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Reverses of the Triangle Inequality in Banach Spaces

Sever S. Dragomir

Abstract. Recent reverses for the discrete generalised triangle inequality and
its continuous version for vector-valued integrals in Banach spaces are sur-

veyed. New results are also obtained. Particular instances of interest in Hilbert

spaces and for complex numbers and functions are pointed out as well.

1. Introduction

The generalised triangle inequality, namely∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

‖xi‖ ,

provided (X, ‖.‖) is a normed linear space over the real or complex filed K = R,
C and xi, i ∈ {1, ..., n} are vectors in X plays a fundamental role in establishing
various analytic and geometric properties of such spaces.

With no less importance, the continuous version of it, i.e.,

(1.1)

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ≤
∫ b

a

‖f (t)‖ dt,

where f : [a, b] ⊂ R → X is a Bochner measurable function on the compact interval
[a, b] with values in the Banach space X and ‖f (.)‖ is Lebesgue integrable on [a, b] ,
is crucial in the Analysis of vector-valued functions with countless applications in
Functional Analysis, Operator Theory, Differential Equations, Semigroups Theory
and related fields.

Surprisingly enough, the reverses of these, i.e., inequalities of the following type
n∑

i=1

‖xi‖ ≤ C

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
∫ b

a

‖f (t)‖ dt ≤ C

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with C ≥ 1, which we call multiplicative reverses, or

n∑
i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+M,

∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+M,

with M ≥ 0, which we call additive reverses, under suitable assumptions for the
involved vectors or functions, are far less known in the literature.
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It is worth mentioning though, the following reverse of the generalised triangle
inequality for complex numbers

cos θ
n∑

k=1

|zk| ≤

∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ,
provided the complex numbers zk, k ∈ {1, . . . , n} satisfy the assumption

a− θ ≤ arg (zk) ≤ a+ θ, for any k ∈ {1, . . . , n} ,

where a ∈ R and θ ∈
(
0, π

2

)
was first discovered by M. Petrovich in 1917, [22]

(see [20, p. 492]) and subsequently was rediscovered by other authors, including
J. Karamata [14, p. 300 – 301], H.S. Wilf [23], and in an equivalent form by M.
Marden [18]. Marden and Wilf have outlined in their work the important fact that
reverses of the generalised triangle inequality may be successfully applied to the
location problem for the roots of complex polynomials.

In 1966, J.B. Diaz and F.T. Metcalf [2] proved the following reverse of the
triangle inequality in the more general case of inner product spaces:

Theorem 1 (Diaz-Metcalf, 1966). Let a be a unit vector in the inner product
space (H; 〈·, ·〉) over the real or complex number field K. Suppose that the vectors
xi ∈ H\ {0} , i ∈ {1, . . . , n} satisfy

0 ≤ r ≤ Re 〈xi, a〉
‖xi‖

, i ∈ {1, . . . , n} .

Then

r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

n∑
i=1

xi = r

(
n∑

i=1

‖xi‖

)
a.

A generalisation of this result for orthonormal families is incorporated in the
following result [2].

Theorem 2 (Diaz-Metcalf, 1966). Let a1, . . . , an be orthonormal vectors in H.
Suppose the vectors x1, . . . , xn ∈ H\ {0} satisfy

0 ≤ rk ≤
Re 〈xi, ak〉

‖xi‖
, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .

Then (
m∑

k=1

r2k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if

n∑
i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkak.
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Similar results valid for semi-inner products may be found in [15], [16] and
[19].

Now, for the scalar continuous case.
It appears, see [20, p. 492], that the first reverse inequality for (1.1) in the case

of complex valued functions was obtained by J. Karamata in his book from 1949,
[14]. It can be stated as

cos θ
∫ b

a

|f (x)| dx ≤

∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣
provided

−θ ≤ arg f (x) ≤ θ, x ∈ [a, b]

for given θ ∈
(
0, π

2

)
.

This result has recently been extended by the author for the case of Bochner
integrable functions with values in a Hilbert space H. If by L ([a, b] ;H) , we denote
the space of Bochner integrable functions with values in a Hilbert space H, i.e., we
recall that f ∈ L ([a, b] ;H) if and only if f : [a, b] → H is Bochner measurable on
[a, b] and the Lebesgue integral

∫ b

a
‖f (t)‖ dt is finite, then

(1.2)
∫ b

a

‖f (t)‖ dt ≤ K

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
provided that f satisfies the condition

‖f (t)‖ ≤ K Re 〈f (t) , e〉 for a.e. t ∈ [a, b] ,

where e ∈ H, ‖e‖ = 1 and K ≥ 1 are given. The case of equality holds in (1.2) if
and only if ∫ b

a

f (t) dt =
1
K

(∫ b

a

‖f (t)‖ dt

)
e.

The aim of the present paper is to survey some of the recent results concerning
multiplicative and additive reverses for both the discrete and continuous version
of the triangle inequalities in Banach spaces. New results and applications for the
important case of Hilbert spaces and for complex numbers and complex functions
have been provided as well.

2. Diaz-Metcalf Type Inequalities

In [2], Diaz and Metcalf established the following reverse of the generalised
triangle inequality in real or complex normed linear spaces.

Theorem 3 (Diaz-Metcalf, 1966). If F : X → K, K = R,C is a linear func-
tional of a unit norm defined on the normed linear space X endowed with the norm
‖·‖ and the vectors x1, . . . , xn satisfy the condition

(2.1) 0 ≤ r ≤ ReF (xi) , i ∈ {1, . . . , n} ;

then

(2.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
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where equality holds if and only if both

(2.3) F

(
n∑

i=1

xi

)
= r

n∑
i=1

‖xi‖

and

(2.4) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
If X = H, (H; 〈·, ·〉) is an inner product space and F (x) = 〈x, e〉 , ‖e‖ = 1,

then the condition (2.1) may be replaced with the simpler assumption

(2.5) 0 ≤ r ‖xi‖ ≤ Re 〈xi, e〉 , i = 1, . . . , n,

which implies the reverse of the generalised triangle inequality (2.2). In this case
the equality holds in (2.2) if and only if [2]

(2.6)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Theorem 4 (Diaz-Metcalf, 1966). Let F1, . . . , Fm be linear functionals on X,
each of unit norm. As in [2], let consider the real number c defined by

c = sup
x6=0

[∑m
k=1 |Fk (x)|2

‖x‖2

]
;

it then follows that 1 ≤ c ≤ m. Suppose the vectors x1, . . . , xn whenever xi 6= 0,
satisfy

(2.7) 0 ≤ rk ‖xi‖ ≤ ReFk (xi) , i = 1, . . . , n, k = 1, . . . ,m.

Then one has the following reverse of the generalised triangle inequality [2]

(2.8)
(∑m

k=1 r
2
k

c

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
where equality holds if and only if both

(2.9) Fk

(
n∑

i=1

xi

)
= rk

n∑
i=1

‖xi‖ , k = 1, . . . ,m

and

(2.10)
m∑

k=1

[
Fk

(
n∑

i=1

xi

)]2

= c

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
2

.

If X = H, an inner product space, then, for Fk (x) = 〈x, ek〉 , where {ek}k=1,n

is an orthonormal family in H, i.e., 〈ei, ej〉 = δij , i, j ∈ {1, . . . , k} , δij is Kronecker
delta, the condition (2.7) may be replaced by

(2.11) 0 ≤ rk ‖xi‖ ≤ Re 〈xi, ek〉 , i = 1, . . . , n, k = 1, . . . ,m;

implying the following reverse of the generalised triangle inequality

(2.12)

(
m∑

k=1

r2k

) 1
2 n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
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where the equality holds if and only if

(2.13)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖

)
m∑

k=1

rkek.

The aim of the following sections is to present recent reverses of the triangle
inequality obtained by the author in [5] and [6]. New results are established for the
general case of normed spaces. Their versions in inner product spaces are analyzed
and applications for complex numbers are given as well.

For various classical inequalities related to the triangle inequality, see Chapter
XVII of the book [20] and the references therein.

3. Inequalities of Diaz-Metcalf Type for m Functionals

3.1. The Case of Normed Spaces. The following result may be stated [5].

Theorem 5 (Dragomir, 2004). Let (X, ‖·‖) be a normed linear space over the
real or complex number field K and Fk : X → K, k ∈ {1, . . . ,m} continuous linear
functionals on X. If xi ∈ X\ {0} , i ∈ {1, . . . , n} are such that there exists the
constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(3.1) ReFk (xi) ≥ rk ‖xi‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(3.2)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.2) if both

(3.3)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖

and

(3.4)

(
m∑

k=1

Fk

)(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Proof. Utilising the hypothesis (3.1) and the properties of the modulus, we

have

I :=

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≥
∣∣∣∣∣Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]∣∣∣∣∣(3.5)

≥
m∑

k=1

ReFk

(
n∑

i=1

xi

)
=

m∑
k=1

n∑
i=1

ReFk (xi)

≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

On the other hand, by the continuity property of Fk, k ∈ {1, . . . ,m} we obviously
have

(3.6) I =

∣∣∣∣∣
(

m∑
k=1

Fk

)(
n∑

i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
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Making use of (3.5) and (3.6), we deduce the desired inequality (3.2).
Now, if (3.3) and (3.4) are valid, then, obviously, the case of equality holds true

in the inequality (3.2).
Conversely, if the case of equality holds in (3.2), then it must hold in all the

inequalities used to prove (3.2). Therefore we have

(3.7) ReFk (xi) = rk ‖xi‖

for each i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} ;

(3.8)
m∑

k=1

ImFk

(
n∑

i=1

xi

)
= 0

and

(3.9)
m∑

k=1

ReFk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Note that, from (3.7), by summation over i and k, we get

(3.10) Re

[(
m∑

k=1

Fk

)(
n∑

i=1

xi

)]
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

Since (3.8) and (3.10) imply (3.3), while (3.9) and (3.10) imply (3.4) hence the
theorem is proved.

Remark 1. If the norms ‖Fk‖ , k ∈ {1, . . . ,m} are easier to find, then, from
(3.2), one may get the (coarser) inequality that might be more useful in practice:

(3.11)
n∑

i=1

‖xi‖ ≤
∑m

k=1 ‖Fk‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
3.2. The Case of Inner Product Spaces. The case of inner product spaces,

in which we may provide a simpler condition for equality, is of interest in applica-
tions [5].

Theorem 6 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If
rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 satisfy

(3.12) Re 〈xi, ek〉 ≥ rk ‖xi‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(3.13)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1 rk

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.13) if and only if

(3.14)
n∑

i=1

xi =
∑m

k=1 rk

‖
∑m

k=1 ek‖
2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.
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Proof. By the properties of inner product and by (3.12), we have∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣(3.15)

≥

∣∣∣∣∣
m∑

k=1

Re

〈
n∑

i=1

xi, ek

〉∣∣∣∣∣ ≥
m∑

k=1

Re

〈
n∑

i=1

xi, ek

〉

=
m∑

k=1

n∑
i=1

Re 〈xi, ek〉 ≥

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ > 0.

Observe also that, by (3.15),
∑m

k=1 ek 6= 0.
On utlising Schwarz’s inequality in the inner product space (H; 〈·, ·〉) for

∑n
i=1 xi,∑m

k=1 ek, we have

(3.16)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣ .
Making use of (3.15) and (3.16), we can conclude that (3.13) holds.

