VICTORIA UNIVERSITY

MELBOURNE AUSTRALIA

Complete Monotonicities of Functions Involving the
Gamma and Digamma Functions

This is the Published version of the following publication

Qi, Feng and Guo, Bai-Ni (2004) Complete Monotonicities of Functions
Involving the Gamma and Digamma Functions. Research report collection, 7

(1).

The publisher’s official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18037/



COMPLETE MONOTONICITIES OF FUNCTIONS INVOLVING
THE GAMMA AND DIGAMMA FUNCTIONS

FENG QI AND BAI-NI GUO

ABSTRACT. In the article, the completely monotonic results of the functions

O ACE ) A S CR ) [C(@+1))'/"
[F(I + 1)}1/ ’ [F(z-&-l)]l/“’ ’ (z+1)« and T

for a € R are obtained. In the final, three open problems are posed.

inz e (—1,00)

1. INTRODUCTION
The classical gamma function is usually defined for Rez > 0 by

I'(z) = /000 t*~le~tdt. (1)

The psi or digamma function ¢ (z) = 1;((;)) , the logarithmic derivative of the gamma

function, and the polygamma functions can be expressed (See [1, 8] and [12, p. 16])

forx >0and k € N as

> 1 1
w(x =—-7+ - ) 2)
) 7 ;(1—#71 m+n> (
1 — 1
VO = ()Y 3)

where v = 0.57721566490153286 - - - is the Euler-Mascheroni constant.
A function f is said to be completely monotonic on an interval I if f has deriva-

tives of all orders on I which alternate successively in sign, that is

(~1)" " () =0 (4)
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for x € I and n > 0. If inequality (4) is strict for all z € I and for all n > 0, then f
is said to be strictly completely monotonic. For more information, please refer to
[14, 15, 18, 23, 25] and references therein.

A function f is said to be logarithmically completely monotonic on an interval

I if its logarithm In f satisfies
(—1)*[n f(2)*® >0 ()

for k € N on I. If inequality (5) is strict for all € I and for all kK > 1, then f is
said to be strictly logarithmically completely monotonic.

In this article, using Leibnitz’s formula and the formulas (2) and (3), the complete

[Cata+)]/ ) [Pa+n)]/e

monotonicity properties of the functions [I'(z + 1)]*/%, Tare  rDe

[C(z+D)]"/"

and inz € (—1,00) for @ € R are obtained. From these, some well known

results are deduced, extended and generalized. The main results of this paper are

as follows.

Theorem 1. The function [['(z + 1)]Y/* is strictly increasing in (—1,00). The

d’(w;l) — FSH), the logarithmic derivative of [T'(z + 1)]'/*, is strictly

[C(z+a+1)]/ =+
[T (z+D)]H/=

function

completely monotonic in (—1,00). The function 1s logarithmically

strictly completely monotonic with x € (—1,00) for a > 0.

Theorem 2. For a > 1, the function [1‘((9;1711))]:/’”
In(et+l)  let+l) o
2 x

x

s strictly decreasing and the

function ﬁ, the logarithmic derivative of %, is strictly

completely monotonic with x € (—1,00).

Let 7(s,t) = L[t — (t+ s+ 1)(ﬁ)s+1] > 0 for (s,t) € N x (0,00) and 79 =

T(s0,t0) > 0 be the mazimum of T(s,t) on the set N x (0,00). For a given real

[C(z+1)]/*
(z+1)=

number a satisfying o < ﬁ < 1, the function

@— Inl@+l)  _a g strictly completely monotonic inx € (—1,00).

1s strictly increasing and

the function

/x
Theorem 3. For a < 0, the function % is strictly increasing and the

/x
w(z:l) _n FSSH) — 2, the logarithmic derivative of %

[C(@+D)]/*
5o

function , 18 strictly

completely monotonic in (0,00). For a > 1, the function
InT'(z+1) P(x+1)
2 - + %

x

is strictly

decreasing and the function 18 strictly completely monotonic

in (0, 00).
1/x
For a < 0 such that x® is real in (—1,0), the function % is strictly

1
an(cx2+1) _ ¢($m+1) 4o

decreasing and the function < s strictly completely monotonic
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in (=1,0). For a > 1 such that x is real in (—1,0), the function W;ii)]m is

w(“;l) - lnl";a;—i-l) — 2 s strictly completely

strictly increasing and the function

monotonic in (—1,0).

