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INTEGRAL CHARACTERIZATIONS FOR EXPONENTIAL
STABILITY OF SEMIGROUPS AND EVOLUTION FAMILIES ON

BANACH SPACES

C. BUŞE, N.S. BARNETT, P. CERONE, AND S.S. DRAGOMIR

Abstract. Let X be a real or complex Banach space and U = {U(t, s)}t≥s≥0

be a strongly continuous and exponentially bounded evolution family on X.
Let J be a non-negative functional on the positive cone of the space of all real-
valued locally bounded functions on R+ := [0,∞). We suppose that J satisfies
some extra-assumptions. Then the family U is uniformly exponentially stable
provided that for every x ∈ X we have:

sup
s≥0

J(||U(s + ·, s)x||) < ∞.

This result is connected to the uniform asymptotic stability of the well-posed
linear and non-autonomous abstract Cauchy problem{

u̇(t) = A(t)u(t), t ≥ s ≥ 0,
u(s) = x x ∈ X.

In the autonomous case, i.e. when U(t, s) = T (t − s) for some strongly con-

tinuous semigroup {T (t)}t≥0 we obtain the well-known theorems of Datko,
Littman, Neerven, Pazy and Rolewicz.

1. Introduction

Let X be a real or complex Banach space and L(X) the Banach algebra of all
linear and bounded operators acting on X. The norm of vectors in X and operators
in L(X) will be denoted by || · ||. Let T := {T (t)}t≥0 be a semigroup of operators
acting on X, that is, T (t) ∈ L(X) for every t ≥ 0, T (0) = I the identity operator
in L(X) and T (t + s) = T (t) ◦ T (s) for every t ≥ 0 and s ≥ 0. The semigroup T
is called strongly continuous if for each x ∈ X the map t 7→ T (t)x : [0,∞) → X is
continuous. Every strongly continuous semigroup is locally bounded, that is, there
exist h > 0 and M ≥ 1 such that ||T (t)|| ≤ M for all t ∈ [0, h]. It is easy to see
that every locally bounded semigroup is exponentially bounded, that is, there exist
ω ∈ R+ and M ≥ 1 such that

||T (t)|| ≤ Meωt for all t ≥ 0.

It is well-known that if T = {T (t)}t≥0 is a strongly continuous semigroup on a
Banach space X and there exists p ∈ [1,∞) such that for each x ∈ X one has

(1.1)
∫ ∞

0

||T (t)x||pdt = M(p, x) < ∞,
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then T is exponentially stable, that is, its uniform growth bound

ω0(T) := inft>0
ln ||T (t)||

t
,

is negative. This result is usually referred to as the Datko-Pazy theorem, see [6, 12].
An important application of the Datko-Pazy theorem can be found in [16]. A
quantitative version of this theorem states that if M(p, x) from (1.1) is equal to
C||x||p, where C is some positive constant, then ω0(T) < − 1

pC . See [10] Theorem
3.1.8 for details. An important generalization of the Datko-Pazy theorem was given
by S. Rolewicz, [13]. In the autonomous case the Rolewicz theorem reads as follows.
Let T = {T (t)}t≥0 be a strongly continuous semigroup on a Banach space X. If there
exists a continuous non-decreasing function φ : [0,∞) → [0,∞) such that φ(t) > 0
for each t > 0 and if

(1.2)
∫ ∞

0

φ(||T (t)x||)dt := Mφ(x) < ∞ for each x ∈ X,

then the semigroup T is exponentially stable. The same result was obtained inde-
pendently by Littman [8]. In particular, from Rolewicz’s theorem it follows that
the Datko-Pazy theorem remains valid for p ∈ (0, 1). The condition (1.1) indicates
that for each x ∈ X the map t 7→ T (t)x belongs to Lp(R+). Jan van Neerven has
shown in [9] that a strongly continuous semigroup T on X is uniformly exponen-
tially stable if there exists a Banach function space over R+ := [0,∞) with the
property that

(1.3) lim
t→∞

||1[0,t]||E = ∞,

such that

(1.4) ||T (·)x|| ∈ E for every x ∈ X.

He has also shown that the autonomous variant of the Rolewicz theorem can be
derived from his result by taking for E a suitable Orlicz space over R+. In another
paper, [11], Jan van Neerven has come to the same conclusion by replacing either
(1.1), (1.2) or (1.4) by the hypothesis that the set of all x ∈ X for which the
following inequality holds

J(||T (·)x||) < ∞,

is of the second category in X. Here J is a certain lower semi-continuous functional
as defined in Theorem 2 from [11]. The proof of this latter result is based on a
non-trivial result from operator theory given by V. Müler, see Lemma 1 from [11],
for further details. We give here a surprisingly simple proof for a result of the same
type, moreover, we do not require the lower semi-continuity of J.

