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REVERSING THE CBS-INEQUALITY FOR SEQUENCES OF
VECTORS IN HILBERT SPACES WITH APPLICATIONS (I)

S.S. DRAGOMIR

ABSTRACT. Several reverses for the Cauchy-Bunyakovsky-Schwarz (CBS) in-
equality for sequences of vectors in Hilbert spaces are obtained. Applications
for bounding the distance to a finite-dimensional subspace, in reversing the
generalised triangle inequality and for Fourier coefficients are also given.

1. INTRODUCTION

Let (H;{(-,-)) be an inner product space over the real or complex number field
K. One of the most important inequalities in inner product spaces with numerous
applications, is the Schwarz inequality

2 2 112

(1.1) (™ < llzl"llyl™, =yeH
or, equivalently,

(1.2) Kz, )l < llzll llyll, @,y € H.

The case of equality holds iff there exists a scalar a € K such that x = ay.
By a multiplicative reverse of the Schwarz inequality we understand an inequality
of the form

(1.3) (1<)M<k1 or (1<)w<k
| el T

with appropriate k; and ko and under various assumptions for the vectors x and v,
while by an additive reverse we understand an inequality of the form

(1.4) (0 <) llll gl = [, 9] < b or (0 <) Jall® Iyl = [z, )] < ho.

Similar definition apply when |(z,y)| is replaced by Re (x,y) or |Re (x,y)]|.
The following recent reverses for the Schwarz inequality hold (see for instance
the monograph on line [3, p. 20]):

Theorem 1. Let (H;(-,-)) be an inner product space over the real or complex
number field K. If x,y € H and r > 0 are such that

(1.5) lz —yll <r <yl

then we have the following multiplicative reverse of the Schwarz inequality

16) S 1 1

T Re (z o2
|z, ) (z,y) |l r2
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2 S.S. DRAGOMIR

and the subsequent additive reverses

L7) © <) 12l Iyl - (e, w)] < Jl2] Iyl - Re (2, 9)
< r” Re (z,y)
meﬂ(mn+wm2ﬂ)
and
(1.8) 0 <) 2l 191 = 1, )P < Nzl ol = [Re (2, )12
<1 ]

All the above inequalities are sharp.

Other additive reverses of the quadratic Schwarz’s inequality are incorporated
in the following result [3, p. 18-19]:

Theorem 2. Let x,y € H and a, A € K. If
(1.9) Re (Ay —z,x —ay) >0

or, equivalently,

a+ A 1
(1.10) T - | < slA=alllyl,
2 2
then
2 2 2
(1.11) O <) llzlI” N1yl = [z, )|
2
a 2
R Bl L e
<;lA-al Iyl -

2
lyl” Re (Ay — =, 2 — ay)
1
< 71—yl
The constant i 1s best possible in all inequalities.

If one were to assume more about the complex numbers A and a, then one may
state the following result as well [3, p. 21-23].

Theorem 3. With the assumptions of Theorem 2 and, if in addition, Re (Aa) > 0,

then
1 Re[(A+a)(zy)] 1 [A+ad|
12 iyl < - ORI < 2 ),
| Re|(d+a-2yRe(40)) (z,y)]
(113) 09 ol Iyl - Refey) < - - T
and
(1.14) O el Iyl = o) < § - e o)

The constants % and i are best possible.
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Remark 1. If A= M, a=m and M > m > 0, then (1.12) and (1.13) may be
written in a more convenient form as

(1.15) ol Il < 5 A Re ()
and
(var - vm)’
(116) () ol Iyl - Re w,y) < Re (2.9)

2vmM

Here the constant % is sharp in both inequalities.

In this paper several reverses for the Cauchy-Bunyakovsky-Schwarz (CBS) in-
equality for sequences of vectors in Hilbert spaces are obtained. Applications for
bounding the distance to a finite-dimensional subspace and in reversing the gener-
alised triangle inequality are also given.

A continuation of this work for different classes of reverse inequalities is planed
to be considered in the subsequent paper [5].

