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REVERSING THE CBS-INEQUALITY FOR SEQUENCES OF
VECTORS IN HILBERT SPACES WITH APPLICATIONS (II)

S.S. DRAGOMIR

ABSTRACT. Several new reverses for the Cauchy-Bunyakovsky-Schwarz (CBS)
inequality for sequences of vectors in Hilbert spaces which complement the
ones obtained in part one are given. Applications in reversing the generalised
triangle inequality and for Fourier coefficients are given as well.

1. INTRODUCTION

Let (H;(-,-)) be an inner product space over the real or complex number field
K.

One of the key inequalities in inner product spaces with numerous applications
is the Schwarz inequality

2 2, 12
(1.1) [, < =" llyl”,  =xyeH
which is known as the quadratic version of it, while
(1.2) [zl <llzlllyll,  zyeH

is the simple version. The case of equality holds in either (1.1) or (1.2) if and only
if the vectors  and y are linearly dependent.

By a multiplicative reverse of the Schwarz inequality in either simple or quadratic
version, we understand an inequality of the form

2, 12
[yl ][Iy
(1.3) AW o o gD oy,
[(z, )| [, )|
with appropriate k1 and ke and under various assumptions for the vectors x and
y, while by the additive reverse we understand an inequality of the form

(14) O 2l lyll = Kzl < b or (0 <) |2 lyl* = [, 9)|* < ho.

Similar definitions apply when |(z,y)| is replaced by Re (z,y) or |Re (z,y)|.
The following reverses for the Schwarz inequality hold (see [4], or the monograph
on line [5, p. 27]).

Theorem 1. Let (H;(-,-)) be an inner product space over the real or complex
number field K. If x;a € H and r > 0 are such that

(1.5) x € B(x,r):={z€ H|||z—al <7},
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2 S.S. DRAGOMIR

then we have the inequalities

(16) (0 <) el llall — z,a}] < el llall — [Re (z, o
< [|z[[la]| — Re (z,a) < %,2.

The constant % is best possible in (1.5) in the sense that it cannot be replaced by a
smaller quantity.

An additive version for the Schwarz inequality that may be more useful in ap-
plications is incorporated in [4] (see also [5, p. 28]).

Theorem 2. Let (H;(-,-)) be an inner product space over K and x,y € H and
~v, I € K with T’ # —v and either

or, equivalently,
7+1“
(18) o= 550 < Jim =t
holds. Then we have the inequalities
(1.9) 0 < [lzll Iyl = Kz, )]
L+7
it [£22 o
]| [yl T (z,y)
C+4
< x| ||y —Re[ . x,y]
[ [l T (z,y)
Lol e
4 T +4] '

The constant i in the last inequality is best possible.

We remark that a simpler version of the above result may be stated if one
assumed that the scalars are real:

Corollary 1. If M > m > 0, and either

(1.10) Re (My — xz, 2 — my) > 0,

or, equivalently,

(L1) o= 55| < S or =
holds, then

(1.12) 0 < lfHlyll = [z, )]

< =l llyll = Re {z, y)]|

< || [lyll — Re(z, y)
1 (M—m)” m)?

<= Iyl
4 M+m

The constant % is sharp.
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Now, let (K, (-,-)) be a Hilbert space over K, p; > 0, i € N with ) ;2 p; = 1.
Consider /2 (K) as the space

2 (K) = {ac = (x;)|z; € K, i € N and Zpi ] < oo} )
i=1
It is well known that ¢2 (K') endowed with the inner product

<$7y>p = Zpi (i, i)

is a Hilbert space over K. The norm |[[-[|,, of 2 (K) is given by

o 3
2
], = (Zpi [EA > :
i=1

If 2,y € (2 (K) , then the following Cauchy-Bunyakovsky-Schwarz (CBS) inequality
holds true:

2 2
(1.13) Zpi [ Zpi lyill™ = Zpi (zi,9i)
i=1 i=1 i=1

with equality iff there exists a A € K such that z; = \y; for each i € N.
It

2

o€ 63) (K):= {a = ();en| i €K, i €N and ZPHO%\Z < oo}
i=1

and z € (2 (K), then the following (CBS)-type inequality is also valid:

o0 o0 o0
(1.14) > b o | > i s ||” > > pioim;
i=1 i=1 i=1

with equality if and only if there exists a vector v € K such that z; = @;v for each
1€ N.
Note that the inequality (1.14) follows by the obvious identity

n n n 2 n n
1 _ _
(1.15) > pilea > pillwil® = ||D ] picia|| = 3 > N pip; @iz, — g
=1 =1 =1 1=15=1

for each n € N, n > 1.