Theorem 4. A (strictly) logarithmically completely monotonic function is also

(strictly) completely monotonic.

As a direct consequence of combining Theorem 1 with Theorem 4, we have the

following corollary.

[C(z+a+1)]/ @)

Corollary 1. The function NESEG

18 strictly completely monotonic with

x € (—1,00) for a> 0.

In [3] and [4, p. 83], the following result was given: Let f and g be functions
such that f o g is defined. If f and ¢’ are completely monotonic, then f o g is
also completely monotonic. Thus, from Theorem 1 and Theorem 2 and the fact
that the exponential function e™7 is strictly completely monotonic in (—oo, 00), the

following corollary can be deduced.

Corollary 2. The following complete monotonicity properties holds:

(1) The function W is strictly completely monotonic in (—1,00).
[C(e+1)])/*

(2) For o > 1, the function 1)= is strictly completely monotonic in

1

T < L the function

(—=1,00). For a given real number o with o <

(z+1)~
[+

(3) For a < 0, the function

is strictly completely monotonic in (—1,00).

W 1s strictly completely monotonic in

Jx
(0,00). For a > 1, the function % is strictly completely mono-
tonic in (0,00). For a < 0 such that % is real in (—1,0), the function

Jx
% is strictly completely monotonic in (—1,0). For o > 1 such that

x® is real in (—1,0), the function [ strictly completely monotonic

F(;cil)]l/w
in (—1,0).

2. PROOFS OF THEOREMS

Proof of Theorem 1. For a > 0, let

[[(z + a+ 1)]Y/(=+e)

folw) = [C(z +1)]"=

for x > —1.
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By direct calculation and using Leibnitz’s formula and formulas (2) and (3), we

obtain for n € N,

_Imlz+a+1) Inl(z+1) 5

In fo(z) = T a . g(x +a) — g(z),
n _ _ 7
(”)(m) B 1 Z (_1>n kn!ka(k 1)($+ 1) a hn(x) ( )
g Togntl = k! Togntl’
hy,(z) = 2" ™ (z + 1)
>0, ifnisoddand z € (0,00), (8)

<0, ifnisoddandz € (—1,0] or n is even and = € (-1, 00),

where (=) (z +1) = InT(z + 1) and ¢ (z 4 1) = ¢(z + 1). Hence, the function
hy(x) increases if n is odd and = € (0, 00) and decreases if n is odd and = € (—1,0)
or n is even and x € (—1,00). Since h,(0) = 0, it is easy to see that h,(z) > 0
if nis odd and = € (—1,00) or n is even and x € (—1,0) and h,(z) < 0 if n is
even and = € (0,00). Then, for z € (—1,00), we have g(™ (z) > 0 if n is odd and

0
g™ () <0 if nis even. Since lim,_, % =0 for —1 < k < n, it is easy to

see that lim, ., ¢ (z) = lim, o {;’;ﬁ) = 0. Therefore (—1)"*t1g(")(z) > 0 with
x € (—1,00) for n € N. Then the function ¢’(z) is strictly completely monotonic
and [[(z + 1)]%/* = exp(g(x)) is strictly increasing in (—1,00).

From (—1)"*1g((2) > 0 with 2 € (—1,00) for n € N, it follows that ¢?*(z)
increases and g?*~!(x) decreases with = € (—1,00) for all k € N. This implies that

(=1)"[In fo(z)]™ > 0, and then the function [Ltat DT 4 logarithmically

[T (z+1)]1/=
completely monotonic with z € (—1, 00). O
Proof of Theorem 2. Let
[C(x+ 1))/

« = 9

(o) = s )
for x € (—1,00). Then for n € N,

InT 1
Inv,(xz) = % —aln(z +1), (10)
1 (=) (n — 1)laz"t! Hon(T)
(n) — 2 Ha,
[h’ll/a(l'” - .Z‘”+1 hn(x) + (.’I,‘ + 1)7’L - xn+1 ’ (11)

(=D)"(n - Dlaz™(x+n+1)