Now, if (3.14) holds true, then, by taking the norm, we have∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ =
(
∑m

k=1 rk)
∑n

i=1 ‖xi‖
‖
∑m

k=1 ek‖
2

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
=

(
∑m

k=1 rk)
‖
∑m

k=1 ek‖

n∑
i=1

‖xi‖ ,

i.e., the case of equality holds in (3.13).
Conversely, if the case of equality holds in (3.13), then it must hold in all the

inequalities used to prove (3.13). Therefore, we have

(3.17) Re 〈xi, ek〉 = rk ‖xi‖

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,

(3.18)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
and

(3.19) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (3.17), on summing over i and k, we get

(3.20) Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .

By (3.19) and (3.20), we have

(3.21)

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)
n∑

i=1

‖xi‖ .
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On the other hand, by the use of the following identity in inner product spaces

(3.22)

∥∥∥∥∥u− 〈u, v〉 v
‖v‖2

∥∥∥∥∥
2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2 , v 6= 0,

the relation (3.18) holds if and only if

(3.23)
n∑

i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

Finally, on utilising (3.21) and (3.23), we deduce that the condition (3.14) is nec-
essary for the equality case in (3.13).

Before we give a corollary of the above theorem, we need to state the following
lemma that has been basically obtained in [4]. For the sake of completeness, we
provide a short proof here as well.

Lemma 1 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K and x, a ∈ H, r > 0 such that:

(3.24) ‖x− a‖ ≤ r < ‖a‖ .
Then we have the inequality

(3.25) ‖x‖
(
‖a‖2 − r2

) 1
2 ≤ Re 〈x, a〉

or, equivalently

(3.26) ‖x‖2 ‖a‖2 − [Re 〈x, a〉]2 ≤ r2 ‖x‖2
.

The case of equality holds in (3.25) (or in (3.26)) if and only if

(3.27) ‖x− a‖ = r and ‖x‖2 + r2 = ‖a‖2
.

Proof. From the first part of (3.24), we have

(3.28) ‖x‖2 + ‖a‖2 − r2 ≤ 2 Re 〈x, a〉 .

By the second part of (3.24) we have
(
‖a‖2 − r2

) 1
2
> 0, therefore, by (3.28), we

may state that

(3.29) 0 <
‖x‖2(

‖a‖2 − r2
) 1

2
+
(
‖a‖2 − r2

) 1
2 ≤ 2 Re 〈x, a〉(

‖a‖2 − r2
) 1

2
.

Utilising the elementary inequality
1
α
q + αp ≥ 2

√
pq, α > 0, p > 0, q ≥ 0;

with equality if and only if α =
√

q
p , we may state (for α =

(
‖a‖2 − r2

) 1
2
, p = 1,

q = ‖x‖2) that

(3.30) 2 ‖x‖ ≤ ‖x‖2(
‖a‖2 − r2

) 1
2

+
(
‖a‖2 − r2

) 1
2
.

The inequality (3.25) follows now by (3.29) and (3.30).
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From the above argument, it is clear that the equality holds in (3.25) if and
only if it holds in (3.29) and (3.30). However, the equality holds in (3.29) if and

only if ‖x− a‖ = r and in (3.30) if and only if
(
‖a‖2 − r2

) 1
2

= ‖x‖ .
The proof is thus completed.

We may now state the following corollary [5].

Corollary 1. Let (H; 〈·, ·〉) be an inner product space over the real or complex
number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If ρk ≥ 0,
k ∈ {1, . . . ,m} with

(3.31) ‖xi − ek‖ ≤ ρk < ‖ek‖
for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(3.32)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (3.32) if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

‖
∑m

k=1 ek‖
2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Proof. Utilising Lemma 1, we have from (3.31) that

‖xi‖
(
‖ek‖2 − ρ2

k

) 1
2 ≤ Re 〈xi, ek〉

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} .
Applying Theorem 6 for

rk :=
(
‖ek‖2 − ρ2

k

) 1
2
, k ∈ {1, . . . ,m} ,

we deduce the desired result.

Remark 2. If {ek}k∈{1,...,m} are orthogonal, then (3.32) becomes

(3.33)
n∑

i=1

‖xi‖ ≤

(∑m
k=1 ‖ek‖2

) 1
2

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
with equality if and only if

n∑
i=1

xi =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2∑m

k=1 ‖ek‖2

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

Moreover, if {ek}k∈{1,...,m} is assumed to be orthonormal and

‖xi − ek‖ ≤ ρk for k ∈ {1, . . . ,m} , i ∈ {1, . . . , n}
where ρk ∈ [0, 1) for k ∈ {1, . . . ,m} , then

(3.34)
n∑

i=1

‖xi‖ ≤
√
m∑m

k=1 (1− ρ2
k)

1
2

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
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with equality if and only if

n∑
i=1

xi =
∑m

k=1

(
1− ρ2

k

) 1
2

m

(
n∑

i=1

‖xi‖

)
m∑

k=1

ek.

The following lemma may be stated as well [3].

Lemma 2 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K, x, y ∈ H and M ≥ m > 0. If

(3.35) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(3.36)
∥∥∥∥x− m+M

2
y

∥∥∥∥ ≤ 1
2

(M −m) ‖y‖ ,

then

(3.37) ‖x‖ ‖y‖ ≤ 1
2
· M +m√

mM
Re 〈x, y〉 .

The equality holds in (3.37) if and only if the case of equality holds in (3.35) and

(3.38) ‖x‖ =
√
mM ‖y‖ .

Proof. Obviously,

Re 〈My − x, x−my〉 = (M +m) Re 〈x, y〉 − ‖x‖2 −mM ‖y‖2
.

Then (3.35) is clearly equivalent to

(3.39)
‖x‖2

√
mM

+
√
mM ‖y‖2 ≤ M +m√

mM
Re 〈x, y〉 .

Since, obviously,

(3.40) 2 ‖x‖ ‖y‖ ≤ ‖x‖2

√
mM

+
√
mM ‖y‖2

,

with equality iff ‖x‖ =
√
mM ‖y‖ , hence (3.39) and (3.40) imply (3.37).

The case of equality is obvious and we omit the details.

Finally, we may state the following corollary of Theorem 6, see [5].

Corollary 2. Let (H; 〈·, ·〉) be an inner product space over the real or complex
number field K, ek, xi ∈ H\ {0}, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If Mk > µk > 0,
k ∈ {1, . . . ,m} are such that either

(3.41) Re 〈Mkek − xi, xi − µkek〉 ≥ 0

or, equivalently, ∥∥∥∥xi −
Mk + µk

2
ek

∥∥∥∥ ≤ 1
2

(Mk − µk) ‖ek‖

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} , then

(3.42)
n∑

i=1

‖xi‖ ≤
‖
∑m

k=1 ek‖∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
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The case of equality holds in (3.42) if and only if

n∑
i=1

xi =

∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

‖
∑m

k=1 ek‖
2

n∑
i=1

‖xi‖
m∑

k=1

ek.

Proof. Utilising Lemma 2, by (3.41) we deduce

2 ·
√
µkMk

µk +Mk
‖xi‖ ‖ek‖ ≤ Re 〈xi, ek〉

for each k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} .
Applying Theorem 6 for

rk :=
2 ·
√
µkMk

µk +Mk
‖ek‖ , k ∈ {1, . . . ,m} ,

we deduce the desired result.

4. Diaz-Metcalf Inequality for Semi-Inner Products

In 1961, G. Lumer [17] introduced the following concept.

Definition 1. Let X be a linear space over the real or complex number field
K. The mapping [·, ·] : X × X → K is called a semi-inner product on X, if the
following properties are satisfied (see also [3, p. 17]):

(i) [x+ y, z] = [x, z] + [y, z] for all x, y, z ∈ X;
(ii) [λx, y] = λ [x, y] for all x, y ∈ X and λ ∈ K;

(iii) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 implies x = 0;
(iv) |[x, y]|2 ≤ [x, x] [y, y] for all x, y ∈ X;
(v) [x, λy] = λ̄ [x, y] for all x, y ∈ X and λ ∈ K.

It is well known that the mapping X 3 x 7−→ [x, x]
1
2 ∈ R is a norm on X and

for any y ∈ X, the functional X 3 x
ϕy7−→ [x, y] ∈ K is a continuous linear functional

on X endowed with the norm ‖·‖ generated by [·, ·] . Moreover, one has
∥∥ϕy

∥∥ = ‖y‖
(see for instance [3, p. 17]).

Let (X, ‖·‖) be a real or complex normed space. If J : X →2 X∗ is the
normalised duality mapping defined on X, i.e., we recall that (see for instance [3,
p. 1])

J (x) = {ϕ ∈ X∗|ϕ (x) = ‖ϕ‖ ‖x‖ , ‖ϕ‖ = ‖x‖} , x ∈ X,

then we may state the following representation result (see for instance [3, p. 18]):
Each semi-inner product [·, ·] : X × X → K that generates the norm ‖·‖ of

the normed linear space (X, ‖·‖) over the real or complex number field K, is of the
form

[x, y] =
〈
J̃ (y) , x

〉
for any x, y ∈ X,

where J̃ is a selection of the normalised duality mapping and 〈ϕ, x〉 := ϕ (x) for
ϕ ∈ X∗ and x ∈ X.

Utilising the concept of semi-inner products, we can state the following partic-
ular case of the Diaz-Metcalf inequality.
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Corollary 3. Let (X, ‖·‖) be a normed linear space, [·, ·] : X×X → K a semi-
inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If xi ∈ X, i ∈ {1, . . . , n}
and r ≥ 0 such that

(4.1) r ‖xi‖ ≤ Re [xi, e] for each i ∈ {1, . . . , n} ,

then we have the inequality

(4.2) r
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The case of equality holds in (4.2) if and only if both

(4.3)

[
n∑

i=1

xi, e

]
= r

n∑
i=1

‖xi‖

and

(4.4)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
The proof is obvious from the Diaz-Metcalf theorem [2, Theorem 3] applied for

the continuous linear functional Fe (x) = [x, e] , x ∈ X.
Before we provide a simpler necessary and sufficient condition of equality in

(4.2), we need to recall the concept of strictly convex normed spaces and a classical
characterisation of these spaces.

Definition 2. A normed linear space (X, ‖·‖) is said to be strictly convex if
for every x, y from X with x 6= y and ‖x‖ = ‖y‖ = 1, we have ‖λx+ (1− λ) y‖ < 1
for all λ ∈ (0, 1) .

The following characterisation of strictly convex spaces is useful in what follows
(see [1], [13], or [3, p. 21]).

Theorem 7. Let (X, ‖·‖) be a normed linear space over K and [·, ·] a semi-inner
product generating its norm. The following statements are equivalent:

(i) (X, ‖·‖) is strictly convex;
(ii) For every x, y ∈ X, x, y 6= 0 with [x, y] = ‖x‖ ‖y‖ , there exists a λ > 0

such that x = λy.

The following result may be stated.

Corollary 4. Let (X, ‖·‖) be a strictly convex normed linear space, [·, ·] a
semi-inner product generating the norm and e, xi (i ∈ {1, . . . , n}) as in Corollary
3. Then the case of equality holds in (4.2) if and only if

(4.5)
n∑

i=1

xi = r

(
n∑

i=1

‖xi‖

)
e.

Proof. If (4.5) holds true, then, obviously∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = r

(
n∑

i=1

‖xi‖

)
‖e‖ = r

n∑
i=1

‖xi‖ ,

which is the equality case in (4.2).
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Conversely, if the equality holds in (4.2), then by Corollary 3, we have that
(4.3) and (4.4) hold true. Utilising Theorem 7, we conclude that there exists a
µ > 0 such that

(4.6)
n∑

i=1

xi = µe.

Inserting this in (4.3) we get

µ ‖e‖2 = r
n∑

i=1

‖xi‖

giving

(4.7) µ = r
n∑

i=1

‖xi‖ .

Finally, by (4.6) and (4.7) we deduce (4.5) and the corollary is proved.