2. REVERSES OF THE (CBS) —INEQUALITY FOR TWO SEQUENCES IN ﬁf) (K)

Let (K, (-,-)) be a Hilbert space over K, p; > 0,4 € N with >~ p; = 1. Consider
% (K) as the space

oo
z; € K, ieN and ZpZHleQ <oo}.

=1

6% (K):= {x = (Z4);en

It is well known that ¢2 (K') endowed with the inner product

(,y)p = Zpi (@i, yi)

is a Hilbert space over K. The norm [|-||, of £ (K) is given by

00 3
2
[z, = (Zpi (| ) :
i=1

If 2,y € £2 (K), then the following Cauchy-Bunyakovsky-Schwarz (CBS) inequal-
ity holds true

oo o0 oo
2 2
(2.1) S pillll® > i llwill® = D> pi (i, i)
=1 i=1 i=1

with equality iff there exists a A € K such that x; = A\y; for each i € N.

This is an obvious consequence of the Schwarz inequality (1.1) written for the
inner product (-, ), defined on (3 (K).

The following proposition may be stated.

2

Proposition 1. Let z,y € (3 (K) and r > 0. Assume that
(2.2) lw: —yill <7 <|yil|l for each i€ N.
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Then we have the inequality

Nl

2 2
(52 pllel* 5252 )
|Zfi1 pi (i, Yi)|

1
2 2\ 2
_ (SZawll® S pi i)
o o2 piRe (i, ui)

1

2\ 2

(520w il
2 )
VI il - 2

(2.3) (1<)

(24)  (0<5) (Zpi||mi”2zpi||yi“2> -
=1 =1

[ee)
Zpi (i, i)
i=1

[ee] o0 % oo
2 2

< (Zpilxill > iyl ) Y piRelzi,y:)

=1 =1 i=1
< r? 3o pi Re (@i, yi)
= 1

2 2\ 2 2
VEZ il = | (SZumelwl?)” + S Za il -2

and

(oo} (oo}
(2.5) (0<) Zpi [l Zpi lyill*
=1 =1

2

o
Zpi (@i, yi)
=1
oo oo o0 2
2 2
< sz‘ [ sz‘ llysll™ — [sz Re <Iz’,yi>]
=1 =1 i=1

o0
<> pi
=1
Proof. From (2.2), we have
oo oo oo
lz =yl = " pille —wl> <r? > p <> pillwal® = Iyl
=1 =1 =1

giving ||z — yll, <7 <|lyll, . Applying Theorem 1 for £, (K) and (-, ), , we deduce
the desired inequality. I

The following proposition holds.
Proposition 2. Let z,y € (2 (K) and a, A € K. If
(2.6) Re(Ay; — xj,x; —ay;) >0 for each i € N
or, equivalently,

a+ A
Iv*Tyz

1
(2.7 < 5 |A —al||ly:l| for eachi € N




REVERSING THE CBS-INEQUALITY 5

then
2 2
(2.8) O < ) pillzl®> pillwill® - (@i, i)
i=1 =1
1 = ’
2 2
< Jla-of (Suil?)
i=1

2

2
| A0 55 il — 52, )

Zfil pi HyiHQ Zioil pi Re (Ay; — x4, 2 — ay;)

2
1 2 [ 2
< 1 |A —al (Zpi [yl )
i=1
The proof follows by Theorem 2, we omit the details.

Finally, on using Theorem 3, we may state:

Proposition 3. Assume that x,y,a and A are as in Proposition 2. Moreover, if
Re (Aa) > 0, then we have the inequality:

> > 'y Re [(A+a) 372, pi (i, ui)]
2.9 ]| lwal? ] <5 - =
(2.9) (;p [EA| ;P l[vill ) 2 Re (Aa)
1 [A—a|l
< = ° 1 19 J )
2 \/Re (Aa) Zp i i)

e) 09 (sz- 3 ||yl-||2> -3 ke
|:(A+a_2\/W) i= 1pz 3317?/1)]