/ _ n,(n)
:U/oz,n(x) =T ¢ (LL' + 1) + ($ + 1)n+1
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= xn{(_1)n+1n! Z @ +1i)"+1

i=1

(—D)*(n—Dla  (-1)"nla }
(x4 1) (x + 1)ntt

(1) n - I)M;{(az—&-i)" Tt 1)"}

I 1 1
+(=1 n!a;[(a:+i)”+1 B (:c+z‘+1)n+1” (12)
= (=D - l)mn;[(ﬁi)n (it 1)n

B no n(a—1) ]
(x+i+ 1)t (z4a)ntl

= oy +n(a—1 L 1) gy +n - 1)yt
= (n - 1)l(—2) Z[ y + n( )]?(jiﬂ(y)Jrl)nH(y )y

ey S ) D = (0t 1y n(y + 1)
(n—1D(—=x) Z g Hi(y + 1)+l

- n!(—x)”g yn1+1 {a[l + ;<y —(y+n+ 1)(y11)n+1>] - 1},

where y = x + 1 > 0.

In [5, p. 28] and [11, p. 154], the Bernoulli’s inequality states that if © > —1
and x # 0 and if @« > 1 or if & < 0 then (1 4+ z)* > 1 + az. This means that
145 < (1+ %)SH for t > 0, which is equivalent to t — (t + s + 1)(]5_%1)erl >0
for t > 0, and then 7(s,t) > 0 for s > 1 and ¢ > 0 and 7(s,0) = 0.

From 7(s,t) > 0, it is deduced that [ay+n(a—1)](y+1)" T —a(y+n+1)y" T >0
fory=x+1i>0and n € Nif a > 1. Therefore, for a« > 1, we have

e >0, ifniseven and z € (—1,0) U (0,00) or n is odd and z € (—1,0),
Han\T

<0, ifnisoddand x € (0,00),
and then pq n(z) is strictly increasing with « € (—1,00) if n is even or with z €
(—1,0) if n is odd and pq,n(z) is strictly decreasing with z € (0,00) if n is odd.
Since pa,n(0) = 0, thus pqn(x) < 0 with x > —1 and = # 0 if n is odd or with
xz € (—1,0) if n is even and pq ,(x) > 0 with z € (0,00) if n is even. Therefore,

from lim, o [In v, (2)]™ = 0, it is deduced that [Inv,(2)]™ > 0 if n is even



6 F. QI AND B.-N. GUO

and [Inv, (z)]™ < 0 if n is odd, which is equivalent to (—1)"[ln vy (z)]™ > 0 in
x € (—1,00) for n € Nand o > —1. Hence, if @ > 1, then the function JEES ) A

=g
In Fiﬁﬂ) - w(”jl) + 257 is strictly completely

strictly decreasing and the function
monotonic in = € (—1, 00).

It is clear that 79 > 0. When a < 17— < 1, it follows that uy, ,(z) < 0 and
tan(x) is decreasing with z € (—1, oo) and z # 0 for n an even integer or with
r € (—1,0) for n an odd integer, and u, ,,(z) > 0 and pia, () is increasing with
z € (0,00) for n an odd integer. Since jiq,,(0) = 0 and lim, .o [In v, (2)]™ = 0,
we have [Inv,(z)]™ < 0 for n an even and [Inv,(z)]™ > 0 for n an odd in
x € (—1,00), this implies that (—1)"*[In v, (2)]™ > 0in 2 € (~1,00) for n € N.

Therefore v, (x) is strictly increasing and (—1)" ' {[Inv, ()]}~ > 0 in (—1, 00)

for n € N. Hence, if @ < ﬁ, then the function % is strictly increasing and
the function w(wﬂ) —mriiﬁﬂ)—m is strictly completely monotonic in (—1,00). O

Proof of Theorem 3. The procedure is same as the one of Theorem 2. Hence, we

leave it to the readers. O

Proof of Theorem 4. Tt is clear that exp ¢(x) > 0. Further, it is easy to see that
[exp ¢(2)]" = ¢'(z) exp ¢(z) < 0 and [exp ¢(2)]" = {¢"(x) + [f'(2)]*} exp d(z) > 0

Suppose (—1)*[exp #(z)]*) > 0 for all nonnegative integers k < n, where n € N

is a given positive integer. By Leibnitz’s formula, we have

(=1)"exp ¢ ()] " = (=1)" " {[exp ¢ ()]}
= (=1)"*[¢/ (&) exp p()]