5. Other Multiplicative Reverses for m Functionals

Assume that Fk, k ∈ {1, . . . ,m} are bounded linear functionals defined on the
normed linear space X.

For p ∈ [1,∞), define

(cp) cp := sup
x6=0

[∑m
k=1 |Fk (x)|p

‖x‖p

] 1
p

and for p = ∞,

(c∞) c∞ := sup
x6=0

[
max

1≤k≤m

{
|Fk (x)|
‖x‖

}]
.

Then, by the fact that |Fk (x)| ≤ ‖Fk‖ ‖x‖ for any x ∈ X, where ‖Fk‖ is the norm
of the functional Fk, we have that

cp ≤

(
m∑

k=1

‖Fk‖p

) 1
p

, p ≥ 1

and
c∞ ≤ max

1≤k≤m
‖Fk‖ .

We may now state and prove a new reverse inequality for the generalised tri-
angle inequality in normed linear spaces.

Theorem 8. Let xi, rk, Fk, k ∈ {1, . . . ,m}, i ∈ {1, . . . , n} be as in the hypoth-
esis of Theorem 5. Then we have the inequalities

(5.1) (1 ≤)
∑n

i=1 ‖xi‖
‖
∑n

i=1 xi‖
≤ c∞

max
1≤k≤m

{rk}

≤ max
1≤k≤m

‖Fk‖

max
1≤k≤m

{rk}

 .

The case of equality holds in (5.1) if and only if

(5.2) Re

[
Fk

(
n∑

i=1

xi

)]
= rk

n∑
i=1

‖xi‖ for each k ∈ {1, . . . ,m}
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and

(5.3) max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
= c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Proof. Since, by the definition of c∞, we have

c∞ ‖x‖ ≥ max
1≤k≤m

|Fk (x)| , for any x ∈ X,

then we can state, for x =
∑n

i=1 xi, that

c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≥ max
1≤k≤m

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≥ max
1≤k≤m

[∣∣∣∣∣ReFk

(
n∑

i=1

xi

)∣∣∣∣∣
]

(5.4)

≥ max
1≤k≤m

[
Re

n∑
i=1

Fk (xi)

]
= max

1≤k≤m

[
n∑

i=1

ReFk (xi)

]
.

Utilising the hypothesis (3.1) we obviously have

max
1≤k≤m

[
n∑

i=1

ReFk (xi)

]
≥ max

1≤k≤m
{rk} ·

n∑
i=1

‖xi‖ .

Also,
∑n

i=1 xi 6= 0, because, by the initial assumptions, not all rk and xi with
k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} are allowed to be zero. Hence the desired
inequality (5.1) is obtained.

Now, if (5.2) is valid, then, taking the maximum over k ∈ {1, . . . ,m} in this
equality we get

max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
= max

1≤k≤m
{rk}

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, together with (5.3) provides the equality case in (5.1).

Now, if the equality holds in (5.1), it must hold in all the inequalities used to
prove (5.1), therefore, we have

(5.5) ReFk (xi) = rk ‖xi‖ for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}

and, from (5.4),

c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ = max
1≤k≤m

Re

[
Fk

(
n∑

i=1

xi

)]
,

which is (5.3).
From (5.5), on summing over i ∈ {1, . . . , n} , we get (5.2), and the theorem is

proved.

The following result in normed spaces also holds.

Theorem 9. Let xi, rk, Fk, k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} be as in the hypoth-
esis of Theorem 5. Then we have the inequality

(5.6) (1 ≤)
∑n

i=1 ‖xi‖
‖
∑n

i=1 xi‖
≤ cp

(
∑m

k=1 r
p
k)

1
p

(
≤
∑m

k=1 ‖Fk‖p∑m
k=1 r

p
k

) 1
p

,

where p ≥ 1.
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The case of equality holds in (5.6) if and only if

(5.7) Re

[
Fk

(
n∑

i=1

xi

)]
= rk

n∑
i=1

‖xi‖ for each k ∈ {1, . . . ,m}

and

(5.8)
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

= cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

.

Proof. By the definition of cp, p ≥ 1, we have

cpp ‖x‖
p ≥

m∑
k=1

|Fk (x)|p for any x ∈ X,

implying that

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≥
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣
p

≥
m∑

k=1

∣∣∣∣∣ReFk

(
n∑

i=1

xi

)∣∣∣∣∣
p

(5.9)

≥
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

=
m∑

k=1

[
n∑

i=1

ReFk (xi)

]p

.

Utilising the hypothesis (3.1), we obviously have that

(5.10)
m∑

k=1

[
n∑

i=1

ReFk (xi)

]p

≥
m∑

k=1

[
n∑

i=1

rk ‖xi‖

]p

=
m∑

k=1

rp
k

(
n∑

i=1

‖xi‖

)p

.

Making use of (5.9) and (5.10), we deduce

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

≥

(
m∑

k=1

rp
k

)(
n∑

i=1

‖xi‖

)p

,

which implies the desired inequality (5.6).
If (5.7) holds true, then, taking the power p and summing over k ∈ {1, . . . ,m} ,

we deduce
m∑

k=1

[
Re

[
Fk

(
n∑

i=1

xi

)]]p

=
m∑

k=1

rp
k

(
n∑

i=1

‖xi‖

)p

,

which, together with (5.8) shows that the equality case holds true in (5.6).
Conversely, if the case of equality holds in (5.6), then it must hold in all in-

equalities needed to prove (5.6), therefore, we must have:

(5.11) ReFk (xi) = rk ‖xi‖ for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m}

and, from (5.9),

cpp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
p

=
m∑

k=1

[
ReFk

(
n∑

i=1

xi

)]p

,

which is exactly (5.8).
From (5.11), on summing over i from 1 to n, we deduce (5.7), and the theorem

is proved.
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6. An Additive Reverse for the Triangle Inequality

6.1. The Case of One Functional. In the following we provide an alterna-
tive of the Diaz-Metcalf reverse of the generalised triangle inequality [6].

Theorem 10 (Dragomir, 2004). Let (X, ‖·‖) be a normed linear space over the
real or complex number field K and F : X → K a linear functional with the property
that |F (x)| ≤ ‖x‖ for any x ∈ X. If xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(6.1) (0 ≤) ‖xi‖ − ReF (xi) ≤ ki for each i ∈ {1, . . . , n} ,

then we have the inequality

(6.2) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (6.2) if and only if both

(6.3) F

(
n∑

i=1

xi

)
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and F

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.

Proof. If we sum in (6.1) over i from 1 to n, then we get

(6.4)
n∑

i=1

‖xi‖ ≤ Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki.

Taking into account that |F (x)| ≤ ‖x‖ for each x ∈ X, then we may state that

Re

[
F

(
n∑

i=1

xi

)]
≤

∣∣∣∣∣ReF

(
n∑

i=1

xi

)∣∣∣∣∣(6.5)

≤

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Now, making use of (6.4) and (6.5), we deduce (6.2).

Obviously, if (6.3) is valid, then the case of equality in (6.2) holds true.
Conversely, if the equality holds in (6.2), then it must hold in all the inequalities

used to prove (6.2), therefore we have
n∑

i=1

‖xi‖ = Re

[
F

(
n∑

i=1

xi

)]
+

n∑
i=1

ki

and

Re

[
F

(
n∑

i=1

xi

)]
=

∣∣∣∣∣F
(

n∑
i=1

xi

)∣∣∣∣∣ =
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ,
which imply (6.3).

The following corollary may be stated [6].

Corollary 5. Let (X, ‖·‖) be a normed linear space, [·, ·] : X × X → K a
semi-inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If xi ∈ X, ki ≥ 0,
i ∈ {1, . . . , n} are such that

(6.6) (0 ≤) ‖xi‖ − Re [xi, e] ≤ ki for each i ∈ {1, . . . , n} ,
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then we have the inequality

(6.7) (0 ≤)
n∑

i=1

‖xi‖ −

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ≤
n∑

i=1

ki.

The equality holds in (6.7) if and only if both

(6.8)

[
n∑

i=1

xi, e

]
=

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ and

[
n∑

i=1

xi, e

]
=

n∑
i=1

‖xi‖ −
n∑

i=1

ki.

Moreover, if (X, ‖·‖) is strictly convex, then the case of equality holds in (6.7) if
and only if

(6.9)
n∑

i=1

‖xi‖ ≥
n∑

i=1

ki

and

(6.10)
n∑

i=1

xi =

(
n∑

i=1

‖xi‖ −
n∑

i=1

ki

)
· e.

Proof. The first part of the corollary is obvious by Theorem 10 applied for
the continuous linear functional of unit norm Fe, Fe (x) = [x, e] , x ∈ X. The second
part may be shown on utilising a similar argument to the one from the proof of
Corollary 4. We omit the details.

Remark 3. If X = H, (H; 〈·, ·〉) is an inner product space, then from Corollary
5 we deduce the additive reverse inequality obtained in Theorem 7 of [12]. For
further similar results in inner product spaces, see [4] and [12].

6.2. The Case of m Functionals. The following result generalising Theorem
10 may be stated [6].

Theorem 11 (Dragomir, 2004). Let (X, ‖·‖) be a normed linear space over the
real or complex number field K. If Fk, k ∈ {1, . . . ,m} are bounded linear functionals
defined on X and xi ∈ X, Mik ≥ 0 for i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are such that

(6.11) ‖xi‖ − ReFk (xi) ≤Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(6.12)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1
m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (6.12) if both

(6.13)
1
m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

∥∥∥∥∥ 1
m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

(6.14)
1
m

m∑
k=1

Fk

(
n∑

i=1

xi

)
=

n∑
i=1

‖xi‖ −
1
m

m∑
k=1

n∑
j=1

Mik.
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Proof. If we sum (6.11) over i from 1 to n, then we deduce

n∑
i=1

‖xi‖ − ReFk

(
n∑

i=1

xi

)
≤

n∑
i=1

Mik

for each k ∈ {1, . . . ,m} .
Summing these inequalities over k from 1 to m, we deduce

(6.15)
n∑

i=1

‖xi‖ ≤
1
m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
+

1
m

m∑
k=1

n∑
i=1

Mik.

Utilising the continuity property of the functionals Fk and the properties of the
modulus, we have

m∑
k=1

ReFk

(
n∑

i=1

xi

)
≤

∣∣∣∣∣
m∑

k=1

ReFk

(
n∑

i=1

xi

)∣∣∣∣∣(6.16)

≤

∣∣∣∣∣
m∑

k=1

Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ .
Now, by (6.15) and (6.16), we deduce (6.12).

Obviously, if (6.13) and (6.14) hold true, then the case of equality is valid in
(6.12).

Conversely, if the case of equality holds in (6.12), then it must hold in all the
inequalities used to prove (6.12). Therefore we have

n∑
i=1

‖xi‖ =
1
m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
+

1
m

m∑
k=1

n∑
i=1

Mik,

m∑
k=1

ReFk

(
n∑

i=1

xi

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
and

m∑
k=1

ImFk

(
n∑

i=1

xi

)
= 0.

These imply that (6.13) and (6.14) hold true, and the theorem is completely
proved.

Remark 4. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (6.12), we
deduce the inequality

(6.17)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik,

which is obviously coarser than (6.12), but perhaps more useful for applications.

