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SOME COMPLETELY MONOTONIC FUNCTIONS INVOLVING
THE GAMMA AND POLYGAMMA FUNCTIONS

FENG QI, BAL-NI GUO, AND CHAO-PING CHEN

1z
ABSTRACT. The function % (1 + %)z is strictly logarithmically com-

2
pletely monotonic in (0,00). The function ¥ (z + 2) + gﬂﬁ_ﬁﬂ is strictly

completely monotonic in (0, c0).

1. INTRODUCTION

It is well known that the gamma function I'(z) is defined for Rez > 0 as

I'(z) = /000 t*~te tdt. (1)

The psi or digamma function ¢ (z) = 1;/((;6)) , the logarithmic derivative of the gamma

function, and the polygamma functions can be expressed for x > 0 and k € N as

= 1 1
w(m):_7+7§<1+n_x+n>’ 2)
P (z) = ( 1)k+1k!Z = +1i)’f+1’ (3)
v ==+ [ = 0
1 o tke—xf
@) = (0 [ )

where v = 0.57721566490153286 - - - is the Euler-Mascheroni constant.
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A function f is said to be completely monotonic on an interval [ if f has deriva-

tives of all orders on I which alternate successively in sign, that is
(=1)" " (@) =0 (6)

for © € I and n > 0. If inequality (6) is strict for all z € I and for all n > 0, then
f is said to be strictly completely monotonic.

For x > 0 and s > 0, we have

1 I
= tn (z+s)t q¢ N.
@+ o) (n_1)!/0 ¢ ) nE (7)

A function f is said to be logarithmically completely monotonic on an interval

I if its logarithm In f satisfies
(—=1)*[In f(2)]™ >0 (8)

for k € N on I. If inequality (8) is strict for all z € I and for all k£ € N, then f is
said to be strictly logarithmically completely monotonic.

In [4] it is proved that a (strictly) logarithmically completely monotonic function
is also (strictly) completely monotonic. But not conversely, since a convex function
may not be logarithmically convex (see Remark. 1.16 at page 7 in [3]).

Completely monotonic functions have applications in many branches. For exam-
ple, they play a role in potential theory, probability theory, physics, numerical and
asymptotic analysis, and combinatorics. Some related references are listed in [1].

It is well known that the function (1 + %)_I is strictly completely monotonic in

) x+b

(0,00). In [1], it is proved that the function (1+ 2 —e® is completely monotonic

with 2 € (0,00) if and only if a < 2b, where a > 0 and b are real numbers.
Among other things, the following completely monotonic properties are obtained

in [1]: For a < 0, the function is strictly completely monotonic in (0, 00).

TGO

[C(@+D)]/*
P

For o > 1, the function is strictly completely monotonic in (0, 00).

In [2] the following two inequalities are presented: For x € (0, 1), we have

T 1\" r+1
e < (143) <meao ®
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For x > 1,

1\* rz+1
1+4-) > —+. 10
(+3) = v 1o
Equality in (10) occurs for z = 1.

It is easy to see that

T—00 x x

B0 (1 1) m

The main purpose of this paper is to give a strictly logarithmically completely

/x
monotonic property of the function % (1 + %)m in (0,00) as follows.

Theorem 1. The function M (1 + %)Z 18 strictly logarithmically completely

monotonic in (0,00).
As a direct consequence of the proof of Theorem 1, we have the following

Corollary 1. The function

4 3 2 2
/ Tt +bx’ + T + T+ 2 1 1+z
= 2 —_— 12
o)+ T T Vet + o (12)
is strictly completely monotonic in (0, 00).
2. PROOF OF THEOREM 1
Define
r 1 1/ xz+b
F(z) = L+ DI (1 + a) (13)
x¢ T
for x > 0 and some fixed real numbers a, b and c.
Taking the logarithm of F(z) defined by (13) and differentiating yields
InT 1
lnF(x):(erb)ln(lJrg)erfclnz, (14)
x
a a(z+b) zYp(z+1)—Wnl(z+1) ¢
InF(z) =In(1+—) — - = 1
In F(2)]' = In( +x) ara > - (1)
and
I F@)]® = (~1)" o~ Dl +8) | o~
( a)n xn
1 1
-1)™*(n —2)!
+( ) (n )n[(x—i—a)”l :E"l:|
hn(l') C




4 F. QI, B.-N. GUO, AND CH.-P. CHEN

(1Y — (n—1)b+c)—z zx+na—(n—1)b hn(x)
— 1y 2| 2= a2 o)
where n > 2, pV(z +1) =InT'(z 4+ 1), O (z + 1) = ¢(z + 1), and
()R lpk e (B—1) (4
o) = 3 C e D a7)

k=0

>0, if nis odd,
hy (@) = 2" (@ + 1) (18)

<0, if nis even.