<1
2 Re (Aa)
and
o0 o0
2 2
(2.11) 0 S)Zpi [l sz‘ lyall” — (i, i)
1 |Afa|
< =
=4 Re (Aa) sz Tir Yi)

3. REVERSES OF THE (C'BS) —INEQUALITY FOR MIXED SEQUENCES

Let (K, (-,-)) be a Hilbert space over K and for p; >0, i € N with >.:° p; =1,
and EIQ) (K) the Hilbert space defined in the previous section.
If

a €3 (K) = {a = (@i);en

o
o; €K, i€ N and Zpiai2<oo}

i=1
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and z € (2 (K), then the following Cauchy-Bunyakovsky-Schwarz (C BS) inequality
holds true:

oo o0 oo
(3.1) Zpi|ai|22pi [ = Zpiaixi
i=1 i=1 i=1

with equality if and only if there exists a vector v € K such that x; = azv for any
i eN.
The inequality (3.1) follows by the obvious identity

n n n
2 2
> pileal® D pillall® = | picviz
=1 =1 =1
n

1 - o
= 52> vl - agil

i=1 j=1

2

)

2

forany n e N, n > 1.
In the following we establish some reverses of the (CBS) —inequality in some of
its various equivalent forms that will be specified where they occur.

Theorem 4. Let a € & (K), z € (2 (K) and a € K, r > 0 such that ||a|| > r. If
the following condition holds

(3.2) l|z; — agal| < rla;|  for each i € N,
(note that if a; # 0 for any i € N, then the condition (3.2) is equivalent to
z;

——a
Q;

(3.3) <r foreachi€N),

then we have the following inequalities

2 2
(3.4) (Zpl i Zpi IEA ) < — Re <Zpiozia:i, a>
i=1 i=1 lla||” —r2 i

i—1

< llal| = .
— plalxl b
Jlal? =2 15
o0 o0 %
63 o< (zpi S, uxm) s
=1 =1

1
2

(oo} oo (oo} a
< <Zpi |0éi|22pz‘ ||£Ez||2> —Re <sz‘04i17i,”a>
= i—1 i=1

- a
Re <ZP¢0@$¢7 >
N (|a|| i) V=

= i - <||a||+\/||a ) 2 o

)
i=1
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2
oo oo 1 oo
(3.6) Zpi |CVi|2 Zpi ||5Uz||2 < W lRe <Zpiai$i; a>1
i=1 i=1 -

i1
ot &=
||aH2 2 ;piail'z
and
~ - 2
(3.7) 0< Zpi || Zpi [EA QT
i=1 i=1

i=1
2 2
<Y pileal” ) pillwl® — |Re <Zpiail‘i, ||a|>]
i=1 =1 i=1

o 2
Re <sz’04i=’17i, a>]
i=1

2
E Dic; x5

All the inequalities in (3.4) — (3.7) are sharp.

Hall

Proof. From (3.2) we deduce

2:l|* — 2 Re (z;, @a) + il [lal|* < [aul* r?
for any ¢ € N, which is clearly equivalent to
(3.8) Jll® + (llal* = 72) Josl® < 2Re {azi, a)

for each ¢ € N.
If we multiply (3.8) by p; > 0 and sum over i € N, then we deduce

(3.9) Zpi i ]|* + (||a||2 — r2) Zpi la;|? < 2Re <Zpiaixi,a> .
i=1 i=1 i=1
Now, dividing (3.9) by 1/la]|® — r2 > 0 we get
2 2
sz lzsll* + /llal* = 72y~ pi o]
Vlall> =2 i=1 i=1

(3.10)

2 oo
< Re< § piaimi7a> .
Vlal? =r2 V=

On the other hand, by the elementary inequality

1
EPJFOZQZQ\/Pv O‘>Oa p,QZOa
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we can state that:

(3.11) [szaz sz I 1
sz lill* + 4/ llal? *?”QZZ% il
\/||a —r2 =1

Making use of (3.10) and (3.11), we deduce the first part of (3.4).
The second part is obvious by Schwarz’s inequality

oo oo
Re <Zpiai$z‘7a> < Zpioéiﬁci
i—1 i=1

Ifpr=1,21 =2, a1 =1and p; =0, a; =0, z; = 0 for i > 2, then from (3.4)
we deduce the inequality

lall -

1 ]l llall

S a) < —ziiall
2 2
\lleal” =2 llal” = r?

provided ||z —a|| < r < ||a]|, #,a € K. The sharpness of this inequality has been
shown in [3, p. 20], and we omit the details.