6.3. The Case of Inner Product Spaces. The case of inner product spaces,
in which we may provide a simpler condition of equality, is of interest in applications
[6].
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Theorem 12 (Dragomir, 2004). Let (X, ‖·‖) be an inner product space over the
real or complex number field K, ek, xi ∈ H\ {0} , k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} .
If Mik ≥ 0 for i ∈ {1, . . . , n} , {1, . . . , n} such that

(6.18) ‖xi‖ − Re 〈xi, ek〉 ≤Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} , then we have the inequality

(6.19)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

The case of equality holds in (6.19) if and only if

(6.20)
n∑

i=1

‖xi‖ ≥
1
m

m∑
k=1

n∑
i=1

Mik

and

(6.21)
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1Mik

)
‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

Proof. As in the proof of Theorem 11, we have

(6.22)
n∑

i=1

‖xi‖ ≤ Re

〈
1
m

m∑
k=1

ek,
n∑

i=1

xi

〉
+

1
m

m∑
k=1

n∑
i=1

Mik,

and
∑m

k=1 ek 6= 0.
On utilising the Schwarz inequality in the inner product space (H; 〈·, ·〉) for∑n

i=1 xi,
∑m

k=1 ek, we have∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣(6.23)

≥

∣∣∣∣∣Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
≥ Re

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
.

By (6.22) and (6.23) we deduce (6.19).
Taking the norm in (6.21) and using (6.20), we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ =
m
(∑n

i=1 ‖xi‖ − 1
m

∑m
k=1

∑n
i=1Mik

)
‖
∑m

k=1 ek‖
,

showing that the equality holds in (6.19).
Conversely, if the case of equality holds in (6.19), then it must hold in all the

inequalities used to prove (6.19). Therefore we have

(6.24) ‖xi‖ = Re 〈xi, ek〉+Mik

for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,

(6.25)

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈

n∑
i=1

xi,
m∑

k=1

ek

〉∣∣∣∣∣
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and

(6.26) Im

〈
n∑

i=1

xi,
m∑

k=1

ek

〉
= 0.

From (6.24), on summing over i and k, we get

(6.27) Re

〈
n∑

i=1

xi,

m∑
k=1

ek

〉
= m

n∑
i=1

‖xi‖ −
m∑

k=1

n∑
i=1

Mik.

On the other hand, by the use of the identity (3.22), the relation (6.25) holds if and
only if

n∑
i=1

xi =
〈
∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖
2

m∑
k=1

ek,

giving, from (6.26) and (6.27), that
n∑

i=1

xi =
m
∑n

i=1 ‖xi‖ −
∑m

k=1

∑n
i=1Mik

‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

If the inequality holds in (6.19), then obviously (6.20) is valid, and the theorem is
proved.

Remark 5. If in the above theorem the vectors {ek}k=1,m are assumed to be
orthogonal, then (6.19) becomes:

(6.28)
n∑

i=1

‖xi‖ ≤
1
m

(
m∑

k=1

‖ek‖2

) 1
2
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

Moreover, if {ek}k=1,m is an orthonormal family, then (6.28) becomes

(6.29)
n∑

i=1

‖xi‖ ≤
√
m

m

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik,

which has been obtained in [12].

Before we provide some natural consequences of Theorem 12, we need some pre-
liminary results concerning another reverse of Schwarz’s inequality in inner product
spaces (see for instance [4, p. 27]).

Lemma 3 (Dragomir, 2004). Let (X, ‖·‖) be an inner product space over the
real or complex number field K and x, a ∈ H, r > 0. If ‖x− a‖ ≤ r, then we have
the inequality

(6.30) ‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1
2
r2.

The case of equality holds in (6.30) if and only if

(6.31) ‖x− a‖ = r and ‖x‖ = ‖a‖ .

Proof. The condition ‖x− a‖ ≤ r is clearly equivalent to

(6.32) ‖x‖2 + ‖a‖2 ≤ 2 Re 〈x, a〉+ r2.

Since

(6.33) 2 ‖x‖ ‖a‖ ≤ ‖x‖2 + ‖a‖2
,
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with equality if and only if ‖x‖ = ‖a‖ , hence by (6.32) and (6.33) we deduce (6.30).
The case of equality is obvious.

Utilising the above lemma we may state the following corollary of Theorem 12
[6].

Corollary 6. Let (H; 〈·, ·〉) , ek, xi be as in Theorem 12. If rik > 0, i ∈
{1, . . . , n} , k ∈ {1, . . . ,m} such that

(6.34) ‖xi − ek‖ ≤ rik for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,
then we have the inequality

(6.35)
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

2m

m∑
k=1

n∑
i=1

r2ik.

The equality holds in (6.35) if and only if
n∑

i=1

‖xi‖ ≥
1

2m

m∑
k=1

n∑
i=1

r2ik

and
n∑

i=1

xi =
m
(∑n

i=1 ‖xi‖ − 1
2m

∑m
k=1

∑n
i=1 r

2
ik

)
‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

The following lemma may provide another sufficient condition for (6.18) to hold
(see also [4, p. 28]).

Lemma 4 (Dragomir, 2004). Let (H; 〈·, ·〉) be an inner product space over the
real or complex number field K and x, y ∈ H, M ≥ m > 0. If either

(6.36) Re 〈My − x, x−my〉 ≥ 0

or, equivalently,

(6.37)
∥∥∥∥x− m+M

2
y

∥∥∥∥ ≤ 1
2

(M −m) ‖y‖ ,

holds, then

(6.38) ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1
4
· (M −m)2

m+M
‖y‖2

.

The case of equality holds in (6.38) if and only if the equality case is realised in
(6.36) and

‖x‖ =
M +m

2
‖y‖ .

The proof is obvious by Lemma 3 for a = M+m
2 y and r = 1

2 (M −m) ‖y‖ .
Finally, the following corollary of Theorem 12 may be stated [6].

Corollary 7. Assume that (H, 〈·, ·〉) , ek, xi are as in Theorem 12. If Mik ≥
mik > 0 satisfy the condition

Re 〈Mkek − xi, xi − µkek〉 ≥ 0

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then
n∑

i=1

‖xi‖ ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥+
1

4m

m∑
k=1

n∑
i=1

(Mik −mik)2

Mik +mik
‖ek‖2

.
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7. Other Additive Reverses for m Functionals

A different approach in obtaining other additive reverses for the generalised
triangle inequality is incorporated in the following new result:

Theorem 13. Let (X, ‖·‖) be a normed linear space over the real or complex
number field K. Assume Fk , k ∈ {1, . . . ,m} , are bounded linear functionals on
the normed linear space X and xi ∈ X, i ∈ {1, . . . , n} , Mik ≥ 0, i ∈ {1, . . . , n} ,
k ∈ {1, . . . ,m} are such that

(7.1) ‖xi‖ − ReFk (xi) ≤Mik

for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} .
(i) If c∞ is defined by (c∞), then we have the inequality

(7.2)
n∑

i=1

‖xi‖ ≤ c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

(ii) If cp is defined by (cp) for p ≥ 1, then we have the inequality:

(7.3)
n∑

i=1

‖xi‖ ≤
1

m
1
p

cp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

Proof. (i) Since

max
1≤k≤m

‖Fk (x)‖ ≤ c∞ ‖x‖ for any x ∈ X,

then we have
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ m max
1≤k≤m

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ mc∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ .
Using (6.16), we may state that

1
m

m∑
k=1

ReFk

(
n∑

i=1

xi

)
≤ c∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, together with (6.15) imply the desired inequality (7.2).
(ii) Using the fact that, obviously(

m∑
k=1

|Fk (x)|p
) 1

p

≤ cp ‖x‖ for any x ∈ X,

then, by Hölder’s inequality for p > 1, 1
p + 1

q = 1, we have

m∑
k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣ ≤ m
1
q

(
m∑

k=1

∣∣∣∣∣Fk

(
n∑

i=1

xi

)∣∣∣∣∣
p) 1

p

≤ cpm
1
q

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥ ,
which, combined with (6.15) and (6.16) will give the desired inequality (7.3).

The case p = 1 goes likewise and we omit the details.
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Remark 6. Since, obviously c∞ ≤ max
1≤k≤m

‖Fk‖ , then from (7.2) we have

(7.4)
n∑

i=1

‖xi‖ ≤ max
1≤k≤m

{‖Fk‖} ·

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

Finally, since cp ≤ (
∑m

k=1 ‖Fk‖p)
1
p , p ≥ 1, hence by (7.3) we have

(7.5)
n∑

i=1

‖xi‖ ≤
(∑m

k=1 ‖Fk‖p

m

) 1
p

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik.

The following corollary for semi-inner products may be stated as well.

Corollary 8. Let (X, ‖·‖) be a real or complex normed space and [·, ·] : X ×
X → K a semi-inner product generating the norm ‖·‖ . Assume ek, xi ∈ H and
Mik ≥ 0, i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} are such that

(7.6) ‖xi‖ − Re [xi, ek] ≤Mik,

for any i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} .
(i) If

d∞ := sup
x6=0

{
max1≤k≤n |[x, ek]|

‖x‖

}(
≤ max

1≤k≤n
‖ek‖

)
,

then
n∑

i=1

‖xi‖ ≤ d∞

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik(7.7) (
≤ max

1≤k≤n
‖ek‖ ·

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik

)
;

(ii) If

dp := sup
x6=0

{∑m
k=1 |[x, ek]|p

‖x‖p

} 1
p

≤ ( m∑
k=1

‖ek‖p

) 1
p

 ,

where p ≥ 1, then
n∑

i=1

‖xi‖ ≤
1

m
1
p

dp

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik(7.8) (
≤
(∑m

k=1 ‖ek‖p

m

) 1
p

∥∥∥∥∥
n∑

i=1

xi

∥∥∥∥∥+
1
m

m∑
k=1

n∑
i=1

Mik

)
.

8. Applications for Complex Numbers

Let C be the field of complex numbers. If z = Re z + i Im z, then by |·|p : C →
[0,∞), p ∈ [1,∞] we define the p−modulus of z as

|z|p :=


max {|Re z| , |Im z|} if p = ∞,

(|Re z|p + |Im z|p)
1
p if p ∈ [1,∞),

where |a| , a ∈ R is the usual modulus of the real number a.
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For p = 2, we recapture the usual modulus of a complex number, i.e.,

|z|2 =
√
|Re z|2 + |Im z|2 = |z| , z ∈ C.

It is well known that
(
C, |·|p

)
, p ∈ [1,∞] is a Banach space over the real number

field R.
Consider the Banach space (C, |·|1) and F : C → C, F (z) = az with a ∈ C,

a 6= 0. Obviously, F is linear on C. For z 6= 0, we have

|F (z)|
|z|1

=
|a| |z|
|z|1

=
|a|
√
|Re z|2 + |Im z|2

|Re z|+ |Im z|
≤ |a| .

Since, for z0 = 1, we have |F (z0)| = |a| and |z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= |a| ,

showing that F is a bounded linear functional on (C, |·|1) and ‖F‖1 = |a| .
We can apply Theorem 5 to state the following reverse of the generalised triangle

inequality for complex numbers [5].

Proposition 1. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there
exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(8.1) rk [|Rexj |+ |Imxj |] ≤ Re ak · Rexj − Im ak · Imxj

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.2)
n∑

j=1

[|Rexj |+ |Imxj |] ≤
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣∣
n∑

j=1

Rexj

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
 .

The case of equality holds in (8.2) if both

Re

(
m∑

k=1

ak

)
Re

 n∑
j=1

xj

− Im

(
m∑

k=1

ak

)
Im

 n∑
j=1

xj


=

(
m∑

k=1

rk

)
n∑

j=1

[|Rexj |+ |Imxj |]

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
 .

