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A POTPOURRI OF SCHWARZ RELATED INEQUALITIES IN
INNER PRODUCT SPACES (II)

S.S. DRAGOMIR

ABSTRACT. Further inequalities related to the Schwarz inequality in real or
complex inner product spaces are given.

1. INTRODUCTION

Let (H;(-,-)) be an inner product space over the real or complex number field
K. One of the most important inequalities in inner product spaces with numerous
applications is the Schwarz inequality, that may be written in two forms:

(1.1) [, o) < |z |ylI*, =,y € H (quadratic form)
or, equivalently,
(1.2) (@, 9| <zl llyll, =,y€H (simple form).

The case of equality holds in (1.1) or in (1.2) if and only if the vectors z and y are
linearly dependent.

In the previous paper [6], several results related to Schwarz inequalities have
been established. We recall few of them below:

1. If x,y € H\ {0} and ||z|| > |ly||, then
12 (=) 2
3T (m> le —y|l” if r>1
(1.3) 2]l lyll — Re (z,y) <

)\ " 2.
(m) le—y|>  if r<l.

1
2
2. If (H;{(-,-)) is complex, @ € C with Rec, Imar > 0 and z,y € H are such

that
Im o

1.4 — . <
(14) . Rea yH_r

then

1 Rea

1.5 _R < . 2.
(1.5 ol ol = Re fo:3) < 5 - or

3. If « € K\ {0}, then for any z,y € H

o 1 [[Realllz —yll + [Imaf |z + y]]
jaf”

2
. | 5 3

(1.6) ]l lyll = Re

(z, y>1 <

N

e
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4. If p > 1, then for any =,y € H one has

1
2 2p| P
[zl + 191D =l + 9] "

(1.7) 2] lyll — Re (z,y) < 5 x

N =

1
2 2
[l = 1™ = lllz]l =yl ]

5. If a,y > 0 and § € K with |ﬂ|2 > ary then for z,a € H with a # 0 and

87— o)
s S <a) lall,
one has
(19) e o < R T e
< 1Allz,a)|
N
and
2
(1.10) el lall? = e, < PE=9T 1 2.

ay
The aim of this paper is to provide other results related to the Schwarz inequality.
Applications for reversing the generalised triangle inequality are also given.

2. QUADRATIC SCHWARZ RELATED INEQUALITIES
The following result holds.
Theorem 1. Let (H;(-,-)) be a complex inner product space and x,y € H, a €
[0,1]. Then
2 ; 2 2
21)  |alty —=|" + (1 —a) llity — 2[7| Iyl
> l2l* [ly)* = [(1 = o) Tm (2, ) + aRe (z,9)]* > 0
for any t € R.

Proof. Firstly, recall that for a quadratic polynomial P : R — R, P(t) = at? +
2bt + ¢, a > 0, we have that

b — b2
(2.2) inf P (t) = P <> .
teR a a

Now, consider the polynomial P : R — R given by
(2.3) P(t) = alty —z|* + (1 — a) [lity — ||
Since

Ity — x> = £ |yl|* — 2t Re (x, ) + |||
and

lity — =||* = £ |[y[|* — 2t Tm (, y) + |||,
hence

P (t) = [ly|* — 2t [aRe (z,y) + (1 — @) Im (z, )] + [|=]*.
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By the definition of P (see (2.3)), we observe that P (t) > 0 for every t € R,
therefore %A <0, ie.,

[(1 = @) Im (z,9) + aRe (z,)]* = |lz|* [ly* < 0,

proving the second inequality in (2.1).
The first inequality follows by (2.2) and the theorem is proved. I

The following particular cases are of interest.

