

Complete Monotonicities of Functions Involving the Gamma and Digamma Functions

This is the Published version of the following publication

Qi, Feng and Guo, Bai-Ni (2004) Complete Monotonicities of Functions Involving the Gamma and Digamma Functions. Research report collection, 7 (1).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18037/

COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS

FENG QI AND BAI-NI GUO

ABSTRACT. In the article, the completely monotonic results of the functions $[\Gamma(x+1)]^{1/x}$, $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$, $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ and $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ in $x \in (-1,\infty)$ for $\alpha \in \mathbb{R}$ are obtained. In the final, three open problems are posed.

1. INTRODUCTION

The classical gamma function is usually defined for $\operatorname{Re} z>0$ by

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \,\mathrm{d}t. \tag{1}$$

The psi or digamma function $\psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$, the logarithmic derivative of the gamma function, and the polygamma functions can be expressed (See [1, 8] and [12, p. 16]) for x > 0 and $k \in \mathbb{N}$ as

$$\psi(x) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{1+n} - \frac{1}{x+n} \right),$$
(2)

$$\psi^{(k)}(x) = (-1)^{k+1} k! \sum_{i=0}^{\infty} \frac{1}{(x+i)^{k+1}},$$
(3)

where $\gamma = 0.57721566490153286 \cdots$ is the Euler-Mascheroni constant.

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I which alternate successively in sign, that is

$$(-1)^n f^{(n)}(x) \ge 0 \tag{4}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 33B15; Secondary 26A48, 26A51.

Key words and phrases. complete monotonicity, gamma function, digamma function, psi function.

The authors were supported in part by NNSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, Doctor Fund of Jiaozuo Institute of Technology, CHINA.

This paper was typeset using A_{MS} -IATEX.

for $x \in I$ and $n \ge 0$. If inequality (4) is strict for all $x \in I$ and for all $n \ge 0$, then f is said to be strictly completely monotonic. For more information, please refer to [14, 15, 18, 23, 25] and references therein.

A function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$(-1)^{k} [\ln f(x)]^{(k)} \ge 0 \tag{5}$$

for $k \in \mathbb{N}$ on I. If inequality (5) is strict for all $x \in I$ and for all $k \ge 1$, then f is said to be strictly logarithmically completely monotonic.

In this article, using Leibnitz's formula and the formulas (2) and (3), the complete monotonicity properties of the functions $[\Gamma(x+1)]^{1/x}$, $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$, $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ and $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ in $x \in (-1, \infty)$ for $\alpha \in \mathbb{R}$ are obtained. From these, some well known results are deduced, extended and generalized. The main results of this paper are as follows.

Theorem 1. The function $[\Gamma(x+1)]^{1/x}$ is strictly increasing in $(-1,\infty)$. The function $\frac{\psi(x+1)}{x} - \frac{\ln\Gamma(x+1)}{x^2}$, the logarithmic derivative of $[\Gamma(x+1)]^{1/x}$, is strictly completely monotonic in $(-1,\infty)$. The function $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$ is logarithmically strictly completely monotonic with $x \in (-1,\infty)$ for $\alpha > 0$.

Theorem 2. For $\alpha \geq 1$, the function $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly decreasing and the function $\frac{\ln \Gamma(x+1)}{x^2} - \frac{\psi(x+1)}{x} + \frac{\alpha}{x+1}$, the logarithmic derivative of $\frac{(x+1)^{\alpha}}{[\Gamma(x+1)]^{1/x}}$, is strictly completely monotonic with $x \in (-1, \infty)$.