The proof follows by Theorem 5 applied for the Banach space (C, |·|1) and
Fk (z) = akz, k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
Now, consider the Banach space (C, |·|∞) . If F (z) = dz, then for z 6= 0 we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=
|d|
√
|Re z|2 + |Im z|2

max {|Re z| , |Im z|}
≤
√

2 |d| .
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Since, for z0 = 1 + i, we have |F (z0)| =
√

2 |d| , |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

=
√

2 |d| ,

showing that F is a bounded linear functional on (C, |·|∞) and ‖F‖∞ =
√

2 |d| .
If we apply Theorem 5, then we can state the following reverse of the generalised

triangle inequality for complex numbers [5].

Proposition 2. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there
exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk max {|Rexj | , |Imxj |} ≤ Re ak · Rexj − Im ak · Imxj

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.3)
n∑

j=1

max {|Rexj | , |Imxj |}

≤
√

2 ·
|
∑m

k=1 ak|∑m
k=1 rk

max


∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
 .

The case of equality holds in (8.3) if both

Re

(
m∑

k=1

ak

)
Re

 n∑
j=1

xj

− Im

(
m∑

k=1

ak

)
Im

 n∑
j=1

xj


=

(
m∑

k=1

rk

)
n∑

j=1

max {|Rexj | , |Imxj |}

=
√

2

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max


∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
 .

Finally, consider the Banach space
(
C, |·|2p

)
with p ≥ 1.

Let F : C → C, F (z) = cz. By Hölder’s inequality, we have

|F (z)|
|z|2p

=
|c|
√
|Re z|2 + |Im z|2(

|Re z|2p + |Im z|2p
) 1

2p

≤ 2
1
2−

1
2p |c| .

Since, for z0 = 1 + i we have |F (z0)| = 2
1
2 |c| , |z0|2p = 2

1
2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 2
1
2−

1
2p |c| ,

showing that F is a bounded linear functional on
(
C, |·|2p

)
, p ≥ 1 and ‖F‖2p =

2
1
2−

1
2p |c| .
If we apply Theorem 5, then we can state the following proposition [5].
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Proposition 3. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there
exist the constants rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk

[
|Rexj |2p + |Imxj |2p

] 1
2p ≤ Re ak · Rexj − Im ak · Imxj

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.4)
n∑

j=1

[
|Rexj |2p + |Imxj |2p

] 1
2p

≤ 2
1
2−

1
2p
|
∑m

k=1 ak|∑m
k=1 rk


∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣
2p

+

∣∣∣∣∣∣
n∑

j=1

Imxj

∣∣∣∣∣∣
2p


1
2p

.

The case of equality holds in (8.4) if both:

Re

(
m∑

k=1

ak

)
Re

 n∑
j=1

xj

− Im

(
m∑

k=1

ak

)
Im

 n∑
j=1

xj


=

(
m∑

k=1

rk

)
n∑

j=1

[
|Rexj |2p + |Imxj |2p

] 1
2p

= 2
1
2−

1
2p

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣

∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣
2p

+

∣∣∣∣∣∣
n∑

j=1

Imxj

∣∣∣∣∣∣
2p


1
2p

.

Remark 7. If in the above proposition we choose p = 1, then we have the
following reverse of the generalised triangle inequality for complex numbers

n∑
j=1

|xj | ≤
|
∑m

k=1 ak|∑m
k=1 rk

∣∣∣∣∣∣
n∑

j=1

xj

∣∣∣∣∣∣
provided xj , ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

rk |xj | ≤ Re ak · Rexj − Im ak · Imxj

for each j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here |·| is the usual modulus of a complex
number and rk > 0, k ∈ {1, . . . ,m} are given.

We can apply Theorem 11 to state the following reverse of the generalised
triangle inequality for complex numbers [6].

Proposition 4. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there
exist the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

(8.5) |Rexj |+ |Imxj | ≤ Re ak · Rexj − Im ak · Imxj +Mjk
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.6)
n∑

j=1

[|Rexj |+ |Imxj |]

≤ 1
m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
+

1
m

m∑
k=1

n∑
j=1

Mjk.

The proof follows by Theorem 11 applied for the Banach space (C, |·|1) and
Fk (z) = akz, k ∈ {1, . . . ,m} on taking into account that:∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
1

=

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣ .
If we apply Theorem 11 for the Banach space (C, |·|∞), then we can state the

following reverse of the generalised triangle inequality for complex numbers [6].

Proposition 5. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there
exist the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

max {|Rexj | , |Imxj |} ≤ Re ak · Rexj − Im ak · Imxj +Mjk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.7)
n∑

j=1

max {|Rexj | , |Imxj |}

≤
√

2
m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣max


∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

n∑
j=1

Imxj

∣∣∣∣∣∣
+

1
m

m∑
k=1

n∑
j=1

Mjk.

Finally, if we apply Theorem 11, for the Banach space
(
C, |·|2p

)
with p ≥ 1,

then we can state the following proposition [6].

Proposition 6. Let ak, xj , Mjk be as in Proposition 5. If[
|Rexj |2p + |Imxj |2p

] 1
2p ≤ Re ak · Rexj − Im ak · Imxj +Mjk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(8.8)
n∑

j=1

[
|Rexj |2p + |Imxj |2p

] 1
2p

≤ 2
1
2−

1
2p

m

∣∣∣∣∣
m∑

k=1

ak

∣∣∣∣∣

∣∣∣∣∣∣

n∑
j=1

Rexj

∣∣∣∣∣∣
2p

+

∣∣∣∣∣∣
n∑

j=1

Imxj

∣∣∣∣∣∣
2p


1
2p

+
1
m

m∑
k=1

n∑
j=1

Mjk.

where p ≥ 1.

Remark 8. If in the above proposition we choose p = 1, then we have the
following reverse of the generalised triangle inequality for complex numbers

n∑
j=1

|xj | ≤

∣∣∣∣∣ 1
m

m∑
k=1

ak

∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

xj

∣∣∣∣∣∣+ 1
m

m∑
k=1

n∑
j=1

Mjk
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provided xj , ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

|xj | ≤ Re ak · Rexj − Im ak · Imxj +Mjk

for each j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here |·| is the usual modulus of a complex
number and Mjk > 0, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are given.

9. Karamata Type Inequalities in Hilbert Spaces

Let f : [a, b] → K, K = C or R be a Lebesgue integrable function. The following
inequality, which is the continuous version of the triangle inequality

(9.1)

∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣ ≤
∫ b

a

|f (x)| dx,

plays a fundamental role in Mathematical Analysis and its applications.
It appears, see [20, p. 492], that the first reverse inequality for (9.1) was

obtained by J. Karamata in his book from 1949, [14]. It can be stated as

(9.2) cos θ
∫ b

a

|f (x)| dx ≤

∣∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣∣
provided

−θ ≤ arg f (x) ≤ θ, x ∈ [a, b]

for given θ ∈
(
0, π

2

)
.

This result has recently been extended by the author for the case of Bochner
integrable functions with values in a Hilbert space H (see also [10]):

Theorem 14 (Dragomir, 2004). If f ∈ L ([a, b] ;H) (this means that f : [a, b] →
H is Bochner measurable on [a, b] and the Lebesgue integral

∫ b

a
‖f (t)‖ dt is finite),

then

(9.3)
∫ b

a

‖f (t)‖ dt ≤ K

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
provided that f satisfies the condition

(9.4) ‖f (t)‖ ≤ K Re 〈f (t) , e〉 for a.e. t ∈ [a, b] ,

where e ∈ H, ‖e‖ = 1 and K ≥ 1 are given.
The case of equality holds in (9.4) if and only if

(9.5)
∫ b

a

f (t) dt =
1
K

(∫ b

a

‖f (t)‖ dt

)
e.

As some natural consequences of the above results, we have noticed in [10]
that, if ρ ∈ [0, 1) and f ∈ L ([a, b] ;H) are such that

(9.6) ‖f (t)− e‖ ≤ ρ for a.e. t ∈ [a, b] ,

then

(9.7)
√

1− ρ2

∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
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with equality if and only if∫ b

a

f (t) dt =
√

1− ρ2

(∫ b

a

‖f (t)‖ dt

)
· e.

Also, for e as above and if M ≥ m > 0, f ∈ L ([a, b] ;H) such that either

(9.8) Re 〈Me− f (t) , f (t)−me〉 ≥ 0

or, equivalently,

(9.9)
∥∥∥∥f (t)− M +m

2
e

∥∥∥∥ ≤ 1
2

(M −m)

for a.e. t ∈ [a, b] , then

(9.10)
∫ b

a

‖f (t)‖ dt ≤ M +m

2
√
mM

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with equality if and only if∫ b

a

f (t) dt =
2
√
mM

M +m

(∫ b

a

‖f (t)‖ dt

)
· e.

The main aim of the following sections is to extend the integral inequalities
mentioned above for the case of Banach spaces. Applications for Hilbert spaces
and for complex-valued functions are given as well.

10. Multiplicative Reverses of the Continuous Triangle Inequality

10.1. The Case of One Functional. Let (X, ‖·‖) be a Banach space over the
real or complex number field. Then one has the following reverse of the continuous
triangle inequality [11].

Theorem 15 (Dragomir, 2004). Let F be a continuous linear functional of unit
norm on X. Suppose that the function f : [a, b] → X is Bochner integrable on [a, b]
and there exists a r ≥ 0 such that

(10.1) r ‖f (t)‖ ≤ ReF (f (t)) for a.e. t ∈ [a, b] .

Then

(10.2) r

∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
where equality holds in (10.2) if and only if both

(10.3) F

(∫ b

a

f (t) dt

)
= r

∫ b

a

‖f (t)‖ dt

and

(10.4) F

(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
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Proof. Since the norm of F is one, then

|F (x)| ≤ ‖x‖ for any x ∈ X.

Applying this inequality for the vector
∫ b

a
f (t) dt, we get∥∥∥∥∥

∫ b

a

f (t) dt

∥∥∥∥∥ ≥
∣∣∣∣∣F
(∫ b

a

f (t) dt

)∣∣∣∣∣(10.5)

≥

∣∣∣∣∣ReF

(∫ b

a

f (t) dt

)∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

ReF (f (t)) dt

∣∣∣∣∣ .
Now, by integration of (10.1), we obtain

(10.6)
∫ b

a

ReF (f (t)) dt ≥ r

∫ b

a

‖f (t)‖ dt,

and by (10.5) and (10.6) we deduce the desired inequality (10.1).
Obviously, if (10.3) and (10.4) hold true, then the equality case holds in (10.2).
Conversely, if the case of equality holds in (10.2), then it must hold in all the

inequalities used before in proving this inequality. Therefore, we must have

(10.7) r ‖f (t)‖ = ReF (f (t)) for a.e. t ∈ [a, b] ,

(10.8) ImF

(∫ b

a

f (t) dt

)
= 0

and

(10.9)

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ = ReF

(∫ b

a

f (t) dt

)
.

Integrating (10.7) on [a, b] , we get

(10.10) r

∫ b

a

‖f (t)‖ dt = ReF

(∫ b

a

f (t) dt

)
.

On utilising (10.10) and (10.8), we deduce (10.3) while (10.9) and (10.10) would
imply (10.4), and the theorem is proved.

Corollary 9. Let (X, ‖·‖) be a Banach space, [·, ·] : X×X → R a semi-inner
product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. Suppose that the function
f : [a, b] → X is Bochner integrable on [a, b] and there exists a r ≥ 0 such that

(10.11) r ‖f (t)‖ ≤ Re [f (t) , e] for a.e. t ∈ [a, b] .

Then

(10.12) r

∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
where equality holds in (10.12) if and only if both

(10.13)

[∫ b

a

f (t) dt, e

]
= r

∫ b

a

‖f (t)‖ dt
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and

(10.14)

[∫ b

a

f (t) dt, e

]
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
The proof follows from Theorem 15 for the continuous linear functional F (x) =

[x, e] , x ∈ X, and we omit the details.
The following corollary of Theorem 15 may be stated [8].