The other inequalities are obvious consequences of (3.4) and we omit the de-
tails.

]l <

The following corollary may be stated.

Corollary 1. Let o € (2 (K), z € £2(K), e € H, |le] =1 and ,¢ € K with
Re (¢@) > 0. If

(3.12) a. Pt

T, — Q- 9

1
<516 ol

for each i € N, or, equivalently
(3.13) Re (paze — x;, x; — page) > 0
for each i € N, (note that, if a; # 0 for any i € N, then (8.12) is equivalent to

%_W.QHJ

(3.14) = 5 < gle—el

for each i € N and (3.18) is equivalent to

Re< e—zi_,zz—goe> >0
for each i € N), then the following reverses of the (CBS) —inequality are valid:
1
i > 2 Rel(d+¢ > DT, e
(3.15) (Zpi il Y i ||$i|2> (2+?) <Ztl]i )
i1 i1 2 [Re (¢9)]?

1 |p+9
I — PiC;T;
2 [Re (¢9)]> Z

IN

7
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Nl

2 2
(3.16) 0< <§ pilail* ) pi|xi||>
i=1 =1

oo
E Dit; 4
i=1

< <sz|az2zp7'|x7f”2> —Re ¢ g_p <szazxz7 >]
=1 i=1
6 = ¢l o+ < >]
S p’ba ng
Re (¢¢) (Iso+¢|+2 Re(¢>¢)) o+ ¢l 2
< |¢7*90|2

i 3

Re (69) (I + 0l +2v/Re(99)) |1 =

{¢+<P <sz% >H

2
E Dici s

oo oo 1
3.17 Di ol Di zi|? < —— |R
10 Sonlel Sl < g

< 1 |s0+¢|

4 Re (¢9)

and

2

i QL

~{ea{ges)]
o]

(3.18) 0< > pilai > pi llail* ~
i=1 1=1

oo
2 2
< pilea* > pilla)* -
L =1

6 — ol {
- 4|¢+<p|2Re (¢p)

< lo—vl ¢l”
~ 4Re(op)

2

i g

All the inequalities in (3.15) — (3.18) are sharp.

Remark 2. We remark that if M > m >0 and for o € (2 (K), z € (2 (K), e € H
with ||e|]| = 1, one would assume that either

(3.19) < 5 (M —m)

o 2

z, M+m H 1
e

for each i € N, or, equivalently

(3.20) Re <M _nh me> >0

Q
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for each i € N, then the following, much simpler reverses of the (CBS) —inequality
may be stated:

o0 o0 %
(3.21) (anaz—FmeAF) M““ <szazxz,>
=1 i=1

M M+m
Zplalxl

| A\

| A

7

ol

i QT

o0 oo
(3.22) 0< (Zpi il i IIwi|2>
i=1 i=1
%
< (Zpi jil*> i ||xi|2> —Re<2piaz—wi,e>
i=1 i=1 =1

(M — m)2 < > >
> 3 Re Zpiaixi,e
2 (\/M—i- \/M) vmM i=1
(M —m) .
(k] 5
(\ﬁ+ \F) Vm
(o] 00 2
(3.23) > pilea® > pillil* — T
i=1 i=1 i=1
2
M +
it [m <ZW v >]
2
(M +
— 4m]\74'n szalxl

and

2 2
(3.24) 0< E pi | E pill@ill” —
i—1 i=1

2

o0
Zpiai%
i=1
o0 (o) oo 2
< Zpi o | Zpi i[> = | Re <Zpioéi$i,€>]
i=1 i=1 i=1
2
<szazxu >]

2
sza T

4. REVERSES FOR THE GENERALISED TRIANGLE INEQUALITY

M —
<7
- 4mM

—~

4mM

In 1966, J.B. Diaz and F.T. Metcalf [2] proved the following reverse of the gener-
alised triangle inequality holding in an inner product space (H; (-, ")) over the real
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or complex number field K:

(4.1) Py <
=1

n
>
i=1

provided the vectors x1,...,x, € H\ {0} satisfy the assumption
Re (z;,a)

B

(4.2) 0<r< 5
where a € H and |ja|]| = 1.