In order to introduce some non-autonomous results of this type we recall the
notion of an evolution family.

A family U = {U(t, s)}t≥s≥0 of bounded linear operators on a Banach space X
is a strongly continuous evolution family if

(1) U(t, t) = I and U(r, s) = U(t, s) for t ≥ r ≥ s ≥ 0.
(2) The map t 7→ U(t, s)x : [s,∞) → X is continuous for every s ≥ 0 and every

x ∈ X.

The family U is exponentially bounded if there exist ω ∈ R and Mω ≥ 0 such
that

(1.5) ||U(t, s)|| ≤ Mωeω(t−s) for t ≥ s ≥ 0.
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Then ω(U) := inf{ω ∈ R : there is Mω ≥ 0 such that (1.5) holds} is called the
growth bound of U . The family U is uniformly exponentially stable if its growth
bound is negative.

In [1] it is proved that an exponentially bounded evolution family U is uniformly
exponentially stable if there exists a solid space E satisfying (1.3) such that for
each s ≥ 0 and each x ∈ X the map ||U(s + ·, s)x|| belongs to E and

sups≥0 |||U(s + ·, s)x|| := K(x) < ∞.

The non-autonomous Datko theorem, [7], follows from this by taking E = Lp(R+).
The theorem of Rolewicz, [14], can be derived as well by taking for E a suitable
Orlicz space over R+, see Theorem 2.10 from [1]. New guidelines about the proof
of the Datko theorem can be found in [5] and [15]. In this paper we propose
a more natural generalization of the theorems of Datko and Rolewicz which can
also be extended to the general non-autonomous case. For some recently obtained
autonomous or periodic versions of the above; see [4], [11].

2. A Generalization of the Datko-Pazy Theorem

We begin by stating and proving two lemmas which are useful later.

Lemma 1. Let T = {T (t) : t ≥ 0} be a locally bounded semigroup on a Banach
space X. If for each x ∈ X there exists t(x) > 0 such that T (t(x))x = 0, then T is
uniformly exponentially stable.

Proof. It is easy to see that T is uniformly bounded. Indeed, if not, then there exists
a sequence (tn) of positive real numbers with tn → ∞ such that ||T (tn)|| → ∞.
By the Uniform Boundedness Theorem it follows that there exists x ∈ X such
that ||T (tn)x|| → ∞. This is in contradiction to the hypothesis. Now let ν > 0.
The semigroup {eνtT (t)} verifies the hypothesis of the present Lemma and it is
uniformly bounded. Finally, we deduce that T is uniformly exponentially stable.

Lemma 2. Let T = {T (t)}t≥0 be a locally bounded semigroup such that for each
x ∈ X the map t 7→ ||T (t)x|| is continuous on (0,∞). If there exist a positive h and
0 < q < 1 such that for all x ∈ X there exists t(x) ∈ (0, h] with

(2.1) ||T (t(x))x|| ≤ q||x||,
then the semigroup T is uniformly exponentially stable.

Proof. Let x ∈ X be fixed and t1 ∈ (0, h] such that ||T (t1)x|| ≤ q||x||, then there
exists t2 ∈ (0, h] such that

||T (t2 + t1)x|| ≤ q||T (t1)x|| ≤ q2||x||.
By mathematical induction it is easy to see that there exists a sequence (tn), with
0 < tn ≤ h such that ||T (sn)x|| ≤ qn||x||, where sn := t1 + t2 + · · ·+ tn.

If sn →∞, then for each t ∈ [sn, sn+1] we have that t < (n + 1)h and

||T (t)x|| ≤ Mqn||x|| ≤ Me− ln(q)e
ln(q)

T t||x||,
that is, T is exponentially stable.

If the sequence (sn) is bounded, let t(x) be the limit of (sn). By the assumption
of continuity it follows that T (t(x)) = 0 and then application of Lemma 1 completes
the proof.

We can now state the main result of this section.



4 C. BUŞE, N.S. BARNETT, P. CERONE, AND S.S. DRAGOMIR

Theorem 1. Let Mloc([0,∞)) be the space of all real valued locally bounded func-
tions on R+ = [0,∞) endowed with the topology of uniform convergence on bounded
sets and M+

loc(R+) its positive cone.
Let J : M+

loc(R+) → [0,∞] be a map with the following properties:
1. J is nondecreasing.
2. For each positive real number ρ,

lim
t→∞

J(ρ · 1[0,t]) = ∞.

If T is a semigroup on a Banach space X as in Lemma 2 such that

(2.2) sup
||x||≤1

J(||T (·)x||) := KJ < ∞,

then T is exponentially stable.