Corollary 10. Let (X, ‖·‖) be a strictly convex Banach space, [·, ·] : X ×
X → K a semi-inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If
f : [a, b] → X is Bochner integrable on [a, b] and there exists a r ≥ 0 such that
(10.11) holds true, then (10.12) is valid. The case of equality holds in (10.12) if
and only if

(10.15)
∫ b

a

f (t) dt = r

(∫ b

a

‖f (t)‖ dt

)
e.

Proof. If (10.15) holds true, then, obviously∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ = r

(∫ b

a

‖f (t)‖ dt

)
‖e‖ = r

∫ b

a

‖f (t)‖ dt,

which is the equality case in (10.12).
Conversely, if the equality holds in (10.12), then, by Corollary 9, we must have

(10.13) and (10.14). Utilising Theorem 7, by (10.14) we can conclude that there
exists a µ > 0 such that

(10.16)
∫ b

a

f (t) dt = µe.

Replacing this in (10.13), we get

µ ‖e‖2 = r

∫ b

a

‖f (t)‖ dt,

giving

(10.17) µ = r

∫ b

a

‖f (t)‖ dt.

Utilising (10.16) and (10.17) we deduce (10.15) and the proof is completed.

10.2. The Case of m Functionals. The following result may be stated [8]:

Theorem 16 (Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real
or complex number field K and Fk : X → K, k ∈ {1, . . . ,m} continuous linear
functionals on X. If f : [a, b] → X is a Bochner integrable function on [a, b] and
there exists rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

(10.18) rk ‖f (t)‖ ≤ ReFk (f (t))

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] , then

(10.19)
∫ b

a

‖f (t)‖ dt ≤
‖
∑m

k=1 Fk‖∑m
k=1 rk

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
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The case of equality holds in (10.19) if both

(10.20)

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt

and

(10.21)

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
Proof. Utilising the hypothesis (10.18), we have

I :=

∣∣∣∣∣
m∑

k=1

Fk

(∫ b

a

f (t) dt

)∣∣∣∣∣ ≥
∣∣∣∣∣Re

[
m∑

k=1

Fk

(∫ b

a

f (t) dt

)]∣∣∣∣∣(10.22)

≥ Re

[
m∑

k=1

Fk

(∫ b

a

f (t) dt

)]
=

m∑
k=1

(∫ b

a

ReFkf (t) dt

)

≥

(
m∑

k=1

rk

)
·
∫ b

a

‖f (t)‖ dt.

On the other hand, by the continuity property of Fk, k ∈ {1, . . . ,m} , we obviously
have

(10.23) I =

∣∣∣∣∣
(

m∑
k=1

Fk

)(∫ b

a

f (t) dt

)∣∣∣∣∣ ≤
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
Making use of (10.22) and (10.23), we deduce (10.19).

Now, obviously, if (10.20) and (10.21) are valid, then the case of equality holds
true in (10.19).

Conversely, if the equality holds in the inequality (10.19), then it must hold in
all the inequalities used to prove (10.19), therefore we have

(10.24) rk ‖f (t)‖ = ReFk (f (t))

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] ,

(10.25) Im

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
= 0,

(10.26) Re

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
Note that, by (10.24), on integrating on [a, b] and summing over k ∈ {1, . . . ,m} ,

we get

(10.27) Re

(
m∑

k=1

Fk

)(∫ b

a

f (t) dt

)
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.

Now, (10.25) and (10.27) imply (10.20) while (10.25) and (10.26) imply (10.21),
therefore the theorem is proved.

The following new results may be stated as well:
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Theorem 17. Let (X, ‖·‖) be a Banach space over the real or complex number
field K and Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals on X. Also,
assume that f : [a, b] → X is a Bochner integrable function on [a, b] and there exists
rk ≥ 0, k ∈ {1, . . . ,m} with

∑m
k=1 rk > 0 and

rk ‖f (t)‖ ≤ ReFk (f (t))

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] .
(i) If c∞ is defined by (c∞), then we have the inequality

(10.28) (1 ≤)

∫ b

a
‖f (t)‖ dt∥∥∥∫ b

a
f (t) dt

∥∥∥ ≤ c∞
max1≤k≤m{rk}

(
≤ max1≤k≤m ‖Fk‖

max1≤k≤m{rk}

)
with equality if and only if

Re (Fk)

(∫ b

a

f (t) dt

)
= rk

∫ b

a

‖f (t)‖ dt

for each k ∈ {1, . . . ,m} and

max
1≤k≤m

[
Re (Fk)

(∫ b

a

f (t) dt

)]
= c∞

∫ b

a

‖f (t)‖ dt.

(ii) If cp, p ≥ 1, is defined by (cp) , then we have the inequality

(1 ≤)

∫ b

a
‖f (t)‖ dt∥∥∥∫ b

a
f (t) dt

∥∥∥ ≤ cp

(
∑m

k=1 r
p
k)

1
p

(
≤
∑m

k=1 ‖Fk‖p∑m
k=1 r

p
k

) 1
p

with equality if and only if

Re (Fk)

(∫ b

a

f (t) dt

)
= rk

∫ b

a

‖f (t)‖ dt

for each k ∈ {1, . . . ,m} and
m∑

k=1

[
ReFk

(∫ b

a

f (t) dt

)]p

= cpp

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
p

where p ≥ 1.

The proof is similar to the ones from Theorems 8, 9 and 16 and we omit the
details.

The case of Hilbert spaces which provides a simpler condition for equality is of
interest for applications [8].

Theorem 18 (Dragomir, 2004). Let (X, ‖·‖) be a Hilbert space over the real
or complex number field K and ek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a
Bochner integrable function and rk ≥ 0, k ∈ {1, . . . ,m} and

∑m
k=1 rk > 0 satisfy

(10.29) rk ‖f (t)‖ ≤ Re 〈f (t) , ek〉

for each k ∈ {1, . . . ,m} and for a.e. t ∈ [a, b] , then

(10.30)
∫ b

a

‖f (t)‖ dt ≤
‖
∑m

k=1 ek‖∑m
k=1 rk

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
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The case of equality holds in (10.30) for f 6= 0 a.e. on [a, b] if and only if

(10.31)
∫ b

a

f (t) dt =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt

‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

Proof. Utilising the hypothesis (10.29) and the modulus properties, we have∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣ ≥
∣∣∣∣∣

m∑
k=1

Re

〈∫ b

a

f (t) dt, ek

〉∣∣∣∣∣(10.32)

≥
m∑

k=1

Re

〈∫ b

a

f (t) dt, ek

〉

=
m∑

k=1

∫ b

a

Re 〈f (t) , ek〉 dt

≥

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.

By Schwarz’s inequality in Hilbert spaces applied for
∫ b

a
f (t) dt and

∑m
k=1 ek, we

have

(10.33)

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣ .
Making use of (10.32) and (10.33), we deduce (10.30).

Now, if f 6= 0 a.e. on [a, b] , then
∫ b

a
‖f (t)‖ dt 6= 0 and by (10.32)

∑m
k=1 ek 6= 0.

Obviously, if (10.31) is valid, then taking the norm we have∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt

‖
∑m

k=1 ek‖
2

∥∥∥∥∥
m∑

k=1

ek

∥∥∥∥∥
=

∑m
k=1 rk

‖
∑m

k=1 ek‖

∫ b

a

‖f (t)‖ dt,

i.e., the case of equality holds true in (10.30).
Conversely, if the equality case holds true in (10.30), then it must hold in all

the inequalities used to prove (10.30), therefore we have

(10.34) Re 〈f (t) , ek〉 = rk ‖f (t)‖
for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] ,

(10.35)

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣ ,
and

(10.36) Im

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= 0.

From (10.34) on integrating on [a, b] and summing over k from 1 to m, we get

(10.37) Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt,
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and then, by (10.36) and (10.37), we have

(10.38)

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
=

(
m∑

k=1

rk

)∫ b

a

‖f (t)‖ dt.

On the other hand, by the use of the identity (3.22), the relation (10.35) holds
true if and only if

(10.39)
∫ b

a

f (t) dt =

〈∫ b

a
f (t) dt,

∑m
k=1 ek

〉
‖
∑m

k=1 ek‖

m∑
k=1

ek.

Finally, by (10.38) and (10.39) we deduce that (10.31) is also necessary for the
equality case in (10.30) and the theorem is proved.

Remark 9. If {ek}k∈{1,...,m} are orthogonal, then (10.30) can be replaced by

(10.40)
∫ b

a

‖f (t)‖ dt ≤

(∑m
k=1 ‖ek‖2

) 1
2∑m

k=1 rk

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with equality if and only if

(10.41)
∫ b

a

f (t) dt =
(
∑m

k=1 rk)
∫ b

a
‖f (t)‖ dt∑m

k=1 ‖ek‖2

m∑
k=1

ek.

Moreover, if {ek}k∈{1,...,m} are orthonormal, then (10.40) becomes

(10.42)
∫ b

a

‖f (t)‖ dt ≤
√
m∑m

k=1 rk

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with equality if and only if

(10.43)
∫ b

a

f (t) dt =
1
m

(
m∑

k=1

rk

)(∫ b

a

‖f (t)‖ dt

)
m∑

k=1

ek.

The following corollary of Theorem 18 may be stated as well [8].

Corollary 11. Let (H; 〈·, ·〉) be a Hilbert space over the real or complex num-
ber field K and ek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner
integrable function on [a, b] and ρk > 0, k ∈ {1, . . . ,m} with

(10.44) ‖f (t)− ek‖ ≤ ρk < ‖ek‖

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] , then

(10.45)
∫ b

a

‖f (t)‖ dt ≤
‖
∑m

k=1 ek‖∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
The case of equality holds in (10.45) if and only if

(10.46)
∫ b

a

f (t) dt =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

‖
∑m

k=1 ek‖
2

(∫ b

a

‖f (t)‖ dt

)
m∑

k=1

ek.
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Proof. Utilising Lemma 1, we have from (10.44) that

‖f (t)‖
(
‖ek‖2 − ρ2

k

) 1
2 ≤ Re 〈f (t) , ek〉

for any k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] .
Applying Theorem 18 for

rk :=
(
‖ek‖2 − ρ2

k

) 1
2
, k ∈ {1, . . . ,m} ,

we deduce the desired result.

Remark 10. If {ek}k∈{1,...,m} are orthogonal, then (10.45) becomes

(10.47)
∫ b

a

‖f (t)‖ dt ≤

(∑m
k=1 ‖ek‖2

) 1
2

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with equality if and only if

(10.48)
∫ b

a

f (t) dt =

∑m
k=1

(
‖ek‖2 − ρ2

k

) 1
2∑m

k=1 ‖ek‖2

(∫ b

a

‖f (t)‖ dt

)
m∑

k=1

ek.

Moreover, if {ek}k∈{1,...,m} is assumed to be orthonormal and

‖f (t)− ek‖ ≤ ρk for a.e. t ∈ [a, b] ,

where ρk ∈ [0, 1), k ∈ {1, . . . ,m}, then

(10.49)
∫ b

a

‖f (t)‖ dt ≤
√
m∑m

k=1 (1− ρ2
k)

1
2

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ,
with equality iff

(10.50)
∫ b

a

f (t) dt =
∑m

k=1

(
1− ρ2

k

) 1
2

m

(∫ b

a

‖f (t)‖ dt

)
m∑

k=1

ek.

Finally, we may state the following corollary of Theorem 18 [11].