In an attempt to diversify the assumptions for which such reverse results hold,
the author pointed out in [4] that

(43) VI=PY il <

i

n
D i
i=1

where the vectors z;,i € {1,...,n} satisfy the condition

(4.4) lz; —al < p, ie{l,...,n}

where a € H, ||la|| =1 and p € (0,1).
If, for M > m > 0, the vectors x; € H, i € {1,...,n} verify either

(4.5) Re(Ma — z;,z; — ma) > 0, ie{l,...,n},

or, equivalently,

M 1
(4.6) ;- +m-aH§2(M—m), ief{l,...,n},
where a € H, ||a|| = 1, then the following reverse of the generalised triangle in-

equality may be stated as well [4]

(7 2/mM o<
’ M+mi:1 =

n
D i
i=1

Note that the inequalities (4.1), (4.3), and (4.7) are sharp; necessary and suffi-
cient equality conditions were provided (see [2] and [4]).
It is obvious, from Theorem 4, that, if

(4.8) lo; —al <7, for die{l,...,n},

where ||a|| > r,a € Hand x; € H,i € {1,...,n}, then one can state the inequalities

(4.9) > llaill < v <Z wi||2>
i=1 i=1

A\
=
=~

\
<
[\v]

j=s}

)
T
Y

&8

u@
~_

IN
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and

(4.10) 0< D Il -
i=1

gki
gw«émmf—
<\f<2||xl||> Re<2xl, o ”>

2 n
< " Re <Zwl,a”>
a
waﬂ(wu/dfﬁ> =
< T2 -
S T4
WMW—ﬂ(w<+aW—ﬂ)iﬂ

We note that for ||a|]| = 1 and r € (0, 1), the inequality (3.9) becomes

(4.11) \/1—T2Z||xz|| <A -=-r)n <Zmz|| )

Re <in,a> < th
i=1 i=1
which is a refinement of (4.3).

With the same assumptions for a and r, we have from (4.10) the following additive
reverse of the generalised triangle inequality:

n
2
i=1

)

n
(4.12) 0< > il -
i=1

7‘2 i
< R [z
7\/17r2(1+\/1fr2) e<;x a>
2 n

SR+ Vi) ;z

We can obtain the following reverses of the generalised triangle inequality from
Corollary 1 when the assumptions are in terms of complex numbers ¢ and ¢ :

If ,¢ € K with Re(¢pp) > 0 and x; € H,i € {1,...,n}, e € H, |le] =1 are
such that

1
(4.13) ‘xl_g Si\qb—go\ for each i€ {1,...,n},

4

or, equivalently,

Re (¢pe — x;, x; — pe) >0 for each i€ {1,...,n},
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then we have the following reverses of the generalised triangle inequality:

(4.14) Z ;]| < v/n <Z IIa:in)
_Re[(6+0) i, @i, )]

B 2y/Re (¢p)

1 |éo+¢]

2 \/Re(¢9)

n

D i

=1

IN

and

(4.15)  0< ) faill -
i=1

n
>
=1

n n
Sﬁ(Z ||in|2> D =
1=1 i=1
1
2

< ﬁ(Z ||£B¢||2> —Re |Cbﬂp|<z:vi,e>

[N

Re(éﬁfo) i=1
2 - _ n
< | — | Re (%)Jrsf <Z$z7€>‘|
2/Re(69) (o +¢l +2VRe(@p))  LI9+2I\ 5
2 n
< 4 sz

i=1

2/Re(67) (16 + ¢l +2/Re(67)

Obviously (4.14) for ¢ = M, o = m, M > m > 0 provides a refinement for (4.7).