Let $\tau(s,t) = \frac{1}{s} \left[t - (t+s+1) \left(\frac{t}{t+1}\right)^{s+1} \right] > 0$ for $(s,t) \in \mathbb{N} \times (0,\infty)$ and $\tau_0 = \tau(s_0,t_0) > 0$ be the maximum of $\tau(s,t)$ on the set $\mathbb{N} \times (0,\infty)$. For a given real number α satisfying $\alpha \leq \frac{1}{1+\tau_0} < 1$, the function $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly increasing and the function $\frac{\psi(x+1)}{x} - \frac{\ln \Gamma(x+1)}{x^2} - \frac{\alpha}{x+1}$ is strictly completely monotonic in $x \in (-1,\infty)$. **Theorem 3.** For $\alpha \leq 0$, the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly increasing and the

Theorem 3. For $\alpha \leq 0$, the function $\frac{|\Gamma(x+1)|}{x^{\alpha}}$ is strictly increasing and the function $\frac{\psi(x+1)}{x} - \frac{\ln \Gamma(x+1)}{x^{2}} - \frac{\alpha}{x}$, the logarithmic derivative of $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$, is strictly completely monotonic in $(0,\infty)$. For $\alpha \geq 1$, the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly decreasing and the function $\frac{\ln \Gamma(x+1)}{x^{2}} - \frac{\psi(x+1)}{x} + \frac{\alpha}{x}$ is strictly completely monotonic in $(0,\infty)$.

For $\alpha \leq 0$ such that x^{α} is real in (-1,0), the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly decreasing and the function $\frac{\ln\Gamma(x+1)}{x^2} - \frac{\psi(x+1)}{x} + \frac{\alpha}{x}$ is strictly completely monotonic

in (-1,0). For $\alpha \geq 1$ such that x^{α} is real in (-1,0), the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly increasing and the function $\frac{\psi(x+1)}{x} - \frac{\ln \Gamma(x+1)}{x^2} - \frac{\alpha}{x}$ is strictly completely monotonic in (-1,0).

Theorem 4. A (strictly) logarithmically completely monotonic function is also (strictly) completely monotonic.

As a direct consequence of combining Theorem 1 with Theorem 4, we have the following corollary.

Corollary 1. The function $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$ is strictly completely monotonic with $x \in (-1, \infty)$ for $\alpha > 0$.

In [3] and [4, p. 83], the following result was given: Let f and g be functions such that $f \circ g$ is defined. If f and g' are completely monotonic, then $f \circ g$ is also completely monotonic. Thus, from Theorem 1 and Theorem 2 and the fact that the exponential function e^{-x} is strictly completely monotonic in $(-\infty, \infty)$, the following corollary can be deduced.

Corollary 2. The following complete monotonicity properties holds:

- (1) The function $\frac{1}{[\Gamma(x+1)]^{1/x}}$ is strictly completely monotonic in $(-1,\infty)$.
- (2) For $\alpha \geq 1$, the function $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly completely monotonic in $(-1,\infty)$. For a given real number α with $\alpha \leq \frac{1}{1+\tau_0} < 1$, the function $\frac{(x+1)^{\alpha}}{[\Gamma(x+1)]^{1/x}}$ is strictly completely monotonic in $(-1,\infty)$.
- (3) For $\alpha \leq 0$, the function $\frac{x^{\alpha}}{[\Gamma(x+1)]^{1/x}}$ is strictly completely monotonic in $(0,\infty)$. For $\alpha \geq 1$, the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly completely monotonic in $(0,\infty)$. For $\alpha \leq 0$ such that x^{α} is real in (-1,0), the function $\frac{[\Gamma(x+1)]^{1/x}}{x^{\alpha}}$ is strictly completely monotonic in (-1,0). For $\alpha \geq 1$ such that x^{α} is real in (-1,0), the function $\frac{x^{\alpha}}{[\Gamma(x+1)]^{1/x}}$ strictly completely monotonic in (-1,0).

2. Proofs of theorems

Proof of Theorem 1. For $\alpha > 0$, let

$$f_{\alpha}(x) = \frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$$
(6)

for x > -1.

