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REVERSE INEQUALITIES FOR THE NUMERICAL RADIUS OF
LINEAR OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

ABSTRACT. Some elementary inequalities providing upper bounds for the dif-
ference of the norm and the numerical radius of a bounded linear operator on
Hilbert spaces under appropriate conditions are given.

1. INTRODUCTION

Let (H;(-,-)) be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [1l p. 1]:

W(T)={{Tz,z), z € H, |z| =1}.
The following properties of W (T') are immediate:
(i) W(al +8T) =a+ W (T) for a, 8 € C;
(i) W (T*) = {X\, A€ W (T)}, where T* is the adjoint operator of T}
(iif) W (U*TU) = W (T) for any unitary operator U.
The following classical fact about the geometry of the numerical range [I], p. 4]
may be stated:

Theorem 1 (Toeplitz-Hausdorfl). The numerical range of an operator is convez.

An important use of W (T) is to bound the spectrum o (T') of the operator T' [1]
p. 6]:

Theorem 2 (Spectral inclusion). The spectrum of an operator is contained in the
closure of its numerical range.

The self-adjoint operators have their spectra bounded sharply by the numerical
range [Il p. 7]:

Theorem 3. The following statements hold true:
(i) T is self-adjoint iff W (T) is real;
(ii) If T is self-adjoint and W (T') = [m, M| (the closed interval of real numbers
m, M), then ||T|| = max{|m/|,|M]|}.
(ii) If W (T) = [m, M], then m, M € o (T).

The numerical radius w (T') of an operator T on H is given by [Il p. 8]:

(1.1) w(T) =sup{|A|, A € W(T)} = sup{[(Tz,z)[, ||=[| =1} .
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Obviously, by (1.1)), for any = € H one has
(1.2) (T, 2)| < w (T) |l]*.
It is well known that w (-) is a norm on the Banach algebra B (H) of all bounded

linear operators T : H — H, i.e.,

(i) w(T)>0forany T' € B(H) and w(T) =0 if and only if T' = 0;
(ii) w(AT) = |[MNw(T) for any A€ Cand T € B(H);
(i) w(T+V)<w(T)+w (V) for any T,V € B(H).
This norm is equivalent with the operator norm. In fact, the following more
precise result holds [T, p. 9]:

Theorem 4 (Equivalent norm). For any T € B (H) one has
(1.3) w(T) < [T < 2w (T).

Let us now look at two extreme cases of the inequality . In the follow-
ing 7 (t) := sup {|A\|, A € o (T')} will denote the spectral radius of T and o, (T') =
{Neo(T), Tf=Af forsome f €& H} the point spectrum of T.

The following results hold [, p.10]:

Theorem 5. We have

(i) ffw(T) =T, then r(T) = |T].
(i) If A e W (T) and |\ =||T||, then A € o, (T).
To address the other extreme case w(T) = 1 ||T|, we can state the following
sufficient condition in terms of (see [1, p. 11])

R(T):={Tf, feH} and R(T*):={T*f, fe H}.

Theorem 6. If R(T) L R(T*), then w(T) = % ||T|.

It is well-known that the two-dimensional shift
0 0
SQ - |: 1 0 :l b
has the property that w (T') =  ||T .

The following theorem shows that some operators T' with w (T) = 1 ||T|| have
Sy as a component [I, p. 11]:

Theorem 7. Ifw (T) = 3 ||T|| and T attains its norm, then T has a two-dimensional

reducing subspace on which it is the shift Ss.

For other results on numerical radius, see [2], Chapter 11.
The main aim of the present paper is to point out some upper bounds for the
nonnegative difference

ITl=w(m) (I = W (1))

under appropriate assumptions for the bounded linear operator T': H — H.
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2. THE RESULTS

The following results may be stated:

Theorem 8. Let T : H — H be a bounded linear operator on the complex Hilbert
space H. If A € C\ {0} and r > 0 are such that

(2.1) T = AI|| <,
where I : H — H 1is the identity operator on H, then
22) OITI—w(m) <2 =
. —w -
- T2 Al

Proof. For x € H with ||z|| = 1, we have from that
1Tz = Azf| < [|T" = M| < r,
giving
(2.3) |T2))? + [A” < 2Re [ (Tz,2)] + 7% < 2|\ [(Tz,z)| + 7.