Proof. Suppose that T is not exponentially stable. For all h > 0 and all 0 < q < 1
then there exists x0 ∈ X of norm one such that

||T (t)x0|| > q for every t ∈ [0, h],

as proved in Lemma 2. It follows then that

KJ ≥ J(||T (·)x0||) ≥ J(q · 1[0,h])

which contradicts (2.2).

Corollary 1. Let T = {T (t)}t≥0 be a semigroup on a Banach space X as in
Lemma 2 and 1 ≤ p < ∞. If (1.1) holds for all x ∈ X then the semigroup T is
exponentially stable.

Proof. For each fixed positive h consider the bounded linear operator

x 7→ Thx : X → Lp(R+, X)

defined by

(Thx)(t) =
{

T (t)x, if 0 ≤ t ≤ h
0, if t > h.

For each x ∈ X we have:

||Thx||Lp(R+,X) =

(∫ h

0

||T (t)x||pdt

) 1
p

≤ M(p, x)
1
p .

From the Uniform Boundedness Theorem it follows that there exists a positive
constant Cp such that

||Thx||Lp(R+,X) ≤ Cp||x|| for every x ∈ X.

Now it is easy to derive the inequality

sup
||x||≤1

∫ ∞

0

||T (t)x||pdt ≤ Kp < ∞,

where Kp is a positive constant. Choose J(f) :=
∫∞
0

f(t)pdt, apply Theorem 1 and
the proof is complete.

Corollary 2. Let T = {T (t)}t≥0 be a semigroup on a Banach space X as in the
above Lemma 2. If there exists a non-decreasing function φ : [0,∞) → [0,∞) such
that φ(t) > 0 for each t > 0 and (1.2) holds then the semigroup T is exponentially
stable.
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Proof. Seemingly we could proceed as in the proof of Corollary 1, but, however, we
cannot directly apply the Uniform Boundedness Theorem. First we prove that the
semigroup T is uniformly bounded. In fact, this has been done in [2] in the general
framework of the evolution families. For the sake of completeness we mention some
steps of that proof for this particular case. We may assume that φ(0) = 0, φ(1) = 1
and that φ is strictly increasing on R+, if not, we replace φ by some multiple of the
function

t 7→ φ̄(t) :=
{ ∫ t

0
φ(u)du, if 0 ≤ t ≤ 1
at

at+1−a , if t > 1,

where a :=
∫ 1

0
φ(u)du.

Let x ∈ X be fixed, N be a positive integer such that Mφ(x) < N and let t ≥ N.
For each τ ∈ [t−N, t] and all u ≥ 0 we have:

e−ωN1[t−N,t](u)||T (t)x|| ≤ e−ω(t−τ)1[t−N,t](u)||T (t− τ)T (τ)x|| ≤ M ||T (u)x||

and then

Nφ

(
||T (t)x||
MeωN

)
≤
∫ t

t−N

φ

(
||T (t)x||
MeωN

)
du ≤ Mφ(x).

Hence ||T (t)x|| ≤ MeωNMφ(x) for every t ≥ N, and so the semigroup T is uni-
formly bounded.

From [11] Lemma 3.2.1 it follows that there exists an Orlicz’s space E satisfying
(1.3) such that for each x ∈ X which satisfies (1.2), the map t 7→ T (t)x belongs to
E. For each non-negative, bounded and measurable real-valued function f we put
J(f) := sup

t≥0
|1[0,t]f |E , giving,

J(||T (·)x||) = sup
t≥0

|1[0,t]|||T (·)x|||E ≤ |||T (·)x|||E < ∞,

for every x ∈ X.
Arguing as in Corollary 1 it follows that there exists a positive constant Kφ,

independent of x, such that

sup
||x||≤1

J(||T (·)x||) < Kφ < ∞.

Application of Theorem 1 completes the proof.

3. The Non-autonomous Case

We state and prove two lemmas that will be used in the sequel.

Lemma 3. Let U = {U(t, s)}t≥s≥0 be an exponentially bounded evolution family on
a Banach space X. If for each x ∈ X there exists t(x) > 0 such that U(s+t(x), s)x =
0 for every s ≥ 0 then the family U is uniformly exponentially stable.

Proof. First we prove that there exists M > 0 such that

sup
s≥0

||U(s + t, s)|| ≤ M for all t ≥ 0.

Indeed, if we suppose the contrary then there exists a sequence (tn) of positive real
numbers with tn → ∞ such that limn→∞ ||U(s + tn, s)|| = ∞. From the Uniform
Boundedness Theorem it follows that there exists x ∈ X such that ||U(s+tn, s)x|| →
∞ when n →∞ which is in contradiction to the hypothesis. We now observe that
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the family {eν(t−s)U(t, s)}t≥s≥0 verifies the hypothesis of the present lemma and
then

||U(t, s)|| ≤ Me−ν(t−s) for all t ≥ s,

i.e. the assertion holds.