By direct calculation and using Leibnitz's formula and formulas (2) and (3), we obtain for $n \in \mathbb{N}$,

$$\ln f_{\alpha}(x) = \frac{\ln \Gamma(x+\alpha+1)}{x+\alpha} - \frac{\ln \Gamma(x+1)}{x} \triangleq g(x+\alpha) - g(x),$$

$$g^{(n)}(x) = \frac{1}{x^{n+1}} \sum_{k=0}^{n} \frac{(-1)^{n-k} n! x^{k} \psi^{(k-1)}(x+1)}{k!} \triangleq \frac{h_{n}(x)}{x^{n+1}},$$

$$h'_{n}(x) = x^{n} \psi^{(n)}(x+1)$$
(7)

$$\begin{cases} > 0, & \text{if } n \text{ is odd and } x \in (0, \infty), \\ \le 0, & \text{if } n \text{ is odd and } x \in (-1, 0] \text{ or } n \text{ is even and } x \in (-1, \infty), \end{cases}$$
(8)

where $\psi^{(-1)}(x+1) = \ln \Gamma(x+1)$ and $\psi^{(0)}(x+1) = \psi(x+1)$. Hence, the function $h_n(x)$ increases if n is odd and $x \in (0,\infty)$ and decreases if n is odd and $x \in (-1,0)$ or n is even and $x \in (-1,\infty)$. Since $h_n(0) = 0$, it is easy to see that $h_n(x) \ge 0$ if n is odd and $x \in (-1,\infty)$ or n is even and $x \in (-1,0)$ and $h_n(x) \le 0$ if n is even and $x \in (0,\infty)$. Then, for $x \in (-1,\infty)$, we have $g^{(n)}(x) \ge 0$ if n is odd and $g^{(n)}(x) \le 0$ if n is even. Since $\lim_{x\to\infty} \frac{\psi^{(k)}(x+1)}{x^{n+1}} = 0$ for $-1 \le k \le n$, it is easy to see that $\lim_{x\to\infty} g^{(n)}(x) = \lim_{x\to\infty} \frac{h_n(x)}{x^{n+1}} = 0$. Therefore $(-1)^{n+1}g^{(n)}(x) > 0$ with $x \in (-1,\infty)$ for $n \in \mathbb{N}$. Then the function g'(x) is strictly completely monotonic and $[\Gamma(x+1)]^{1/x} = \exp(g(x))$ is strictly increasing in $(-1,\infty)$.

From $(-1)^{n+1}g^{(n)}(x) \ge 0$ with $x \in (-1,\infty)$ for $n \in \mathbb{N}$, it follows that $g^{2k}(x)$ increases and $g^{2k-1}(x)$ decreases with $x \in (-1,\infty)$ for all $k \in \mathbb{N}$. This implies that $(-1)^n [\ln f_{\alpha}(x)]^{(n)} \ge 0$, and then the function $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$ is logarithmically completely monotonic with $x \in (-1,\infty)$.

Proof of Theorem 2. Let

$$\nu_{\alpha}(x) = \frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$$
(9)

for $x \in (-1, \infty)$. Then for $n \in \mathbb{N}$,

$$\ln \nu_{\alpha}(x) = \frac{\ln \Gamma(x+1)}{x} - \alpha \ln(x+1), \qquad (10)$$

$$\left[\ln\nu_{\alpha}(x)\right]^{(n)} = \frac{1}{x^{n+1}} \left[h_n(x) + \frac{(-1)^n (n-1)! \alpha x^{n+1}}{(x+1)^n} \right] \triangleq \frac{\mu_{\alpha,n}(x)}{x^{n+1}}, \qquad (11)$$

$$\mu_{\alpha,n}'(x) = x^n \psi^{(n)}(x+1) + \frac{(-1)^n (n-1)! \alpha x^n (x+n+1)}{(x+1)^{n+1}}$$