Corollary 12. Let (H; 〈·, ·〉) be a Hilbert space over the real or complex num-
ber field K and ek ∈ H\ {0} , k ∈ {1, . . . ,m} . If f : [a, b] → H is a Bochner
integrable function on [a, b] and Mk ≥ µk > 0, k ∈ {1, . . . ,m} are such that either

(10.51) Re 〈Mkek − f (t) , f (t)− µkek〉 ≥ 0

or, equivalently

(10.52)
∥∥∥∥f (t)− Mk + µk

2
ek

∥∥∥∥ ≤ 1
2

(Mk − µk) ‖ek‖

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] , then

(10.53)
∫ b

a

‖f (t)‖ dt ≤
‖
∑m

k=1 ek‖∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
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The case of equality holds if and only if

∫ b

a

f (t) dt =

∑m
k=1

2·
√

µkMk

µk+Mk
‖ek‖

‖
∑m

k=1 ek‖
2

(∫ b

a

‖f (t)‖ dt

)
·

m∑
k=1

ek.

Proof. Utilising Lemma 2, by (10.51) we deduce

‖f (t)‖
2 ·
√
µkMk

µk +Mk
‖ek‖ ≤ Re 〈f (t) , ek〉

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] .
Applying Theorem 18 for

rk :=
2 ·
√
µkMk

µk +Mk
‖ek‖ , k ∈ {1, . . . ,m}

we deduce the desired result.

11. Additive Reverses of the Continuous Triangle Inequality

11.1. The Case of One Functional. The aim of this section is to provide
a different approach to the problem of reversing the continuous triangle inequality.
Namely, we are interested in finding upper bounds for the positive difference∫ b

a

‖f (t)‖ dt−

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
under various assumptions for the Bochner integrable function f : [a, b] → X.

In the following we provide an additive reverse for the continuous triangle
inequality that has been established in [8].

Theorem 19 (Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real
or complex number field K and F : X → K be a continuous linear functional of unit
norm on X. Suppose that the function f : [a, b] → X is Bochner integrable on [a, b]
and there exists a Lebesgue integrable function k : [a, b] → [0,∞) such that

(11.1) ‖f (t)‖ − ReF [f (t)] ≤ k (t)

for a.e. t ∈ [a, b] . Then we have the inequality

(11.2) (0 ≤)
∫ b

a

‖f (t)‖ dt−

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ≤
∫ b

a

k (t) dt.

The equality holds in (11.2) if and only if both

(11.3) F

(∫ b

a

f (t) dt

)
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
and

(11.4) F

(∫ b

a

f (t) dt

)
=
∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt.
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Proof. Since the norm of F is unity, then

|F (x)| ≤ ‖x‖ for any x ∈ X.

Applying this inequality for the vector
∫ b

a
f (t) dt, we get∥∥∥∥∥

∫ b

a

f (t) dt

∥∥∥∥∥ ≥
∣∣∣∣∣F
(∫ b

a

f (t) dt

)∣∣∣∣∣(11.5)

≥

∣∣∣∣∣ReF

(∫ b

a

f (t) dt

)∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

ReF [f (t)] dt

∣∣∣∣∣ ≥
∫ b

a

ReF [f (t)] dt.

Integrating (11.1), we have

(11.6)
∫ b

a

‖f (t)‖ dt− ReF

(∫ b

a

f (t) dt

)
≤
∫ b

a

k (t) dt.

Now, making use of (11.5) and (11.6), we deduce (11.2).
Obviously, if the equality hold in (11.3) and (11.4), then it holds in (11.2)

as well. Conversely, if the equality holds in (11.2), then it must hold in all the
inequalities used to prove (11.2). Therefore, we have∫ b

a

‖f (t)‖ dt = Re

[
F

(∫ b

a

f (t) dt

)]
+
∫ b

a

k (t) dt.

and

Re

[
F

(∫ b

a

f (t) dt

)]
=

∣∣∣∣∣F
(∫ b

a

f (t) dt

)∣∣∣∣∣ =
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
which imply (11.3) and (11.4).

Corollary 13. Let (X, ‖·‖) be a Banach space, [·, ·] : X×X → K a semi-inner
product which generates its norm. If e ∈ X is such that ‖e‖ = 1, f : [a, b] → X
is Bochner integrable on [a, b] and there exists a Lebesgue integrable function k :
[a, b] → [0,∞) such that

(11.7) (0 ≤) ‖f (t)‖ − Re [f (t) , e] ≤ k (t) ,

for a.e. t ∈ [a, b] , then

(11.8) (0 ≤)
∫ b

a

‖f (t)‖ dt−

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ≤
∫ b

a

k (t) dt.

where equality holds in (11.8) if and only if both[∫ b

a

f (t) dt, e

]
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ and(11.9) [∫ b

a

f (t) dt, e

]
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥−
∫ b

a

k (t) dt.
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The proof is obvious by Theorem 19 applied for the continuous linear functional
of unit norm Fe : X → K, Fe (x) = [x, e] .

The following corollary may be stated.

Corollary 14. Let (X, ‖·‖) be a strictly convex Banach space, and [·, ·] , e, f,
k as in Corollary 13. Then the case of equality holds in (11.8) if and only if

(11.10)
∫ b

a

‖f (t)‖ dt ≥
∫ b

a

k (t) dt

and

(11.11)
∫ b

a

f (t) dt =

(∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

)
e.

Proof. Suppose that (11.10) and (11.11) are valid. Taking the norm on (11.11)
we have∥∥∥∥∥

∫ b

a

f (t) dt

∥∥∥∥∥ =

∣∣∣∣∣
∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt

∣∣∣∣∣ ‖e‖ =
∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt,

and the case of equality holds true in (11.8).
Now, if the equality case holds in (11.8), then obviously (11.10) is valid, and

by Corollary 13, [∫ b

a

f (t) dt, e

]
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ ‖e‖ .
Utilising Theorem 7, we get

(11.12)
∫ b

a

f (t) dt = λe with λ > 0.

Replacing
∫ b

a
f (t) dt with λe in the second equation of (11.9) we deduce

(11.13) λ =
∫ b

a

‖f (t)‖ dt−
∫ b

a

k (t) dt,

and by (11.12) and (11.13) we deduce (11.11).

Remark 11. If X = H, (H; 〈·, ·〉) is a Hilbert space, then from Corollary 14
we deduce the additive reverse inequality obtained in [7]. For further similar results
in Hilbert spaces, see [7] and [9].

11.2. The Case of m Functionals. The following result may be stated [8]:

Theorem 20 (Dragomir, 2004). Let (X, ‖·‖) be a Banach space over the real
or complex number field K and Fk : X → K, k ∈ {1, . . . ,m} continuous linear
functionals on X. If f : [a, b] → X is a Bochner integrable function on [a, b] and
Mk : [a, b] → [0,∞), k ∈ {1, . . . ,m} are Lebesgue integrable functions such that

(11.14) ‖f (t)‖ − ReFk [f (t)] ≤Mk (t)

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] , then

(11.15)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1
m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt.
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The case of equality holds in (11.15) if and only if both

(11.16)
1
m

m∑
k=1

Fk

(∫ b

a

f (t) dt

)
=

∥∥∥∥∥ 1
m

m∑
k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
and

(11.17)
1
m

m∑
k=1

Fk

(∫ b

a

f (t) dt

)
=
∫ b

a

‖f (t)‖ dt− 1
m

m∑
k=1

∫ b

a

Mk (t) dt.

Proof. If we integrate on [a, b] and sum over k from 1 to m, we deduce

(11.18)
∫ b

a

‖f (t)‖ dt ≤ 1
m

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
+

1
m

m∑
k=1

∫ b

a

Mk (t) dt.

Utilising the continuity property of the functionals Fk and the properties of the
modulus, we have:

m∑
k=1

ReFk

(∫ b

a

f (t) dt

)
≤

∣∣∣∣∣
m∑

k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]∣∣∣∣∣(11.19)

≤

∣∣∣∣∣
m∑

k=1

Fk

(∫ b

a

f (t) dt

)∣∣∣∣∣
≤

∥∥∥∥∥
m∑

k=1

Fk

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥ .
Now, by (11.18) and (11.19) we deduce (11.15).

Obviously, if (11.16) and (11.17) hold true, then the case of equality is valid in
(11.15).

Conversely, if the case of equality holds in (11.15), then it must hold in all the
inequalities used to prove (11.15). Therefore, we have∫ b

a

‖f (t)‖ dt =
1
m

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
+

1
m

m∑
k=1

∫ b

a

Mk (t) dt,

m∑
k=1

Re

[
Fk

(∫ b

a

f (t) dt

)]
=

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

Fk

∥∥∥∥∥
and

m∑
k=1

Im

[
Fk

(∫ b

a

f (t) dt

)]
= 0.

These imply that (11.16) and (11.17) hold true, and the theorem is completely
proved.

Remark 12. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (11.15) we
deduce the inequality

(11.20)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt,

which is obviously coarser than (11.15) but, perhaps more useful for applications.

The following new result may be stated as well:
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Theorem 21. Let (X, ‖·‖) be a Banach space over the real or complex number
field K and Fk : X → K, k ∈ {1, . . . ,m} continuous linear functionals on X.
Assume also that f : [a, b] → X is a Bochner integrable function on [a, b] and
Mk : [a, b] → [0,∞), k ∈ {1, . . . ,m} are Lebesgue integrable functions such that

(11.21) ‖f (t)‖ − ReFk [f (t)] ≤Mk (t)

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b] .
(i) If c∞ is defined by (c∞), then we have the inequality

(11.22)
∫ b

a

‖f (t)‖ dt ≤ c∞

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt.

(ii) If cp, p ≥ 1, is defined by (cp) , then we have the inequality∫ b

a

‖f (t)‖ dt ≤ cp
m1/p

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt.

The proof is similar to the ones from Theorem 13 and 20 and we omit the
details.

The case of Hilbert spaces, in which one may provide a simpler condition for
equality, is of interest in applications [8].

Theorem 22 (Dragomir, 2004). Let (H, 〈·, ·〉) be a Hilbert space over the real
or complex number field K and ek ∈ H, k ∈ {1, . . . ,m} . If f : [a, b] → H is a
Bochner integrable function on [a, b] , f (t) 6= 0 for a.e. t ∈ [a, b] and Mk : [a, b] →
[0,∞), k ∈ {1, . . . ,m} is a Lebesgue integrable function such that

(11.23) ‖f (t)‖ − Re 〈f (t) , ek〉 ≤Mk (t)

for each k ∈ {1, . . . ,m} and for a.e. t ∈ [a, b] , then

(11.24)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt.

The case of equality holds in (11.24) if and only if

(11.25)
∫ b

a

‖f (t)‖ dt ≥ 1
m

m∑
k=1

∫ b

a

Mk (t) dt

and

(11.26)
∫ b

a

f (t) dt =
m
(∫ b

a
‖f (t)‖ dt− 1

m

∑m
k=1

∫ b

a
Mk (t) dt

)
‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

Proof. As in the proof of Theorem 20, we have

(11.27)
∫ b

a

‖f (t)‖ dt ≤ Re

〈
1
m

m∑
k=1

ek,

∫ b

a

f (t) dt

〉
+

1
m

m∑
k=1

∫ b

a

Mk (t) dt

and
∑m

k=1 ek 6= 0.
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On utilising Schwarz’s inequality in Hilbert space (H, 〈·, ·〉) for
∫ b

a
f (t) dt and∑m

k=1 ek, we have∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ ≥
∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣(11.28)

≥

∣∣∣∣∣Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣
≥ Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
.