Therefore, we have

(—1)"2" " [In F(z)] "™

2" [x +na — (n — 1)b]
(x+a)?

:(n—2)!{(n—1)(b+c)—x+ }x+(—1)”hn(x) (19)

and

d{(=1)"z" ! [In F(z))™ }
dz

= (=1)"z" "™ (x4 1) + (n — 2)!{(n —1)(+c)— 22

+

2"a(b+ an + an? — bn?) + (2a + b+ 2an — bn)x + 222
( +a)"+! }
(n—=1)(b+c) — 2z
o

= x”{(—l)%(")(x +1)+(n— 2)![

a(b+ an + an? — bn?) + (2a + b + 2an — bn)x + 22>
+
(x +a)nt!

n!

= x"{(—l)%(“) (@) + o + (= 2)! [

n a(b+ an + an® — bn?) + (2a + b + 2an — bn)x + 22>
(x4 a)t? ’

(n—=1)(b+c) —2x

xn

By letting a = ¢ =1 and b = 0, we have

—D)rz" 1 n F(x (n) n:

+(n—z>![”—1—2x n<n+1)+2(n+1>x+2x2”

xn + (x 4+ 1)nt+L

+(n—1)z — 222
xn+1

= x"{(—l)”w(")(az) +(n - 2)! [”(” )

nn+1)+2(n+ 1)z + 222
’ e}
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2 2 {(=1)"p" (@) + (n = 2)1ga (@) + (n — 2)h (1)}
By induction, it follows that
(@) = —(n = Dgnsr(x) and B (2) = —(n — Dhnpa (), (20)
this implies
98" (@) = (~1)"(n = 2)lgn(z) and h$"P (@) = (=1)"(n— 2)tha(z),  (21)

therefore

& (—1)"a+ [In F(2)]™)}
dx

— (1) [0 (2) + ga(2) + ha(2)] "L (22)

From formulas (3), (5) and (7), for = € (0, 00) and any nonnegative integer i, we

have

$(x) £ 9" () + g2(w) + ha(2)

2+x—2x2+2(3+3$+x2)
x3 (x+1)3
xt + 523 + 722 + Tx + 2

=¢"(z) +

~ 0/ (a)+

2z +1)°
:wﬂ(x)+%+$_§+(14—2x)3+(1+2x)2+1—2kx
:%—%4-(1_1_233) 1+$ ix—kz
:¢”(m+2)+5621(1++xz)2

:/ te~*t dt—2/ et dt+2/ te~ @+t ¢
0 0 0

o] o0 42 —(xz+2)t
4 2/ 6*(I+1)t dt — / £ dt
0 0 1—et

oo

[t—2+(t+4)e ™ — (> +2t+2)e > ]e " dt

-,
£ / q(t)e™™" dt,
0

60 (z) = (1)’ / T g(yte=t dr,
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and
q'(t) = (2+2t+2t% — 3e' + e —te')e
2 p(t)e™™,
p'(t) =2+ 4t — 4! + 2 — te,
p'(t) =4 — 5e' + et —tet,
p"(t) = (8" =t —6)e’
> 0.
Hence, p”(¢) increases in (0, 00). Since p’(0) = 3 > 0, we have p”(¢) > 0 and p'(¢)
is increasing. Because of p’(0) = 0, it follows that p’(¢t) > 0 in (0,00), and then
p(t) is increasing. From p(0) = 0, it is deduced that p(¢t) > 0 and ¢'(¢t) > 0 in
(0,00), then ¢(t) increases. As a result of ¢(0) = 0, we obtain ¢(¢) > 0 in (0, c0).
Therefore, we have ¢(z) > 0 in (0,00), and then for all nonnegative integer i, we
have (—1)?¢("(z) > 0in (0, 00). This means that the function ¥ (x) 4 g2 (2) +ha ()

is strictly completely monotonic on (0, c0).

Thus the function (—1)"z"![In F(2)]™ is increasing in = € (0,00). Since

lim {(—1)"2"""[In F(m)](”)} =0,

T—0
we have (—1)"2" ! ln F(z)]™ > 0, then (—1)"[In F(z)]™ > 0 for n > 2 in (0, 00).
Since [In F'(z)]” > 0, the function [In F(x)]’ is increasing. It is not difficult to
obtain lim, . [In F(z)] = 0, so [In F(z)]’ < 0 and In F(z) is decreasing in (0, c0).
In conclusion, the function In F(z) is strictly completely monotonic in (0, 00). The

proof is complete.

3. AN OPEN PROBLEM
Open Problem. Under what conditions on a, b and ¢ the function F(x) defined

by (13) s strictly logarithmically completely monotonic in (0,00)?
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