4

$$= x^{n} \left[\psi^{(n)}(x+1) + \frac{(-1)^{n}(n-1)!\alpha}{(x+1)^{n}} + \frac{(-1)^{n}n!\alpha}{(x+1)^{n+1}} \right]$$

$$= x^{n} \left\{ (-1)^{n+1}n! \sum_{i=1}^{\infty} \frac{1}{(x+i)^{n+1}} + (-1)^{n}(n-1)!\alpha \sum_{i=1}^{\infty} \left[\frac{1}{(x+i)^{n}} - \frac{1}{(x+i+1)^{n}} \right] + (-1)^{n}n!\alpha \sum_{i=1}^{\infty} \left[\frac{1}{(x+i)^{n+1}} - \frac{1}{(x+i+1)^{n+1}} \right] \right\}$$

$$= (-1)^{n}(n-1)!x^{n} \sum_{i=1}^{\infty} \left[\frac{\alpha}{(x+i)^{n}} - \frac{\alpha}{(x+i+1)^{n}} - \frac{n\alpha}{(x+i+1)^{n+1}} + \frac{n(\alpha-1)}{(x+i)^{n+1}} \right]$$
(12)

$$= (n-1)!(-x)^n \sum_{i=1}^{\infty} \frac{[\alpha y + n(\alpha - 1)](y+1)^{n+1} - \alpha(y+n+1)y^{n+1}}{y^{n+1}(y+1)^{n+1}}$$

= $(n-1)!(-x)^n \sum_{i=1}^{\infty} \frac{\alpha[(y+n)(y+1)^{n+1} - (y+n+1)y^{n+1}] - n(y+1)^{n+1}}{y^{n+1}(y+1)^{n+1}}$
= $n!(-x)^n \sum_{i=1}^{\infty} \frac{1}{y^{n+1}} \left\{ \alpha \left[1 + \frac{1}{n} \left\langle y - (y+n+1) \left(\frac{y}{y+1} \right)^{n+1} \right\rangle \right] - 1 \right\},$

where y = x + i > 0.

In [5, p. 28] and [11, p. 154], the Bernoulli's inequality states that if $x \ge -1$ and $x \ne 0$ and if $\alpha > 1$ or if $\alpha < 0$ then $(1 + x)^{\alpha} > 1 + \alpha x$. This means that $1 + \frac{s+1}{t} < (1 + \frac{1}{t})^{s+1}$ for t > 0, which is equivalent to $t - (t + s + 1)(\frac{t}{t+1})^{s+1} > 0$ for t > 0, and then $\tau(s,t) > 0$ for $s \ge 1$ and t > 0 and $\tau(s,0) = 0$.

From $\tau(s,t) > 0$, it is deduced that $[\alpha y + n(\alpha - 1)](y+1)^{n+1} - \alpha(y+n+1)y^{n+1} > 0$ for y = x + i > 0 and $n \in \mathbb{N}$ if $\alpha \ge 1$. Therefore, for $\alpha \ge 1$, we have

$$\mu_{\alpha,n}'(x) \begin{cases} > 0, & \text{if } n \text{ is even and } x \in (-1,0) \cup (0,\infty) \text{ or } n \text{ is odd and } x \in (-1,0), \\ < 0, & \text{if } n \text{ is odd and } x \in (0,\infty), \end{cases}$$

