x

β

Φs,t(u) du

=
∫ 1

0

Φs,t((x− β)u + β) du

and, by differentiating ln hβ(x) with respect to x,

[ln hβ(x)](k) =
∫ 1

0

ukΦ(k)
s,t ((x− β)u + β) du (22)

for k ∈ N.
If x = β, formula (22) is also valid.
Formula (21) implies that ψ′ ∈ C[(0,∞)] and Φs,t(u) ∈ C[(−t,∞)]. This means

that (−1)i[Φs,t(u)](i) ≥ 0 holds in u ∈ (−t,∞) for any nonnegative integer i. Thus,

(−1)k[ln hβ(x)](k) =
∫ 1

0

uk
{
(−1)kΦ(k)

s,t ((x− β)u + β)
}

du ≥ 0 (23)

in (−t,∞) for k ∈ N. The proof of Theorem 1 is complete. ¤

Proof of Theorem 2. Formulas (19) and (20) imply that

ψ(x)− ln x +
α

x
=

∫ ∞

0

[
(1− u)eu − 1

u(eu − 1)
+ α

]
e−xu du ,

∫ ∞

0

[θ(u) + α]e−xu du,

θ′(u) =
(u2 + 2)eu − 1− e2u

u2(eu − 1)2
, θ1(u)

u2(eu − 1)2
,

θ′1(u) = [u2 + 2u + 2− 2eu]eu , euθ2(u),

θ′2(u) = 2(1 + u− eu) < 0.

It is clear that the function θ2(u) is decreasing in (0,∞). From θ2(0) = 0, it follows
that θ2(u) < 0 and θ′1(u) < 0 in (0,∞) and that θ′1(u) decreases in (0,∞). Since
θ′1(0) = 0, then θ′1(u) < 0 and θ1(u) is decreasing in (0,∞). From θ1(0) = 0, it fol-
lows that θ1(u) < 0 and θ′(u) < 0 in (0,∞), and then the function θ(u) is decreasing
in (0,∞). L’Hôspital’s rule yields that limu→0+ θ(u) = − 1

2 and limu→∞ θ(u) = −1.
Thus,

θ(u) + α




≥ 0, α ≥ 1

≤ 0, α ≤ 1
2

on [0,∞]. Since
[
ψ(x)−ln x+ α

x

](k) = (−1)k
∫∞
0

[θ(u)+α]uke−xu du for nonnegative
integer k, then ψ(x)− ln x + α

x ∈ C[(0,∞)] if α ≥ 1 (or ln x− α
x − ψ(x) ∈ C[(0,∞)]

if α ≤ 1
2 ).

If ψ(x)−ln x+α
x ∈ C[(0,∞)] (or ln x−α

x−ψ(x) ∈ C[(0,∞)]), then ψ(x)−ln x+α
x >

0 (or < 0), this leads to α > x[ln x− ψ(x)] (or α < x[lnx− ψ(x)]) in (0,∞). Since
limx→0+{x[ln x − ψ(x)]} = 1 (or limx→∞{x[ln x − ψ(x)]} = 1

2 ), then α ≥ 1 (or
α ≤ 1

2 ). The proof of Theorem 2 is complete. ¤

Proof of Theorem 3. From the well known differences equation Γ(x + 1) = xΓ(x),
it follows easily that

ψ(x + 1)− ψ(x) =
1
x

(24)
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for x > 0. For x 6= α, taking logarithm of pα(x) and using (24) gives

ln pα(x) =
1

x− α

[
ln

Γ(x + 1)
Γ(α + 1)

− xx

αα

]

=
ln Γ(x + 1)− ln Γ(α + 1)

x− α
− x ln x− α ln α

x− α

=
1

x− α

∫ x

α

ψ(u + 1) du− 1
x− α

∫ x

α

[1 + ln x] du

=
1

x− α

∫ x

α

[
ψ(u)− ln u +

1
u
− 1

]
du

, 1
x− α

∫ x

α

[Ψ(u)− 1] du

=
∫ 1

0

Ψ((x− α)u + α) du− 1

and, by differentiating ln pα(x) with respect to x,

[ln pα(x)](k) =
∫ 1

0

ukΨ(k)((x− α)u + α) du (25)

for k ∈ N.
If x = α, formula (25) is also valid.
From Theorem 2, it follows that Ψ(u) ∈ C[(0,∞)]. This implies (−1)iΨ(i)(u) ≥ 0

for nonnegative integer i. As a result, for k ∈ N,

(−1)k[ln pα(x)](k) =
∫ 1

0

uk
{
(−1)kΨ(k)((x− α)u + α)

}
du ≥ 0 (26)

holds in x ∈ (0,∞). The proof of Theorem 3 is complete. ¤
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