Taking the supremum over x € H, ||z|| = 1 in (2.3 we get the following inequality
that is of interest in itself:

(2.4) IT1? + [A* < 2w (T) |A| + 2.

Since, obviously,

(2.5) 1N + A7 = 21T ALL

hence by and we deduce the desired inequality . ]

Remark 1. If the operator T : H — H is such that R(T) L R(T*), |T] =1

and |T —1I|| < 1, then the equality case holds in (2.9). Indeed, by Theorem[6, we

have in this case w (T) = § ||T|| = 3 and since we can choose in Theorem@ A=1,

r =1, then we get in both sides of the same quantity %

Problem 1. Find the bounded linear operators T : H — H with |T|| =1, R(T) L
1
R(T*) and ||T — M| < |A|7.

The following corollary may be stated:

Corollary 1. Let A : H — H be a bounded linear operator and ¢,¢ € C with

¢ # —p, 0. If
(2.6) Re (px — Az, Ax —pz) >0 forany x€ H, |z| =1
then
_ Llo—el
(2.7) O ) Al —w(4) < 7 T ol

Proof. Utilising the fact that in any Hilbert space the following two statements are
equivalent:

(i) Re{(Z —x,x —2) >0, z,2,Z € H;

(i) [|o— =52 < 112 -4,



4 S.S. DRAGOMIR

we deduce that (2.6) is equivalent to

1
(2.8) ’Ax—w-IxH§|q§—<p|
2 2
for any € H, ||z|| = 1, which in its turn is equivalent with the operator norm
inequality:
P+¢ 1
(2.9 |a- 2521 < J1o-wl

Now, applying Theorem |8 for T = A, \ = “"TW and 7 = £ [I' — 4|, we deduce the

desired result (2.7).

Remark 2. Following [1, p. 25|, we say that an operator B : H — H is accreative,
if Re (Bz,z) > 0 for any x € H. One may observe that the assumption (@) above
is then equivalent with the fact that the operator (A* — @I) (¢I — A) is accreative.

Perhaps a more convenient sufficient condition in terms of positive operators is
the following one:

Corollary 2. Let ¢,¢ € C with ¢ # —p,p and A : H — H a bounded linear
operator in H. If (A* — @I) (¢I — A) is self-adjoint and

(2.10) (A = ) (61 — A) = 0
in the operator order, then

1 ]p—¢l
2.11 0<) Al —w(A) < = .
(2.11) 0 <) 1Al —w(4) < § 6T ol

The following result may be stated as well:

Corollary 3. Assume that T, \,r are as in Theorem[8 If, in addition, there exists
p > 0 such that

(2.12) 1Al = w(T)] = p,

then

(2.13) (0<) |71 = w? (T) < 1% = p2.

Proof. From of Theorem we have

(2.14) |71 = w? (1) < 12 = w? (1) + 20 (T) [N — ]\

— 2~ (A - w (1)),
On utilising and we deduce the desired inequality . ]
Remark 3. In particular, if |[T — M| <r and |\ =w (T), A € C, then
(2.15) (0 ) |7 = w?(T) < .
The following result may be stated as well.

Theorem 9. Let T : H — H be a nonzero bounded linear operator on H and
A e C\{0}, r >0 with |A\| > r. If

(2.16) |7 = A <7,
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then

ot w()
(2.17) 1 |/\|2§ Tl (<1).