Corollary 1. For any x,y € H one has the inequalities:

2 2 2 2 2
(2.4) ity — (I [[yll” = lleefl” [ly[I” — [Re (2, y)]” > 0;
(2.5) ity — =) * [lylI* > lla]|* [lyl|* — [fm (=, y)]* > 0;
and

>0

iy )

2
1 2, s 2 2 2 2 (Im{z,y) + Re(z,y)
(2.6) 5 [ty =l + llity — 7| llylI” = =" lylI”~ 5
for any t € R.
The following corollary may be stated as well:

Corollary 2. Let z,y € H and M;,m; € R, i € {1,2} such that M; > m; > 0,
i €{1,2}. If either

(2.7) Re (Myy —z,x —myy) >0 and Re(Myiy —z,z —imay) >0,

or, equivalently,

My +m 1
(2:5) o= 2y | < S 0n ) Il and
My +mg | 1
o= 22520 < 5 0 - ma) o)
hold, then
(29) 0 <) el Iyl = (1~ @) Im (z. ) + a Re (2.

1
< <l [ (M = m)? + (1= ) (Mz = ma)’

for any a € [0,1].
Proof. 1t is easy to see that, if x,2,Z € H, then the following statements are
equivalent:

(i) Re(Z —z,x — z) > 0,

(i) Jlo— =52] < 412~ 2.
Utilising this property one may simply realize that the statements (2.7) and (2.8)
are equivalent.

Now, on making use of (2.8) and (2.1), one may deduce the desired inequality

(2.9). 1

Remark 1. If one assumes that My = My = M, m1 = ma = m in either (2.7) or
(2.8), then

(2.10) (0 <) ll2l* Ilyll* = [(1 — @) Im (2, ) + @ Re (x,y)]*

1 4 2
<Lyt s = m)
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for each o € 0,1].

Remark 2. Corollary 2 may be seen as a potential source of some reverse results
for the Schwarz inequality. For instance, if x,y € H and M > m > 0 are such that
etther

(211)  Re(My—z,2—my) >0 or ngmﬂséwfnnm
hold, then
(212) (0<) el Iyl ~ [Re 2, )]? < & (M —m)? ]

If x,y € H and N > n > 0 are such that either
213 Re(¥iy-sa-nin >0 or o= 2| < Lol
hold, then
(214) (0 <) el ol — [T G )] < (N =) o]

We notice that (2.12) is an improvement of the inequality
2 112 2 1 2 4
O ) N2l llyl™ = Ko, )™ < 7 (M —=m)” [lyll
that has been established in [4] under the same condition (2.11) given above.

The following result may be stated as well.

Theorem 2. Let (H;(-,-)) be a real or complex inner product space and x,y € H,
a € [0,1]. Then

(215) [allty = ol + (1 = ) lly = tal’] [allyl* + (1 — @) |12’
> [(1=a) all” + allyl] [ lel* + (1 = a) [yl]*] - [Re (,4)]* = 0
for any t € R.
Proof. Consider the polynomial P : R — R given by
(2.16) P(t):=alty—z|>+ (1 —a) |y —tz]*.

Since
2 2 2
Ity — z|* = £ |lylI” — 2t Re (z, y) + [l ]|

and
ly = tall* = £ o> — 2t Re (@, ) + 1y,
hence
2 2 2 2
P(t) = [allyl® + (1 = a) 2l]*] £ = 2t Re (. y) + [afjal + (1 = ) ly)]
for any t € R.

By the definition of P (see (2.16)), we observe that P (t) > 0 for every t € R,
therefore iA <0, i.e., the second inequality in (2.15) holds true.
The first inequality follows by (2.2) and the theorem is proved. I

Remark 3. We observe that if either o = 0 or o = 1, then (2.15) will generate
the same reverse of the Schwarz inequality as (2.4) does.
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Corollary 3. If x,y € H, then

(2.17)

2 2 2 2 2 2\ 2
ty — -
iy =l +ly — ol ol + Il <||x| ;nyn) Rele ) 0

for any t € R and
(218) llo £yl [allyl® + (1 - a) I’
> [(1=a) llo)* + o lyll?] [allel + (1 = @) y)*] = [Re {a, 5)]* > 0

for any o € [0,1].
In particular, we have

(2.19) uuyu?-(”x';“y“) > (W) ~ [Rel, ) >0

In [7, p. 210], C.S. Lin has proved the following reverse of the Schwarz inequality
in real or complex inner product spaces (H;(-,-)) :