and then $\mu_{\alpha,n}(x)$ is strictly increasing with $x \in (-1,\infty)$ if n is even or with $x \in (-1,0)$ if n is odd and $\mu_{\alpha,n}(x)$ is strictly decreasing with $x \in (0,\infty)$ if n is odd. Since $\mu_{\alpha,n}(0) = 0$, thus $\mu_{\alpha,n}(x) < 0$ with x > -1 and $x \neq 0$ if n is odd or with $x \in (-1,0)$ if n is even and $\mu_{\alpha,n}(x) > 0$ with $x \in (0,\infty)$ if n is even. Therefore, from $\lim_{x\to\infty} [\ln \nu_{\alpha}(x)]^{(n)} = 0$, it is deduced that $[\ln \nu_{\alpha}(x)]^{(n)} > 0$ if n is even and $[\ln \nu_{\alpha}(x)]^{(n)} < 0$ if n is odd, which is equivalent to $(-1)^{n} [\ln \nu_{\alpha}(x)]^{(n)} > 0$ in $x \in (-1, \infty)$ for $n \in \mathbb{N}$ and $\alpha \geq -1$. Hence, if $\alpha \geq 1$, then the function $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly decreasing and the function $\frac{\ln \Gamma(x+1)}{x^{2}} - \frac{\psi(x+1)}{x} + \frac{\alpha}{x+1}$ is strictly completely monotonic in $x \in (-1, \infty)$.

It is clear that $\tau_0 > 0$. When $\alpha \leq \frac{1}{1+\tau_0} < 1$, it follows that $\mu'_{\alpha,n}(x) < 0$ and $\mu_{\alpha,n}(x)$ is decreasing with $x \in (-1,\infty)$ and $x \neq 0$ for n an even integer or with $x \in (-1,0)$ for n an odd integer, and $\mu'_{\alpha,n}(x) > 0$ and $\mu_{\alpha,n}(x)$ is increasing with $x \in (0,\infty)$ for n an odd integer. Since $\mu_{\alpha,n}(0) = 0$ and $\lim_{x\to\infty} [\ln \nu_{\alpha}(x)]^{(n)} = 0$, we have $[\ln \nu_{\alpha}(x)]^{(n)} < 0$ for n an even and $[\ln \nu_{\alpha}(x)]^{(n)} > 0$ for n an odd in $x \in (-1,\infty)$, this implies that $(-1)^{n+1} [\ln \nu_{\alpha}(x)]^{(n)} > 0$ in $x \in (-1,\infty)$ for $n \in \mathbb{N}$. Therefore $\nu_{\alpha}(x)$ is strictly increasing and $(-1)^{n-1} \{[\ln \nu_{\alpha}(x)]'\}^{(n-1)} > 0$ in $(-1,\infty)$ for $n \in \mathbb{N}$. Hence, if $\alpha \leq \frac{1}{1+\tau_0}$, then the function $\frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly increasing and the function $\frac{\psi(x+1)}{x} - \frac{\ln \Gamma(x+1)}{x^2} - \frac{\alpha}{x+1}$ is strictly completely monotonic in $(-1,\infty)$.

Proof of Theorem 3. The procedure is same as the one of Theorem 2. Hence, we leave it to the readers. \Box

Proof of Theorem 4. It is clear that $\exp \phi(x) \ge 0$. Further, it is easy to see that $[\exp \phi(x)]' = \phi'(x) \exp \phi(x) \le 0$ and $[\exp \phi(x)]'' = \{\phi''(x) + [f'(x)]^2\} \exp \phi(x) \ge 0$.

Suppose $(-1)^k [\exp \phi(x)]^{(k)} \ge 0$ for all nonnegative integers $k \le n$, where $n \in \mathbb{N}$ is a given positive integer. By Leibnitz's formula, we have

$$(-1)^{n+1} [\exp \phi(x)]^{(n+1)} = (-1)^{n+1} \{ [\exp \phi(x)]' \}^{(n)} = (-1)^{n+1} [\phi'(x) \exp \phi(x)]^{(n)} = (-1)^{n+1} \sum_{i=0}^{n} {n \choose i} \phi^{(i+1)}(x) [\exp \phi(x)]^{(n-i)} = \sum_{i=0}^{n} {n \choose i} [(-1)^{i+1} \phi^{(i+1)}(x)] \{ (-1)^{n-i} [\exp \phi(x)]^{(n-i)} \} \ge 0.$$

$$(13)$$

By induction, it is proved that the function $\exp \phi(x)$ is completely monotonic. \Box

3. Remarks

Remark 1. In [10, 13], among other things, the following monotonicity results were obtained

$$\left[\Gamma(1+k)\right]^{1/k} < \left[\Gamma(2+k)\right]^{1/(k+1)}, \quad k \in \mathbb{N};$$
$$\left[\Gamma\left(1+\frac{1}{x}\right)\right]^x \text{ decreases with } x > 0.$$

These are extended and generalized in [16]: The function $[\Gamma(r)]^{1/(r-1)}$ is increasing in r > 0. Clearly, Theorem 1 generalizes and extends these results for the range of the argument.