5. LOWER BOUNDS FOR THE DISTANCE TO FINITE-DIMENSIONAL SUBSPACES

Let (H;(-,-)) be an inner product space over the real or complex number field
K, {y1,..-,yn} a subset of H and G (y1,...,yn) the gram matriz of {y1,...,yn}
where (i, j) —entry is (y;, y;) . The determinant of G (y1, ..., y») is called the Gram
determinant of {y1,...,yn} and is denoted by T (y1,...,y,). Thus,

(yi,91) (Y1,92) -+ (Y1,Yn)
(51) F(yl;ayn) = <y27y1> <y27y2> <y27yn>

Wns 1) Wnov2) = (Yn>Yn)

Following [1, p. 129 — 133], we state here some general results for the Gram
determinant that will be used in the sequel.
(1) Let {z1,...,2n} C H. Then I" (z1,...,2,) # 0 if and only if {x1,...,z,}
is linearly independent;
(2) Let M = span{xi,...,z,} be n—dimensional in H, ie., {z1,...,2,} is
linearly independent. Then for each x € H, the distance d (z, M) from x
to the linear subspace H has the representations

T(z1,...,2Zn,)

(52) & (2, M) = T(z1,...,2,)
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and
HxHQ _ (Z?=1|<$7Ii>|2)22 if z¢ Mt
(5.3) & (x, M) = I s
|z if xe Mt
where M~ denotes the orthogonal complement of M.
(3) If {z1,...,x,} is an orthornormal set in H, ie., (x;,z;) =
{1,...,n}, where §;; is Kronecker’s delta, then
(5.4) &? (z, M) = ||z|? Z| x, %)
(4) Let {x1,...,2,} be a set of nonzero vectors in H. Then
2 2 2
(5.5) 0<T (21, zn) < [Jaa]” Il - [lan]”

51']'7 Z7.] €

The equality holds on the left (respectively right) side of (5.5) if and only

if {x1,...,2,} is linearly dependent (respectively orthogonal).

The first

inequality in (5.5) is known in the literature as Gram’s inequality while the

second one is known as Hadamard’s inequality.
The following result may be stated.

Proposition 4. Let {x1,...,x,} be a system of linearly independent vectors, M =

spani{xy,...,xn}, x € H\M*, a € H, r >0 and ||a| > r. If
(5.6)

T — <x,xi>aH < [z, z;)|r for each i€ {l,...,n},

(note that if (x,z;) # 0 for each i € {1,...,n}, then (5.6) can be written as

(5.7) (xx;> —al| <r foreach i€ {l,...,n}),
then we have the inequality
2 n (2
63) # w00 > o - M T )
lall” =72 32y [l
> 0.

Proof. Utilising (5.3) we can state that

5.9 dzx,M:x2 Z?1|<$mz 71
i TS 2'

Also, by the inequality (3.6) applied for o; = (z,2;), p; = 2, i € {1,...,
can state that
2 2
. Sl et _ 1
( : ) n 2 = 2 5 n 2
120 (o) ™ lall” =72 2o [l

provided the condition (5.7) holds true.
Combining (5.9) with (5.10) we deduce the first inequality in (5.8).
The last inequality is obvious since, by Schwarz’s inequality

n

] 2
[Edls ZH%H >Z T, ;) _WZH%MI :

=1

n}, we
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Remark 3. Utilising (5.2), we can state the following result for Gram determinants

2 n 2
(5.11) T(ans..rama) = |lof? = —lAl_ @@l p g oy s
lal® =72 322 [l

for x ¢ M+ and x,2;,a and r are as in Proposition 4.
The following corollary of Proposition 4 may be stated as well.