21112 2 _ 1 2 2
O ) Nzl lyll™ = [z, 9" < 5 N2l [lz = ryll

forany r e R, r # 0 and z,y € H.
The following slightly more general result may be stated:

Theorem 3. Let (H; (-,-)) be a real or complex inner product space. Then for any
z,y € H and a € K (C,R) with o #£ 0 we have

1
(2.20) O <) llll* llyll* = [z, m)I* < o ]| |2 — ey
The case of equality holds in (2.20) if and only if
(2.21) Re (z, ay) = |z||.

Proof. Observe that
I(a) = ol o = ayl* = al* [ll2l]* 9> = (. 5)]
2 2 _ 2 2
= o [Jle)* = 2Rela (w,5)] + lal* y]]

2 2 2 2 2
— la™ 2" lylI” + e [z, )
4 2 _ 2 2
= llzlI” = 2|z Re [a (z, y)] + |l [{z,9)[" .

Since

(2.22) Rela (z,y)] < |af[{z,y)],

hence

(2.23) I(a) > ||lz]* = 2[|=]* o] |z, 9)| + |af® |2, v)

= (lal’* ~ lof [z, 31) " > 0.

Conversely, if (2.21) holds true, then I (o) = 0, showing that the equality case holds
in (2.20).
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Now, if the equality case holds in (2.20), then we must have equality in (2.22)
and in (2.23) implying that
Re[(z,ay)] = |al[(z,y)| and |of|(,y)| = ||
which imply (2.21). 1
The following result may be stated.

Corollary 4. Let (H;(-,-)) be as above and z,y € H, o € K\ {0} and r > 0 such
that |a| > r. If

(2.24) |z —ayll < rlyll,
then
2 2
o =T
|al ]| [y

Proof. From (2.24) and (2.20) we have

2
2 2 2 T 2 2
21" lyl™ — Kz, 9™ < —5 [l=l7 lyll,

= faf
(fof* —r?)

jaf®

that is,

2 2 2
™ [lylI™ < [, y)l

which is clearly equivalent to (2.25). 1
Remark 4. Since for I',y € K the following statements are equivalent

(i) Re(Ty — 2,2 —yy) >0,

(i) [|o = -y <TI0 =,
hence by Corollary 4 we deduce

1
2[Re (P)]F _ |(2.0)]
T+l =l il

provided Re (T'y) > 0, an inequality that has been obtained in a different way in [3].

(2.26)

Corollary 5. If z,y € H, o € K\ {0} and p > 0 such that |x — ay|| < p, then

2
P
(2.27) (0 <) [l 1yl* = [z, )] < o [Ells

3. OTHER INEQUALITIES
The following result holds.
Proposition 1. Let z,y € H\ {0} and € € (0,1]. If

(3.1) (Og)l—s—\/l—%gMgl—s—l—\/l—%,

[yl
then

(3.2) (0<) [l 1y - Re (z,y) < ez yl|”.
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Proof. If x =y, then (3.2) is trivial.
Suppose x # y. Utilising the inequality (2.5) from [6], we can state that
Izl lyll — Re (z,y) 2|z llyl
2 < 2
= —yll (]l + [lyl)

for any z,y € H\ {0}, # y.
Now, if we assume that

2|Jz[l llyll

S <,
(=l + 1yl
then, after some manipulation, we get that

2 2
ellzl|” +2 (==l lyll + e llylI” = 0,

which, for € € (0, 3] and y # 0, is clearly equivalent to (3.1).

