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Abstract

We introduce a nice elementary method for summing, that we call it L-
Summing Method. Applying this method on the elementary multiplication table
we reprove a well-known identity. Also, if we let (n(s) = > 1, %, applying
L-Summing Method on another kind of multiplication table we yield
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Consider the following n x n Multiplication Table:
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If we let S the sum of all numbers in it, then by summing line by line, we have

s (250

In other hand we can find S by using other method; let L; be the sum of boxed
numbers in the following table (we call Ly, L-Summing Element)
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So, we have
Ly=k+2k+-+k 4+ +2k+k=2k(1+2+ -+ k) —k*=Fk"

Thus we yield S = >}, Ly = > p_, k*, and therefore

Zkg ( n+1)>

We call this method L-Summing Method, which briefly is
Z(L — Summing Elements) = Z

Now, we apply the this method on the following table:
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in which s is an arbitrary complex number. For s € C, let (,(s) = >, . L-
Summing elements in above table are
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and sum of all numbers, is equal to (3(s). Thus, we have the following identity for
all s € C
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If R(s) > 1, then lim,,—, ¢ (s) = ((s), and we yield the following identity for R(s) > 1

> s 2(s) + ((2s
S Gl _ o)+ c

It is known that > 5, 2k = 2((3) (see [1]). Now, if s = 1, then we have (,(1) =

H,=>,_, %, and so, according to (1) and considering H,, ~ Inn, when n — oo, we
yield that

"\ H, H2+((2) In’n
- = 5 ~ (n — 00).
k=1
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