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A MONOTONICITY RESULT OF A FUNCTION INVOLVING
THE EXPONENTIAL FUNCTION AND AN APPLICATION

FENG QI

Abstract. Let x > 0, then 1
x2 − e−x

(1−e−x)2
is strictly decreasing. This result

can be applied to solve the 69th problem in [2, p. 295] and [3, p. 217].

In [2, pp. 702–708], the author collected 152 unsolved problems on inequalities.
The 69th problem [2, p. 295 and p. 704] states: What is the best possible constant
c such that the inequality

1
x2
− c <

e−x

(1− e−x)2
<

1
x2

(1)

is valid for all real x ∈ (0, 1)?
This problem originated from [3, p. 217] maybe.
In [4], it is proved that the best constant c in (1) is 1

12 .
In [1], it is proved that inequality (1) holds in the interval (0,∞) if and only if

c ≥ 1
12 .

In the following, we shall present a general result.

Theorem 1. The function

f(x) =
1
x2
− e−x

(1− e−x)2
(2)

is strictly decreasing in (0,∞).

Proof. Straightforward computing yields

f ′(x) =
2− 2e3x + (x3 − 6)ex + (x3 + 6)e2x

x3(ex − 1)

,
g(x)

x3(ex − 1)
,

(3)

g′(x) = [(2x3 + 3x2 + 12)ex − 6e2x + x3 + 3x2 − 6]ex

, exh(x),
(4)

h′(x) = (12 + 6x + 9x2 + 2x3)ex − 12e2x + 3x(2 + x), (5)

h′′(x) = (18 + 24x + 15x2 + 2x3)ex − 24e2x + 6(1 + x), (6)

h′′′(x) = (42 + 54x + 21x2 + 2x3)ex − 48e2x + 6, (7)
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h(4)(x) = (96− 96ex + 96x + 27x2 + 2x3)ex

, exφ(x),
(8)

φ′(x) = 6(16− 16ex + 9x + x2), (9)

φ′′(x) = 54− 96ex + 12x, (10)

φ′′′(x) = 12− 96ex, (11)

and
φ′′(0) = −42, φ′(0) = 0, φ(0) = 0,

h(4)(0) = 0, h′′′(0) = 0, h′′(0) = 0,

h′(0) = 0, h(0) = 0, g′(0) = 0.

(12)

It is clear that φ′′′(x) < 0 in (0,∞), then φ′′(x) is decreasing, φ′′(x) < 0, φ′(x) is
decreasing, φ′(x) < 0, φ(x) is decreasing, φ(x) < 0, h(4)(x) < 0, h′′′(x) is decreasing,
h′′′(x) < 0, h′′(x) is decreasing, h′′(x) < 0, h′(x) is decreasing, h′(x) < 0, h(x) is
decreasing, h(x) < 0, g′(x) < 0, g(x) is decreasing. Since g(0) = 0, g(x) < 0 which
is equivalent to f ′(x) < 0 in (0,∞). Hence the function f(x) is strictly decreasing
in (0,∞). The proof is complete. �

Remark 1. Using the power series expansion of ex at x = 0, we can expand the
function g(x) defined in (3) at x = 0 into a power series as g(x) =

∑∞
i=7 aix

i with
ai < 0 for i ≥ 7. This means g(x) < 0, and then f ′(x) < 0 in (0,∞). Hence f(x)
is strictly decreasing in (0,∞).

As an application of Theorem 1, we have

Corollary 1. In the interval (0, 1), we have

1
x2
− 1

12
<

e−x

(1− e−x)2
<

1
x2
− e2 − 3e + 1

(e− 1)2
. (13)

The constants 1
12 and e2−3e+1

(e−1)2 in (13) are the best possible.
On the whole real line,

1
x2
− 1

12
<

e−x

(1− e−x)2
<

1
x2

. (14)

The constant 1
12 is also the best possible.

Proof. Using the power series expansion of ex at x = 0 and direct computing gives

lim
x→0+

[
1
x2
− e−x

(1− e−x)2

]
= lim

x→0+

x4

12 + o(x4)
x4 + o(x4)

=
1
12

. (15)

Inequality (13) follows readily from Theorem 1 and f(1) = e2−3e+1
(e−1)2 .

Inequality (14) follows from Theorem 1 and limx→∞ f(x) = 0 easily. �

Remark 2. In the final, it is natural to pose the following open problem: Find the
range of α such that the function

1
xα
− e−x

(1− e−x)2
(16)

is monotonic in (0,∞).
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