The proof is complete. 1

The following result may be stated:
Proposition 2. Let (H;{-,-)) be a real or complex inner product space. Then for
any x,y € H and ¢ € R one has:

2] [lyl] — [cos 2¢ - Re (z,y) + sin 2 - Im (z, y)]

1 . 2
< 5 lleos gl flz — gl + [sin @] [l + ylI]"-

Proof. For ¢ € R, consider the complex number o = cos ¢ — isin . Then a? =
cos 2¢ —isin 2¢p, || = 1 and by the inequality (1.6) we deduce the desired result. I
From a different perspective, we may consider the following results as well:

Theorem 4. Let (H;(-,-)) be a real or complex inner product space, o € K with
oo — 1| = 1. Then for any e € H with |le|| =1 and z,y € H, we have

(3.3) [(z,y) —a(z,e) (e, y)| <zl lyll.

The equality holds in (3.3) if and only if there exists a A € K such that

(3.4) alx,e)e=x+ \y.

Proof. 1t is known that for u,v € H, we have equality in the Schwarz inequality
(3.5) [, )] < [

if and only if there exists a A € K such that u = \v.
If we apply (3.5) for u = a(z,e) e — z, v =y, we get

(3.6) o (z,e) e — 2,5)] < o (@, €) e — ] ]
with equality iff there exists a A € K such that
alx,e)e=x+ \y.
Since
o (@, ) e — al]* = [af? |{z, ) — 2Re [a] [(z, €} > + [12]]?

= (laf* = 2Re o]} l(z, )" + 2|

= (la =11 =1) [tz &) + 2]
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and
(a(z,e)e—z,y) = alzx,e) (e, y) — (z,y)
hence by (3.6) we deduce the desired inequality (3.3). I

Remark 5. If a =0 in (3.3), then it reduces to the Schwarz inequality.

Remark 6. If a # 0, then (3.3) is equivalent to

1

< = =l yll-

(3.7) 3

(2 6) (o) — — {2.9)

Utilising the continuity property of modulus for complex numbers, i.e., |z — w| >
[|z] — |wl|| we then obtain

1 1
[(z,e) (e, y)| — — |<I7y>‘ < =zl llyll,

| |

which implies that
1

(3.8) [(z,€) (e, y)| < Tal [z, 9| + Nzl ] -
For e = 151, 2 # 0, we get from (3.8) that

1
(3.9) (2, 2) (z,9)] < = [, o] + 2] ] 1=

|
for any o € K\ {0} with |@ — 1| =1 and z,y,z € H.
For a = 2, we get from (3.9) the Buzano inequality [1]

1
(3.10) [z, 2) (z9)] < 5 [z, )] + =] lyl] [ElS
for any z,y,z € H.

Remark 7. In the case of real spaces the condition | — 1| = 1 is equivalent to
either o« = 0 or a = 2. For a = 2 we deduce from (3.7) that

(3.11) 5 1) = el Il < (o) de.9) < 5 [@,9) + il Dol

2
for any x,y € H and e € H with |le|| = 1, which implies Richard’s inequality [8]:

(312) = [w) — ol Iyl 12)° < (@.2) (= 9) < %[@7@/) + il i =17,

2
for any x,y,z € H.

The following result concerning a generalisation for orthornormal families of the
inequality (3.3) may be stated.

Theorem 5. Let (H;(,-)) be a real or complex inner product space, {e;};cp a
finite orthonormal family, i.e., (e;,e;) = &;; fori,j € F, where 8;; is Kronecker’s
delta and o; € K, i € F such that |o; — 1| =1 for each i € F. Then

(3.13) (@,y) =D ai (e (eiy)| < llz] 1yl -

i€F
The equality holds in (3.13) if and only if there exists a constant A € K such that
(3.14) Z a; (z,e;)e; =+ Ay.

i€ F
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Proof. As above, by Schwarz’s inequality, we have

<Zai <$,€i>€i—l‘,y> < Zai (v, ;) €i —
=

i€F
with equality if and only if there exists a A € K'such that ), o (z,e;) e; = 2+ Ay.
Since

Zai <IIZ’, ei> e

(3.15) lyll

2

2
*”l’” 2Re<z ZO‘Z x,e;) 1> Zal x,e;) e

ieF ieF ier
= llel? — 23 @ e (@) + 3 Jal? [{, e
1€EF i€F
= 2 + > (. en) (laul® ~ 2Re )
ieF
2 2 2
= Jlall® + > [, el? (Jou = 11* = 1)
ieF