In [6], by the use of some preliminary results obtained in [3], various reverses
for the (CBS)-type inequalities (1.13) and (1.14) for sequences of vectors in Hilbert
spaces were obtained. Applications for bounding the distance to a finite-dimensional
subspace and in reversing the generalised triangle inequality have also been pro-
vided.

The aim of the present paper is to provide different results by employing some
inequalities discovered in [4]. Similar applications are pointed out.

2




4 S.S. DRAGOMIR

2. REVERSES OF THE (CBS)-INEQUALITY FOR TWO SEQUENCES IN /2 (K)

The following proposition may be stated.

Proposition 1. Let x,y € Ef, (K) and r > 0. If
(2.1) lxi —yill <7 for each i €N,

then

2

oo [o.¢]
2 2
sz‘ (e sz‘ l[ill ) -
i=1

i—1 —

(2.2) (0<)

© .

(&9}
sz' (@i, yi)
i=1

o0 o0 % o0
< (ZP: ||$1H2ZP1 |yz||2> - Zpi Re (z;,y:)
i=1 i=1 i=1
o0 o0 % o0
< (sz ||33z|22pz|yz||2> —ZpiRe (@i, i)
i=1 i=1 i=1
Lo
2

< —r-.

The constant % in front of r2 is best possible in the sense that it cannot be replaced
by a smaller quantity.

Proof. If (2.1) holds true, then

oo oo
2 2
le = yl2 = pillas —will < 2> ps =12
=1 i=1

and thus ||z —y[|, <.
Applying the inequality (1.6) for the inner product (Ef, (K), (")

the desired result (2.2).
The sharpness of the constant follows by Theorem 1 and we omit the details. i

) , we deduce

o

The following result may be stated as well.

Proposition 2. Let x,y € (2 (K) and v, € K with T’ # —. If either
(2.3) Re (Ty; — @i, 2, —vy;) >0 for each i €N
or, equivalently,

77+F

1
(2.4) Ti = i < B T — 4| |ly:l| for each i€ N
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holds, then:

(2.5) (0=) (Zm |l * > pi ||yz'||2> -
i— i=1

< pi$i||zzpi|yi|2> —‘R

<szxz” ZleylH ) —Re

1

4

|F 7|2 2
For ol

i=1

i <Iiayi>

IN

The constant % is best possible in (2.5).
Proof. Since, by (2.3),

Re (Ty — z,2 —y), ZpiRe Ty, — @i, — yy:) > 0,
i=1

hence, on applying the inequality (1.9) for the Hilbert space (612, (K), {, ->p) , we

deduce the desired inequality (2.5).
The best constant follows by Theorem 2 and we omit the details. I

Corollary 2. If the conditions (2.8) and (2.4) hold for T = M, v = m with
M >m >0, then

1
2 2
(2.6) (0 <) (sz (Al Zpi [yl ) -
i=1 i=1
1
o0 o0 2
2 2
(Zpi [l Zpi|yi||> -
i=1 i=1
(oo} (o] % oo
< (sz [EA Zpi |yi||2> - sz' Re (@i, y:)
=1 =1 =1
1
4

(M—m)2 o 5

IN

i Re (3, ys)

i=1

The constant i is best possible.