Remark 2. It is proved in [19] that the function $\frac{1}{x} \ln \Gamma(x+1) - \ln x + 1$ is strictly completely monotonic on $(0, \infty)$ and tends to $+\infty$ as $x \to 0$ and to 0 as $x \to \infty$. A similar result was found in [24]: The function $1 + \frac{1}{x} \ln \Gamma(x+1) - \ln(x+1)$ is strictly completely monotonic on $(-1, \infty)$ and tends to 1 as $x \to -1$ and to 0 as $x \to \infty$. Our main results generalize these ones.

Remark 3. From our main results, the following can be deduced: Let n be natural number. Then the sequence $\frac{\sqrt[n]{n!}}{n+k\sqrt{(n+k+1)!}}$ are increasing with $n \in \mathbb{N}$.

Remark 4. A function f is logarithmic convex on an interval I if f is positive and $\ln f$ is convex on I. Since $f(x) = \exp[\ln f(x)]$, it follows that a logarithmic convex function is convex.

Remark 5. Straightforward computation shows that the maximum τ_2 of $\tau(2, t)$ in $(0, \infty)$ is

$$\tau\left(2,\frac{2+\sqrt{7}}{3}\right) = \frac{1}{2}\left[\frac{2+\sqrt{7}}{3} - \frac{\left(2+\sqrt{7}\right)^3\left(3+\frac{2+\sqrt{7}}{3}\right)}{27\left(1+\frac{2+\sqrt{7}}{3}\right)^3}\right] = 0.264076\cdots$$
(14)

and the maximum τ_3 of $\tau(3,t)$ in $(0,\infty)$ is

$$\tau\left(3,\frac{5}{9}+\frac{\sqrt[3]{2836-54\sqrt{406}}}{18}+\frac{\sqrt[3]{1418+27\sqrt{406}}}{9\sqrt[3]{4}}\right)=0.271807\cdots.$$
 (15)

If $\alpha \leq \frac{1}{1+\tau_2} = 0.791091378310519808\cdots$, then $\mu'_{\alpha,2}(x) \leq 0$ and $\mu_{\alpha,2}(x)$ decreases in $(-1,\infty)$. Since $\mu_{\alpha,2}(0) = 0$ and $\lim_{x\to\infty} [\ln \nu_{\alpha}(x)]^{(2)} = 0$, it is obtained that $[\ln \nu_{\alpha}(x)]^{(2)} < 0.$ Therefore the function $\nu_{\alpha}(x) = \frac{[\Gamma(x+1)]^{1/x}}{(x+1)^{\alpha}}$ is strictly increasing and strictly logarithmically concave for $\alpha \leq \frac{1}{1+\tau_2}$ in $(-1,\infty)$.

If $\alpha \leq \frac{1}{1+\tau_3} = 0.7862824583608 \cdots$, then $\mu'_{\alpha,3}(x) < 0$ and $\mu_{\alpha,3}(x)$ decreases in (-1,0) and $\mu'_{\alpha,3}(x) > 0$ and $\mu_{\alpha,3}(x)$ increases in $(0,\infty)$. Thus $\mu_{\alpha,3}(x) \geq 0$ and then $[\ln \nu_{\alpha}(x)]^{(3)} > 0$ in $(-1,\infty)$. Hence $[\ln \nu_{\alpha}(x)]^{(2)}$ is strictly increasing in $(-1,\infty)$ if $\alpha \leq \frac{1}{1+\tau_3}$.