Proof. From (12.4)) of Theorem 8, we have
ITI + IAI” = r# < 2\ w (T),
which implies, on dividing with /|A|* — 72 > 0 that
2
Il

By the elementary inequality

2[Aw(T)

T 2
(2.19) 27| < 7" + /AP =2
2 2

(2.18) /AP =r2 <

and by we deduce
w (T) Al

VAP =72
which is equivalent to (2.17). I

Remark 4. Squaring , we get the inequality

1Tl <

(2.20) (0 <) | T - w*(T) < W 1T

Remark 5. Since for any bounded linear operator T : H — H we have that
w(T) > 3 ||T||, hence would produce a refinement of this classic fact only in

the case when )
2 2
Lo
2 RY

which is equivalent to v/ |\ < v/3/2.
The following corollary holds.

Corollary 4. Let ¢,¢ € C with Re(¢p) > 0. If T : H — H is a bounded linear
operator such that either (2.6) or holds true, then:

2y/Re (97) _ w(T)

2.21 1
22 ol = =Y
and

2 2 P— ? T2
(2.22) 09I -t () < | S22 1.

2
Proof. If we consider A = "H'T“’ andr = 1 |¢ — |, then IAP—r2 = “75;—“’ 7‘¢—T¢

Re (¢%) > 0. Now, on applying Theorem [9] we deduce the desired result. i

Remark 6. If |¢p — | < ? |+ |, Re(pp) > 0, then is a refinement of
the inequality w (T) > 1 ||T| .

’ 2
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The following result may be of interest as well.

Theorem 10. Let T : H — H be a nonzero bounded linear operator on H and
A e C\ {0}, r > 0 with |\| > r. If

(2.23) 1T — M| <,
then
(2.2) 0 <) I - w? (1) < —— 2= @),

Eame—————'"
A+ /A =72

Proof. From the proof of Theorem [8] we have
(2.25) |Tz|)* + |\ < 2Re [X (T, z)] + 72
for any x € H, ||z|| = 1.
If we divide (2.25)) by || |(Tz,x)|, (which, by (2.25)), is positive) then we obtain
Tz 2Re (A (Tz, 2 A
(A (T, )] ATz, z)| AT, 2)]  [(T, )
for any x € H, ||z|| = 1.

If we subtract in dj the same quantity W from both sides, then we get

ITz|*  [(Tw,)]
@20 NRrw s~ W
2Re (X (T'z, z)] r?  |(Tz,z)| A
= (T, )] A (T, )] Al (T, z)|
_ 2Re ATz, )] B A2 —r2 (T, z)]
(A (T, ) A (T, =) Al
:2Re ATz, )] B \/|/\|2_7"2 V(T 7)) _2\/ A =2
A (T, )| VAT, z)| VI Al
Since
Re (A (Tz,z)| < |\ [(Tz, )|
and ,
VAP =72 /[Tea)] -
VA KTz, z)| VIl -
hence by we get
I R (- i)
(Al (T, z) Al Al

which gives the inequality

(2.28) ITel? < (T, ) + 2| (Tz, ) (w Ve )

for any x € H, ||z|| = 1.
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Taking the supremum over x € H, ||z|| = 1, we get

1P < sup { (T + 2 (T (w Vi =)}
< sup {|{Ta, )" | + (lAl —r?) s {1(T, 1)

=w?(T) + (|)\| - r2> w (
which is clearly equivalent to . ]

Corollary 5. Let ¢, ¢ € C with Re(¢p) > 0. If A: H — H 1is a bounded linear
operator such that either (@ or hold true, then:

(2.29) (0 ) IAJ* = w? (4) < [|6+ o] - 2¢/Re (62)] w (4).

Remark 7. If M > m > 0 are such that either (A* —mI) (M1 — A) is accreative,
or, sufficiently, (A* —mlI) (MI — A) is self-adjoint and

(2.30) (A* —=mI)(MI—A) >0 in the operator order,
then, by we have:
I Al M+m
2.31 1< < ,
(2.31) (7)w(A)72ﬁmM
which is equivalent to
2
Al = w(A (A1~ ) A
2.32 0< — < " /7 ,
(2:32) 0 ) 4]~ (4) € e (4)
while from we have
2
(2.33) (0 <) [|A]? — w? (4) < (\/M - m) w(A).
Also, the inequality becomes
1 (M —m)?
. < — < =
(234) 0 4] - w(4) < - 5
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