- ”*12( )w“ () exp ¢ ()]~

(n) [(_1)i+1¢(i+1)(x)]{< 1)" z[eXp(b( (n—z‘)}

7

|

~
Il
=]

(13)

AV
o

By induction, it is proved that the function exp ¢(z) is completely monotonic. O
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3. REMARKS

Remark 1. In [10, 13], among other things, the following monotonicity results were

obtained
LA+ )" <@+ kY% ke

1 xT
[l" (1 + )] decreases with > 0.
T

These are extended and generalized in [16]: The function [I'(r)]*/("=1) is increasing
in r > 0. Clearly, Theorem 1 generalizes and extends these results for the range of

the argument.

Remark 2. It is proved in [19] that the function 2 InT(z 4+ 1) — Inz + 1 is strictly
completely monotonic on (0, 00) and tends to +00 as z — 0 and to 0 as x — co. A
similar result was found in [24]: The function 1+ % InT(x+41) —In(x+1) is strictly
completely monotonic on (—1,00) and tends to 1 as  — —1 and to 0 as  — oo.

Our main results generalize these ones.

Remark 3. From our main results, the following can be deduced: Let n be natural

ol

nte/(ntk+1)!

Remark 4. A function f is logarithmic convex on an interval I if f is positive and

number. Then the sequence are increasing with n € N.

In f is convex on I. Since f(z) = exp[ln f(z)], it follows that a logarithmic convex

function is convex.

Remark 5. Straightforward computation shows that the maximum 7 of 7(2,¢) in

(0,00) is

2+7) (34257
T<2’2+3ﬁ> :% 2+3ﬁ( ) ( 33 ) =0.264076---  (14)
27(1+ 22”)

and the maximum 75 of 7(3,¢) in (0, 00) is

(55 3/2836 — 541/406 N 3/1418 + 27+/406
9 18 94

) =0.271807- - - . (15)

Ifa< ﬁ = 0.791091378310519808 - - -, then juf, o(x) < 0 and piq,2(z) decreases
in (—1,00). Since fi42(0) = 0 and lim, oo [Inv,(2)]® = 0, it is obtained that
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v, (2)]® < 0. Therefore the function v, (x) = w is strictly increasing

(z+1)
and strictly logarithmically concave for a < ﬁ in (—1,00).

If a < 1+ = 0.7862824583608 - - -, then py, 3(z) < 0 and pq 3(z) decreases in

(=1,0) and gy, 5(w) > 0 and pq 3(z) increases in (0,00). Thus pa 3(z) > 0 and then

v, (2)]® > 0in (—1,00). Hence [Inv, ()] is strictly increasing in (—1,00) if

1
a <

MATHEMATICA shows that 79 > 0.2980 - - -

Remark 6. The motivation of this paper has been exposited in detail in [21] and a

lot of literature is listed therein. Please also refer to [2, 6, 7, 9, 17, 20, 22].

4. OPEN PROBLEMS

A function f(t) is said to be absolutely monotonic on an interval I if it has
derivatives of all orders and f*)(¢t) > 0 for t € I and k € N. A function f(t) is said
to be regularly monotonic if it and its derivatives of all orders have constant sign
(4 or —; not all the same) on (a,b). A function f(t) is said to be absolutely convex

on (a,b) if it has derivatives of all orders and f(*)(t) > 0 for t € (a,b) and k € N.

[[(z+a+1)]/ (= +e)

The function T )7"

can be expressed as

Yo et (16)
§ o tret dt

where [ e~*dt = 1. Then we propose the following

Open Problem 1. Let w(z) > 0 be a nonnegative weight defined on a domain §2
with [, w(z)dz = 1. Find conditions about w(z) and f(x) > 0 such that the ratio

between two power means

Usz ft+a )dac] 1/(t4a)
[ w( x) dz] v

is completely (absolutely, regularly) monotonic (convezr) with t € R for a given

Qt) = (17)

number a > 0.

Open Problem 2. Find conditions about o and (8 such that the ratio
L+ 1)
(z +08)*

is completely (absolutely, reqularly) monotonic (convex) with x > —1.

F(z) = (18)
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Open Problem 3. For (s,t) € N x (0,00), find the mazimum of the following

T(s,t) = i[t— (t+s+1)<t+t1)s+1} (19)
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