

L-Summing Method

This is the Published version of the following publication

Hassani, Mehdi (2004) L-Summing Method. Research report collection, 7 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18060/

L-Summing Method

Mehdi Hassani

Department of Mathematics Institute for Advanced Studies in Basic Sciences Zanjan, Iran mhassani@iasbs.ac.ir

Saeed Rahimpour

Shahid Beheshti Exceptional Talent Center Zanjan, Iran

Abstract

We introduce a nice elementary method for summing, that we call it *L*-Summing Method. Applying this method on the elementary multiplication table we reprove a well-known identity. Also, if we let $\zeta_n(s) = \sum_{k=1}^n \frac{1}{k^s}$, applying L-Summing Method on another kind of multiplication table we yield

$$\sum_{k=1}^{n} \frac{\zeta_k(s)}{k^s} = \frac{\zeta_n^2(s) + \zeta_n(2s)}{2}, \qquad (s \in \mathbb{C}).$$

2000 Mathematics Subject Classification: 65B10, 65A05, 11S40.

Keywords: L-Summing Method, Multiplication Table, Riemann zeta function.

Consider the following $n \times n$ Multiplication Table:

1	2	3	•••	n
2	4	6	• • •	2n
3	6	9	•••	3n
:	•••	:	•••	:
n	2n	3n	•••	n^2

If we let S the sum of all numbers in it, then by summing line by line, we have

$$S = \left(\frac{n(n+1)}{2}\right)^2.$$

In other hand we can find S by using other method; let L_k be the sum of boxed numbers in the following table (we call L_k , L-Summing Element)

1	2		k	•••	n
2	4		2k	•••	2n
:	:	·	:	:	•••
k	2k		k^2		kn
÷	:	÷	÷	·	:
n	2n	• • •	kn	• • •	n^2

So, we have

$$L_k = k + 2k + \dots + k^2 + \dots + 2k + k = 2k(1 + 2 + \dots + k) - k^2 = k^3.$$

Thus we yield $S = \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} k^3$, and therefore

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

We call this method *L-Summing Method*, which briefly is

$$\sum (L - Summing \ Elements) = \sum.$$

Now, we apply the this method on the following table:

$\frac{1}{1^s}$	$\frac{1}{2^s}$	$\frac{1}{3^s}$	•••	$\frac{1}{n^s}$
$\frac{1}{2^s}$	$\frac{1}{4^s}$	$\frac{1}{6^s}$	•••	$\frac{1}{(2n)^s}$
$\frac{1}{3^s}$	$\frac{1}{6^s}$	$\frac{1}{9^s}$	•••	$\frac{1}{(3n)^s}$
:	•	:	·	•
$\frac{1}{n^s}$	$\frac{1}{(2n)^s}$	$\frac{1}{(3n)^s}$	•••	$\frac{1}{(n^2)^s}$

in which s is an arbitrary complex number. For $s \in \mathbb{C}$, let $\zeta_n(s) = \sum_{k=1}^n \frac{1}{k^s}$. L-Summing elements in above table are

$$L_k = \frac{2\zeta_k(s)}{k^s} - \frac{1}{k^{2s}}$$

and sum of all numbers, is equal to $\zeta_n^2(s)$. Thus, we have the following identity for all $s \in \mathbb{C}$

$$\sum_{k=1}^{n} \frac{\zeta_k(s)}{k^s} = \frac{\zeta_n^2(s) + \zeta_n(2s)}{2}.$$
 (1)

If $\Re(s) > 1$, then $\lim_{n \to \infty} \zeta_n(s) = \zeta(s)$, and we yield the following identity for $\Re(s) > 1$

$$\sum_{k=1}^{\infty} \frac{\zeta_k(s)}{k^s} = \frac{\zeta^2(s) + \zeta(2s)}{2}.$$

It is known that $\sum_{k=1}^{\infty} \frac{H_k}{k^2} = 2\zeta(3)$ (see [1]). Now, if s = 1, then we have $\zeta_n(1) = H_n = \sum_{k=1}^n \frac{1}{k}$, and so, according to (1) and considering $H_n \sim \ln n$, when $n \to \infty$, we yield that

$$\sum_{k=1}^{n} \frac{H_k}{k} = \frac{H_n^2 + \zeta_n(2)}{2} \sim \frac{\ln^2 n}{2} \qquad (n \to \infty).$$

References

 Tom. M. Apostol and Ankur Basu, A new method for investigating Euler sums, Ramanujan J., 4(2000) no. 4, 397-419.