3. REVERSES OF THE (CBS)-INEQUALITY FOR MIXED SEQUENCES

The following result holds:
2 2
Theorem 3. Let a € £, (K), x € £, (K) and v € K\{0}, r > 0. If

(3.1) |z; — agv|| < rlay|  for each i€ N
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(note that if a; # 0 for any i € N, then the condition (3.1) is equivalent to the
simpler one

(3.2) 2 —o|| <r for each i€ N),
oF
then
3
(3.3) 0 <) (D pileil sz e sza T

IN

IN

Di |az| Zpl Hle

b ) -
<< i lail? mein?) ‘<2pzam,|>|
(OO pilau zpz :mz) <szazmw|>‘
( )

o0 o0 v
Re <Zpiai$ia ||1)||>
i=1

The constant % is best possible in (3.3).
Proof. From (3.1) we deduce
lz]1* = 2Re (e, v) + el 0] < r? e,
which is clearly equivalent to
(3-4) i) + el [o])* < 2Re @i, 0) + 1% ||

for each 7 € N.
If we multiply (3.4) by p; > 0, i € N and sum over ¢ € N, then we deduce

o0 oo oo o0
(3.5) Zpi 212 + ||v]? Zpi la;|* < 2Re <Zpiaimi,v> + 72 Zpi la]? .
i=1 i=1 i=1 i=1

Since, obviously

o0 oo % o0 (oo}

2 2 2 2 2

(3.6) 2] (Zpi i D pi III¢II> <D owillal® + ol Y pi el
i=1 i=1 i=1 i=1

hence, by (3.5) and (3.6), we deduce

o0 oo % o0 oo
2o (Zpi il*Y pi ||:v1-||2) <2Re <Zpi04¢$i,v> +r2 Y pilal?,
i=1 i=1 i=1

i=1
which is clearly equivalent to the last inequality in (3.3).

The other inequalities are obvious.
The best constant follows by Theorem 1. [

The following corollary may be stated.
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Corollary 3. Let o € {2 (K), z € £3(K), e € H, |le] =1 and v,T € K with
Ty If

7—1—1“.

(3.7)

1
Tp— Qg €H<2F—’Y|O¢i|

for each i € N, or, equivalently,
(3.8) Re (T'aje — x4, x; — yage)
for each i € N (note that, if a; # 0 for any i € N, then (8.7) is equivalent to

x; 7+Fe

1
<ZIr-
o 2 - | A/|

(3.9)

for each i € N and (3.8) is equivalent to

(3.10) Re <I‘e - g, % — 76> >0

i Q4

for each i € N), then the following reverse of the (CBS)-inequality is valid:

G T

(3.11) (0<) (Zpi || Zpi $i||2> _

< (Zpi il i [l | > ‘<szozzzz, >
1 =1

< (Zpi 0il® S p ||x1||2> ‘ T <Zpiaixi,e>H
1 i=1 ,Y| =1

< (Zpi il 3 pi ) F — <2pza s >]
1 i=1

1 |F - ’Y|2 - 2
The constant i 1s best possible.

Remark 1. If M > m > 0, o; # 0 and for e as above, either

N

&%)

(M —m) for each i€ N

or, equivalently,

Re<M xi,xime>20 for each i €N

Q5 Q4
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holds, then

=

o0
9 (zp al zpz o] ) zpza .
=1
oo oo
pilos Y pi |l |2> |<Zpiaixi,e>
7 =1 =1

< < bi |O‘1| sz [|2:]] €<Zp,;a¢x7;,6>|
i=1
1,
4

<.

o0

<

I
_

IN

Mg

i=1 )
o0
Di |O‘z| sz (A ) G<Zpiaimi7e>
i=1

(M —m)~
M+m sz |041|

The constant i s best possible.

Il
-

3

<

4. REVERSES FOR THE GENERALISED TRIANGLE INEQUALITY

In 1966, Diaz and Metcalf [2] proved the following interesting reverse of the
generalised triangle inequality:

)

(4.1) ry el <
i=1

[e'S)
D i
i=1

provided the vectors x1,...,z, € H\ {0} satisfy the assumption

(4.2) 0<r<—2% e {l,....n},

where a € H, |la|| =1 and (H; (-,-)) is a real or complex inner product space.