Lemma 4. Let U = {U(t, s)}t≥s≥0 be an exponentially bounded evolution family
on a Banach space X such that for each y ∈ X and each s ≥ 0 the map

t 7→ ||U(s + t, s)y|| : R+ → R+

is continuous on (0,∞). If there exist positive real numbers h and q < 1 such that
for every x ∈ X there exists t(x) ∈ (0, h] with the property that

sup
s≥0

||U(s + t(x), s)x|| ≤ q||x||,

then the family U is exponentially stable.

Proof. Is similar to that of Lemma 2 and so we omit the details.

Theorem 2. Let U = {U(t, s)}t≥s≥0 be an evolution family on a Banach space X
as in the above Lemma 4 and let J be a functional as in Theorem 1. If there exists
r > 0 such that

(3.1) sup
s≥0

sup
||x||≤r

J(||U(s + ·, s)x||) := L(J, r) < ∞,

then the evolution family U is uniformly exponentially stable.

Proof. Suppose that the family U is not uniformly exponentially stable. Under such
circumstances as proved in Lemma 4, for every positive real number h and every
q ∈ (0, 1) there exist x0 ∈ X of norm one and s0 ≥ 0 such that

||U(s0 + t, s0)x0|| > q for all t ∈ [0, h].

Thus
L(J, r) ≥ J(||U(s0 + t, s0)rx0||) ≥ J(rq · 1[0,h])

for each h > 0, which contradicts (3.1).

Theorem 3. Let J be as in the above Theorem 1. We suppose, in addition, that J
is lower semi-continuous and convex in the sense of Jensen (or sub-additive, that
is, J(f + g) ≤ J(f) + J(g) for every f and g in Mloc(R+)). Let U be an evolution
family as in the Lemma 4. If the set X of all x ∈ X for which

sup
s≥0

J(||U(s + ·, s)x||) < ∞

is of the second category in X, then the family U is uniformly exponentially stable.

Proof. Let s ≥ 0, be fixed. The map x 7→ ||U(s + ·, s)x|| : X → Mloc(R+) is
continuous. As a consequence, the map

x 7→ Φs(x) := J(||U(s + ·, s)x||) : X → [0,∞]

is lower semi-continuous as well. For each positive integer k, the set

Xk(s) := {x ∈ X : J(||U(s + ·, s)x||) ≤ k}
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is closed, because it is the reverse image of the real closed interval [0, k] by the map
Φs. It is clear that the set

Xk :=
{

x ∈ X : sup
s≥0

J(||U(s + ·, s)x||) ≤ k

}
= ∩s≥0Xk(s)

is also closed and moreover that X is the union of all sets Xk. Because X is of
the second category in X, there exists a set Xk0 whose interior is non empty. Let
x0 ∈ X and r0 > 0 such that B(x0, r0) belongs to Xk0 . It is easy to see that
B
(
0, 1

2r0

)
belongs to Xk0 , that is,

sup
s≥0

sup
||x||≤ 1

2 r0

J(||U(s + ·, s)x||) ≤ k0.

Indeed for every x ∈ X with ||x|| ≤ r0 we have:

J

(∥∥∥∥U(s + ·, s)
(

1
2
x

)∥∥∥∥) = J

(
1
2
||U(s + ·, s)[(x + x0)− x0]||

)
≤ J

(
1
2

[||U(s + ·, s)(x + x0) + ||U(s + ·, s)x0||]
)

≤ 1
2
J(||U(s + ·, s)(x + x0)||) +

1
2
J(||U(s + ·, s)x0||)

≤ k0.

Application of Theorem 2 completes the proof.

Corollary 3. Let U = {U(t, s)}t≥s≥0 be an exponentially bounded evolution family
on a Banach space X such that for each x ∈ X the map t 7→ ||U(s + t, s)x|| is
continuous on (0,∞) for every s ≥ 0. Consider the following three inequalities:

1. There exists p ∈ [1,∞) such that

sup
s≥0

∫ ∞

0

||U(s + t, s)x||pdt < ∞

for every x ∈ X.
2. There exists a Banach function space E satisfying (1.3) such that for each

s ≥ 0 and each x ∈ X the map U(s + ·, s)x belongs to E and for every
x ∈ X we have

sup
s≥0

|||U(s + ·, s)x|||E < ∞.

3. There exists a non-decreasing function φ : [0,∞) → [0,∞) with φ(t) > 0
for each t > 0 such that

sup
s≥o

∫ ∞

0

φ(||U(s + t, s)x||)dt < ∞

for every x ∈ X.

If any one of these statements is true then the family U is exponentially stable.
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[2] C. Buşe, S. S. Dragomir, A theorem of Rolewicz’s type for measurable evolution families in

Banach spaces, Electonic J. of Diff. Eqns., Vol. 2001(2001), No. 70, pp.1-5.
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