Corollary 2. Let {x1,...,2,} be a system of linearly independent vectors, M =
span{xy,...,xn}, v € H\M* and ¢, € K with Re (¢p) > 0. Ife € H, |e| =1
and

o+

(5.12) 5

x; — (@, ;) -

1
€l| < 5 16— ¢l )]

or, equivalently,

Re <¢' <3379€z’>€ — Ty, Ty — @ (x,xi>e> >0,

for each i € {1,...,n}, then

2 n 2
5.13 d? (z, M 2 1 fJo+ol" Y (@ @)
(5.13) .00) 2 ol - 3 s BBl

)

or, equivalently,
(5.14) T (z1,...,%n,T)

o gz L. Lot ol Xl eal”

T(x1,...,2,) > 0.

6. APPLICATIONS FOR FOURIER COEFFICIENTS
Let (H;({-,-)) be a Hilbert space over the real or complex number field K and
{ei},c; an orthornormal basis for H. Then (see for instance [1, p. 54 — 61]):
(i) Every element « € H can be expanded in a Fourier series, i.e.,
=) (z,¢)ei
icl
where (z,€;), @ € I are the Fourier coefficients of x;
(ii) (Parseval identity)

||$||2:Z<$a€z‘>€i, r € H;
iel
(ii) (Extended Parseval identity)
<x,y>zz<x,ei> <ei7y>7 x,ng;
iel
(iv) (Elements are uniquely determined by their Fourier coefficients)

(x,e;) = (y,e;) for every i € T implies that z = y.
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Now, we must remark that all the results from the second and third sections
can be stated for K = K where K is the Hilbert space of complex (real) numbers
endowed with the usual norm and inner product.

Therefore, we can state the following proposition.

Proposition 5. Let (H;(:,-)) be a Hilbert space over K and {e;},.; an orthornor-

mal base for H. If v,y € H (y#0), a € K (C,R) and r > 0 such that |a|] > r
and

(6.1) (zen) a‘ <r foreach i€l,
<yaei>
then we have the following reverse of the Schwarz inequality
(6.2) [yl < \/7
a
| | |
(6.3) O <) lzl 1yl = Kz, )]
a
< el Iyl - Re |2 - (a1
|al
r? a
< Re |2+ o)
" —r? (a| =)
<
o - (a| +laP )
20112 1 _ 2
(6.4) [zlI* [lyll” < —5—— Rela - (z,y)])
la” =72
S T
la” —r?
and
(6.5) (0 <) ll2l|” lyll* = Iz, )

< el lyl® ~ (Re [| | <x’y>]>2
g m - (Re m : <x,y>D

= 77'2

The proof is similar to the one in Theorem 4, where instead of z; we take (z,e;) ,
instead of «; we take (e;,y), ||| = ||, pi = 1, and we use the Parseval identities
mentioned above in (ii) and (iii). We omit the details.

The following result may be stated as well.
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Proposition 6. Let (H;(:,-)) be a Hilbert space over K and {e;},.; an orthornor-
mal base for H. If x,y € H (y #0), e, p,¢ € K with Re (¢p) > 0, le| = 1 and,
either

xT,e;
<y7 €

—~
Ny

_pto

(6.6) ;

1
< Z b —
ef2|¢ ¢l

-~

or, equivalently,

o (e ) (o

for each i € I, then the following reverses of the Schwarz inequality hold:

Re [(¢+¢) e (z,y)] <L detdl
2VRe(0p) 2 VRe(9p)

6.9) (0 <) =yl = [z, )]

(0+p)e
PR <x’y>]

(6.8) [yl <

< [lz][ lyll = Re

- 6 — ol Re (§5+¢)é<x, >]
2VRe(87) (lp+ ¢l +2V/Re(@p)) L I¢+ 9l
< 0~ ol" @3]
2/Re (07 (Ip + 0| + 2¢/Re (67) )
and
(6.10) 0 <) ] 1yll? (. 9)?
- (b+p)e i
<[l=[I* lyll” — |Re (p_+(¢|<$ay>]]
6 — ol o[ (43) & lx 2
ST+ o Reop) 0P e
< 1 el

Remark 4. If g = M > m = ¢ > 0, then one may state simpler inequalities from
(6.8) — (6.10). We omit the details.
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