By (11.27) and (11.28), we deduce (11.24).
Taking the norm on (11.26) and using (11.25), we have∥∥∥∥∥

∫ b

a

f (t) dt

∥∥∥∥∥ =
m
(∫ b

a
‖f (t)‖ dt− 1

m

∑m
k=1

∫ b

a
Mk (t) dt

)
‖
∑m

k=1 ek‖
,

showing that the equality holds in (11.24).
Conversely, if the equality case holds in (11.24), then it must hold in all the

inequalities used to prove (11.24). Therefore we have

(11.29) ‖f (t)‖ = Re 〈f (t) , ek〉+Mk (t)

for each k ∈ {1, . . . ,m} and for a.e. t ∈ [a, b] ,

(11.30)

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
∥∥∥∥∥

m∑
k=1

ek

∥∥∥∥∥ =

∣∣∣∣∣
〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉∣∣∣∣∣
and

(11.31) Im

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= 0.

From (11.29) on integrating on [a, b] and summing over k, we get

(11.32) Re

〈∫ b

a

f (t) dt,
m∑

k=1

ek

〉
= m

∫ b

a

‖f (t)‖ dt−
m∑

k=1

∫ b

a

Mk (t) dt.

On the other hand, by the use of the identity (3.22), the relation (11.30) holds if
and only if ∫ b

a

f (t) dt =

〈∫ b

a
f (t) dt,

∑m
k=1 ek

〉
‖
∑m

k=1 ek‖
2

m∑
k=1

ek,

giving, from (11.31) and (11.32), that (11.26) holds true.
If the equality holds in (11.24), then obviously (11.25) is valid and the theorem

is proved.

Remark 13. If in the above theorem, the vectors {ek}k∈{1,...,m} are assumed
to be orthogonal, then (11.24) becomes

(11.33)
∫ b

a

‖f (t)‖ dt ≤ 1
m

(
m∑

k=1

‖ek‖2

) 1
2
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt.
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Moreover, if {ek}k∈{1,...,m} is an orthonormal family, then (11.33) becomes

(11.34)
∫ b

a

‖f (t)‖ dt ≤ 1√
m

∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1
m

m∑
k=1

∫ b

a

Mk (t) dt

which has been obtained in [4].

The following corollaries are of interest.

Corollary 15. Let (H; 〈·, ·〉), ek, k ∈ {1, . . . ,m} and f be as in Theorem 22.
If rk : [a, b] → [0,∞), k ∈ {1, . . . ,m} are such that rk ∈ L2 [a, b] , k ∈ {1, . . . ,m}
and

(11.35) ‖f (t)− ek‖ ≤ rk (t) ,

for each k ∈ {1, . . . ,m} and a.e. t ∈ [a, b], then

(11.36)
∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥+
1

2m

m∑
k=1

∫ b

a

r2k (t) dt.

The case of equality holds in (11.36) if and only if∫ b

a

‖f (t)‖ dt ≥ 1
2m

m∑
k=1

∫ b

a

r2k (t) dt

and ∫ b

a

f (t) dt =
m
(∫ b

a
‖f (t)‖ dt− 1

2m

∑m
k=1

∫ b

a
r2k (t) dt

)
‖
∑m

k=1 ek‖
2

m∑
k=1

ek.

Finally, the following corollary may be stated.

Corollary 16. Let (H; 〈·, ·〉), ek, k ∈ {1, . . . ,m} and f be as in Theorem 22.
If Mk, µk : [a, b] → R are such that Mk ≥ µk > 0 a.e. on [a, b] , (Mk−µk)2

Mk+µk
∈ L [a, b]

and
Re 〈Mk (t) ek − f (t) , f (t)− µk (t) ek〉 ≥ 0

for each k ∈ {1, . . . ,m} and for a.e. t ∈ [a, b] , then∫ b

a

‖f (t)‖ dt ≤

∥∥∥∥∥ 1
m

m∑
k=1

ek

∥∥∥∥∥
∥∥∥∥∥
∫ b

a

f (t) dt

∥∥∥∥∥
+

1
4m

m∑
k=1

‖ek‖2
∫ b

a

[Mk (t)− µk (t)]2

Mk (t) + µk (t)
dt.

12. Applications for Complex-Valued Functions

We now give some examples of inequalities for complex-valued functions that
are Lebesgue integrable on using the general result obtained in Section 10.

Consider the Banach space (C, |·|1) and F : C → C, F (z) = ez with e = α+ iβ

and |e|2 = α2 + β2 = 1, then F is linear on C. For z 6= 0, we have

|F (z)|
|z|1

=
|e| |z|
|z|1

=

√
|Re z|2 + |Im z|2

|Re z|+ |Im z|
≤ 1.
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Since, for z0 = 1, we have |F (z0)| = 1 and |z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= 1,

showing that F is a bounded linear functional on (C, |·|1).
Therefore we can apply Theorem 15 to state the following result for complex-

valued functions.

Proposition 7. Let α, β ∈ R with α2 + β2 = 1, f : [a, b] → C be a Lebesgue
integrable function on [a, b] and r ≥ 0 such that

(12.1) r [|Re f (t)|+ |Im f (t)|] ≤ αRe f (t)− β Im f (t)

for a.e. t ∈ [a, b] . Then

(12.2) r

[∫ b

a

|Re f (t)| dt+
∫ b

a

|Im f (t)| dt

]
≤

∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣ .
The equality holds in (12.2) if and only if both

α

∫ b

a

Re f (t) dt− β

∫ b

a

Im f (t) dt = r

[∫ b

a

|Re f (t)| dt+
∫ b

a

|Im f (t)| dt

]
and

α

∫ b

a

Re f (t) dt− β

∫ b

a

Im f (t) dt =

∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣ .
Now, consider the Banach space (C, |·|∞) . If F (z) = dz with d = γ + iδ and

|d| =
√

2
2 , i.e., γ2 + δ2 = 1

2 , then F is linear on C. For z 6= 0 we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=
√

2
2
·

√
|Re z|2 + |Im z|2

max {|Re z| , |Im z|}
≤ 1.

Since, for z0 = 1 + i, we have |F (z0)| = 1, |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

= 1,

showing that F is a bounded linear functional of unit norm on (C, |·|∞).
Therefore, we can apply Theorem 15, to state the following result for complex-

valued functions.

Proposition 8. Let γ, δ ∈ R with γ2 + δ2 = 1
2 , f : [a, b] → C be a Lebesgue

integrable function on [a, b] and r ≥ 0 such that

rmax {|Re f (t)| , |Im f (t)|} ≤ γ Re f (t)− δ Im f (t)

for a.e. t ∈ [a, b] . Then

(12.3) r

∫ b

a

max {|Re f (t)| , |Im f (t)|} dt

≤ max

{∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣ ,
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
}
.
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The equality holds in (12.3) if and only if both

γ

∫ b

a

Re f (t) dt− δ

∫ b

a

Im f (t) dt = r

∫ b

a

max {|Re f (t)| , |Im f (t)|} dt

and

γ

∫ b

a

Re f (t) dt− δ

∫ b

a

Im f (t) dt = max

{∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣ ,
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
}
.

Now, consider the Banach space
(
C, |·|2p

)
with p ≥ 1. Let F : C → C, F (z) =

cz with |c| = 2
1
2p−

1
2 (p ≥ 1) . Obviously, F is linear and by Hölder’s inequality

|F (z)|
|z|2p

=
2

1
2p−

1
2

√
|Re z|2 + |Im z|2(

|Re z|2p + |Im z|2p
) 1

2p

≤ 1.

Since, for z0 = 1 + i we have |F (z0)| = 2
1
p , |z0|2p = 2

1
2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 1,

showing that F is a bounded linear functional of unit norm on
(
C, |·|2p

)
, (p ≥ 1) .

Therefore on using Theorem 15, we may state the following result.

Proposition 9. Let ϕ, φ ∈ R with ϕ2 + φ2 = 2
1
2p−

1
2 (p ≥ 1) , f : [a, b] → C be

a Lebesgue integrable function on [a, b] and r ≥ 0 such that

r
[
|Re f (t)|2p + |Im f (t)|2p

] 1
2p ≤ ϕRe f (t)− φ Im f (t)

for a.e. t ∈ [a, b] , then

(12.4) r

∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p

] 1
2p

dt

≤

∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣
2p

+

∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
2p
 1

2p

, (p ≥ 1)

where equality holds in (12.4) if and only if both

ϕ

∫ b

a

Re f (t) dt− φ

∫ b

a

Im f (t) dt = r

∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p

] 1
2p

dt

and

ϕ

∫ b

a

Re f (t) dt− φ

∫ b

a

Im f (t) dt =

∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣
2p

+

∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
2p
 1

2p

.

Remark 14. If p = 1 above, and

r |f (t)| ≤ ϕRe f (t)− ψ Im f (t) for a.e. t ∈ [a, b] ,



46 S.S. DRAGOMIR

provided ϕ, ψ ∈ R and ϕ2 + ψ2 = 1, r ≥ 0, then we have a reverse of the classical
continuous triangle inequality for modulus:

r

∫ b

a

|f (t)| dt ≤

∣∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣∣ ,
with equality iff

ϕ

∫ b

a

Re f (t) dt− ψ

∫ b

a

Im f (t) dt = r

∫ b

a

|f (t)| dt

and

ϕ

∫ b

a

Re f (t) dt− ψ

∫ b

a

Im f (t) dt =

∣∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣∣ .
If we apply Theorem 19, then, in a similar manner we can prove the following

result for complex-valued functions.

Proposition 10. Let α, β ∈ R with α2 + β2 = 1, f, k : [a, b] → C Lebesgue
integrable functions such that

|Re f (t)|+ |Im f (t)| ≤ αRe f (t)− β Im f (t) + k (t)

for a.e. t ∈ [a, b] . Then

(0 ≤)
∫ b

a

|Re f (t)| dt+
∫ b

a

|Im f (t)| dt−

[∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
]

≤
∫ b

a

k (t) dt.

Applying Theorem 19, for (C, |·|∞) we may state:

Proposition 11. Let γ, δ ∈ R with γ2 + δ2 = 1
2 , f, k : [a, b] → C Lebesgue

integrable functions on [a, b] such that

max {|Re f (t)| , |Im f (t)|} ≤ γ Re f (t)− δ Im f (t) + k (t)

for a.e. t ∈ [a, b] . Then

(0 ≤)
∫ b

a

max {|Re f (t)| , |Im f (t)|} dt−max

{∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣ ,
∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
}

≤
∫ b

a

k (t) dt.

Finally, utilising Theorem 19, for
(
C, |·|2p

)
with p ≥ 1, we may state that:

Proposition 12. Let ϕ, φ ∈ R with ϕ2 +φ2 = 2
1
2p−

1
2 (p ≥ 1) , f, k : [a, b] → C

be Lebesgue integrable functions such that[
|Re f (t)|2p + |Im f (t)|2p

] 1
2p ≤ ϕRe f (t)− φ Im f (t) + k (t)
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for a.e. t ∈ [a, b] . Then

(0 ≤)
∫ b

a

[
|Re f (t)|2p + |Im f (t)|2p

] 1
2p

dt

−

∣∣∣∣∣
∫ b

a

Re f (t) dt

∣∣∣∣∣
2p

+

∣∣∣∣∣
∫ b

a

Im f (t) dt

∣∣∣∣∣
2p
 1

2p

≤
∫ b

a

k (t) dt.

Remark 15. If p = 1 in the above proposition, then, from

|f (t)| ≤ ϕRe f (t)− ψ Im f (t) + k (t) for a.e. t ∈ [a, b] ,

provided ϕ,ψ ∈ R and ϕ2 + ψ2 = 1, we have the additive reverse of the classical
continuous triangle inequality

(0 ≤)
∫ b

a

|f (t)| dt−

∣∣∣∣∣
∫ b

a

f (t) dt

∣∣∣∣∣ ≤
∫ b

a

k (t) dt.
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