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Abstract

In this note we are going to analyze the density of nth-power free integers.

1. Introduction

Let P the set of all primes and suppose M is a positive integer, with the following prime
factoring:

M = pα1
1 pα2

2 · · · pαk
k (p1, p2, · · · , pk ∈ P).

We call M , nth-power free if for 1 ≤ i ≤ k, αi < n. Let fn(x) = The number of nth-power
frees ≤ x. By density we mean

lim
x→∞

fn(x)

x
.

It is well-know that [1],

f2(x) =
6x

π2
+ O(

√
x).

So, the density of square frees is 6
π2 or approximately 61 percent!. Now, what about cubic

frees? And generally the nth-power frees?

2. Density Analysis

In this section we will show that the density of nth-power free integers is 1
ζ(n)

. Our main
result is based on the following lemma.

Lemma 1 Let s > 1 be a real number. We have
∞∑

m=1

µ(m)

ms
=

1

ζ(s)
.
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Proof:
∞∑

m=1

µ(m)

ms
=

∞∑
k=1

(−1)k

ps
1p

s
2 · · · ps

k

=
∏
p∈P

(1− 1

ps
) =

∏
p∈P

1∑∞
k=1

1
psk

=
1∑∞

m=1
1

ms

=
1

ζ(s)
.

Theorem 1 For any integer n ≥ 2 and any real x ≥ 1, we have

| x

ζ(n)
− fn(x)| < n

n− 1
n
√

x− 1. (1)

Proof: By a usual counting, we obtain

fn(x) = x−
∑
p∈P

b x

pn
c+

∑
p,q∈P,p6=q

b x

(pq)n
c − · · · =

∑
k≤ n√x

µ(k)b x

kn
c.

So, we have

| x

ζ(n)
− fn(x)| = |

∑
1<k≤ n√x

µ(k)(
x

kn
− b x

kn
c) +

∑
k> n√x

µ(k)
x

kn
|

< ( n
√

x− 1) + x
∑

k> n√x

1

kn
< n

√
x− 1 + x

∫ ∞

n√x

ds

sn
=

n

n− 1
n
√

x− 1.

This completes the proof.
A weak but nice form of the above theorem is

Corollary 1 For any integer n ≥ 2 and any real

fn(x) =
x

ζ(n)
+ O( n

√
x).

Corollary 2 For any integer n ≥ 2, the density of nth-power free integers is

1

ζ(n)
.

According the definition of fn(x) we obtain 0 ≤ fn(x)
x

< 1. We desire to find better lower
bounds:

Lemma 2 Let n ≥ 2 is an integer. For any real 0 ≤ α < 1
ζ(n)

and any real x >

( nζ(n)
(n−1)(1−αζ(n))

)
n

n−1 , we have

α <
fn(x)

x
.

Proof: From (1), we have

1

ζ(n)
− n

(n− 1)x1− 1
n

<
fn(x)

x
.

Let LB(n, x) denote the left hand side of the above inequality. If 0 ≤ α < 1
ζ(n)

and

x > ( nζ(n)
(n−1)(1−αζ(n))

)
n

n−1 , then α < LB(n, x). This completes the proof.

The obtained results are useful in study of distribution of nth-power free integers. In the
next section we do this.
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3. Computational Results

The sequence fn(x)
x

for any fixed n is convergent, and it may affairs minimum for some

x ∈ N. The lemma 2 led us to the following algorithm to find the minimum of fn(x)
x

on
N.

Step(1). Find x0 ∈ N such that
fn(x0)

x0

<
1

ζ(n)
.

Step(2). For α = fn(x0)
x0

, take

N =

⌊
(

nζ(n)

(n− 1)(1− αζ(n)
)

n
n−1

⌋
.

Step(3). Find

min
1≤x≤N

{fn(x)

x
}.

We note that there is no guarantee for the existence of x0 in step(1), but there are some
evidences for the following question.

Question Is there exists an x0 in the interval [5n, 6n] with fn(x0)
x0

< 1
ζ(n)

?

Our computer program gave an affirmative answer to above question for n = 2, . . . , 10.
It is based on the following recursive relation:

fn(x) = fn(x− 1) +

{
1 x is nth-power free

0 x other wise

Since fn(2n) = 2n − 1, we start from x = 2n. Then divide our interval into sub intervals
[2n, 3n], [3n, 5n], [5n, 7n], · · · . The following table includes the value of x0, exact value of

the minimum of fn(x)
x

and the value of x at which the minimum occur.

n x0 N x fn(x) minx∈N
fn(x)

x

2 28 6503647 176 106 0.602273
3 136 55980 378 314 0.830688
4 656 171931 2512 2320 0.923567
5 3168 269627 3168 3055 0.964331
6 16064 1346593 31360 30825 0.982940
7 78732 10552627 236288 234331 0.991718
8 393728 25381201 1174528 1169758 0.995939
9 1968640 146390429 7814151 7798488 0.997996

10 9802752 816756521 48833536 48785015 0.999006
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Now, we use our numerical results to get the following corollaries.

Corollary 3 Let n > 1 is an integer. The number of cases that we can write n as sum
of two square frees is greater than n

10
.

Proof: More than 60 percent of integers between 1 and n are square free. The number
of pairs {i, j} such that i + j = n is not greater than n

2
, so, there are more than n

10
of

this pairs with square free members. This complete the proof.

Corollary 4 The probabilty that two successive positive integer numbers both be square
free is more than 20%.

Proof: Obvious.
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