MATHEMATICA shows that $\tau_0 > 0.2980 \cdots$.

Remark 6. The motivation of this paper has been exposited in detail in [21] and a lot of literature is listed therein. Please also refer to [2, 6, 7, 9, 17, 20, 22].

4. Open problems

A function f(t) is said to be absolutely monotonic on an interval I if it has derivatives of all orders and $f^{(k)}(t) \ge 0$ for $t \in I$ and $k \in \mathbb{N}$. A function f(t) is said to be regularly monotonic if it and its derivatives of all orders have constant sign (+ or -; not all the same) on (a, b). A function f(t) is said to be absolutely convex on (a, b) if it has derivatives of all orders and $f^{(2k)}(t) \ge 0$ for $t \in (a, b)$ and $k \in \mathbb{N}$.

The function $\frac{[\Gamma(x+\alpha+1)]^{1/(x+\alpha)}}{[\Gamma(x+1)]^{1/x}}$ can be expressed as

$$\frac{x+\alpha}{\sqrt{\int_0^\infty t^{x+\alpha}e^{-t}\,\mathrm{d}t}},\tag{16}$$

where $\int_0^\infty e^{-t} dt = 1$. Then we propose the following

Open Problem 1. Let $w(x) \ge 0$ be a nonnegative weight defined on a domain Ω with $\int_{\Omega} w(x) dx = 1$. Find conditions about w(x) and $f(x) \ge 0$ such that the ratio between two power means

$$\mathcal{Q}(t) = \frac{\left[\int_{\Omega} w(x) f^{t+\alpha}(x) \,\mathrm{d}x\right]^{1/(t+\alpha)}}{\left[\int_{\Omega} w(x) f^{t}(x) \,\mathrm{d}x\right]^{1/t}}$$
(17)

is completely (absolutely, regularly) monotonic (convex) with $t \in \mathbb{R}$ for a given number $\alpha > 0$.

Open Problem 2. Find conditions about α and β such that the ratio

$$\mathcal{F}(x) = \frac{[\Gamma(x+1)]^{1/x}}{(x+\beta)^{\alpha}}$$
(18)

is completely (absolutely, regularly) monotonic (convex) with x > -1.

Open Problem 3. For $(s,t) \in \mathbb{N} \times (0,\infty)$, find the maximum of the following

$$\tau(s,t) = \frac{1}{s} \left[t - (t+s+1) \left(\frac{t}{t+1}\right)^{s+1} \right].$$
 (19)

References

- M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, 1965.
- H. Alzer, On some inequalities for the gamma and psi function, Math. Comp. 66 (1997), 373–389.
- [3] H. Alzer and C. Berg, Some classes of completely monotonic functions, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 445–460.
- [4] S. Bochner, Harmonic Analysis and the Theory of Probability, University of California Press, Berkeley-Los Angeles, 1960.
- [5] P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison Wesley Longman Limited, 1998.
- [6] Ch.-P. Chen and F. Qi, Inequalities relating to the gamma function, J. Inequal. Pure Appl. Math. (2004), accepted.
- [7] Ch.-P. Chen and F. Qi, Monotonicity results for the gamma function, J. Inequal. Pure Appl. Math. 3 (2003), no. 2, Art. 44. Available online at http://jipam.vu.edu.au/v4n2/065_02. html. RGMIA Res. Rep. Coll. 5 (2002), suppl., Art. 16. Available online at http://rgmia.vu.edu.au/v5(E).html.
- [8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, *Higher Transcendental Functions*, McGraw-Hill ook Company, New York-Toronto-London, 1953.
- B.-N. Guo and F. Qi, Inequalities and monotonicity for the ratio of gamma functions, Taiwanese J. Math. 7 (2003), no. 2, 239-247. Available online at http://www.math.nthu.edu. tw/tjm/abstract/0306/tjm0306_6.html.
- [10] D. Kershaw and A. Laforgia, Monotonicity results for the gamma function, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 119 (1985), 127–133.
- [11] J.-Ch. Kuang, Chángyòng Bùděngshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese)
- [12] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 1966.
- [13] H. Minc and L. Sathre, Some inequalities involving (r!)^{1/r}, Proc. Edinburgh Math. Soc. 14 (1965/66), 41–46.
- [14] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, *Classical and New Inequalities in Analysis*, Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.
- [15] F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1787-1796. Available online at http://www.ams.org/journal-getitem?pii=