2
= l=l”,
hence the inequality (3.13) is obtained. I

Remark 8. If the space is real, then the nontrivial case one can get from (3.13) is
for all a; = 2, obtaining the inequality

1 1
(3.16) 5 Lz ) =izl lyll] < Y (@e) (eiy) < 5 [z + Izl gl
i€k
that has been obtained in [5].
Corollary 6. With the above assumptions, we have

Zai <I’, ei> <ei7y>

ieF

(317) ZOQ Zz, 61 617 >

1€EF
<Kzl + =l llyll,  =y€H,

< [{z,y)] +|(

where |a; — 1| =1 for each i € F and {e;},.p is an orthonormal family in H.

4. APPLICATIONS FOR THE TRIANGLE INEQUALITY

In 1966, Diaz and Metcalf [2] proved the following reverse of the triangle inequal-
ity:

(4.1)

n n
> il 2r) el
i=1 i=1

provided the vectors z; in the inner product space (H; (-, -)) over the real or complex
number field K are nonzero and

(4.2) 0<r< =22 foreach i€ {l,...,n},

where a € H, ||a|]| = 1. The equality holds in (4.2) if and only if

(4.3 Yw=r (Z mu) a
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The following result may be stated:

Proposition 3. Let e € H with |le] = 1,e € (0,3] and z; € H, i € {1,...,n}
with the property that

(4.4) 0<)1—e—V1—-2e<|z]| <1 —e+V1—-2¢
for each i€ {1,...,n}. Then

(4.5) Sl < |D @il +e > llwi—el?
=1 =1 1=1

Proof. Utilising Proposition 1 for x = z; and y = e, we can state that

||| — Re (z;,€) <& [la; — el

for each i € {1,...,n}. Summing over ¢ from 1 to n, we deduce that

(4.6) Z||a:z|| <Re <in,e> —&-EZHggi_e”Q.
i=1 i=1 i=1

By SChW&rZ’S inequality in (H; <'7 '>), we alSO haVe
< E f,Ci, €> ’
i=1

(4.7 Re <§”: xi,e> < |Re <§”: xi7e>
i=1 i=1
< zn:% Xn:l’i
i=1 i=1

Therefore, by (4.6) and (4.7) we deduce (4.5). 1

<

lell =

In the same spirit, we can prove the following result as well:

Proposition 4. Let (H;{-,-)) be a real or complex inner product space and e € H
with |le|| = 1. Then for any ¢ € R one has the inequality:

48 Yl <
=1

Proof. Applying Proposition 2 for x = z; and y = e, we have:

n

>

i=1

1 <& . 2
+3 > llcos o [l — el| + [sin | [J; + ][]
i=1

(4.9)  |lzsl] < cos2¢ - Re{x;,e) +sin2p - Im (z;, €)
1 . 2
+ 5 lleos el f|zi — el + [sin o [lz; + e]l]

for any i € {1,...,n}.
Summing in (4.5) over ¢ from 1 to n, we have:

(4.10) Z l|lz:]| < cos2p-Re <Z Z, e> +sin2¢ - Im <Z zi, e>

i=1 i=1 i=1

. 2
+ [lcos @l [|lz: — el + [sin | [|l2; + el|]”

1

n

DN | =

(2

Now, by the elementary inequality for the real numbers m,p, M and P,

mM +pP < (m?+p?)* (M? + P2)?
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we have

(4.11) cos2¢p - Re Zwi,e + sin 2¢ - Im in,e

i=1 i=1

N
Nl=

n 2 n
< (cos2 2¢ + sin? 24,0)% Re Z ;e + |Im Z xi, e
i=1 i=1

n n n
= in,e < Z»’Cz lell = in,
i=1 i=1 i=1

where for the last inequality we used Schwarz’s inequality in (H; (-,-)).

Finally, by (4.10) and (4.11) we deduce the desired result (4.8). I
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