

A Note on Short Intervals Containing Primes

This is the Published version of the following publication

Hassani, Mehdi and Sariolgalam, Narges (2004) A Note on Short Intervals Containing Primes. Research report collection, 7 (3).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18050/

A Note on Short Intervals Containing Primes

Mehdi Hassani Narges Sariolgalam

Department of Mathematics Institute for Advanced Studies in Basic Sciences Zanjan, Iran mhassani@iasbs.ac.ir s-ghalam@iasbs.ac.ir

Abstract

In 1999, P. Dusart showed that for $x \ge 3275$, there exists at least a prime number in the interval $\left(x, x(1 + \frac{1}{2\ln^2 x})\right)$ and in 2003, O. Ramaré and Y. Saouter showed that for $x \ge 10726905041$ there exists at least a prime number in the interval $\left(x(1 - \Delta^{-1}), x\right)$, in which $\Delta = 28314000$. In this note, we show that for $x \ge 1.17 \times 10^{1634}$, we can yield Ramaré-Saouter's result from Dusart's result.

2000 Mathematics Subject Classification: 11A41.

Keywords: Primes.

As usual, suppose \mathbb{P} be the set of all prime numbers. In 1999, P. Dusart [1] showed that for every $x \ge 3275$, we have

$$\mathbb{P}\cap\left(x,x(1+\frac{1}{2\ln^2 x})\right]\neq\phi.$$

In 2003, O. Ramaré and Y. Saouter [2] showed that for $x \ge 10726905041$, we have

$$\mathbb{P} \cap \left(x(1 - \Delta^{-1}), x \right] \neq \phi,$$

in which $\Delta = 28314000$. If $L_D(x)$ denotes the length of Dusart's interval, $\left(x, x(1 + \frac{1}{2\ln^2 x})\right)$, and $L_{RS}(x)$ denotes the length of Ramaré-Saouter's interval, $\left(x(1 - \Delta^{-1}), x\right)$, then clearly we have:

$$L_D(x) = \frac{x}{2\ln^2 x} = O\left(\frac{x}{\ln^2 x}\right),$$

and

$$L_{RS}(x) = \frac{x}{\Delta} = O(x).$$

Also, we observe that

$$\lim_{x \to \infty} \frac{L_D(x)}{L_{RS}(x)} = 0.$$

and this suggest that for sufficiently large values of x's, Dusart's interval become shorter than Ramaré-Saouter's interval. In this research report, we show that for $x \ge 1.17 \times 10^{1634}$, we can yield Ramaré-Saouter's interval from Dusart's interval.

Ramaré-Saouter's interval from Dusart's interval. Let $d(x) = x(1 + \frac{1}{2\ln^2 x})$. For x > 0, d'(x) > 0; so, $d^{-1}(x)$, the inverse of the function d(x), is well-define. According to Dusart, for $x \ge 3275$, $\mathbb{P} \cap (x, d(x)] \neq \phi$, and so for such x's that $d^{-1}(x) \ge 3275$, we have

$$\mathbb{P} \cap \left(d^{-1}(x), x \right] \neq \phi.$$

Therefore, $\mathbb{P} \cap (d^{-1}(x), x] \neq \phi$ holds for $x \geq d(3275)$ or for $x \geq 3300$. Now, we search such x's that $x(1 - \Delta^{-1}) \leq d^{-1}(x)$ or $d(x(1 - \Delta^{-1})) \leq x$ and this is equivalent to

$$x(1-\Delta^{-1})\left(1+\frac{1}{2\ln^2\left(x(1-\Delta^{-1})\right)}\right) \le x,$$

and since x > 0, we yield that for $x \ge \frac{e\sqrt{\frac{\Delta-1}{2}}}{1-\frac{1}{\Delta}} \approx 1.167417545 \times 10^{1634}$, Dusart's interval yields Ramaré-Saouter's interval. This prove our claim at above.

We end this short note with a question about Dusart's interval: Question. For every $x \in \mathbb{R}$, let

$$n(x) := \#\mathbb{P} \cap \left(x, x(1 + \frac{1}{2\ln^2 x})\right].$$

Is there some elementary function f(x) such that $n(x) \sim f(x)$, when $x \to \infty$? More generally study of n(x) is a nice subject.

Note. All computations in this note done by Maple software.

Acknowledgment. We would like to express our gratitude to G.A. Pirayesh for his nice computational comments.

References

- [1] P. Dusart, Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. **21** (1999), no. 2, 53–59.
- [2] O. Ramaré and Y. Saouter, Short effective intervals containing primes, Journal of Number Theory, 98 (2003), 10-33.