S0002-9939-01-06275-X. RGMIA Res. Rep. Coll. 2 (1999), no. 5, Art. 5, 643-652. Available online at http://rgmia.vu.edu.au/v2n5.html.

- [16] F. Qi, Monotonicity results and inequalities for the gamma and incomplete gamma functions, Math. Inequal. Appl. 5 (2002), no. 1, 61–67. RGMIA Res. Rep. Coll. 2 (1999), no. 7, Art. 7, 1027–1034. Available online at http://rgmia.vu.edu.au/v2n7.html.
- [17] F. Qi, On a new generalization of Martins' inequality, RGMIA Res. Rep. Coll. 5 (2002), no. 3, Art. 13, 527-538. Available online at http://rgmia.vu.edu.au/v5n3.html.
- [18] F. Qi, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mathematica Educational 6 (2004), no. 1, in press. RGMIA Res. Rep. Coll. 5 (2002), no. 1, Art. 5. Available online at http://rgmia.vu.edu.au/v5n1.html.
- [19] F. Qi and Ch.-P. Chen, A complete monotonicity of the gamma function, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 1. Available online at http://rgmia.vu.edu.au/v7n1.html.
- [20] F. Qi and Ch.-P. Chen, Monotonicity and convexity results for functions involving the gamma function, RGMIA Res. Rep. Coll. 6 (2003), no. 4, Art. 10. Available online at http://rgmia. vu.edu.au/v6n4.html.
- [21] F. Qi and B.-N. Guo, Monotonicity and convexity of the function ^x√Γ(x+1)</sup>/_{x+α}√Γ(x+α+1)</sub>, RGMIA Res. Rep. Coll. 6 (2003), no. 4, Art. 16. Available online at http://rgmia.vu.edu.au/v6n4. html.
- [22] F. Qi and B.-N. Guo, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, RGMIA Res. Rep. Coll. 4 (2001), no. 1, Art. 6, 41-48. Available online at http://rgmia.vu.edu.au/v4n1.html.
- [23] F. Qi and S.-L. Xu, The function (b^x a^x)/x: Inequalities and properties, Proc. Amer. Math. Soc. **126** (1998), no. 11, 3355-3359. Available online at http://www.ams.org/ journal-getitem?pii=S0002-9939-98-04442-6.
- [24] H. Vogt and J. Voigt, A monotonicity property of the Γ-function, J. Inequal. Pure Appl. Math.
 3 (2002), no. 5, Art. 73. Available online at http://jipam.vu.edu.au/v3n5/007_01.html.
- [25] D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.

(F. Qi) DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS AND INSTITUTE OF APPLIED MATHEMATICS, JIAOZUO INSTITUTE OF TECHNOLOGY, JIAOZUO CITY, HENAN 454000, CHINA *E-mail address*: qifeng@jzit.edu.cn, fengqi618@member.ams.org URL: http://rgmia.vu.edu.au/qi.html

(B.-N. Guo) DEPARTMENT OF APPLIED MATHEMATICS AND INFORMATICS AND INSTITUTE OF APPLIED MATHEMATICS, JIAOZUO INSTITUTE OF TECHNOLOGY, JIAOZUO CITY, HENAN 454000, CHINA

E-mail address: guobaini@jzit.edu.cn