In an attempt to provide other sufficient conditions for (4.1) to hold, the author
pointed out in [7] that

(4.3) VI=p2 ) lill <

o0
>
i=1
where the vectors z;, i € {1,...,n} satisfy the condition

(4.4) |z —all < p, ie{l,...,n},

where r € H, ||a|| =1 and p € (0,1).
Following [7], if M > m > 0 and the vectors «; € H, i € {1,...,n} verify either

(4.5) Re(Ma — z;,x; — ma) > 0, ie{l,...,n},
or, equivalently,

M4+m

(4.6)

€Xr; —

1
aH§2(Mm), ie{l,...,n},
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where a € H, |la|| = 1, then

(4.7)

n
>
i=1

It is obvious from Theorem 3, that, if
(4.8) |z — vl <, for ie{l,...,n},

where z; € H, i € {1,...,n}, v € H\{0} and r > 0, then we can state the
inequality

(19) 0<) (; i

IA

Since, by the (CBS)-inequality we have

1

1 — 1< 2\

(4.10) nZ||xi<<nZ||xi|> 7
i—1 i=1

hence, by (4.9) and (4.5) we have:

2
(4.11) 0 il - <l
Z 2" Tl
provided that (4.8) holds true.
Utilising Corollary 3, we may state that, if
r 1
(4.12) xi—’y—;-eH<|F—7|, ie{l,...,n},

or, equivalently,

(4.13) Re (T'e — x4, z; —ye) > 0, ie{l,...,n},
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where e € H, |le] = 1,7, €e K, T # —y and x; € H, i € {1,...,n}, then

@) 09 (liin?) -

n

3

i=1

IN

F4+7 /1«
Re — ;e
i)
1
1< 2\ F+7 /1
<|- T; — Re — T;, e
<l )]

INA INA
: SEI SES
L i
T
Nl
|

Now, making use of (4.10) and (4.14) we can establish the following additive reverse
of the generalised triangle inequality

' =~ ol

<L
4 |F+V|

(4.15) (0<) anzuf sz

provided either (4.12) or (4.13) hold true.

5. APPLICATIONS FOR FOURIER COEFFICIENTS
Let (H;(-,-)) be a Hilbert space over the real or complex number field K and
{ei};cr an orthonormal basis for H. Then (see for instance [1, p. 54 — 61]):
(i) Every element « € H can be expanded in a Fourier series, i.e.,
z=) (ve)e
icl
where (z,¢e;), i € I are the Fourier coefficients of x;

(ii) (Parseval identity)

|l = Z (z, ;) e;, € H;
icl
(iii) (Extended Parseval’s identity)
(m,y>=2(x,ei> <€iay>7 5573/EH§
iel
(iv) (Elements are uniquely determined by their Fourier coefficients)
(x,e;) = (y,e;) for every i € I implies that = =y.

We must remark that all the results from the second and third sections may be
stated for K = K where K is the Hilbert space of complex (real) numbers endowed
with the usual norm and inner product.

Therefore we can state the following reverses of the Schwarz inequality:
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Proposition 3. Let (H; (-
base for H. If x,y € H, y
{z,

,+)) be a Hilbert space over K and {e;};.; an orthonormal
#0, a € K (C,R) with r > 0 such that

€i) ’ .
5.1 —a|l <r for each i€ 1,
o1 (.0
then we have the following reverse of the Schwarz inequality:
(5.2) O ) [zl Tyl = Kz, )]

< Jlall 1yl - \Re {< 2 |H
el 1y —Re[ ]

IA

< —
<3l
The constant & is best possible in (5.2).
The proof is similar to the one in Theorem 3, where instead of z; we take (z, e;),
instead of «; we take (e;,y), ||| = ||, pi = 1 and use the Parseval identities

mentioned above in (ii) and (iii). We omit the details.
The following result may be stated as well.

Proposition 4. Let (H;(,-)) be a Hilbert space over K and {e;},.; an orthonormal
base for H. If x,y € H, y # 0, e,7,I' € K with le] =1, T # —v and

(x,e5) ~v+T i
<y7 ei> 2

1
(5.3) < 5 T — |

or equivalently,

69 el (re-Gen) (e =) =0

for each i € I, then

(5.5) O <)l Iyl = K, )
r+75 _
<= y—‘Re{ x,y-e”
[yl |F+7|< )
C+% _
< x| ||y —Re[ xz,y -e}
]yl |F+7|< )
L=l e,
—4 |T'+4]

The constant i is best possible.

Remark 2. IfT'=M > m =y > 0, then one may state simpler inequalities from
(5.5). We omit the details.
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